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Abstract—This paper presents two fast, best-effort real-time scheduling algorithms called MDASA and MLBESA. MDASA and

MLBESA are novel in the way that they heuristically, yet accurately, mimic the behavior of the DASA and LBESA scheduling

algorithms, but are faster with O nð Þ and O n lg nð Þð Þ worst-case complexities, respectively. Experimental results show that the

performance of MDASA and MLBESA, in general, is close to that of DASA and LBESA, respectively, for a broad range of realistic

workloads. However, for a highly bursty workload, MLBESA is found to perform worse than LBESA. Furthermore, the task response

times under MDASA and MLBESA are very close to the values under their counterpart scheduling algorithms. Thus, MDASA and

MLBESA can substitute for DASA and LBESA algorithms, respectively, in adaptive resource allocation techniques for asynchronous

real-time distributed systems where DASA and LBESA have previously been serious bottlenecks on computational costs.

Index Terms—Best-effort real-time scheduling, overload scheduling, response time analysis, asynchronous real-time systems,

distributed real-time systems.
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1 INTRODUCTION

ASYNCHRONOUS real-time distributed systems are emer-
ging in many domains, including defense, telecommu-

nication, and industrial automation, for the purpose of
strategic mission management [22]. Such systems are
fundamentally distinguished by the significant runtime
uncertainties that are inherent in their application environ-
ment and system resource states [22], [24]. Consequently, it
is difficult to postulate upper bounds on application
workloads for such systems that will always be respected
at runtime.

An example of such asynchronous real-time distributed
systems is the US Navy’s Anti-Air Warfare (AAW) system.
AAW is an example air-defense system that is envisioned to
be onboard the US Navy’s future surface combatants. To
better understand AAW, a software prototype that approxi-
mated AAW, called DynBench, was developed as part of
DARPA’s Quorum program [24]. Details of DynBench were
presented in [38]. Such a system often operates in environ-
ments that are subject to significant uncertainties—para-
meters such as event arrival rates and execution time bounds
cannot be accurately characterized at design time [15], [22].

Given the aforementioned uncertainties, the classical
hard real-time satisfiability objective of “always meet all
timing constraints” and hard real-time scheduling algo-
rithms that achieve the satisfiability objective are not cost-
effective or even impossible for asynchronous real-time
distributed systems. Thus, in this paper, we consider
timeliness requirements that are described by Jensen
et al.’s benefit accrual model [23]. This model generalizes

the hard real-time “deadline” timing constraint to encom-
pass nonbinary timing constraints. That is, completion of a
task at any time yields a benefit that is specified by the
task’s benefit function. For example, a benefit function may
specify a constant benefit before a task’s deadline time and
zero benefit after that, which is also known as a “firm
deadline” in the real-time literature and is our model used
in this paper.

To deal with the inherent nondeterminisms in asynchro-
nous real-time distributed systems, we have developed
adaptive resource allocation algorithms such as the RBA*
(Response-Time-Based Best-Effort Resource Allocation) al-
gorithm [19]. The RBA* algorithm seeks to maximize the
aggregate benefit of trans-node real-time computations that
have end-to-end timeliness requirements, specified using
benefit functions. Furthermore, it considers “best-effort”
process scheduling algorithms that have the scheduling
objective ofmaximizingaccruedbenefit on each systemnode.

These scheduling algorithms are called “best-effort” in
the sense that they seek to provide the best benefit to the
application tasks, where the best benefit that can be accrued
by an application task is application-specified using benefit
functions. More precisely, the algorithms’ scheduling
objective is to maximize Accrued Benefit Ratio (ABR)—the
ratio of total accrued benefit to the sum of all task benefits.

Two of the most prominent best-effort real-time schedul-
ing algorithms include the Dependent Activity Scheduling
Algorithm (DASA) [16] and Locke’s Best Effort Scheduling
Algorithm (LBESA) [29]. DASA and LBESA are equivalent
to the Earliest Deadline First (EDF) algorithm during
underloaded conditions [16], where EDF is optimal and
guarantees that all deadlines are always satisfied. In the
event of an overload situation, DASA and LBESA seek to
maximize the aggregate task benefit.

DASA and LBESA are known to outperform other single
processor real-time scheduling algorithms (during overload
situations) in general. For example, in [16], Clark shows that
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DASA generally outperforms LBESA during overload
situations. In addition, in [19], Hegazy and Ravindran
show that DASA outperforms the Robust Earliest Deadline
First (RED) [13] and the Robust High Density (RHD) [12]
scheduling algorithms. Furthermore, variants of DASA and
LBESA have been implemented in the Alpha real-time
operating system [21] and the MK7.3 kernel [41]. There are
other implementations of overload real-time scheduling
algorithms, such as the Maximum Urgency First (MUF)
scheduler [40] implemented inside the CHIMERA II real-
time operating system. However, to the authors’ best
knowledge, DASA and LBESA are the only two benefit
accrual scheduling algorithms that have been implemented
and deployed in mission-critical systems [15].

In spite of these remarkable results of DASA and LBESA,
they have been serious performance bottlenecks for
resource allocation algorithms such as RBA*. The RBA*
algorithm is a proactive algorithm in the sense that it
allocates resources to tasks for a future time window. To do
that, RBA* needs to determine task response times for the
future time window, e.g., the RBA* algorithm is invoked
every several seconds. However, due to the complexity of
analyzing process response times under DASA, RBA*
incurs a worst-case computational complexity that is a
polynomial of the fourth degree.1 In fact, in a middleware
implementation of the RBA* algorithm [27], we have
observed that the overhead of invoking RBA* can be up
to 1 sec, which is quite high for deadlines in the magnitude
of a few seconds.

Analyzing process response times under best-effort
scheduling algorithms is difficult because best-effort sche-
dulers such as DASA and LBESA make decisions which are
functions of the remaining process execution times at an
event. Thus, RBA* estimates response times by determining
the scheduling events that occur during a time interval
(under which the response times are to be determined) and
by applying the scheduling algorithm at each scheduling
event to determine the scheduling decision. This is
computationally expensive, as we incur the cost of the
scheduler—O n2ð Þ for DASA and LBESA given n tasks in the
ready queue [16], [29]—whenever the scheduler is invoked
at a scheduling event.

Thus, we are motivated to develop fast best-effort
scheduling algorithms that can yield the same performance
as that of DASA and LBESA, if not better. Furthermore, if
such new scheduling algorithms behave similarly to DASA
and LBESA, they can then be used by resource allocation
algorithms such as RBA* for determining response times
under DASA and LBESA, respectively, in a faster way. This
will reduce the computational complexity of RBA*, result-
ing in good performance at low computational cost.

In this paper, we present two best-effort scheduling
algorithms called Modified DASA (or MDASA) and
Modified LBESA (or MLBESA) that exactly address the
aforementioned problem. MDASA and MLBESA are novel
in the way that they heuristically, yet accurately, mimic the

behavior of the DASA and LBESA algorithms, but are faster
with O nð Þ and O n lg nð Þð Þ worst-case complexities, respec-
tively. MDASA and MLBESA reason about the behavior of
DASA and LBESA by heuristically determining a feasible
schedule of the process ready queue.

Our experimental results show that, in general,
MDASA and MLBESA perform almost as well as DASA
and LBESA, respectively. However, under highly bursty

and heavily overloaded situations, DASA and LBESA
may outperform MDASA and MLBESA. Furthermore, the
process response times under MDASA and MLBESA are
also found to be very close to the values under their
counterpart scheduling algorithms. While MDASA has
better performance than MLBESA and has better worst-
case complexity, MLBESA guarantees the optimal sche-
dule during underload situations.

The rest of the paper is organized as follows: We discuss

the task model considered by MDASA and MLBESA in
Section 2. Section 3 and Section 4 describe MDASA and
MLBESA, respectively. We present the experimental eva-
luation of the algorithms in Section 5. In Section 6, we
discuss the past and related works and contrast them with
MDASA and MLBESA. Finally, the paper concludes with a
summary of the work, its contributions, and identify future
work in Section 7.

