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2 � Stefan Axelsson1. INTRODUCTIONMany demands 
an be made of an intrusion dete
tion system (IDS for short) su
has e�e
tiveness, eÆ
ien
y, ease of use, se
urity, inter-operability, transparen
y et
.Although mu
h resear
h has been done in the �eld in the past ten years, the theo-reti
al limits of many of these parameters have not been studied to any signi�
antdegree. The aim of this paper is to dis
uss one serious problem with regard tothe e�e
tiveness parameter, espe
ially how the base-rate falla
y may a�e
t theoperational e�e
tiveness of an intrusion dete
tion system.2. INTRUSION DETECTIONThe �eld of automated 
omputer intrusion dete
tion, intrusion dete
tion for short,is 
urrently some nineteen years old [Anderson 1980℄, with interest gathering pa
ein the past ten years.Intrusion dete
tion systems are intended to help dete
t a number of importanttypes of 
omputer se
urity violations, su
h as:|Atta
kers using prepa
ked 'exploit s
ripts.' Primarily outsiders.|Atta
kers operating under the identity of a legitimate user, for example by havingstolen that user's authenti
ation information (password). Outsiders and insiders.|Insiders abusing legitimate privileges, et
.Early work (see [Anderson 1980; Denning and Neumann 1985; Denning 1987;Sebring et al. 1988℄) identi�ed two major types of intrusion dete
tion strategies.Anomaly dete
tion The strategy of de
laring everything that is unusual for thesubje
t (
omputer, user, et
.) suspe
t, and worthy of further investigation. Theearly anomaly dete
tion systems were all self-learning, i.e they automati
allyformed an opinion of what the subje
ts normal behaviour was.Anomaly dete
tion promises to dete
t abuses of legitimate privileges that 
an-not easily be 
odi�ed into se
urity poli
y, and to dete
t atta
ks that are 'novel'to the intrusion dete
tion system. Problems in
lude a tenden
y to take up datapro
essing resour
es, and the possibility of an atta
ker tea
hing the system thathis illegitimate a
tivities are nothing out of the ordinary.Signature dete
tion The dete
tion strategy of de
iding in advan
e what type ofbehaviour is undesirable, and through the use of predetermined signature ofsu
h behaviour, dete
ting intrusions.Signature based dete
tion systems promise to dete
t known atta
ks and vio-lations easily 
odi�ed into se
urity poli
ies in a timely and eÆ
ient manner.Problems in
lude a diÆ
ulty in dete
ting previously unknown intrusions. If adatabase 
ontaining intrusion signatures is employed it must be updated fre-quently.Early in the resear
h it was suggested in [Halme and Kahn 1988; Lunt 1988℄that the two main methods ought to be 
ombined to provide a 
omplete intrusiondete
tion system 
apable of dete
ting a wide array of di�erent 
omputer se
urityviolations, in
luding the ones listed above.For a more in depth review of these and other intrusion dete
tion 
on
epts,the interested reader is referred to a survey of intrusion dete
tion systems [Axels-
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tion � 3son 1998℄ and a taxonomy of intrusion dete
tion systems and prin
iples [Axelsson2000a℄, previously written by us.We wish to at least make this division between the di�erent prin
iples of dete
tionabove, sin
e it is easy to 
onje
ture that these fundamentally di�erent modes ofdete
tion will exhibit di�erent 
hara
teristi
s with regard to dete
tion and falsealarm rates. They probably also show di�erent performan
e in other 
hara
teristi
sas well, su
h as runtime eÆ
ien
y, but a dis
ussion of these parameters falls outsidethe s
ope of this paper.3. PROBLEMS IN INTRUSION DETECTIONAt present, many fundamental questions regarding intrusion dete
tion remain unan-swered. They in
lude, but are by no means limited to:E�e
tiveness How e�e
tive is the intrusion dete
tion? To what degree does itdete
t intrusions into the target system, and how good is it at reje
ting falsepositives, so 
alled false alarms?EÆ
ien
y What is the run time eÆ
ien
y of the intrusion dete
tion system, howmany 
omputing resour
es and how mu
h storage does it 
onsume, 
an it makeits dete
tions in real time, et
?Ease of use How easy is it to �eld and operate for a user who is not a se
urityexpert, and 
an su
h a user add new intrusion s
enarios to the system? Animportant issue in ease of use is the question of what demands 
an be madeof the person responding to the intrusion alarm. How high a false alarm rate
an he realisti
ally be expe
ted to 
ope with, and under what 
ir
umstan
es ishe likely to ignore an alarm? (It has long been known in se
urity 
ir
les thatif you are an atta
ker you should attempt to 
ir
umvent an ordinary ele
troni
alarm system during normal operation of the fa
ility, sin
