
ELSEVIER

Semantic cache mechanism for heterogeneous Web querying

Boris Chidlovskii a,Ł,1, Claudia Roncancio b,2, Marie-Luise Schneider a,1

a Xerox Research Centre Europe, Grenoble Laboratory, Grenoble, France
b ENSIMAG=Lab. LSR IMAG, Grenoble, France

Abstract

In Web-based searching systems that access distributed information providers, efficient query processing requires an
advanced caching mechanism to reduce the query response time. The keyword-based querying is often the only way to
retrieve data from Web providers, and therefore standard page-based and tuple-based caching mechanisms turn out to be
improper for such a task. In this work, we develop a mechanism for efficient caching of Web queries and the answers
received from heterogeneous Web providers. We also report results of experiments and show how the caching mechanism
is implemented in the Knowledge Broker system.  Published by Elsevier Science B.V. All rights reserved.

Keywords: Semantic cache; Web querying; Source heterogeneity; Meta-searcher

1. Introduction

Nowadays, we are witnessing the rapid growth
of information available over the World Wide Web.
As the Web grows, more and more new general-pur-
pose and domain-specific information services assist
the user in searching for the relevant data. As no
search service can be universally efficient or even
complete, this has triggered the appearance of a
new type of the Web-oriented software, so called
meta-searchers. A meta-searcher is a Web informa-
tion retrieval system which searches for answers to
user queries not in a local index, but in various
Web information providers. When a meta-searcher
receives the providers’ responses (in the form of
XML=HTML files), special components, hereafter
called wrappers, process the responses in order to

Ł Corresponding author.
1 E-mail: {chidlovskii,schneider}@xrce.xerox.com
2 E-mail: Claudia.Roncancio@imag.fr

Wrapper Wrapper Wrapper

User
Query
Interface

AltavistaLibrary of
CongressNCSTRL

Cache

Semantic

Query

Meta-searcher

User

requestcgi- XML/ HTM L

Answer
tuples

Fig. 1. A meta-searcher architecture.

extract data relevant to the original query [16,19,20].
Fig. 1 shows a typical meta-searcher architecture.

As in any client–server system, high performance
in a networked information retrieval system is of-
ten reached by efficient utilization of client storage
resources. In the networked environment, data from
remote servers are brought to clients on-demand,

 Published by Elsevier Science B.V. All rights reserved.

270

and client memory is largely used to cache data
and minimize future interaction with the servers.
This data caching has got a particular importance in
the Web-based information systems, as the network
traffic and slow remote servers can lead to long de-
lays in the answer delivery. Unfortunately, standard
caching techniques work poorly on the Web. The
page caching which is widely used in operative and
database management systems is improper on Web
retrieval systems and tuple-caching has certain lim-
itations. Thus much effort has been spent to cache
user queries with the corresponding answers (in-
stead of pages or tuples) to allow their future reuse
[5,14,15].

Query caching takes a particular advantage when
the user often refines a query, for example, by adding
or removing a query term. In this case, many of the
answers may already be cached and can be delivered
to the user right away. Importantly, when accessing
the payment sites, the query caching allows for
avoiding some repeated queries and thus saves the
user some money.

1.1. Page and tuple caching

A Web-based information retrieval system differs
from a standard client–server architecture where the
transfer units between servers and clients are pages
or tuple sets. Page caching mechanisms are widely
used in operative and database management systems;
they assume that each query posed at the client can
be processed locally and be broken down to the
level of requests for individual pages. Then, if a
requested page is not present in the client cache,
a request for the entire page is sent to the server.
Such a query processing is improper in a Web-based
retrieval system, where the keyword-based querying
is often the only way to retrieve data and where the
data organization at the servers is completely hidden
from the clients.

With tuple caching, the cache is maintained in
terms of individual tuples, allowing a higher level of
flexibility than pure page caching. On the Web, the
tuple caching is feasible as Web documents can be
referred and accessed by using their Universal Re-
source Locators (URL’s). Moreover, this mechanism
is used for caching Web pages at proxy servers [21].
A proxy cache maintains the set of recently accessed

Web pages and reuse a page from cache each time its
URL is asked by a client.

However, when Web information services are in-
terrogated with Boolean queries, the use of tuple
caching is much less attractive because of two main
disadvantages. First, the user request with a query
does not contain the URL of the answer page; instead
it contains a filled search form. Once the service re-
ceives the request with the form, the URL of the
answer is dynamically calculated by the cgi-script;
this makes the proxy cache helpless for prefetching
the answer items. Second, there is no way to in-
form the information services about qualified tuples
in the client cache and thus reduce the answer size.
Similarly, clients cannot detect if their local caches
provide a complete answer to the queries. As a re-
sult, clients are forced to ignore the cached tuples
while performing the query. Once the query is sent
to the server and all qualifying tuples are returned,
the clients detect and discard the duplications.

1.2. Semantic caching

To overcome the drawbacks of page and tuple
caching when querying Web sources, semantic cache
has been proposed by different researchers [14,11].
This approach manages the client cache as a collec-
tion of semantic regions. A semantic region groups
together semantically related data covered, for exam-
ple, by a user query. Moreover, the access informa-
tion and cache replacement are managed at a unit of
semantic regions [14].

When a query is posed at a client with a semantic
cache, the query is split into two pieces:
(1) a probe query, which retrieves the portion of the

answer available in the local cache, and
(2) a remainder query, which retrieves the missing

data from the server.
If the remainder query is not null (i.e., the query asks
for data that is not cached), the remainder query is
sent to the server and processed there [14].