2 THE TASK MODEL

We consider a set of real-time tasks (or processes)2 that are
executed on a single processor. The set of tasks is denoted
by the set T ¼ T1; T2; . . . ; Tnf g. Further, all tasks are
assumed to be preemptable and, therefore, can be pre-
empted at any time during their execution. Furthermore,
tasks do not share any non-CPU resources or have
precedence relations with other tasks and, therefore, are
independent of each other.

Each task Ti is characterized by an arrival time Ai and an

execution time Ci. For simplicity, we assume that the task
execution time Ci is known by the scheduler at the time of
arrival. This can be achieved by application profiling
techniques, i.e., deriving the relationship between task
workload and execution time, as done in [1], [36]. Similarly
to [16], we assume downward “step” benefit functions for
all tasks. Thus, completing a task any time before its
deadline will result in uniform benefit; completing it after
the deadline will result in zero benefit.

We denote the benefit of a task Ti—the height of Ti’s
benefit function—as Bi and the absolute deadline of a task
Ti as di, respectively.

3

We use Ri tð Þ to denote the remaining execution time of a
task Ti at time t. It is easy to see that Ri tð Þ � Ci; 8t � 0. The
slack of a task Ti at time t is therefore defined as
Si tð Þ ¼ di � t�Ri tð Þ; 8t � 0.

For completeness, we also include definitions of several
well-known quantities and terms here:
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1. Given n trans-node tasks, a maximum of m processes per task, p

processors, a minimum task period of k, and an adaptation window of

length W , RBA* incurs a worst-case computational complexity of

Oðp2m4n4dW=ke4Þ.

2. We will use the terms task and process interchangeably in this paper
unless otherwise stated.

3. The “benefit” of a task is also called “value” or “utility” in the
literature [10].



1. For a generic real-time system with n tasks, where
tasks can be activated dynamically, i.e., all tasks are
aperiodic tasks, the processor load during the time
interval of ½t; di� is given by

�iðtÞ ¼
P

dk�di ckðtÞ
ðdi � tÞ

(i 2 ½1; . . . ; n�), where ckðtÞ refers to the remaining

execution time of task Tk with deadline earlier than

or equal to di [13]. Further, the total load in the

interval of ½t; dn� is defined as � ¼ maxið�iÞ [13].

Furthermore, if � � 1, we say that the system is

underloaded. Otherwise, we say the system is

overloaded [13].
2. A schedule is an order of assigning tasks to the

processor. That is, a schedule contains ordered
executions of tasks.

3. We say a schedule is feasible if it can satisfy all timing
constraints, such as deadlines of tasks within the
schedule. Otherwise, the schedule is infeasible. A set
of tasks is feasible if and only if there exits a feasible
schedule on the set of tasks. If the task set is
underloaded, EDF can produce a feasible schedule
on the task set due to EDF’s optimality [17].

4. The competitive factor measures the worst-case
performance of an algorithm. This concept was
introduced in [5] and is defined as follows: A
scheduling algorithm A has a competitive factor ’A

if and only if it can guarantee a cumulative value (or
benefit) �A � ’A�

�, where �� is the cumulative value
(or benefit) achieved by the optimal clairvoyant
scheduler.

3 THE MDASA SCHEDULING ALGORITHM

The DASA algorithm makes scheduling decisions using the

concept of benefit densities. The benefit density of a task is

the benefit accrued per unit time by the execution of the

task. Thus, the benefit density defines a measure of the

“return of investment” for the task. We denote the benefit

density of a task Ti at time t as BDi tð Þ, which is given by

BDi tð Þ ¼ Bi=Ri tð Þ.
The objective of DASA is to compute a schedule � that

will maximize the aggregate task benefit. The aggregate

task benefit is the cumulative sum of the benefit accrued by

the execution of the tasks. Thus, a schedule that satisfies all

deadlines of all tasks will clearly yield the maximum

aggregate benefit (since task benefit functions are step-

benefit functions).
During underload conditions, we know that EDF

produces such a feasible schedule for all tasks [17]. Such

an all-task-feasible schedule � will contain all tasks in T , if

all tasks are present in the task ready queue. However, if

not all task deadlines can be satisfied, then the schedule that

will yield the maximum benefit will be an exact subset of

the task set, i.e., � � T , since some tasks will have to be

excluded from the schedule. Therefore, DASA always seeks

to compute a feasible schedule within which tasks can

accrue as much benefit as possible.

Thus, at each scheduling event, DASA examines tasks in
the task ready queue in decreasing order of their benefit
densities. The algorithm then inserts each task into a
tentative schedule at its deadline-position and checks the
feasibility of the schedule. Tasks are maintained in increas-
ing deadline-order in the tentative schedule. If inserting a
task into the tentative schedule results in an infeasible
schedule, then the algorithm removes the task from the
schedule.

DASA repeats this process until all tasks in the ready
queue have been examined. The algorithm then selects the
earliest deadline task in the tentative schedule (which will
be at the “head” of the schedule) as the next task to be
executed. Note that, if all task deadlines can be satisfied,
then DASA’s output will be the same as that of EDF.

The rationale behind DASA’s examination of tasks in
decreasing order of their benefit densities is that, if tasks are
examined in decreasing order of their benefit densities,
then, at any instant in time, the task that is included in the
schedule can accrue the maximal benefit per unit time
among the set of nonexamined tasks. This will increase the
chance of collecting as much benefit per unit time as
possible, thereby increasing the likelihood of maximizing
aggregate benefit.

Given n tasks in the task ready queue, DASA incurs a
worst-case complexity of O n2ð Þ at each scheduling event.
The computationally intensive steps of the algorithm
include 1) sorting the tasks to order them in decreasing
order of their benefit densities, which costs O nlg nð Þð Þ, and
2) testing for the feasibility of the tentative schedule each
time a task is inserted into the schedule.

The feasibility-testing costs O n2ð Þ. This is because, to
determine the feasibility of a schedule, each task deadline
must be examined in the increasing order of task deadlines.
Each task deadline must then be compared against the
cumulative sum of the remaining execution times of all
tasks with lesser deadlines than the task deadline. This
means that, to determine the feasibility of the schedule,
DASA makes an O nð Þ pass over the task list. Since the
algorithm tests for feasibility of the tentative schedule every
time a task is inserted into the schedule, the resulting cost
becomes O n2ð Þ.

Thus, the bottleneck of DASA’s scheduling cost is the
repeated feasibility test, which costs O nð Þ for a single test.
We believe that one possible way to speed up the algorithm
is to determine the feasible task subset without the repeated
feasibility test.

3.1 Observations and Heuristic

Our basic observation is that the tasks in the ready queue
fall into one of the following three classes:

. Class I: tasks that will never appear in �;

. Class II: tasks that will definitely be in �; and

. Class III: tasks that may appear in �, i.e., those that
do not belong to Class I or Class II.

The MDASA algorithm identifies tasks in Class I and
Class II by determining if inserting a task Ti into � can
maintain the feasibility of �. In general, most of the tasks in
the ready queue can be identified as either a Class I or
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Class II task and, hence, the possibility of making a different

scheduling decision from that of DASA is small.
If a task Ti belongs to Class III, then it is impossible to

determine whether the feasibility of � can be maintained

without performing a feasibility test. In this case, MDASA

heuristically calculates the probability that Ti will be

included in �. We denote this probability as Pi.
Before describing MDASA, we first formulate the

observations that identify the tasks in Class I and Class II

as follows:

Observation 1. A task Ti cannot be in the feasible schedule � if

Si tð Þ < 0.

Proof. It follows that Ti will fail the feasibility test. Thus,

only tasks with nonnegative slack could be in the feasible

schedule. tu
Observation 2. Let Tf be the first task that has a nonnegative

slack in decreasing benefit density order among all tasks. Then,

Tf must be in the feasible schedule �.

Proof. Note that the DASA algorithm examines the task

ready queue in decreasing order of benefit densities.