e if you happened totrigger the alarm, the supervisory sta� would more likely be lax be
ause theywould be more a

ustomed to false alarms [Pier
e 1948℄).Se
urity When ever more intrusion dete
tion systems are �elded, one would ex-pe
t ever more atta
ks dire
ted at the intrusion dete
tion system itself, to
ir
umvent it or otherwise render the dete
tion ine�e
tive. What is the natureof these atta
ks, and how resilient is the intrusion dete
tion system to them?Inter-Operability As the number of di�erent intrusion dete
tion systems in-
rease, to what degree 
an they inter-operate and how do we ensure this?Transparen
y How intrusive is the �elding of the intrusion dete
tion system tothe organisation employing it? How many resour
es will it 
onsume in termsof manpower, et
?Collaboration The best e�e
t is often a
hieved when several se
urity measuresare brought to bear together. How should intrusion dete
tion 
ollaborate withother se
urity me
hanisms to a
hieve this synergy e�e
t? How do we assurethat the 
ombination of se
urity measures provide at least the same level ofse
urity as ea
h applied singly would provide, or that the 
ombination does notin fa
t lower the overall se
urity of the prote
ted system?While interest is being shown in some of these issues, with a few notable ex
ep-tions, mainly [Helman and Liepins 1993℄, they remain largely unaddressed by the
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h 
ommunity. This is perhaps not surprising, sin
e many of these questionsare diÆ
ult to formulate and answer.This paper is 
on
erned with one aspe
t of one of the questions above, that ofe�e
tiveness. More spe
i�
ally it addresses the way in whi
h the base-rate falla
ya�e
ts the required performan
e of the intrusion dete
tion system with regard tofalse alarm reje
tion.In what follows the �rst se
tion, se
tion 4 gives a des
ription of the base-ratefalla
y. Se
tion 5 then 
ontinues with an appli
ation of the base-rate falla
y tothe intrusion dete
tion problem, given a set of reasonable assumptions. Se
tion 6des
ribes the impa
t the results presented in the previous se
tion would have onintrusion dete
tion systems. Se
tion 7 
onsiders future work, with se
tion 8 
on-
luding the paper. Appendix A reprodu
es a base-rate falla
y example in diagramform.4. THE BASE-RATE FALLACYThe base-rate falla
y1 is one of the 
ornerstones of Bayesian statisti
s, stemming asit does dire
tly from Bayes' famous theorem that states the relationship between a
onditional probability and its opposite, i.e. with the 
ondition transposed:P (AjB) = P (A) � P (BjA)P (B) (1)Expanding the probability P (B) for the set of all n possible, mutually ex
lusiveout
omes A we arrive at equation (2):P (B) = nXi=1 P (Ai) � P (BjAi) (2)Combining equations (1) and (2) we arrive at a generally more useful statementof Bayes' theorem: P (AjB) = P (A) � P (BjA)Pni=1 P (Ai) � P (BjAi) (3)The base-rate falla
y is best des
ribed through example.2 Suppose that yourdo
tor performs a test that is 99% a

urate, i.e. when the test was administered toa test population all of whom had the disease, 99% of the tests indi
ated disease,and likewise, when the test population was known to be 100% free of the disease,99% of the test results were negative. Upon visiting your do
tor to learn the resultshe tells you he has good news and bad news. The bad news is that indeed you testedpositive for the disease. The good news however, is that out of the entire populationthe rate of in
iden
e is only 1=10000, i.e. only 1 in 10000 people have this ailment.What, given this information, is the probability of you having the disease? Thereader is en
ouraged to make a qui
k 'guesstimate' of the answer at this point.1The idea behind this approa
h stems from [Matthews 1996; Matthews 1997℄.2This example is hinted at in [Russel and Norvig 1995℄.



The Base-rate Falla
y and the DiÆ
ulty of Intrusion Dete
tion � 5Let us start by naming the di�erent out
omes. Let S denote si
k, and :S, i.e.not S, denote healthy. Likewise, let R denote a positive test result and :R denotea negative test result. Restating the information above; given: P (RjS) = 0:99,P (:Rj:S) = 0:99, and P (S) = 1=10000, what is the probability P (SjR)?A dire
t appli
ation of equation (3) above gives:P (SjR) = P (S) � P (RjS)P (S) � P (RjS) + P (:S) � P (Rj:S) (4)The only probability above whi
h we do not immediately know is P (Rj:S).This is easily found though, sin
e it is merely 1 � P (:Rj:S) = 1% (likewise,P (:S) = 1 � P (S)). Substituting the stated values for the di�erent quantities inequation (4) gives:P (SjR) = 1=10000 � 0:991=10000 � 0:99 + (1� 1=10000) � 0:01 = 0:00980 : : :� 1% (5)That is, that even though the test is 99% 
ertain, your 
han
e of a
tually havingthe disease is only 1=100, be