1.3. Heterogeneity

A meta-searcher rarely uses a single source to
answer a user query; much often the query is sent
to numerous sources. Therefore, a semantic cache
mechanism should properly adopt the heterogeneous

271

environment typical for the Web. Generally, a wide
heterogeneity of Web services has become the main
problem for meta-searchers, whose main goal is in-
deed to hide this heterogeneity from the user. Usually
we distinguish between structural and semantical
heterogeneity. When the Web sources are semanti-
cally heterogeneous, the answers to the same query
are not necessarily compatible. As an example, an-
swers to the query “Java” in the context of computer
science and geography are indeed incompatible.

In this paper we cope rather with the structural
heterogeneity, when the sources are grouped on the
domain basis, but sources in a group may differ in
providing the same information. With the structural
heterogeneity, there are two main issues where the
Web sources expose their diversity: different search
facilities for formulating user queries and different
representations of answers.

To cope with the heterogeneity of query languages,
some techniques have been proposed in [17,9,10].
They all follow the subsumption strategy when an
original user query is translated into one or several
queries in the native query languages in a way that
the answer set will comprise the answer to original
query; to discard then the irrelevant extra-answers,
the methods invoke the post-filtering step.

Different representation of answers by informa-
tion sources hardly influences the wrappers’ struc-
ture, but it also unveils some important source char-
acteristics. Some of them are highly relevant to the
cache management. For example, the answer can be
complete (containing all relevant answers on the site)
or not (only k top-ranked items satisfying the query);
the answer items can be represented by unique page
(DBLP site 3) or split into a sequence of linked pages
(Altavista 4). Therefore, different representations of
answers attribute different semantics the cached data
thus changing the ways it is reused for new queries.

1.4. Our contribution

In this paper, we develop a semantic cache mech-
anism for querying heterogeneous Web providers.
We describe a general framework for storing the

3 Database and Logic Programming site at http://www.informati
k.uni-trier.de/¾ley/db/index.html
4 http://altavista.digital.com/

Web queries along with their answers in the seman-
tic cache. It includes the organization of regions in
the cache and their replacement. The regions are as-
signed with the region signatures which allow for an
efficient processing of the equivalence, inclusion and
intersection cases between user queries and cache
regions. We analyze and identify the main charac-
teristics of Web-based sources which influence the
cache management, namely source completeness and
check-ability, and develop proper algorithms. We also
describe how the semantic cache proposed in this pa-
per is integrated into the Knowledge Broker system
developed at the Xerox Research Centre Europe.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the general semantic cache mecha-
nism and the problem of Web source heterogeneity.
It describes the complete and checkable answers of
Web sources and Section 3 proposes the correspond-
ing algorithms. Section 4 studies the replacement
strategy in the semantic cache. Section 5 describes
the implementation of the semantic cache. Finally,
Section 6 reviews the related work and Section 7
concludes the work.

2. Semantic cache mechanism

In this section, we introduce the main components
of a semantic cache mechanism aimed at the opti-
mization of distributed information retrieval from
Web-based information sources. We describe a uni-
form query language offered to the user by a meta-
searchers, the semantic cache architecture and how
the heterogeneity of query answers from different
sources influences the cache management.

2.1. Query language

In meta-searchers, the query language is often at-
tribute-oriented, that is, queries can be asked against
certain document attributes. A query is a conjunc-
tion of terms where each term has a form Attribute
Op Value, where Attribute is an attribute name
specific for a particular domain (like Title, Au-
thor and Abstract for the bibliographic search
or Patent_Number for patent databases), Op is
Contains or Equals operations, and Value is a key-
word or phrase. A query example is Q D Title

272

Contains “Web” AND Title Contains “caching”.
For the simplicity, in the following sections we
will assume some default values for attributes and
operations (for example, Full-text attribute and
Contains operation); so queries will appear as sim-
ple conjunctions of keywords and phrases, for ex-
ample, “Web AND caching”. Note the conjunction
can contain negated terms, for example, “applet
AND NOT netscape”. Such a query will retrieve
the document containing the keyword applet, but
not netscape.

2.2. Semantic cache architecture

2.2.1. Semantic regions
The client cache manages a collection of semantic

regions grouping together semantically related data,
such as the answer to a user query. In any semantic
region, we distinguish between the region descriptor
and region content. For the efficient processing, the
cache keeps region descriptors and region contents
separately. It uses the descriptors to detect regions
relevant to the query; contents of those regions will
be only accessed to retrieve answer tuples after-
wards. A region descriptor includes the following
elements:
ž region formula: it describes the region content. It

is also called constraint formula. Like a user query,
any region formula is a conjunction of terms;
ž region signature: a binary code assigned to the re-

gion formula which allows for a fast comparison
among conjunction formulas [11];
ž replacement value: when a new query arrives, the

replacement values are used to detect region(s)
which are removed to free a room for the new
query;
ž a pointer to the region content, where the actual

tuples are stored;
ž Web source identifier.

The proposed structure allows for an efficient
retrieval of answers to a query to a specific source
but one can also search for all answers in the cache
independently of the source.

2.2.2. Operational model
The semantic cache plays an important role in the

query evaluation. When a user formulates a query
Q, the meta-searcher checks it first against the con-

tent of the semantic cache. The cache splits the user
query into two portions, probe query and remain-
der query. The probe query Probe.Q/ represents a
partial answer to the query provided by the cache;
it addresses those cache regions which contain tu-
ples satisfying the query and thus contribute to the
answer. The remainder query Rem.Q/ refers to data
that should be shipped from the server.

If the remainder query is empty, the probe query
serves the answer from the cache content and the
server is not contacted. If the remainder query is
not empty, its evaluation proceeds in a regular way.
The answer to the user query is build up from
the answers to the probe and remainder queries:
Q D Probe.Q/[Rem.Q/. For example, if the cache
contains the region R D “applet AND java”, and
query is Q D “applet”, the probe query coincides
with R : Probe.Q/ D “applet AND java”, while
the remainder query is Rem.Q/ D “applet AND
NOT java”.