Thus, at the point of examining the task Tf , the tentative

schedule � (which is feasible) is initialized to be empty

and no task has been successfully inserted. Therefore, the

expanded schedule � [ Tf ¼ fTfg should be a feasible

schedule as well. tu

Now that Tf is in the feasible schedule �, any other task

Tj that would cause task Tf to miss its deadline should be

eliminated from �, as stated in Observation 3.

Observation 3. If task Tj satisfies dj < df and Rj tð Þ > Sf tð Þ,
then inserting Tj into � will cause task Tf to miss its deadline.

Proof. Since dj < df , Tj will be inserted before Tf in �.

Hence, the start time of Tf will be postponed by time

Rj tð Þ. This postponement implies that Tf will miss its

deadline if Rj tð Þ > Sf tð Þ. tu
Observation 4. If a task Tk that has a nonnegative slack satisfies

dk > dmax, where dmax is the latest deadline in �, then Tk can

be in � if and only if

P
Ti2� Ri tð Þ þRk tð Þ

dk � t
� 1:0: ð1Þ

Proof. Recall that the feasible schedule � is ordered by

increasing task absolute deadlines. Thus, task Tk will be

inserted at the tail of �, which cannot affect the feasibility

of any subset of �. Therefore, the feasibility of task set

Tk [ � only depends upon whether the cumulative

processor time demand until dk exceeds the available

time dk � tð Þ. This condition becomes (1). tu

In practice, the scheduling algorithm may keep track of

the total remaining execution time of all tasks currently in �,

i.e.,
P

Ti2� Ri tð Þ, which results in constant complexity of

using (1). Also notice that this feasibility condition is

sufficient and necessary. Thus, the task Tk defined as above

must belong to either Class I or Class II.

Once tasks that belong to Class I and Class II are
identified, we can now proceed to the remaining tasks that
constitute Class III.

Recall that, in DASA, tasks are inserted into the tentative
schedule at their deadline positions [16]. That is, tasks in the
tentative schedule are deadline-ordered. If the insertion of a
new task Ti at its deadline position will cause any of the
tasks that are already in the schedule � to miss its deadline,
Ti should not be inserted into �. This procedure is called the
“feasibility test” that ensures the feasibility of the tentative
schedule. Therefore, for a task Ti in Class III, whether or not
it should be included in � depends upon how significantly
the insertion of Ti will affect the feasibility of �.

Furthermore, we observe that early deadline tasks are
inserted near the beginning of the schedule by DASA. Our
working hypothesis is that tasks with earlier deadlines are
more likely to interfere with other tasks, causing them to
miss their deadlines. Although we have not examined any
other heuristics, the success of our resulting algorithms
suggests this to be true (see Section 5).

We denote the number of tasks in the current � that have
later deadlines than di as k, which can be approximated by
the following equation:

k ¼ j�j � dmax � di
dmax � dmin

; ð2Þ

where dmax and dmin are the latest and earliest deadlines
among all tasks currently in �, respectively. Thus, k is the
approximated number of tasks that will be affected by
inserting Ti.

At this stage, it is not clear how Pi can be calculated
based on the task parameters and k. Though there are a
number of possible methods to calculate Pi, MDASA adopts
a straightforward way by computing Pi as Pi ¼ 1

k . Our
motivation for using this simple heuristic is to minimize the
overhead of the scheduler. Another advantage is that Pi is
automatically normalized, i.e., Pi is guaranteed to be within
the range of 0; 1ð � since k � 1.4

Note that the k value computed by (2) may not be a good
approximation for task queues with nonuniformly distrib-
uted deadlines. For example, if the majority of the tasks
have deadlines close to the earliest deadline and only a few
tasks have very late deadlines, the calculation of k using (2)
tends to overestimate the impact of the insertion of a new
task. Consequently, the MDASA algorithm may overly
reject tasks and thus may result in poor performance. We
show the performance of MDASA under various experi-
mental scenarios in Section 5.

3.2 Description of the MDASA Algorithm

Note that MDASA only schedules independent tasks. Thus,
it is triggered at two scheduling events: 1) the arrival of a
new task and 2) the termination of the currently executing
task. Other scheduling events of the original DASA
algorithm, namely, request resource and release resource, are
not needed by MDASA.

To facilitate the computation of scheduling decisions,
MDASA maintains the task ready queue in the order of task
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benefit densities. When a new task arrives, MDASA inserts
the task into the ready queue at its benefit density position.
If the processor is not idle, the algorithm extracts the
currently executing task from the ready queue, updates its
remaining execution time and its benefit density, and then
reinserts the task into the ready queue at its new benefit
density position. To select the next task to execute, MDASA
invokes the algorithm MDASA_schedule (Algorithm 1).

Algorithm 1 MDASA_schedule

1: Input: Benefit density ordered task ready queue BQ;

2: Initialize � fg, C  0, Tr  �; /* Tr is the

selected task */

3: for each task Ti 2 BQ in descending order of BDi do

4: if Si tð Þ � 0 then

5: if � ¼ fg then
6: /*Tf is the first nonnegative slack task*/

7: � � [ Ti, dmax  di; dmin  di, Tf  Ti;

8: if di > dmax then

9: if C þRi tð Þð Þ
�
di � tð Þ � 1:0 then

10: � � [ Ti, dmax  di, C  C þRi tð Þ;
11: else

12: if di < df then

13: if RiðtÞ < Sf tð Þ/*Sf tð Þ is the slack of task Tf/

then

14: ProbInclude �; Tið Þ;
15: else

16: ProbInclude �; Tið Þ;
17:return Tr;

In the event of a task termination, MDASA removes the
currently executing task from the ready queue. The
algorithm then invokes MDASA_schedule to select the next
task to execute.

As shown in Algorithm 1, MDASA accepts a (benefit
density-ordered) task ready queue as input and selects the
next task to be executed. The algorithm examines the tasks
in the ready queue in decreasing order of their benefit
densities. By Observation 1, only tasks with nonnegative
slacks can be in the feasible schedule. Thus, MDASA
silently discards all tasks with negative slacks.

If a taskTi with a nonnegative slack has the latest deadline,
(1) is used to check if the insertion of Ti can maintain the
feasibility of �. Otherwise, its deadline is compared with the
deadline of task Tf , i.e., df .

Recall that Tf is the first nonnegative slack task in
decreasing order of benefit density. By Observation 3, any
task Ti that will cause task Tf to miss its deadline should be
eliminated from �. Also recall that any task that does not
belong to Class I or Class II falls into Class III. Thus, tasks in
Class III are identified in the procedure of identifying Class I
and Class II tasks in the task ready queue. These Class III
tasks are further examined by the ProbInclude algorithm
(Algorithm 2), which computes the probability Pi and
determines if Ti should be included in �. Though a single
scheduling decision in Algorithm 2 depends on the output
of the randðÞ function and is thus random, this randomness
is amortized if the algorithm is invoked repeatedly for a
large number of times. Similar randomized scheduling
policy has been employed in algorithms such as Lottery
Scheduling [44].

Algorithm 2 ProbInclude

1: Input: � and associated state variables dmin; C; and Tr;
task Ti;

2: Pi  ðdmax � dminÞ
�
ðj�j � ðdmax � diÞÞ;

3: if randðÞ < Pi /* randðÞ returns a random value

within [0,1]*/ then

4: � � [ Ti; C  C þRi tð Þ;
5: if dmin > di then

6: dmin  di; Tr  Ti; /* Tr is the selected task */

Note that the latest and earliest task deadlines in � are
computed in the procedure for computing the Pis. Also, the
task Tr is selected whenever a task Ti is determined in � and
has the earliest deadline. Therefore, the MDASA algorithm,
unlike the original DASA algorithm, only needs one pass
and does not invoke the repeated feasibility test.

We now show an example of how the MDASA algorithm
makes the scheduling decision. Assume that the MDASA
algorithm is triggered at t ¼ 10. The triggering event could
be an arrival of a new task or the termination of the
currently executing task. In either case, the resulting task
ready queue (benefit density ordered) is shown in Table 1.