ause the population of healthy people is mu
h largerthan the population with the disease. (For a graphi
al representation, in the form ofa Venn diagram, depi
ting the di�erent out
omes, turn to Appendix A). This resultoften surprises people, ourselves in
luded, and it is this phenomenon|that humansin general do not take the basi
 rate of in
iden
e, the base-rate, into a

ount whenintuitively solving su
h problems of probability|that is aptly named 'the base-ratefalla
y.'5. THE BASE-RATE FALLACY IN INTRUSION DETECTIONIn order to apply this reasoning in 
omputer intrusion dete
tion we must �rst �ndthe di�erent probabilities, or if su
h probabilities 
annot be found, make a set ofreasonable assumptions regarding them.5.1 Basi
 frequen
y assumptionsLet us for the sake of further argument hypothesize a �gurative 
omputer installa-tion with a few tens of workstations, a few servers|all running Unix|and a 
oupleof dozen users. Su
h an installation 
ould produ
e in the order of 1,000,000 auditre
ords per day with some form of 'C2' 
ompliant logging in e�e
t [U.S. Depart-ment of Defense 1985℄, in itself a testimony to the need for automated intrusiondete
tion.Suppose further that in su
h a small installation we would not experien
e morethan a few, say one or two, a
tual attempted intrusions per day. Even though itis diÆ
ult to get any �gures for real in
iden
es of attempted 
omputer se
urityintrusions, this does not seem to be an unreasonable number.Furthermore, assume that at this installation we do not have the manpower tohave more than one site se
urity oÆ
er|SSO for short|who probably has otherduties, and that the SSO, being only human, 
an only rea
t to a relatively lownumber of alarms, espe
ially if the false alarm rate is high (50% or so).Even though an intrusion 
ould possibly a�e
t only one audit re
ord, it is likelyon average that it will a�e
t a few more than that. Furthermore, a 
lustering fa
tor
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tually makes our estimates more 
onservative, so it was deemed prudent to in
ludeone. Using data from a previous study of the trails that SunOS intrusions leavein the system logs [Axelsson et al. 1998℄, we 
an estimate that ten audit re
ordswould be a�e
ted in the average intrusion.5.2 Human ma
hine intera
tion in intrusion dete
tionThe previous assumptions above are 'te
hni
al' in nature, i.e. anyone well versedin the �eld of 
omputer se
urity 
an make similar predi
tions, or adjust the onesabove to suit his liking. It is a simple matter to verify or predi
t similar measures.However, the fa
tor of the performan
e of the human operator does not lend itselfto the same te
hnologi
al estimates. Thus, a 
ru
ial question in this dis
ussionis the question of the 
apa
ity of the human operator to 
orre
tly respond to theoutput of the system. Espe
ially his 
apa
ity to tolerate false alarms.Unfortunately there have been no experiments 
on
erning these fa
tors in thesetting of 
omputer se
urity intrusion dete
tion. There is, however, some resear
hin the 
ontext of pro
ess automation and plant 
ontrol, su
h as would be the 
asein a (nu
lear) power station, paper mill, steel mill, large ship et
 [Rasmussen 1986;Wi
kens 1992; Nygren 1994; Deatherage 1972℄. These studies seem to indi
ate thatour required level of false alarms, 50%, is a very 
onservative estimate. Most humanoperators will have 
ompletely lost faith in the devi
e at that point, opting to treatevery alarm with extreme s
epti
ism, if one would be able to speak of a 'treatment'at all. The intrusion dete
tion system would most likely be 
ompletely ignored ina '
ivilian' setting. More resear
h into this issue is 
learly needed.5.3 Cal
ulation of Bayesian dete
tion ratesLet I and :I denote intrusive, and non-intrusive behaviour respe
tively, and A and:A denote the presen
e or absen
e of an intrusion alarm. We start by naming thefour possible 
ases (false and true positives and negatives) that arise by workingba
kwards from the above set of assumptions:Dete
tion rate Or true positive rate. The probability P (AjI), i.e. that quantitythat we 
an obtain when testing our dete
tor against a set of s
enarios we knowrepresent intrusive behaviour.False alarm rate The probability P (Aj:I), the false positive rate, obtained in ananalogous manner.The other two parameters, P (:AjI), the False Negative rate, and P (:Aj:I), theTrue Negative rate, are easily obtained sin
e they are merely:P (:AjI) = 1� P (AjI);P (:Aj:I) = 1� P (Aj:I) (6)Of 
ourse, our ultimate interest is that both:|P (I jA)|that an alarm really indi
ates an intrusion (hen
eforth 
alled the Bay-esian dete
tion rate), and|P (:I j:A)|that the absen
e of an alarm signi�es that we have nothing to worryabout,remain as large as possible.