Once the cache detects some regions relevant to
the query and constructs the probe query Probe.Q/,
the formula Q AND NOT Probe.Q/ defines the op-
timal remainder query Remopt.Q/. However, as we
will see in Section 3, the optimal Remopt.Q/ is not al-
ways reachable. In this case, Rem.Q/ may ship from
the server more than required by Remopt.Q/; there-
fore, the following containment holds: Rem.Q/ � Q
AND NOT Probe.Q/.

The support of the cache implies several issues
concerning the management of semantic regions. In
addition to the region organization, it is necessary
to define a coalescing and replacement strategy. The
coalescing strategy determines how to merge=split
the regions to provide the optimal granularity of
the cached items; the replacement strategy (see Sec-
tion 4) specifies a policy how to discard some cached
regions when a room for a new query is needed.

In what follows we consider four operational
cases processed by the semantic cache; each case
refers to a particular relationship between a user
query Q and regions in the cache. Below we list and
describe all the cases:
ž Equivalence: the cache contains a region R which

formula is equivalent to the query formula: Q �
R (Fig. 2a).
ž Query containment: the cache contains one or

more regions R1; : : :; Rm;m ½ 1, which formulas

273

R2 = ' applet AND netscape"

R1 = "applet AND java"

Q = " applet AND java"

R = "applet AND netscape"

Q = "applet"
d)

c)

Q = "Web AND caching"

R = "Web AND caching"

R2 = "query"

Q = "query AND constraint"

R1 = "constraint

AND NOT formula"

b)
a)

Fig. 2. Four operational cases.

contain the query formula: Q ² Ri (Fig. 2b); if
m ½ 2 the regions are assumed to be ordered
by the increasing number of tuples satisfying the
query. Without loss of generality, we assume that
region R1 is a region with the minimal number of
tuples.
ž Region containment: the cache contains regions

R1; : : :; Rm;m ½ 1, which formulas are contained
in the query formula: Ri ² Q (Fig. 2c).
ž One-term difference : this is a particular case of

the intersection between cache region(s) and the
query; region R has a one-term difference from
query Q if exactly one term in the region formula
is different from terms in the query: jRi � Qj D 1.
The difference term is denoted d. In Fig. 2d, re-
gion R D “applet AND netscape” has one-
term difference from the query QD “applet AND
java” and the difference term is d D “netscape”
Similarly, the region R D “applet” has a one-
term difference from query Q D “java” with the
difference term being d D R D “applet”.
While the three first cases are standard for any

semantic cache, the one-term distance case is spe-
cific for the Web querying; it represents a particular
intersection relationship between a query formula
and formulas of cache regions. As the analysis
shows, the one-term difference plays an important
role and provides the best contribution to the partial
answer, as compared to two-and-more term differ-
ences. For more detail, we refer the reader to [11]
where signature files are exploited as a mean to de-
tect in an efficient way all operational cases listed
above.

2.3. Source heterogeneity

A user query is often sent to several destination
Web sources; therefore, its answer is composed of
the different source answers. In the context of het-
erogeneous information retrieval, we consider those
features of the Web sources which influence the or-
ganization and processing of data in the semantic
cache. Here we identify two features particularly rel-
evant: the complete and checkable sources’ answers.

2.3.1. Complete answers
To retrieve data, most Web sources implement

either the boolean model or ranking model or their
combination. With the Boolean model, the source
returns all tuples satisfying the boolean query. With
the ranking model, the source ranks the documents
relevant to the query and returns first k top-ranked.
The choice of the model is often domain- and ap-
plication-dependent. If the amount of data stored
in the Web repository is moderated (ACM Digital
Library 5) or the keyword selectivity is high (Li-
brary of Congress 6), the boolean model can be
successfully used. If instead the repository contains
thousands of relevant documents (Altavista search
engine), the ranking model becomes indispensable.

A source answer is considered as complete if
it contains all relevant tuples, otherwise it is in-
complete. The answer completeness is crucial for
the cache manipulations, such as generation of probe

5 http://www.acm.com/dl/
6 http://lcweb.loc.gov/z3950/gateway.html

274

Table 1
Complete and checkable answers: four possible cases

Checkable Non-checkable

Complete NCSTRL (Title=Author search), Yahoo (category search),
DBLP (Author search) IEEE (Author search)

Incomplete Altavista (Title search), Altavista (Full-text search),
ACM (answer size > 100 items) Microsoft (answer size > 50 items)

and remainder queries. Web sources with the boolean
retrieval model often return complete answers, while
those with ranking model return incomplete ones.
Although Altavista allows one to retrieve all answers
to the query by following the next-page link, the
complete answer often requires the retrieval of hun-
dreds of pages, which is not acceptable in most on-
line meta-searchers. Therefore, for typical queries,
the most relevant (top-ranked) tuples are only con-
sidered and the answer is therefore incomplete. On
the other side, Altavista asked with a very selec-
tive keyword (like Lethoto) returns a few items
which compose a complete answer. Therefore, for
the efficient cache utilization, the completeness of
answers should be detected dynamically. We assume
the wrappers are capable of detecting the complete-
ness of answers and informing the cache about that.

2.3.2. Checkable answers
Answers returned by a source often represent

rather tuple views than complete tuples. In other
words, they do not necessarily contain the whole
information used by the source to evaluate the query.
For example, Altavista returns titles of the relevant
documents, their URLs and two first lines from
the body. When searching Altavista for documents
about “caching”, it is not guaranteed that the word
“caching” appears in the returned tuples. Such an
answer is considered as non checkable. If the source
provides the whole information, the answer is check-
able. The type of a source answer may depend on the
query. In Altavista, the answer is non checkable if
the query is a full-text search. Instead, the Altavista’s
answer to a query against a document title, like Q D
“title:caching”, is checkable.