Task T1 is eliminated from � due to its negative slack
time. Task T2 has positive slack time and is the first
nonnegative slack task in descending order of benefit
density. Thus, it becomes Tf and is included in �.

Task T3 has a positive slack and an earlier deadline than
Tf . By the MDASA_Schedule algorithm, its remaining
execution time is compared against the slack time of T2.
Since R3 10ð Þ < S2 10ð Þ, task T3 belongs to Class III. Whether
T3 should be included in � depends upon the output of
ProbInclude �; T3ð Þ. In this example, assume that T3 is
included in �.

Task T4 has an earlier deadline than T2 and satisfies
R4 10ð Þ > S2 10ð Þ. Therefore, the insertion ofT4 will causeT2 to
miss its deadline. Task T5 has the latest deadline, but fails the
test by (1). On the contrary, task T6 has the latest deadline and
enough slack, i.e., C þR6 10ð Þð Þ

�
d6 � 10ð Þ � 1:0, where

C ¼ R2 10ð Þ þR3 10ð Þ ¼ 7. The selected task Tr is the earliest
deadline task in �, which is T3 in this example.

3.3 Worst-Case Complexity of MDASA

To analyze the worst-case complexity of MDASA, we
consider a maximum of n tasks.

If the scheduler is triggered by a task arrival, the
insertion of the new task involves searching for the correct
task position in the schedule. This is followed by an insert
operation. Using a binary search, the worst-case complexity
of these operations is given by O lg nð Þð Þ þO nð Þ ¼ O nð Þ.

LI AND RAVINDRAN: FAST, BEST-EFFORT REAL-TIME SCHEDULING ALGORITHMS 1163

TABLE 1
Task Ready Queue Scheduled by MDASA at t ¼ 10



In the event of a nonidle processor, the state variables of
the currently running task Tr need to be updated and Tr

must be replaced in the ready queue to maintain the benefit
density order. The task Tr can be kept track of by saving the
index of Tr in a variable. Thus, the replacement operation of
Tr could be implemented by searching the correct position
for the updated BDr and a “swap” operation. This costs
O lg nð Þð Þ.

TheMDASA scheduler then invokes theMDASA_schedule
algorithm to make a scheduling decision. Algorithm
MDASA_schedule examines the task ready queue from the
highest benefit density task to the lowest benefit density
task. The worst-case complexity of MDASA_schedule is O nð Þ
asMDASA_schedulemakes only a single pass over the ready
queue.

Therefore, the total worst-case complexity of MDASA at a
scheduling event is given byO nð Þ þO lg nð Þð Þ þO nð Þ ¼ O nð Þ.

4 THE MLBESA ALGORITHM

LBESA [29] is another best-effort real-time scheduling
algorithm. It is similar to DASA in that both algorithms
schedule tasks using the notion of benefit densities and are
equivalent to EDF during underload situations. However,
the algorithms differ in the way they reject tasks during
overload situations. In [16], Clark shows that DASA is
generally better than LBESA in terms of aggregate accrued
task benefit.

While DASA examines tasks in the ready queue in
decreasing order of their benefit densities for determining
feasibility, LBESA examines tasks in the increasing order of
task deadlines. Like DASA, LBESA also inserts each task
into a tentative schedule at its deadline-position and checks
the feasibility of the schedule. Tasks are maintained in
increasing deadline-order in the tentative schedule. If the
insertion of a task into the tentative schedule results in an
infeasible schedule, then, unlike DASA, LBESA removes the
least benefit density task from the tentative schedule. LBESA
continuously removes the least benefit density task from the
tentative schedule until the tentative schedule becomes
feasible. Once all tasks in the ready queue have been
examined and a feasible tentative schedule is thus con-
structed, LBESA selects the earliest deadline task from the
tentative schedule.

Again, the worst-case complexity of LBESA is O n2ð Þ,
given n tasks in the ready queue. Furthermore, the major

component of the O n2ð Þ complexity is the repeated
feasibility test performed by the algorithm before rejecting
each task.

To speed up LBESA, our approach is to maintain the
order of rejecting tasks and to heuristically determine the
tasks to be rejected without invoking the feasibility test. We
now discuss our observations, the resulting MLBESA
heuristic, and its worst-case complexity in the subsections
that follow.

4.1 Observations and Heuristic

Note that LBESA continuously rejects tasks in increasing
benefit density order if there is an overload. This means that
if BDi > BDj and task Ti is rejected, then task Tj must also
have been rejected.

For convenience, we denote the set of tasks that must
be rejected to produce a feasible task subset as V .
Therefore, to determine the tasks in V , we only need to
determine the size of V .

Without loss of generality, we assume that the tasks are
deadline-ordered in the set T ¼ T1; T2; . . . ; Tnf g. Further-
more, recall that a feasible task set satisfies � � 1, where � is
the load of the task set [13]. Fig. 1a plots the load of a set of
five example tasks specified in Table 2.

Our first observation on the load definition is formulated
as the following:

Observation 5. Let �m tð Þ be the load calculated during the time
interval t; dm½ � such that it is the maximum load among all
�i tð Þ of the task set. Then, rejecting one or more tasks such that
�m tð Þ � 1:0 is necessary, but not sufficient, to ensure the
feasibility of the remaining tasks.

Proof. The necessity of this observation is obvious. We use
the task set specified in Table 2 to clarify that it is not
sufficient. Assume that task T1 is rejected due to its
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Fig. 1. Example load calculation. (a) Load before removing T1. (b) Load after removing T1.

TABLE 2
A Set of Five Tasks



minimum benefit density. Before T1 is rejected,
�m ¼ �2 ¼ 1:5. After T1 is removed from the task set, �2
decreases to 0.83, as shown in Table 3. However, �4 and
�5 are still larger than 1.0 and, hence, the remaining task
set is not feasible. Fig. 1b plots the processor load after
removing task T1. tu
Therefore, we can partition the task subset V into two

parts: V ¼ V1 [ V2, where V1 is the task subset that must be
rejected to decrease �m to be less than 1:0, and V2 is the task
subset that must be rejected to ensure the feasibility of the
remaining tasks.

To determine the decrease in load that is acquired by
rejecting one task, we use the following observation:

Observation 6. After rejecting task Tj, the processor load

calculated during interval t; di½ � is given by:

�0i ¼
�i � Rj tð Þ

di�t if dj � di
�i otherwise;

�
ð3Þ

where �i and �0i are the calculated load before and after the task

rejection, respectively.

Proof. If dj � di, then the total processor time demand that
needs to be completed before di must be subtracted from
Rj tð Þ in the event of removing task Tj. It follows that

�0i ¼
P

dk�di Rk tð Þ �Rj

di � t
¼ �i �

Rj tð Þ
di � t

:

In the case of dj > di, the processor time demand of
task Tj is not included in �i. Thus, removing Tj cannot
affect �i. tu

Therefore, a natural way to identify and reject tasks in
the subset V1 is to continuously reject tasks, from the lowest
benefit density task to the highest benefit density task, until
�m is less than 1.0. After each task is rejected, �m is
recomputed using (3).

Since rejecting tasks in V1 is necessary, but not sufficient,
to ensure the feasibility of the remaining tasks, we
heuristically determine and reject another task subset V2 ¼
V � V1: Observe that a high �m means that there is a severe
overload situation for the task set. Thus, it is reasonable to
use �m to heuristically determine how many tasks should be
rejected. These tasks are rejected to resolve the overload
situation, as a higher �m generally implies that more tasks
should be rejected (though not necessarily).