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y and the DiÆ
ulty of Intrusion Dete
tion � 7Applying Bayes' theorem to 
al
ulate P (I jA) results in:P (I jA) = P (I) � P (AjI)P (I) � P (AjI) + P (:I) � P (Aj:I) (7)Likewise for P (:I j:A):P (:I j:A) = P (:I) � P (:Aj:I)P (:I) � P (:Aj:I) + P (I) � P (:AjI) (8)These assumptions give us a value for the rate of in
iden
e of the a
tual numberof intrusions in our system, and its dual (10 audit re
ords per intrusion, 2 intrusionsper day, and 1,000,000 audit re
ords per day). Interpreting these as probabilities:P (I) = 1�1 � 1062 � 10 = 2 � 10�5;P (:I) = 1� P (I) = 0:99998 (9)Inserting equation (9) into equation (7):P (I jA) = 2 � 10�5 � P (AjI)2 � 10�5 � P (AjI) + 0:99998 � P (Aj:I) (10)Studying equation (10) we see the base-rate falla
y 
learly. By now it should
ome as no surprise to the reader, sin
e the assumptions made about our systemmakes it 
lear that we have an overwhelming number of non-events (benign a
tivity)in our audit trail, and only a few events (intrusions) of any interest. Thus, thefa
tor governing the dete
tion rate (2 � 10�5) is 
ompletely dominated by the fa
tor(0:99998) governing the false alarm rate. Furthermore, sin
e 0 � P (AjI) � 1, theequation will have its desired maximum for P (AjI) = 1 and P (Aj:I) = 0, whi
hresults in the most bene�
ial out
ome as far as the false alarm rate is 
on
erned.While rea
hing these values would be an a

omplishment indeed, they are hardlyattainable in pra
ti
e. Let us instead plot the value of P (I jA) for a few �xed valuesof P (AjI) (in
luding the 'best' 
ase P (AjI) = 1), as a fun
tion of P (Aj:I) (see�gure 1 on the following page). It should be noted that both axes are logarithmi
.It be
omes 
lear from studying the plot in �gure 1 that even for the unrealisti
allyhigh dete
tion rate 1.0 , we have to have a very low false alarm rate (on the order of1 �10�5) for the Bayesian dete
tion rate to have a value of 66%, i.e. about two thirdsof all alarms will be a true indi
ation of intrusive a
tivity. With a more realisti
dete
tion rate of, say, 0.7, for the same false alarm rate, the value of the Bayesiandete
tion rate is about 58%, nearing �fty-�fty. Even though the number of events(intrusions/alarms) is still low, it is our belief that a low Bayesian dete
tion ratewould qui
kly 'tea
h' the SSO to (un)safely ignore all alarms, even though theirabsolute numbers would theoreti
ally have allowed a 
omplete investigation of allalarms. This be
omes espe
ially true as the system grows; a 50% false alarm rate ofin total of 100 alarms would 
learly not be tolerable. Note that even quite a largedi�eren
e in the dete
tion rate does not substantially alter the Bayesian dete
tion
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Fig. 1. Plot of Bayesian dete
tion rate versus false alarm raterate, whi
h instead is dominated by the false alarm rate. Whether su
h a low rateof false alarms is at all attainable is dis
ussed in se
tion 6.It be
omes 
lear that, for example, a requirement of only 100 false alarms perday is met by a large margin with a false alarm rate of 1 � 10�5. With 105 'events'per day, we will see only 1 false alarm per day, on average. By the time our 
eilingof 100 false alarms per day is met, at a rate of 1 � 10�3 false alarms, even in thebest 
ase s
enario, our Bayesian dete
tion rate is down to around 2%,3 by whi
htime no-one will 
are less when the alarm goes o�.Substituting (6) and (9) in equation (8) gives:P (:I j:A) = 0:99998 � (1� P (Aj:I))0:99998 � (1� P (Aj:I)) + 2 � 10�5 � (1� P (AjI)) (11)A qui
k glan
e at the resulting equation (11) raises no 
ause for 
on
ern. Thelarge P (:I) fa
tor (0.99998) will 
ompletely dominate the equation, giving it valuesnear 1.0 for the values of P (Aj:I) under dis
ussion here, regardless of the value ofP (AjI).This is the base-rate falla
y in reverse, if you will, sin
e we have already demon-strated that the problem is that we will set o� the alarm too many times in responseto non-intrusions, 
ombined with the fa
t that we do not have many intrusions to3Another way of 
al
ulating that di�ers from equation (10) is of 
ourse to realise that 100 falsealarms and only a maximum of 2 possible valid alarms gives: 22+100 � 2%.
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tion � 9begin with. Truly a question of �nding a needle in a haysta
k.The author does not see how the situation underlying the base-rate falla
y prob-lem will 
hange for the better in years to 
ome. On the 
ontrary, as 
omputers getfaster they will produ
e more audit data, while it is doubtful that intrusive a
tivitywill in
rease at the same rate. In fa
t, it would have to in
rease at a substantiallyhigher rate for it to have any e�e
t on the previous 
al
ulations, and were it everto rea
h levels suÆ
ient to have su
h an e�e