There exist all four possible combinations of
complete=incomplete and checkable=non-checkable
answers. As we have seen above, Altavista can return
answers of any type, although an incomplete-and-

non-checkable answer is the most frequent. Other
well-known search engines like Yahoo and Infoseek
do the same. However, not all Web sources are so
poly-valent. The DBLP site always returns check-
able results (and often complete), while NCSTRL 7

returns complete results (checkable when querying
attributes Author and Title and non-checkable for
Abstract).

Some Web sources have a fixed maximal number
of returned answers. The ACM digital library returns
at most 100 documents, while Microsoft 8 returns
at most 50. Therefore, if ACM digital library has
more than 100 documents relevant to a query, then
the answer is incomplete, otherwise it is complete.
Table 1 cites some typical examples of querying Web
sources which yield different answer types.

2.3.3. Multi-source cache
Caching results from multiple Web sources implies

a particular management as a user query may concern
several sources. Mainly, it raises a choice between
storing all results to one query in one semantic region
and in as many regions as the sources are.

The one-region solution offers the advantage of
keeping all answers to a given query in the same
place. However, in this case, the cache has to deal
with structural and semantical heterogeneity inside a
region, it makes the region reuse difficult. Then, as
regions are fairly large, purging a region from the
cache can empty it too much; this can result in poor
utilization of the available cache memory.

With the multi-region solution, one cache region
contains exclusively query answers from one infor-
mation source and a new query answer can result
in creation of multiple new regions in the cache.
However, such a solution allows for a much better

7 http://www.ncstrl.org/Dienst/UI/2.0/Search
8 http://www.microsoft.com/

275

region reuse, because of a lower granularity of re-
gions. Additionally, it is possible to perform a more
selective replacement of regions as one may consider
the qualities of sources when calculating the replace-
ment value of a region. Because of the better overall
performance, we accept the multi-region solution in
the implementation, and in the following we assume
a cached region to contain only results coming from
one information source.

3. Handling heterogeneity

In this section we present caching algorithms for
Web queries taking into account the classification of
source answers given in the previous section.

3.1. Complete-and-checkable answers

We start with the case when the semantic cache
yields most advantages, namely, when the answer
is complete and checkable. The algorithm proposed
below refers to a single source.

Algorithm 1
Input: cache with semantic regions and query Q.
Output: answer to Q and updated cache.
Verify the query Q against all region descriptors in
the cache.
ž Equivalence: Q � R: If the query is equivalent

to a region R, then return the region content as
the query answer, Probe.Q/ D R. Assign the
replacement value Rpc.R/ of the region with a
“most-recently-used” value (which is used by the
replacement function when a new query arrives).
ž Query containment: Q ² Ri ; i D 1; : : :;m: If

one or more regions contain the query, choose
the region R with the minimal cardinality, R D
min.Ri /. Check tuples in the region content and
return ones matching the query: Probe.Q/ D Q \
R. Improve the replacement value Rpc.R/ in the
proportion to the number of matching tuples.
ž Region containment: Ri ² Q; i D 1; : : :;m:

Return the tuples matching the query in the
semantic regions Ri , discarding duplications,
Probe.Q/ DS Ri . Construct the query remainder
as Rem.Q/ D Q�.S Ri/ and send it to the server.
When the answer is received and reported to the

user, coalesce regions Ri with Rem.Q/ into one
region with formula Q and “most-recently-used”
replacement value.
ž One-term difference: jRi �Qj D 1; i D 1; : : :;m:

detect term differences di for regions Ri ; i D
1; : : :;m. Return the tuples matching the query
in the contents of regions R0; : : :; Rm , discarding
duplications; Probe.Q/ D Q \ .S Ri /. Construct
the remainder query Rem.Q/ D Q � .S di / and
send it to the server. When the answer is received
and reported to the user, add a new region with
formula Rem.Q/ and improve the replacement
values of regions Ri in the proportion to the
number of matching tuples.
The case order is also a priority order: if two

cases are detected, one which appears higher in
the list is used. The only exception is when both
region containment and one-term difference cases
are detected. As they coincide in the evaluation of
remainder query, the cache processes them together,
that is, a joint remainder query is constructed and
sent to the server.

If none of the above cases is detected, the query Q
is processed in an ordinary way: it is sent to the server,
and when the answer is received and reported to the
user, a new region for the query is created in the cache.

Below we represent the cases of Algorithm 1 in a
tabular way in order to reuse it later for other cases.
Four columns for the operational cases (equivalence,
query and region containment and one-term differ-
ence) are reported in the order of decreasing priority
from left to right. For each operational case, Table 2
gives the formula relationships, probe and remainder
queries, changes in cache regions, and replacement
values and possible coalescing.

3.2. Incomplete-and-checkable answers

The answer incompleteness changes the process-
ing of two operational cases. Consider an example
given in Fig. 3 where the cache contains an incom-
plete region R with formula “caching”. The region
holds the answer set Ra, which is a proper subset of
the tuples at the Web source relevant to the query.
For the new query Q D “Web AND caching”, the
query containment holds, thus the cache can use the
corresponding tuples in the region R to answer the

276

Table 2
Caching complete-and-checkable answers

Case Equivalence Query containment Region containment One-term difference

Formula Q � R Q ² Ri , R D min.Ri / Ri ² Q, i D 1; : : :;m jRi � Qj D 1, i D 1; : : :;m
Probe R Q \ R

S
Ri Q \ .S Ri /

Remainder ; ; Q �S Ri Q �S di

Cache regions no change no change coalesce Q with Ri new region Q �S di

Replacement best Rpc.R/ improve Rpc.R/ best Rpc.Q/ improve Rpc.Ri /

query "caching"
tuples relevant to

R=

incomplete answer to
query "caching"

R =
a

tuples relevant to query
"Web AND caching"

Q=

incomplete answer to
query "Web AND caching"

Q =
a

Fig. 3. Caching incomplete result sets.

query. However, there is no guarantee that those tu-
ples form the complete answer to the query. In other
words, the query containment Q ² R does not lead
to Qa ² Ra. Hence, in the query containment case,
the initial query should be submitted to the source to
retrieve all relevant tuples.