We define the term Reject Ratio as the ratio of the number
of tasks to be rejected from the subset T � V1ð Þ.
Definition 1. The reject ratio of subset T � V1ð Þ is defined as

follows:

� ¼ jV2j
jT � V1j

: ð4Þ

Note that determining the exact number of tasks in V2

involves performing the feasibility test, which is not
desired. Thus, we approximate the exact reject ratio with
the help of �m. This approximated reject ratio, indicated as
�0, is computed as follows:

�0 ¼ �m � 1

�m
¼ 1� 1

�m
� 1: ð5Þ

Now that the reject ratio is computed, we can determine
the size of the subset jV2j by Definition 1:

jV2j ¼ �0 � jT � V1j ¼ �0 � jT j � jV1jð Þ: ð6Þ

We choose this simple heuristic due to its implementa-
tion efficiency and its property of automatic normalization.
It is worth noting that, under certain workload scenarios,
this heuristic may not perform well. For example, if a task
set is only slightly overloaded and the deadline order of a
task queue is in the reverse order of its benefit density
order, i.e., later deadline tasks have lower benefit densities,
LBESA may still need to reject most of the tasks, whereas
MLEBSA only rejects a small number of tasks due to a small
�0. We examine the performance of the MLBESA algorithm
in Section 5.

Once the size of V1 and V2 are determined, the algorithm
simply rejects jV1j þ jV2jð Þ tasks, from the lowest benefit
density task to the highest benefit density task. The
remaining tasks are conjectured to be feasible without
performing any feasibility test.

Note that, if �m is extremely large, the approximated
reject ratio �0 will be close to 1. In this case, all tasks
should be rejected, which implies that no feasible
schedule exists. Then, the algorithm selects the earliest
deadline task from the remaining tasks, if there is any.
In the example 5-task set, jV1j ¼ 1 because rejecting task
T1 is enough to reduce �2 to 0.83. Furthermore, the
reject ratio is approximated as �0 ¼ 1� 1

�2
¼ 0:33. There-

fore, jV2j ¼ �0 � jT j � jV1jð Þ ¼ 0:33� 4 ¼ 1:33.

4.2 Description of the MLBESA Algorithm

The MLBESA scheduling algorithm is also triggered by task
arrival and task termination events. However, unlike the
MDASA algorithm, MLBESA orders the task ready queue
in increasing deadlines to facilitate the initial feasibility test.

When a new task arrives, MLBESA inserts the task into
the task ready queue at its deadline position and then
invokes the Algorithm MLBESA_schedule (Algorithm 3) for
determining the next task to execute. If the algorithm is
triggered by the termination of a task, MLBESA removes
the currently running task from the task ready queue and
then invokes the Algorithm MLBESA_schedule.

Algorithm 3 MLBESA_schedule

1: Input: Absolute deadline ordered task ready queue
DQ T1; T2; . . . ; Tnf g;

2: Initialize internal variables:

�m  0; C  0; Tr  �; jV1j  0; jV2j  0;

3: t get current timeðÞ;
4: for each task Ti 2 DQ in nondecreasing order of

deadlines do
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TABLE 3
Removing T1 from the Task Set



5: C  C þRi tð Þ; /* C is the total processor time

demand */

6: �i tð Þ  C
�
di � tð Þ;

7: if �i tð Þ > �m then

8: �m  �i tð Þ; dm  di;

9: if �m � 1:0 then

10: return Tr  T1;

11:else

12: Sort DQ in another queue BQ, by benefit densities;
13: �0  1� 1

�
�m;

14: for each task Ti 2 BQ in ascending order of benefit

densities do

15: Remove task Ti from BQ,

BQ BQ� Ti; jV1j  jV1j þ 1;

16: if di � dm then

17: �m  �m �Ri tð Þ
�
dm � tð Þ;

18: if �m � 1:0 then

19: jV2j  �0 � jDQj � jV1jð Þ;
20: break;

21: for i 1 to jV2j do
22: Remove the lowest benefit density task from BQ;

23: if BQ 6¼ ; then
24: Select Tr 2 BQ, which has the earliest deadline among

all tasks within BQ;

25: return Tr;

The MLBESA_schedule algorithm first checks the feasi-
bility of the task set by examining the tasks (in the ready
queue) in their deadline-order. The algorithm identifies the
maximum load factor �m and its associated deadline dm. If
no overload is detected, i.e., �m � 1, then the algorithm
simply applies the EDF algorithm to select the next task to
be executed, which is task T1 at the “head” of the deadline-
ordered queue.

In the event of an overload, the algorithm first computes
the reject ratio �0. Tasks are then continuously rejected in
ascending order of their benefit densities until �m � 1. The
number of tasks rejected so far is the size of the subset V1.
Once jV1j tasks are rejected, MLBESA_schedule determines
the size of the subset jV2j using (6). Note that the tasks in
V1 [ V2 are temporarily removed from the task ready queue.
Such tasks may be determined to be feasible at future
scheduling events. After jV1j þ jV2j tasks have been rejected,
the algorithm selects the earliest deadline task from the
remaining task set, if any exists.

4.3 Worst-Case Complexity of MLBESA

To analyze the complexity of MLBESA, we consider a
deadline-ordered ready queue, denoted as DQ. We store
DQ as a linear array. Thus, inserting a new task involves
searching for the correct deadline position of the task inDQ,
followed by the insert operation. Given n tasks in DQ, this
has a worst-case complexity of O lg nð Þð Þ þO nð Þ ¼ O nð Þ.

MLBESA first checks the feasibility of the task set by
making a single pass over DQ, which costs O nð Þ. If no
overload is detected, the algorithm returns the earliest
deadline task in DQ, i.e., the task at the head of DQ. In this
case, the complexity of MLBESA is O nð Þ.

However, in the event of an overload, the task queue
needs to be reordered according to benefit densities. Tasks

in subset V1 [ V2 are then continuously rejected by the
algorithm to produce a feasible subset. In the worst case, all
tasks in the ready queue could be rejected. Thus, the
complexity of MLBESA during overload is the sum of the
cost of sorting the task ready queue (according to benefit
densities) and rejecting the tasks. This total cost becomes
O n lg nð Þð Þ þO nð Þ ¼ O n lg nð Þð Þ.

Clearly, the worst-case complexity of MLBESA is
dominated by the complexity during the overload situation.
Therefore, the worst-case complexity of MLBESA is
O n lg nð Þð Þ.

It is interesting to note that the algorithm could also order
the task ready queue according to benefit densities, as in the
case of the MDASA algorithm. This benefit density ordered-
ready queue will help to reduce the complexity of rejecting
the tasksduring anoverload situation, butwill incur the same
total worst-case complexity. Furthermore, such a benefit
density-ordered task ready queuemust be reordered accord-
ing to deadlines. Our approach of ordering the task ready
queue by deadlines may avoid the expensive sorting
operation if there is no overload. Therefore, the deadline
order scheme has a better average-case complexity.

5 PERFORMANCE EVALUATION

In experimentally evaluating MDASA and MLBESA, our
main goal is to determine how well the algorithms perform
with respect to their counterpart DASA and LBESA
scheduling algorithms, respectively. The performances of
MDASA and MLBESA are also compared against the Dover

algorithm [25] and the BE-v algorithm proposed in [33]. A
detailed discussion of related algorithms can be found in
Section 6. Furthermore, we are also interested in determin-
ing the task response times under MDASA and MLBESA.
We conducted simulation studies to determine these
performance metrics using synthetic workloads.

5.1 Performance of MDASA and MLBESA

To evaluate the performance of the scheduling algorithms,
we considered tasks with randomly distributed parameters.
Each experimental setting was characterized by parameters
including task execution time Ci, slack Si, timeliness benefit
Bi, and task interarrival time Ii.

Table 4 and Table 5 summarize the baseline experimental
settings for exponential distributions and normal distribu-
tions, respectively. Note that the task slack is specified as
the ratio of its slack time to its corresponding execution
time. Once Ci and Si of a task Ti are determined, the relative
deadline of the task is given by Di ¼ Ci þ Si. Furthermore,
the task interarrival time depends on the average load �A.

5

Thus, only the ratio Ii
�
Ci is specified.

Each simulation experiment lasted 8,000 seconds and
generated a stream of tasks, based on the specified task
parameters. We conducted experiments for �A ¼ 0:1 � 2:0.
The number of tasks generated during each experiment
varied from approximately 1,000 to 43,000, due to the
change in the average load. To eliminate random effects,
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5. This average processor load definition has been used in the literature
such as [12], [16], which may or may not be directly related to the processor
load defined in Section 2.



each experiment was independently repeated five times for
the same task stream.