t|say 30% or more|the installationwould no doubt have a serious problem on its hands, to say the least!6. IMPACT ON INTRUSION DETECTION SYSTEMSThe previous se
tion developed requirements regarding false alarm rates and de-te
tion rates in intrusion dete
tion systems in order to make them useful in thestated s
enario, where we would have 100,000 'events' (ea
h 
onsisting of ten auditre
ords), and only two intrusions per day, a�e
ting one event ea
h. This se
tion will
ompare these requirements with reported results on the e�e
tiveness of intrusiondete
tion systems.As stated in the introdu
tion, approa
hes to intrusion dete
tion 
an be dividedinto two major groups, signature-based and anomaly-based. It 
an be argued thatour s
enario does not apply to anomaly-based intrusion dete
tion as it, in some
ases tries not to dete
t intrusions per se, but rather to di�erentiate between twodi�erent subje
ts, 
agging anomalous behaviour in the hopes that it is indi
ative ofa stolen user identity. From that perspe
tive, our assumption that an 'atta
k' onlya�e
ts one event (ten audit re
ords) in the audit logs would be less well founded,sin
e it is possible that a masquerader would a�e
t 
onsiderably more audit re
ordsthan that. Lane and Brodley studies the problem of how to di�erentiate betweendi�erent users based on the tra
es their a
tions leave in audit logs [Lane and Brodley1999℄. However, we still think our s
enario is useful as a des
ription of a wide rangeof more 'immediate,' often network-based, atta
ks, where we will not have had theopportunity to observe the intruder for an extended period of time 'prior' to theatta
k. Sin
e anomaly-based intrusion dete
tion systems promise other advantages,the ability to dete
t 'novel' intrusions, or the ability to operate without a wellde�ned se
urity poli
y, they would of 
ourse be most valuable if the were appli
ableto the situation in our more dire
t s
enario as well.6.1 ROC 
urve analysisPlotting the dete
tion rate as a fun
tion of the false alarm rate we end up withwhat is 
alled a ROC|Re
eiver Operating Chara
teristi
|
urve. (For a generalintrodu
tion to ROC 
urves, and dete
tion and estimation theory, see [Trees 1968℄.A shorter introdu
tion that attempts to tie dete
tion and estimation theory tointrusion dete
tion 
an be found in [Axelsson 2000b℄).A few points are about ROC 
urve analysis are worth mentioning here, however.First, the points (0; 0) and (1; 1) are members of the ROC 
urve for any intrusiondete
tor. Obviously, if we say that that all events are intrusions, the dete
tion rateis 1, but in doing so we will in
orre
tly 
lassify all benign a
tivity as intrusive, and
onsequently we will have a false alarm rate of 1 as well.4 Conversely, the same 
an4If you 
all everything with a large red nose a 
lown, you'll spot all the 
lowns, but also Santa's
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urve for the 'high performers'be said for the 
ase where the rates are 0. (Classifying all a
tivity as benign willnot give us any false alarms, but also no dete
tions.) There are general results indete
tion and estimation theory that state that the dete
tion and false alarm ratesare linked [Trees 1968℄, though the extent to whi
h these results are appli
ablein the intrusion dete
tion 
ase is still an open question. Intuitively however, wesee that by 
lassifying more and more events as intrusive|in e�e
t relaxing ourrequirements on what 
onstitutes an intrusion|we will in
rease our dete
tion rate,but also mis
lassify more of the benign a
tivity, and hen
e in
rease our false alarmrate.Note also that we 
an easily 
onstru
t a dete
tor with the performan
e equal toany point along the straight line between (0; 0) and (1; 1) by making a randomisedde
ision. If we wanted a dete
tor with a 50% false alarm, and dete
tion rate, wewould simply say dete
tion in half the 
ases (randomly) and no dete
tion in theother. Thus all operational points of sensible dete
tors should lie stri
tly abovethe diagonal. This argument is valid for any two points on the ROC-
urve. Arandomised dete
tor would then 
hoose between randomly applying the dete
torrepresented by the right-most operating point and the left-most operating point,the average of the random de
isions biased for how 
lose we want to be to one orthe other operating points. Be
ause of this the 
urve between the end points shouldbe 
onvex; the ROC-
urve 
annot 
ontain dips between any two operating points,as that would in e�e
t indi
ate a faulty, non-optimal dete
tor, sin
e a randomisedtest would then be better.For referen
e the ROC 
urve that depi
ts our s
enario laid out in se
tion 5, i.e.a required dete
tion rate of 0:7 at a false alarm rate of 1=100; 000 is plotted in�gures 2 and 3 as 'Assumed ROC'. For reasons of 
larity the ROC diagrams donot display the results for larger values of the false alarm rates (i.e. the horizontalreindeer, Rudolph, and vi
e versa.