Generally speaking, incomplete regions can be
used to retrieve the partial answer available from
the cache, but they cannot be used in the remainder
query.

The answer incompleteness also affects the coa-
lescing strategy. In the query containment case, as
Q ² R does not necessarily lead to Qa ² Ra, region
R and new region for Q can contain different tuples
in their contents. In Fig. 3, the region R formula
“caching” contains the query formula “Web AND
caching”, but the incomplete answer Qa can con-
tain tuples not present in Ra. Therefore, we do not
merge them and prefer to keep two distinct regions
“caching” and “Web AND caching”.

Instead, in the region containment case, we still
coalesce the remainder query Rem.Q/ and regions
R1; : : :; Rm . It can result that the number of tuples in
the content of the new region Q will be larger than
the source returns, but such behavior only improves
the cache performance and relax the limit imposed
by the source.

We again use the tabular representation for all op-
erational cases (see Table 3). One important change
concerns the priority order (appearance of cases
from left to right). In the complete-and-checkable
case, the query containment was more preferable
than the region containment because it allows for
the local query processing. Instead, in the incom-
plete-and-checkable case, the region containment is
verified first as more preferable (it allows to con-
strain the remainder query) 9.

3.3. Complete-and-non-checkable answers

When a non-checkable answer is received from
a source, the attributes are not sufficiently repre-
sented to verify the query satisfiability. In other
words, non-checkable answers can be reused for new
queries only if no query matching is required. Such
a limitation reduces the cache efficiency and allows
to reuse cached data only in the equivalence and
region containment cases (see Table 4, differences
with respect to Table 3 are highlighted).

The non-checkable answers change the coalescing
strategy as follows. The region containment is more

9 In Table 4, we highlighted the difference items with respect to
Tabel 3.

277

Table 3
Caching incomplete-and-checkable answers

Case Equivalence Region containment Query containment One-term difference

Formula Q � R Ri ² Q, i D 1; : : :;m Q ² Ri , R D min.Ri / jRi � Qj D 1, i D 1; : : :;m
Probe R

S
Ri Q \ R Q \ .S Ri /

Remainder ; Q Q Q
Cache regions no change coalesce Q with Ri new region Q new region Q
Replacement best Rpc.R/ best Rpc.Q/ improve Rpc.R/ improve Rpc.Ri /

Table 4
Caching complete-and-non-checkable answers

Case Equivalence Region containment Query containment One-term difference

Formula Q � R Ri ² Q, i D 1; : : :;m Q ² R, R D min.Ri / jRi � Qj D 1, i D 1; : : :;m
Probe R

S
Ri ; ;

Remainder ; Q �S Ri Q Q
Cache regions no change new region Q �S Ri no coalesce replace R with Q new region Q
Replacement best Rpc.R/ best Rpc.Ri / best Rpc.Q/ no change

preferable than the query containment, and therefore
the cache prefers storing smaller regions to larger
ones. It implies that the cache (1) does not merge
new region Q �S Ri with regions Ri in the region
containment case and (2) replace a larger region R
with a smaller region Q in the query containment
case (see Table 4).

It is often possible to convert non-checkable an-
swers into checkable ones. Using the references in
tuple views, wrappers can download corresponding
pages to complete the cached tuples. However, such
a conversion is often very expensive. In the Altavista
case, the conversion would require accessing eleven
Web pages instead of one. Although the users of-
ten prefer fast-and-incomplete answers to slow-and-
complete ones, the conversion might be still useful
and eventually included into the query language.

3.4. Incomplete-and-non-checkable answers

In the incomplete-and-non-checkable case, we
have the combination of the incomplete-and-check-
able and complete-and-non-checkable cases dis-
cussed in the previous subsections. Actually, as the
non-checkable answers constrain the cache reuse
more than the incomplete answers, all operational
cases for the incomplete-and-non-checkable case are
the same as in Table 4.

4. Replacement strategies

The definition of a replacement strategy for the
query caching mechanism is influenced by strate-
gies designed for the Web and semantic caches.
The experience in caching Web data has an direct
impact on our work, as any meta-searcher suffers
from the congestion of networks and remote servers,
which results in long access latencies for the results
transferred over the network. On the other hand,
our cache is not structured along pages specified
by their URL. Most probably, the characteristics of
user traces recording query sessions of information
retrieval on Web-based data repositories are different
of the characteristics of document access in a Web
cache. The analysis of those characteristics and the
evaluation of the performance results of a replace-
ment strategy are indispensable to establish a valu-
able replacement strategy maximizing the hit rate or
other performance criteria of a cache. As we don’t
have this information today we cannot completely
validate our proposal.

Algorithms presented in Section 3 assign replace-
ment values to regions with a “most-recently-used”
approach. The replacement strategy may be based
exclusively on that value or consider other infor-
mation. We identified parameters that may influence
the benefit of caching a region and are therefore

278

candidates of parameters of the replacement func-
tion.

The size of cached regions. All new replacement
algorithms on the Web take into account the size
parameter and show that it has a strong influence
on the measured hit rate [6,7,22]. Its importance in
the Web caching context comes from two facts: (1)
storing small items allows to store more items; (2) on
the Web, small pages are referenced more frequently
[13]. In our case only (1) counts, since in the context
of semantic caching we have no experience and valid
data about the relation of the size of a result set and
the frequency of its use.