We measured the Deadline Satisfaction Ratio (DSR) and
Accrued Benefit Ratio (ABR) produced by MDASA and
MLBESA. DSR is defined as the ratio of the number of
satisfied deadlines to the total number of task releases.
Fig. 2a and Fig. 2b show the DSR and ABR of MDASA and
those of DASA under two baseline experimental settings.
As we can see, MDASA performs almost exactly the same
as DASA for both experimental settings. The difference in
the DSR and ABR of the two algorithms is found to be
generally less than 5 percent. This result implies that the
MDASA algorithm almost always makes the same schedul-
ing decisions as those of DASA.

To evaluate the performance of the scheduling algo-
rithms for highly bursty workload, we also considered the
general Pareto distribution for task parameters. The general
Pareto distribution is interesting because its variance could
be infinity given a finite mean value—the maximal
nondeterminism one can have.6 Furthermore, the general
Pareto distribution is the base for synthesizing self-similar
communication traffic that can be found in real-time
applications such as compressed video transmission (see
[26] for an introduction to self-similar traffic).

In our baseline Pareto distribution experiments, task
execution times, slack times, interarrival times, and task
benefit values all follow the general Pareto distribution. For
task execution time, the average task execution time is
0.5 sec and the � value is 1.9. Note that, once the average
value and the � value are determined, � of the distribution
can be calculated as Mean� ð�� 1Þ=�. Similarly, the
average slack time is five times that of the task execution
time—a long slack time that allows tasks to remain feasible
for a long time—and the average task benefit is 10.
Furthermore, the � values for the distributions of task
interarrival times and task benefit are all set to 1.1.

We show DSRs and ABRs of MDASA and DASA
schedulers under the general Pareto distribution in Fig. 2a
and Fig. 2b, respectively. Compared with the performance
under exponential and normal distributions, both DASA
and MDASA satisfy a smaller percentage of task dead-
lines. Furthermore, DASA slightly outperforms MDASA
in terms of DSR. This performance gap is echoed in
Fig. 2b, where DASA also performs better than MDASA.
In addition, we observe that both DASA and MDASA
accrue more benefit under the general Pareto distribution
than under normal or exponential. This is because the

general Pareto distribution may produce very large task
benefit values for a few tasks. Thus, satisfying deadlines
of these high-benefit tasks can dramatically increase the
algorithm performance in terms of ABR.

Since MDASA uses the rand() function to heuristically
compute the schedule, it is possible that random factors can
affect the algorithm performance given a set of of input
tasks. Thus, for a given input task stream, we repeat the
experiments with five independent random seeds that are
used by the MDASA algorithm. These five experiments are
grouped together as they all have the same input. Standard
deviations of DSRs and ABRs of the MDASA scheduler are
then calculated to evaluate the effects of random factors.

We show the average standard performance deviations
of MDASA for the five groups of experiments in Fig. 3
(using the baseline Pareto distributions). As shown in the
figure, the performance of MDASA is reasonably stable, i.e.,
the performance standard deviations are less than 2 percent
in our experiments. Therefore, we conclude that the
performance of MDASA is close to that of DASA for a
broad range of workload scenarios.

Furthermore, Fig. 4 shows the ratios of tasks that fall into
each class of the MDASA algorithm under the baseline
general Pareto distribution.We observe that the ratio of Class
I tasks, i.e., at anygiven schedulingevent, thenumberofClass
I tasks to the total number of tasks in the ready queue remains
approximately 0.1 when load is greater than 0.6.

On the contrary, the ratio of Class II tasks monotonically
decreases while the ratio of Class III tasks increases. This is
because a heavy load tends to generate long ready queues
and more tasks cannot be identified as Class I or Class II.
Furthermore, the increasing ratio of Class III tasks explains
why MDASA performs worse than DASA during heavy
load. We also observe that, even when the system is heavily
overloaded, i.e., load is 2.0, and the workload pattern is
highly bursty, i.e., task parameters follow the general Pareto
distribution, approximately half of the tasks still fall into
either Class I or Class II.

We conducted the same experiments for MLBESA and
LBESA. The DSRs and ABRs of MLBESA versus LBESA are
shown in Fig. 5a and Fig. 5b, respectively. We observe that,
under normal and exponential distributions, MLBESA is
only slightly worse than LBESA. However, under the
general Pareto distribution, LBESA may accrue as much
as 10 percent more benefit than MLBESA—a visible
performance gap. We conjecture that this is because, under
a highly bursty workload pattern, MLBESA may reject too
many tasks that have high benefit but long execution time
as well. Thus, these rejected tasks have nonnegligible
impacts on the aggregate benefit ratio.
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TABLE 4
Task Parameters (Exponential Distributions)

TABLE 5
Task Parameters (Normal Distributions)

6. A general Pareto distribution is governed by a shape parameter � and
a scale parameter � that determine the minimal value of the random
variable. If � is between 1 and 2, the variance of the distribution is infinity
and the mean value is ��=ð�� 1Þ [43].



Furthermore, in Fig. 6, we show the average ratio of tasks

that belong to task set V1 and the average reject ratio

computed by MLBESA. As can be seen from the figure, both

ratios increase when load increases. It is also worth noting

that no more than 35 percent percentage of all tasks (at load

2.0) belong to task set V1 that are discarded to possibly

produce feasible schedules. Recall that the MLBESA

algorithm heuristically determines if a task in the remaining

task set ðT � V1Þ is in the feasible schedule. Thus, a

relatively small jV1j=T ratio (compared with MDASA’s

Class I and Class II ratios in Fig. 4) implies small chances for

MLBESA to make different scheduling decisions than

LBESA. This result explains the performance gap between

LBESA and MLBESA in Fig. 5b.
As a comparison, we implemented the Dover algorithm

[25] and the BE-v algorithm [33] in the simulation

experiments.
The Dover algorithm has been proven to be optimal in the

sense that it achieves the upper bound of the competitive

factor for any online scheduling algorithm. Note that the

competitive factor of an online algorithm measures its

worst-case performance. However, the optimal competitive

factor of Dover does not imply the best average performance

becauseDover may make pessimistic scheduling decisions so

that it can guarantee the optimal competitive factor.
The BE-v algorithm was inspired by the Dover algorithm.

Furthermore, Mosse et al. show that BE-v outperforms the

original LBESA algorith on short teaser tasks.
We first show the DSRs and ABRs of the six algorithms

under the baseline general Pareto distributions. Our reason
for choosing the general Pareto distribution is because a
highly busrty workload helps to manifest the performance
difference between different algorithms, as we learned from
previous experiments for MDASA and MLBESA. However,
the results for other distributions, such as normal distribu-
tion and exponential distribution, all have similar trends
and, thus, are omitted here.

As shown in Fig. 7, the DSRs of the algorithms do not

have a significant difference. However, DASA, LBESA,

BE-v, and MDASA perform significantly better than

MLBESA and Dover in terms of ABR (see Fig. 8). This result

is consistent with that shown in Fig. 5b, i.e., LBESA

performs better than MLBESA. Furthermore, the fact that

Dover performs poorly has been described [12].
Finally, we study task response times under various

algorithms. For the purpose of comparison, we use a metric
called “Response Time Ratio” that is defined as the ratio of
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Fig. 2. MDASA versus DASA (baseline settings). (a) DSRs of MDASA and DASA. (b) ABRs of MDASA and DASA.

Fig. 3. Standard deviations of MDASA performance. Fig. 4. Percentages of tasks in MDASA classes.



the actual task response time to its execution time. This
definition does not depend on the execution times of
particular tasks and thus enables a fair comparison of large
number of tasks.

In Fig. 9, we show the average response time ratios of the

six algorithms under the baseline general Pareto distribu-

tions. As shown in the figure, most of the response time

ratios are close, especially for light to medium load

conditions, i.e., load no more than 0.8. However, when the

load increases, BE-v and Dover generally produce longer

response times than other algorithms.