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ulty of Intrusion Dete
tion � 11axis is trun
ated), sin
e this would make the s
ale mu
h too small to dis
ern theregions of interest in the diagrams. In all 
ases the plot of the 
urves 
ontinuesuneventfully along the straight lines to the (1; 1) point.From the diagrams we see that the required ROC 
urve has a very sharp rise from(0; 0) sin
e we qui
kly have to rea
h a

eptable dete
tion rate values (0:7) while stillkeeping the false alarm rate under 
ontrol. Note that we have indi
ated the possiblerandomised dete
tors by plotting the interpolated lines from (0; 0) and (1; 1) to ourrequired operational point. We have also plotted similar interpolation lines for allother dete
tors the results of whi
h we report. Even so, it should be pointed outthat we do not seriously advo
ate the 
onstru
tion of a randomised dete
tor asoutlined above, instead the interpolated lines serve only as a sanity 
he
k when
omparing against a new dete
tor, or when we have varied the parameters for ourdete
tor, resulting in a new operating point. The new operating point must lieabove the interpolated lines, otherwise we have not improved on our dete
tor, sin
ea naive randomised dete
tor would outperform it.6.2 Previous experimental intrusion dete
tion evaluationsAs previously mentioned, the literature is not overladen with experimental resultsfrom tests of intrusion dete
tion systems. Ideally we would like several di�erent re-sults from the di�erent 
lasses of intrusion dete
tion systems. Unfortunately thereonly exists one report of anomaly dete
tion performan
e in this regard (with astrong theoreti
al foundation) [Helman and Liepins 1993℄. However, several sig-nature based dete
tors have been tested for DARPA by Lin
oln labs [Lippmannet al. 2000℄ in the by far most ambitious evaluation of intrusion dete
tion systemsto date.Unfortunately we will not be able to evaluate the suitability of this study for ourpurposes sin
e the data is unavailable to us for independent evaluation be
ause ofU.S. export restri
tions.What has been made known about the latter study indi
ates that it was 
on-du
ted using a simulated network of workstations, transmitting simulated traÆ
.This traÆ
 was generated base on real traÆ
 observed on a large US Air For
ebase, and a large resear
h institute. This lends some 
redibility to an argumentabout the generality of the ba
kground traÆ
, but no su
h argument is made bythe authors. Of 
ourse, the degree to whi
h the ba
kground traÆ
 is representativeof the ba
kground traÆ
 in the �eld is a 
ru
ial question when it 
omes to thequestion of the value of the test as an indi
ator of false alarm rates during normalusage.In the test, a number of di�erent atta
ks were then inserted into the simulatednetwork, in
luding denial of servi
e atta
ks against the network, and "root" ex-ploits against individual workstations. The experimenters invited several di�erentintrusion dete
tors to parti
ipate in the study. These were all signature based de-te
tors operating on either network or host data. Even though there is 
onsiderablevariation in the study (the dete
tion rate varies between approximately 20%{90%for the best s
oring dete
tor for all atta
ks) we will limit the presentation to thebest overall s
ores for the best of the parti
ipating dete
tors, we take 'best' here tomean the highest dete
tion rates, 
oupled with the lowest false alarm rates.Also not all dete
tors performed equally well when dealing with all intrusions, and



12 � Stefan Axelssonit is a general 
riti
ism that in the 
ase of signature based dete
tion, the designerof the signature 
an easily trade o� dete
tion rate for false alarm rate by varyingthe generality of the signature. The more general, abstra
t if you will, it is, themore variations of the same intrusive behaviour it will dete
t, but at the 
ost ofa higher false alarm rate. It is not known to what extent the DARPA evaluationused variations of the atta
ks presented to the designers of the intrusion dete
tionsystems for training purposes, in the �nal evaluation. This is an important pointin that when su
h systems are 
ommer
ialised, it will be impossible to keep thedete
tion signatures se
ret from the would be intruders, and the more savvy amongthem will of 
ourse attempt to vary their te
hniques to evade the intrusion dete
tionsystem.5Furthermore, when the dete
tors were subje
ted to previously unknown atta
ks,their dete
tion rates fell sharply. Their false alarm rates did not see a 
orrespondingin
rease, but we 
onje
ture that this is be
ause while the atta
ks in this 
ase werevaried between the training data and test data, the ba
kground traÆ
 was not. Thisin turn will favour intrusion dete
tion systems with an overly spe
i�
 view of whatthe ba
kground traÆ
 
onsists of, it will not be stressed suÆ
iently to expose alower false alarm reje
tion 
apabilities in a novel, but benign, situation. We wouldhave liked to 
on�rm or reje
t su
h a hypothesis, but as mentioned before, theevaluation data is not available to us.Mu
h more 
an be said about this evaluation. For an independent and detailed
ritique of the DARPA evaluation, the reader is dire
ted to [M
Hugh 2000℄, whi
hraises some of the above questions and many others, in detail.The se
ond study [Warrender et al. 1999℄ lists test results for six di�erent in-trusion dete
tion methods that have been applied to tra
es of system 
alls madeinto the operating system kernel by nine di�erent privileged appli
ations in a Unixenvironment. Most of these tra
es were obtained from 'live' data sour
es, i.e. thesystems from whi
h they were 
olle
ted were produ
tion systems. The authors'hypothesis is that short sequen
es of system 
alls exhibit patterns that des
ribenormal, benign a
tivity, and that di�erent intrusion dete
tion me
hanisms 
an betrained to dete
t abnormal patterns, and 
ag these as intrusive. The resear
hersthus trained the intrusion dete
tion systems using part of the 'normal' traÆ
, andtested their false alarm rate on the remaining 'normal' traÆ
. They then trainedthe systems on intrusive s
enarios, and inserted su
h intrusions into normal traf-�
 to as
ertain the dete
tion rate. The experimental method is thus 
lose to theone des
ribed in se
tions 4 and 5. This study evaluated as one of the systems theun
onventional self learning dete
tor, RIPPER, des
ribed by Lee [Lee 1999℄.The third study [Helman and Liepins 1993℄ is a treatise on the fundamental limitsof the e�e
tiveness of intrusion dete
tion. The authors 
onstru
ts a model of theintrusive and normal pro
ess and investigate the properties of this model from ananomaly intrusion dete
tion perspe
tive under 
ertain assumptions. Their approa
hdi�ers from ours in that they do not provide any estimates of the parameters in theirmodel, opting instead to explore the limits of e�e
tiveness when su
h informationis unavailable. Of greatest interest here is their 
on
lusion in whi
h the authors5Compare with a so 
alled polymorphi
 
omputer virus, that will undergo random semanti
 pre-serving 
ode transformations, in order to avoid dete
tion by virus s
anning tools.