Probability of further reuse of region. The ben-
efit of the cache depends much on its hit rate. This
is strongly related to the probability of further use
of cached regions. When a user refines queries by
adding or removing keywords, the regions that were
used the most recently have the highest probability to
be reused in future. The least-recently-used strategy
seems to be the most advantageous. This holds in a
single user cache, but not necessarily in a multi-user
cache.

In the meta-searcher context, we have to integrate
the fact that a cached region may only be partially
reused. So the replacement value toward “the most
recently used” depends on how large the reused part
is. Also if we merge two regions R1 and R2, their
replacement value should be used to calculate the
value of the newly created region (see Section 3).

Retrieval time. Generally, comparing two regions
with different retrieval times and the same charac-
teristics otherwise, we should prefer to keep in the
cache the region with the longer retrieval time. In-
stead of storing for each region the time it took
to retrieve it, it could be more ‘economic’ to store
once the connection establishment latency and the
bandwidth for each information source. This two
variables can be measured as proposed in [22]. We
propose to keep different values for the two variables
depending on the time of the day. For example, we
keep 6 values for the bandwidth : 12pm–4am, ...,
8pm–12pm. This allows for a more fine-grained de-
scription of the effectively available bandwidth. This
distinction is particularly interesting on the Web,
where the traffic and hence also the available band-
width and connection latency varies dramatically
during a day. Those variables can be refreshed in

regular intervals using tests effected especially for
this purpose or they can be adjusted dynamically,
when running the cache.

Region characteristics. We propose to integrate
in the replacement value of a region, the knowledge
of its completeness and check-ability. As shown in
Section 3, the definition of the query remainder for
incomplete and non-checkable regions is harder and
the benefit of reusing these regions appears to be
less interesting than the one obtained by reusing
complete-and-checkable regions.

Accessibility of the server. The inaccessibility of
a server makes impossible to (re)fetch data from
it. Regions containing data issued from temporary
inaccessible servers should therefore have higher
priority to be kept in the cache. Inaccessibility may
be caused by failures or because of fixed opening
hours of the server (e.g., Library of Congress); in
both cases caching of their data is important.

Based on this analysis we study the definition of
a replacement function using a cost=benefit model.
Our cache implementation allows to experiment with
different functions to be validated. User preferences
and expiration time may also be interesting parame-
ters but are not considered at present. The complex-
ity of the query is not considered mainly because we
suppose that data transfer time is dominant.

5. Implementation of the semantic cache

The proposed semantic cache mechanism has
been implemented in the Knowledge Broker (KB)
system [3,4]. This section describes the software ar-
chitecture of the semantic cache and its integration
into the KB system.

Knowledge Broker is a Web meta-searcher de-
veloped at the Xerox Research Centre Europe 10,
it provides a uniform interface and query lan-
guage for interrogating multiple, heterogeneous data
repositories including standard databases (Oracle,
Sybase, Informix etc.) and Web providers in differ-
ent domains (newspapers, digital libraries, patents,
medicine, etc.).

The semantic cache has been implemented in Java
as an external service to the meta-searcher. In KB

10 http://www.rxrc.xerox.com/research/ct/prototypes/cbkb

279

ACM Sun

DBLP

signature
1000 0100
0001 0010
0100 0001

(true, title contains servlet)
term

(false, title contains server)
(true, body contains Web)

UsedTerms

Worker

Query
Processing

Query

Answer
tuples

Query
Remainder(s)

Queue

Partial
answers

RegionSet

update
replacement
information

Ranker

Supply

Request

region

Wrappers

User Query Interface Semantic Cache

Fig. 4. The semantic cache in Knowledge Broker system

(see Fig. 4), it replaces the tuple-based cache mech-
anism used in the previous versions. Service-like
integration of the cache gives the main advantage of
a clear separation between the query processing and
cache processing. There are two main issues:
(1) it does not require any modification in the ex-

isting architecture of the system. The system
is simply enhanced with the SemCacheManager
module which integrates the semantic cache into
the system.

(2) The Web query system can decide whether to
use the cache and which one (tuple-based or
semantic one).

The semantic cache service is provided through
an API with two methods, Request and Supply.
The Request method takes a query with a set of
destination sources and returns a remainder query
for each source and the partial answer from the
cache. The Supply method adds to the cache the
answer tuples received from sources. The jobs in the
cache (Request and Supply calls) are queued; a
thread picks up the first one and processes it (see
Fig. 4).

A KB query is a conjunction of terms which
are objects of the Constraint class. The method
equals allows to detect the equivalence of two
constraints; to decide whether an answer matches the
query, the cache invokes method filter(Query)
provided by the class Result.

The main data structure in the cache is the Re-
gionSet object which contains all regions currently
stored in the cache. All terms used in the cached
queries are maintained in the UsedTerms object;
it controls the uniqueness of signatures assigned to
query terms, as required for the comparison of con-
straint formulas in all operational cases. The object
RegionSet contains separated sets of regions; one
set for each source. A query with several destination
sources is split into queries with a single destination
source. For each of those queries, the cache applies
the algorithms from Section 3 and considers the
region set for the corresponding source.

The cache provides a highly adaptable support
for the replacement strategy. The object RepInfo
associated to each cached region and containing re-
placement information is used by the object Ranker
that calculates the effective replacement value of all
cached regions. Those replacement information con-
tained in RepInfo can be based on parameters as
cited in Section 4. Depending on the specific us-
age of the meta-searcher integrating the cache the
replacement function implemented in the Ranker
can be adjusted accordingly to reach optimal hit rate
and performance. The current cache implementation
integrated in the KB system is mainly based on a
LRU-like strategy presented in [14,11].