5.2 Task Response Times under MDASA and
MLBESA

The experimental results in Section 5.1 show that MDASA
and MLBESA, in general, have close performance to their
counterpart algorithms. We conjecture that MDASA and
MLBESA make almost the same scheduling decisions as
those made by DASA and LBESA at most scheduling
events, respectively. Consequently, most of the task
response times under MDASA and MLBESA should be
close to that under DASA and LBESA, respectively.

If task response times under MDASA and MLBESA are
almost the same as those under DASA and LBESA,
respectively, then MDASA and MLBESA can be used as
approximate response time analysis algorithms for estimat-
ing response times under DASA and LBESA. This would be
a useful property of the algorithms as determining exact
response times under best-effort schedulers such as DASA
and LBESA is impossible without constructing entire task
schedules [19]. Such schedule construction is computation-
ally expensive due to the high cost of DASA and LBESA.

Thus, we could use MDASA and MLBESA to estimate

response times under DASA and LBESA, respectively, in a

much faster way as MDASA and MLBESA have low

computational costs.7

To measure how close the task response times are under

different scheduling algorithms, we define the relative error

of task response times as follows:

RelError ¼

Resp�P resp
Resp Resp <1 and P resp <1

100% Resp ¼ 1 and P resp <1
�100% Resp <1 and P resp ¼ 1
0 Resp ¼ 1 and;P resp ¼ 1;

8>><
>>:

ð7Þ

where Resp and P resp are the response times of a task

under DASA (or LBESA) and MDASA (or MLBESA),
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Fig. 5. MLBESA versus LBESA (baseline settings). (a) DSRs of MLBESA and LBESA. (b) ABRs of MLBESA and LBESA.

Fig. 6. Percentages of tasks in MLBESA categories.

Fig. 7. Comparison of DSRs (Pareto distribution).
7. In fact, this has been one of our primary motivations for developing

MDASA and MLBESA in the first place (as described in Section 1).



respectively. Note that, in the case of a deadline miss, the

task response time becomes infinity. This is because an

infeasible task is never scheduled by schedulers such as

DASA and LBESA and thus will be aborted. Since task

response is defined as the time interval between the

finishing time of a task and its arrival time, the response

time of an aborted task is calculated as infinity. This case is

also handled by the above error definition.
We first show the mean and standard deviation of the

relative errors under MDASA in Fig. 10. The experimental

data are collected with the baseline exponential distribution

of task parameters shown in Table 4. Each error bar in the

plot corresponds to the Mean and StdDev at one load point,

which is centered at the Mean and is 2� StdDev long.
From Fig. 10, we see that the Means are always very

close to zero. We also observe that the relative errors are

more spread out as the load increases, which is implied by

the larger StdDev. Thus, there are larger, and possibly more,

errors during heavy load.
To illustrate the distribution of the relative errors, we

show a sample histogram of MDASA’s response time

relative errors at �A ¼ 2:0 (for the baseline exponential

distribution experiment) in Fig. 11. We observe that more

than 95 percent of the relative errors are very close to 0.

Furthermore, we see that there are few very large errors, 100
percent or -100 percent for example.

Thus, the relatively large StdDev could be due to the few

large errors. The error bar plot is, hence, misleading. For
capturing the error distribution more accurately, we use an
extended outlier measurement. We define a 5 percent Hit

Ratio as the ratio of the relative errors within 	5% to the
total number of samples. A 10 percent Hit Ratio and a
20 percent Hit Ratio have similar definitions.

Fig. 12a shows the 5 percent, 10 percent, and 20 percent
hit ratios for the same baseline exponential experiment
under MDASA at �A ¼ 2:0. Being consistent with the
histogram, the hit ratios are all approximately 99 percent.
This means that almost all the task response times under
MDASA are very close to the values under DASA. The hit

ratio plots under MLBESA are shown in Fig. 12b.

5.3 Impact of Task Parameters on Response Times

In this section, we study the impact of task parameters on
task response times. Since one of our objectives is to use the
task response times obtained under the MDASA and
MLBESA algorithms as an approximation for the response
times that can be obtained under their deterministic

counterparts, we are interested in determining how relative
errors in response times are affected by task parameters.
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Fig. 8. Comparison of ABRs (Pareto distribution).

Fig. 9. Comparison of response ratios (Pareto distribution).

Fig. 10. Response time errors under MDASA.

Fig. 11. Histogram of MDASA response time errors.



We studied the impact of task parameters in two ways:
1) by determining the effect on Hit Ratio, defined in
Section 5.2 and 2) by determining the correlation between
task parameters and response time errors. In general, a
distribution is characterized by its central tendency and
dispersion, which are usually specified as Mean and
StdDev. We chose the normal distribution as the basic
distribution in these experiments because the Mean and
StdDev of a normal distribution are independent para-
meters. Furthermore, the normal distribution may be
approximated by the Central Limit Theorem [32] in many
real applications. The general Pareto distribution is also
used in the experiments because it allows studying the
effect of infinite variance.

In each experiment, the Mean or StdDev of one of the
four task parameters Ci, Si, Bi, and Ii, is varied while the
other parameters are kept the same, as shown in Table 5.

5.3.1 Impact of Timing Parameters

Our first experiment compared the 10 percent hit ratio of
MDASA for 0.5 seconds of mean slack and for 0.25 seconds
of mean slack. The results are shown in Fig. 13a. The impact
of the StdDev of the slack for MDASA is shown in Fig. 13b.

We observe that either a larger Mean or a larger StdDev

of task slack slightly degrades the performance of the
algorithm. A larger StdDev implies that the tasks are more
“bursty.” Thus, we conjecture that the length of the task
ready queue may vary in a larger range. Recall that MDASA
heuristically determines the probability that a task is in the
feasible schedule based on the queue length. Therefore,
MDASA has a greater chance of making a different
scheduling decision from that of DASA if there is a long
ready queue. Furthermore, we use the “truncated” normal
distribution, i.e., only positive values are allowed, to
generate the task slack since we expect a task to be feasible
at the time of its arrival. Thus, increasing the Mean could
also potentially generate a more bursty task stream.
However, the performance degradation of the algorithm is
found to be very small in both cases.

We observed that the impact of task execution times and
interarrival times follows a similar pattern as that of the
slack. That is, doubling Mean or doubling StdDev of the
task execution time or interarrival time may result in a
slightly worse performance, e.g., 1 percent degradation in
terms of 10 percent hit ratio. We also observed similar
results for MLBESA. For brevity, we omit these plots here.
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Fig. 12. Hit ratios under (a) MDASA and (b) MLBESA.

Fig. 13. Impact of slack times on MDASA hit ratios. (a) Impact of mean slack. (b) Impact of StdDev slack.



To reinforce the results presented in Fig. 13a and Fig. 13b,
we also conducted experiments for studying the effect of
task slack times on algorithm performance. These experi-
ments are conducted with the baseline general Pareto
distribution. Furthermore, we changed the mean slack times
to two times (slack2), five times (slack5), and nine times
(slack9) as that of task execution times.

Fig. 14 shows the average queue length produced by
MDASA. Note that infeasible tasks are dropped from the
ready queue to avoid infinite readyqueue. Theseplots clearly
show that, besides workload governed by task execution
times and interarrival times, task slack times have significant
impact on the length of ready queues. Furthermore, in Fig. 15,
we show DSRs achieved by MDASA for the baseline Pareto
distributionwith various slack times. As can be seen from the
figure, a large slack time implies a less stringent timing
constraint and, thus, yields better performance.

5.3.2 Impact of Benefit

Unlike the task timing parameters such as Ci, Si, and Ii,
the real-time benefit of a task indicates the importance
level of a task relative to other tasks in the system. Thus,
we conjecture that the performance of the algorithm is
benefit scale-invariant.

Fig. 16a and Fig. 16b show the 10 percent hit ratio curves

with different Mean and StdDev of real-time benefit for the

MDASA algorithm. As we expect, the performance of the

algorithm does not change significantly.

5.3.3 Correlation between Task Parameters and

Response Time Errors

We are also interested in determining whether there is any

significant correlation between task parameters and re-

sponse time errors. For example, does a task with a longer

execution time has a larger response time error than others?