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y and the DiÆ
ulty of Intrusion Dete
tion � 13plot experimental data for two implementations, one a frequentist dete
tor that|it is 
laimed|is 
lose to optimal under the given 
ir
umstan
es, and an earliertool designed by the authors, Wisdom & Sense [Va

aro and Liepins 1989℄. Thesetools are interesting in that their outputs are 
ontinuous, in
reasing with de
reasingobserved frequen
y of the measured phenomenon. The operator de
ides when hewants to 
ag a parti
ular behaviour as intrusive by applying a threshold, su
h thatthe alarm will be raised when the output signal ex
eeds that threshold. By varyingthe threshold the performan
e point of the dete
tor 
an be tuned to meet therequirements of the operating environment. Thus, by raising the threshold we willlower our false alarm rate, but also lower our dete
tion rate, and vi
e versa. Thesame general argument is also valid for 'Ripper' although it is not an 'anomaly'system per se, and the parti
ulars of the implementation are di�erent. Hen
ethese systems begin to tra
e out the 
onvex ROC 
urve that is familiar to thosea

ustomed to studying ROC 
urves of for example digital radio 
ommuni
ationsdete
tors.Unfortunately, only one type of anomaly dete
tion system, one that operates withdes
riptive statisti
s of the behaviour of the subje
t, is 
overed. More 'sophisti
ated'dete
tors, su
h as neural network based dete
tors (su
h as [Debar et al. 1992℄),that take time series behaviour of the subje
t into a

ount, are unfortunately not
overed.La
k of spa
e pre
ludes a more detailed presentation of these experiments, andthe interested reader is referred to the 
ited papers where available.6.3 Interpretation of resultsThe results from the three 
ited studies above have been plotted in �gures 2 and 3.Where a range of values were given in the original presentation, the best|most'
attering' if you will|value was 
hosen. Furthermore, sin
e not all the work 
itedto provided a
tual numeri
al data, some points are based on our interpretation ofthe presented values. In the 
ase of the DARPA study the results were res
aled to
onform with our requirements. (The original DARPA test assumes 66,000 eventsper day instead of our 100,000 events per day.) Even though it is diÆ
ult toexpress with 
ertainty how many audit re
ords these events 
onsists of, there issome indi
ation that they are variable in size, and perhaps larger than ours. Wefeel that these values are a

urate enough for the purpose of giving the reader anidea of the performan
e of the systems, in relation to our stated s
enario.The 
ited work 
an be roughly divided into two 
lasses depending on the mini-mum false alarm rate values that are presented, and hen
e, for 
larity, the presenta-tion has been divided into �gures, where the �rst (�gure 2) presents the �rst 
lass,with larger values for the false alarm rate. These 
onsists of the all the anomalydete
tion results in this study, and the DARPA results 'E2' and 'DM.' In the �gure'Helman frequentist,' and 'W&S' denote the dete
tion results from [Helman andLiepins 1993℄. It is interesting, espe
ially in the light of the strong 
laims made bythe authors of this evaluation, to note that all of the presented false alarm ratesare at least an order of magnitude larger than the requirements put forth in se
-tion 5. We also put the two DARPA results here, sin
e they are at least an orderof magnitude from the top performer (E1) in the DARPA evaluation, and hen
ewould fall to the right of �gure 3.
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ond 
lass of dete
tors, depi
ted in �gure 3, 
onsists of the average resultsof Ripper [Lee 1999℄, a high performan
e Hidden Markov Model dete
tor (labeled'HMM' in the �gure) tested by Warrander et. al. in [Warrender et al. 1999℄, andthe top performer from the DARPA results, listed as E1. Here the pi
ture is less
lear. Warrander reports false alarm results 
lose to zero for lower dete
tion rates,with one performan
e point nearly overlapping our required performan
e point.The HMM dete
tor is also 
lose to what we would require. It is more diÆ
ultto generalize these results, sin
e they are based on one method of data sele
tion,and the authors do not make as strong a 
laim as those made for the previous setof dete
tors. The DARPA data from [Lippmann et al. 2000℄, show up as 'E1' in�gure 3. It too is 
lose to our required performan
e. It is unfortunately impossibleto give a better name to the systems parti
ipating in the DARPA evaluations,or to 
ompare these results with other results reported, sin
e the names of theparti
ipating systems have been intentionally withheld in the 
ited study.As we 
an see in the �gures above several systems are between one and threeorders of magnitude larger than our false alarm requirement, and some of them noteven rea
hing our 70% target dete
tion rate, at this high false alarm rate. As isevident from �gure 1, this would result in Bayesian dete
tion rates on the order of0.15 to 0.0015, that is, one in ten alarms to one in one-thousand alarms would be
orre
tly indi
ating an intrusion. Sifting through that many false alarms, espe
iallyon the higher end, would of 
ourse be anything from dis
ouraging, to 
ompletelyinfeasible for the human operator.We feel a more detailed dis
ussion would be of little additional value, sin