Experiments. To see how the semantic cache
works, we have tested two different query sets

280

10

20

30

40

50

60

70

128 256 512 1024

(%
)

Cache size(kb)

Hit rate
Efficiency

Duplication

10

20

30

40

50

60

70

128 256 512 1024

(%
)

Cache size(kb)

Hit rate
Efficiency

Duplication

(b)(a)

Fig. 5. Semantic cache measurements: (a) random query set; (b) user-log query set.

against real Web sources. In the first, random set,
a series of S queries is randomly generated, and each
query contains one to three terms with the equal
probability for each case. If more than one term is
included, the last term is negated or not with the
equal probability. The query keywords are applied
to the attribute Title and chosen randomly from a
dictionary of about 90 terms in computer science; the
keywords have been mainly taken from the Yahoo
Classifier 11. In the second, user-log set, real user
queries have been collected over 500 user sessions
on the KB meta-searcher installed at XRCE and cut
into series of S queries.

As a Web source, we have used the ACM Digital
Library. In the tests we measure the hit rate, cache
efficiency and duplication ratio of the cache when
varying the cache size. The hit rate is the proportion
of queries answered (completely or partially) by the
cache to all processed queries. The cache efficiency
is the proportion of answer tuples coming from the
cache to all answers returned to the user. The du-
plication ratio is the percentage of duplicated tuples
in the cache. All measures are evaluated on average
over a series of S D 200 queries. Fig. 5 shows all
three measures for both query sets against the ACM
server.

In the first set, the randomness of queries results
in a higher hit rate coupled with a lower efficiency, as
compared to the second query test. This phenomenon
can be explained as follows. The queries in the
random set are rather uniformly distributed in a
virtual query space, and a new query hits many

11 http://www.yahoo.com/Science/Computer_Science

regions but each region hit by the query contains a
few relevant tuples. Instead, real user queries appear
to be semantically rich and tend to create clusters.
That is, in the user-log test, a new query hits less
cache regions than in the random query set, but the
probability to get a fruitful answer from the cache is
considerably higher.

The time overhead for the KB meta-searcher
when using the cache for processing a query with
a single destination source is evaluated to 30 ms on
average, for both query sets. The tests have been
done on a SPARCstation-10 running SunOs 5.6.

6. Related work

Data caching have been intensively studied in the
context of database and information retrieval systems
[2,8,18]. In the introduction, we have argued that
semantic caching have over page and tuple caching
in the case of querying Web sources. On the other
side, our analysis on the replacement and coherence
strategy origins from page caching methods used on
the Web [6,7,22].

A semantic model for the query caching in a
client–server architecture was discussed in [14].
It introduced the semantic query framework and
its main principles and components (regions, probe
and remainder queries etc.). However, [14] consid-
ers semantic cache mainly for data stored relational
databases.

Query caching in heterogeneous systems was dis-
cussed in [15], where it is reduced to a Datalog query
evaluation, which, however, may by computationally

281

hard. Intelligent query caching is also used in the
SIMS project [5], where some important principles
for any intelligent caching mechanism were devel-
oped. These principles are the following: (1) a query
cache should process both containment and intersec-
tion cases; (2) a cache item should not be large; (3)
a cache item should have a simple formula to avoid
too complex reasoning on the query remainders.

Query caching in the HERMES distributed medi-
ator system has been studied in [1]. It is based on
the invariant mechanism and uses query rewriting
techniques and semantic information about sources
to collect some source statistics and build optimal
query plans. However, the mechanism assumes the
subquery equivalence and does not consider the con-
tainment and intersection cases.

In [11], a semantic cache mechanism for Web
queries based on signature files has been proposed.
The method uses signature-based region descriptions
to efficiently manage both containment and intersec-
tion cases. However, the cache structure proposed in
[11] is for interrogating one information source only.

The problem of reusing cached entries in the
LDAP (Lightweighted Directory Access Protocol)
network directories have been recently studied in
[12]. The LDAP entries are organized into a hier-
archical name-space and accessed by using positive
conjunctive queries. In [12], a sound and complete
algorithm is proposed for determining whether a con-
junctive LDAP query can be answered using cached
queries. Unlike [12], a query language considered in
our work is typical for Web search engines; it allows
us to reduce Web queries to conjunctive formulae
in prepositional logic, thus considering a larger set
of operational cases and better reusing the cached
queries and constraining the remainder queries.

7. Conclusion

We have presented a semantic cache mechanism
designed for meta-searchers querying heterogeneous
Web repositories. Query caching allows reuse of
answers to previous queries, so reducing the delivery
time of answers and the traffic on the net.

Semantic caching is based on the representation
of cached data as semantic regions and the pro-
cessing of queries by construction of probe queries

for retrieving cached data and remainder queries for
fetching data from remote servers. We have identi-
fied two problems particularly related to the multi-
source Web querying, namely, the completeness and
check-ability of answers from Web sources. We pro-
posed a cache architecture for caching multi-source
queries and consider all operational cases (equiva-
lence, containment and intersection) when working
with incomplete and non-checkable answers. For all
types of answers we have developed algorithms for
query evaluation against the cache content and the
region management. We have also analyzed the pa-
rameters relevant to the replacement strategy in the
cache. Due to lack of space the coherence strategy
was not discussed.

We have described the implementation of the
semantic cache in the Knowledge Broker system. We
have conducted a set of tests to measure the cache
performance and obtained promising results.

Our future work includes a larger testing of the
semantic cache mechanism in the presence of real
user queries. We also plan to experiment with differ-
ent replacement and coherence strategies in order to
tune them better to the real user profiles. One impor-
tant research issue is related to the extension of our
semantic cache to a more powerful query language
which includes complete boolean expressions, word
proximity operators and stemming [9].