We consider the Pearson and Spearman correlations [32] for

measuring this aspect.
Table 6 and Table 7 show the correlation coefficients

between the task parameters and the response time relative

error at �A ¼ 0:2 and �A ¼ 2:0, respectively.
Note that the task interarrival time depends upon the

load and the execution time of the task stream. Thus, it is

not shown as a separate parameter in the tables. The

Pearson correlation measures the linear relationship be-

tween two quantities, which may be a too strict requirement

in our case. But, the rank-order correlation measured by

Spearman correlation does not show any significance either.
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Fig. 14. Average queue length under MDASA. Fig. 15. Impact of slack times on MDASA performance.

Fig. 16. Impact of benefit on MDASA performance. (a) Impact of Mean benefit. (b) Impact of StdDev benefit.



Therefore, we conclude that the parameters of a task do not
have a significant correlation with the response time
difference between the MDASA and DASA algorithms.
The correlation coefficients under MLBESA also lead us to
the same conclusion.

6 RELATED WORK

Value or benefit-based overload scheduling has been
studied in different contexts [2], [6], [10], [11], [14], [20],
[25], [39], [3], [7], [8], [9], [13], [33], [34], [37].

Baruah et al. established the 1=ð1þ
ffiffiffi
k
p
Þ2 upper bound on

the competitive factor of any online scheduling algorithm,
given the importance ratio of k [6]. Note that k is defined as
the maximum task value density divided by the minimum
task value density among the task set. This upper bound is
achieved by the Dover algorithm presented in [25]. However,
the competitive factor of an online algorithm only measures
the worst-case performance of the algorithm, which may not
be directly related to the average performance for a large
number of random tasks. Furthermore, our experimental
results shown in Section 5.1 suggest that Dover may perform
worse than MDASA and MLBESA for random task sets,
which is also described in [12].

Baruah et al. also proposed two metrics for measuring
the performance of a scheduling algorithm during overload
situations. This includes the “Effective Processor Utilization
(EPU)” and “Completion Count (CC)” [9]. It is shown that
no online algorithm is competitive with respect to CC
during overload situations [9]. In the case of “uniform
value,” where the value of a task is equal to its execution
time, optimal scheduling with known minimum slack factor
and multiple processors is explored in [8] and [7],
respectively.

Besides optimal algorithms such as Dover, heuristic
algorithms have also been proposed. In [39], the authors
consider the problem of computing schedules in a dynamic
environment by ensuring the feasibility of the system.
Furthermore, several algorithms similar to the LBESA
algorithm have been designed [2], [13], [33]. These algo-
rithms are similar to LBESA in that they reject tasks by
ascending order of task benefit density or variant metrics of
benefit density, to resolve any overload situation.

The RED (Robust Earliest Deadline) algorithm proposed
by Buttazzo and Stankovic [13] combines many features,
including graceful performance degradation during over-
load, deadline tolerance, and resource reclaiming. Since we
assume that the execution time is the exact processor time
demand of a task, no resource reclaiming mechanism is
relevant to our task model. Similarly, no deadline tolerance
is allowed for step benefit functions. Note that the RED
algorithm itself does not specify any particular policy to

reject tasks when overload occurs. In the case of rejecting
tasks in the ascending order of task benefit densities, the
RED scheduler behaves like an LBESA scheduler. Thus, we
do not directly compare the performance of MDASA and
MLBESA with the RED algorithm.

Mosse et al. derive several variants of the LBESA
algorithm in [33]. They also show that the BE-v variant
algorithm may outperform LBESA when the value accrued
by rejecting short teasers is greatest. Our simulation
experiments show that MDASA, MLBESA, and BE-v have
very close performance. Furthermore, a comparative study
shows that robust algorithms, such as RED, perform better
than plain algorithms, such as plain EDF, and guarantee-
based algorithms [11]. Therefore, we focus our performance
comparison on only a class of robust algorithms, where the
BE-v algorithm serves as an example.

Aldarmi and Burns propose the concept of “timeliness-
function” in [3]. Unlike the step benefit function, which
drops at the task deadline, the timeliness-function decreases
when the slack time of a task reaches zero. In [2], the
authors show that scheduling the task with the highest
Dynamic Timeliness-Density (DTD) is more effective than
scheduling the highest benefit density task. However, the
“timeliness” of a task has already been examined in the
feasibility test of DASA and LBESA, which aborts any task
with negative slack. Thus, DTD scheduling bears a lot of
similarities to the DASA algorithm. Burns et al. also study
the problem of assigning value to tasks in a systematic and
rational way [10], [34].

Apart from the task model with one segment of
execution per task, the concept of “imprecise computations”
has also been proposed as an effective technique to handle
overloads [28]. The imprecise computation model assumes
that a task consists of a mandatory part that must finish
execution before its deadline and an optional part that can
be executed to improve the quality of the computation’s
output results.

In [31], Mejia-Alvarez et al. consider this imprecision
computation model and use combinatorial algorithms to
find near-optimal solutions. The work on feedback control
theory scheduling further extends the imprecise computa-
tion model and assumes the presence of N versions of the
same task (N � 2) [30]. The MDASA and MLBESA
algorithms do not assume the existence of multiple versions
of the same task.

In [35], the author presents an overload management
scheme that can satisfy deadlines of at least m instances of a
periodic taskwithink consecutive releases,which is called the
ðm; kÞ firm guarantee. However, no benefit is defined for the
application tasks, which fundamentally differs from our
model.

In [14], [20], the authors consider the problem of
scheduling a set of nonpreemptive tasks to maximize the
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TABLE 6
Correclations at �A ¼ 0:2

TABLE 7
Correlations at �A ¼ 2:0



accrued benefit, which complements the work of schedul-
ing independent tasks. Richardson and Sarkar consider
scheduling tasks before overload but after a fault occurs [37],
where a fault could be the reason of the overload situation.
Our task model does not assume this knowledge.

Furthermore, the majority of the algorithms with
comparable performance to DASA and LBESA repeatedly
determine the task set feasibility and, hence, are expensive.
The proposed MDASA and MLBESA algorithms, on the
other hand, heuristically determine the feasible task subset
and are much faster.

Although probabilistic analysis has been used in real-
time scheduling, such as in the efforts [4], [18], [42], these
algorithms mainly deal with scheduling real-time processes
that have varying computational demand.

The original LBESA algorithm itself is the closest work to
the MDASA and MLBESA algorithms. LBESA statistically
“guesses” if there is an overload, based on the variance of
the total process slack time. If there is an overload, LBESA
removes the least benefit density process from the feasible
process set that it computes, where the benefit density of a
process is the process benefit divided by its remaining
execution time. This procedure is repeated until the
algorithm “guesses” and concludes that there is no over-
load. MDASA and MLBESA algorithms avoid this iterative
decision procedure of LBESA by heuristically determining
the processes in the final feasible schedule.

7 CONCLUSIONS

In this paper, we present two fast, best-effort, real-time

scheduling algorithms, called MDASA and MLBESA.

MDASA and MLBESA are novel in the way that they

heuristically, yet accurately, mimic the behavior of the

DASA and LBESA algorithms, respectively, but are faster

with O nð Þ and O n lg nð Þð Þ worst-case complexities. MDASA

and MLBESA reason about the behavior of DASA and

LBESA by heuristically determining a feasible schedule of

the task ready queue.
Our experimental results show that MDASA and

MLBESA perform almost as well as DASA and LBESA,
respectively, unless the workload is highly bursty and the
system is heavily overloaded. Furthermore, the task
response times under MDASA and MLBESA are found to
be very close to the values under their counterpart
scheduling algorithms. While MDASA performs better than
MLBESA and has a better worst-case complexity, MLBESA
guarantees the optimal schedule during underload situa-
tions. Our prototype implementation of MDASA/MLBESA
in a middleware [27] also suggests their effectiveness, e.g.,
response time analysis using MDASA/MLBESA can be
100 � 200 msec faster than that using DASA/LBESA.
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