e ourmodel is really quite simple. It only deals with one kind of intrusion, with a �xedunit of measurement. The 
ited work somewhat departs from su
h a simple model,sin
e the systems were all tested in an environment with at least two di�erent typesof intrusions.7. FUTURE WORKOne sti
king point is the basi
 probabilities that the previous 
al
ulations arebased on. These probabilities are subje
tive at present, but future work should in-
lude measurement either to attempt to 
al
ulate these probabilities from observedfrequen
ies|the frequentist approa
h|or to dedu
e these probabilities from somemodel of the intrusive pro
ess and the intrusion dete
tion system|the obje
tivistapproa
h. The latter would in turn require real world observation to formulaterealisti
 parameters for the models.Furthermore, this dis
ourse treats the intrusion dete
tion problem as a binaryde
ision problem, i.e. that of de
iding whether there has been an 'intrusion' or not.The work presented does not di�erentiate between the di�erent kinds of intrusionsthat 
an take pla
e, and nor does it re
ognise that di�erent types of intrusions arenot equally diÆ
ult or easy to dete
t. Thus on a more detailed level, the intrusiondete
tion problem is not a binary but rather an n-valued problem, where in realitywe would make binary de
isions between n di�erent types of intrusions.Closely related is the unit of analysis problem, i.e. how mu
h data does theindividual intrusion dete
tion system need to examine before it 
an dete
t theintrusion, or perhaps more important form our perspe
tive, before it 
an be saidto have missed the dete
tion of an intrusion. Here we have somewhat skirted the
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ulty of Intrusion Dete
tion � 15issue, by de
laring the unit length to be ten audit re
ords. Even though we arenot alone in treating the problem in this way [Warrender et al. 1999℄, we believe amore detailed study would de�ne di�erent units of measurement for both di�erentintrusion dete
tion me
hanisms, and di�erent types of intrusions.Another area that needs attention is that of the SSO's 
apabilities. How doesthe human-
omputer intera
tion take pla
e, and pre
isely whi
h Bayesian dete
tionrates would an SSO tolerate under what 
ir
umstan
es?The other parameters dis
ussed in the introdu
tion (eÆ
ien
y, et
.) also needfurther attention.8. CONCLUSIONSThis paper aims to demonstrate that intrusion dete
tion in a realisti
 setting isperhaps harder than previously thought. This is due to the base-rate falla
y prob-lem, be
ause of whi
h the fa
tor limiting the performan
e of an intrusion dete
tionsystem is not the ability to identify behaviour 
orre
tly as intrusive, but rather itsability to suppress false alarms. That is, one should measure the false alarm ratein relation to how many intrusions one would expe
t to dete
t, not in relation tothe maximum number of possible false alarms. Thus, a very high standard, lessthan 1=100; 000 per 'event' given the stated set of 
ir
umstan
es, will have to berea
hed for the intrusion dete
tion system to live up to these expe
tations as far ase�e
tiveness is 
on
erned.The 
ited studies of intrusion dete
tor performan
e that were plotted and 
om-pared indi
ate that anomaly-based methods may have a long way to go before they
an rea
h these standards, sin
e their false alarm rates are several orders of magni-tude larger than what we demand. When we 
ome to the 
ase of signature-baseddete
tion methods the pi
ture is less 
lear. Even though the 
ited work seems toindi
ate that 
urrent signature intrusion dete
tors 
an operate 
lose to the requiredperforman
e point, how well these results generalise in the �eld is still an openquestion.Of 
ourse whether some of the more diÆ
ult demands, su
h as the dete
tion ofmasqueraders or the dete
tion of novel intrusions, 
an be met without the use ofanomaly-based intrusion dete
tion is still an open question.Mu
h work still remains before it 
an be demonstrated that 
urrent IDS ap-proa
hes will be able to live up to real world expe
tations of e�e
tiveness. However,we would like to stress that, the present results notwithstanding, an equal amountof work remains before it 
an be proven that they 
annot live up to su
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16 � Stefan AxelssonAPPENDIXAppendix A. VENN DIAGRAM OF THE BASE-RATE FALLACY EXAMPLEThe Venn diagram in �gure 4 depi
ts the situation in the medi
al diagnosti
 exampleof the base-rate falla
y given earlier.
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Fig. 4. Venn diagram of medi
al diagnosti
 exampleAlthough for reasons of 
larity the Venn diagram is not to s
ale it 
learly demon-strates the basis of the base-rate falla
y, i.e. that the population in the out
omeS is mu
h smaller than that in :S and hen
e, even though P (RjS) = 99% andP (:Rj:S) = 99%, the relative sizes of the missing 1% in ea
h 
ase|areas 2) and4) in the diagram|are very di�erent.Thus when we 
ompare the relative sizes of the four numbered areas in thediagram, and interpret them as probability measures, we 
an state the desiredprobability, P (SjR)|i.e. \What is the probability that we are in area 3) given thatwe are inside the R-area?" It may be seen that, area 3) is small relative to theentire R-area, and hen
e, the fa
t that the test is positive does not say mu
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