Acknowledgements

We thank L. Julliard for useful discussions and
large support of the semantic cache implementation
in the Knowledge Broker meta-searcher.

References

[1] S. Adali, K.S. Candan, Y. Papakonstantinou and V.S. Sub-
rahmanian, Query caching and optimization in distributed
mediator systems, in: Proc. SIGMOD’96 Conference, 1996,
pp. 137–148.

[2] R. Alonso, D. Barbara and H. Garcia-Molina, Data caching
issues in an information retrieval system, ACM TODS 15
(3) (1990) 359–384.

[3] J.-M. Andreoli, U. Borghoff and R. Pareschi, Constraint-
based knowledge broker model: semantics, implementa-
tion and analysis, Journal of Symbolic Computation 21 (4)
(1996) 635–667.

282

[4] J.-M. Andreoli, U. Borghoff, P.-Y. Chevalier et al., The
constraint-based knowledge broker system, in: Proc. 13th
IEEE Int. Conf. on Data Engineering, 1997.

[5] Y. Arens and C.A. Knoblock, Intelligent caching: selecting,
representing, and reusing data in an information server, in:
Proc. CIKM’94 Conference, Gaithersburg, MA, 1994, pp.
433–438.

[6] M. Baentsch, G. Molter and P. Sturm, Introducing ap-
plication-level replication and naming into today’s Web,
Computer Networks and ISDN Systems 28 (1996) 921–
930.

[7] J.-C. Bolot and P. Hoschka, Performance engineering of the
World Wide Web: application to dimensioning and cache
design, Computer Networks and ISDN Systems 28 (1996)
1397–1405.

[8] M.J. Carey, M.J. Franklin, M. Livny and E.J. Shekita, Data
caching tradeoffs in client–server DBMS architectures, in:
Proc. 1991 SIGMOD Conference, 1991, pp. 357–366.

[9] C.-C.K. Chang, H. Garcia-Molina and A. Paepcke, Boolean
query mapping across heterogeneous information sources,
IEEE Trans. on Knowledge and Data Engineering 8 (4)
(1996).

[10] C.-C.K. Chang and H. Garcia-Molina, Evaluating the cost
of Boolean query mapping, in: Proc. 2nd ACM Int. Conf.
on Digital Library, 1997.

[11] B. Chidlovskii and U. Borghoff, Signature file methods for
semantic query caching, in: Proc. 2nd European Conf. on
Digital Libraries, LNCS 1513, Crete, Greece, September
1998.

[12] S. Cluet, O. Kapitskaja and D. Srivastava, Using LDAP
directory caches, in: ICDT Workshop on Query Processing
for Semistructured Data and Non-Standard Data Formats,
Jerusalem, Israel, January 1999.

[13] C. Cunha, A. Bestavros and M. Crovella, Characteritics
of WWW client-based traces, Tech. Report TR-95-010,
Boston University, 1995.

[14] S. Dar, M.J. Franklin, B. Jonsson, D. Srivastava and M.
Tan, Semantic data caching and replacement, in: Proc 22nd
VLDB Conference, Bombay, India, 1996, pp. 330–341.

[15] P. Godfrey and J. Gryz, Semantic query caching for hetero-
geneous databases, in: Proc. 4th KRDB Workshop Intelli-
gent Access to Heterogeneous Information, Athens, Greece,
1997.

[16] L. Gravano, and Y. Papakonstantinou, Mediating and
metaserching on the Internet, Bulletin IEEE Computer So-
ciety on Data Engineering (1998).

[17] A.Y. Levi and A. Rajaraman and J.J. Ordille, Quering het-
erogeneous information sources using source descriptions,
in: Proc. 22nd VLDB Conference, Bombay, India, 1996,
pp. 251–262.

[18] P.T. Martin and J.I. Russell, Data caching strategies for
distributed full text retrieval systems, Information Systems
(16) (1) (1991) 1–11.

[19] Y. Papakonstantinou, H. Garcia-Molina and J. Ullman,
MedMaker: a mediation system based on declarative spec-
ifications, in: Proc ICDE ’96 Conference, 1996, pp. 132–
141.

[20] Ch. Reck and B. König-Ries, An architecture for trans-
parent access to semantically heterogeneous information
sources, in: Proc. Cooperative Information Agents, Lect.
Note Comp. Science 1202 (1997).

[21] A. Yoshida, MOWS: Distributed Web and cache server in
Java, Computer Networks and ISDN Systems 29 (8–13)
(1997) 965–976.

[22] R.P. Wooster and M. Abrams, Proxy caching that estimates
page load delays, Computer Networks and ISDN Systems
29 (1997) 977–986.

Boris Chidlovskii received the MSc
and PhD degrees in computer sci-
ence from Kiev University, Ukraine.
He was with the Department of
Computer Science at Kiev Univer-
sity and with the Department of
Computer Engineering at Salerno
University, Italy. He co-authored the
book Indexing Techniques for Ad-
vanced Database Systems (Kluwer,
1997). He is now a member of the
Scientific Stuff with Xerox Research

Centre Europe, Grenoble, France.

Claudia Lucia Roncancio is Assis-
tant Professor at INPG (Institut Na-
tional Polytechnique de Grenoble),
France. She is a member of LSR-
IMAG laboratory. She received the
PhD degree in Computer Science
from University J. Fourier, Greno-
ble, France. She was a member
of technical staff at Bull. Her re-
search interests include active sys-
tems, databases and Internet-based
information retrieval systems.

Marie-Luise Schneider is software engineer at Xerox Research
Centre Europe, Grenoble Lab, France. She received a double
diploma in computer science from ENSIMAG (École Nationale
Supérieure d’Informatique et Mathématiques Appliquées Greno-
ble), France and University of Karlsruhe, Germany.

