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2 � Stefan Axelsson1. INTRODUCTIONMany demands an be made of an intrusion detetion system (IDS for short) suhas e�etiveness, eÆieny, ease of use, seurity, inter-operability, transpareny et.Although muh researh has been done in the �eld in the past ten years, the theo-retial limits of many of these parameters have not been studied to any signi�antdegree. The aim of this paper is to disuss one serious problem with regard tothe e�etiveness parameter, espeially how the base-rate fallay may a�et theoperational e�etiveness of an intrusion detetion system.2. INTRUSION DETECTIONThe �eld of automated omputer intrusion detetion, intrusion detetion for short,is urrently some nineteen years old [Anderson 1980℄, with interest gathering paein the past ten years.Intrusion detetion systems are intended to help detet a number of importanttypes of omputer seurity violations, suh as:|Attakers using prepaked 'exploit sripts.' Primarily outsiders.|Attakers operating under the identity of a legitimate user, for example by havingstolen that user's authentiation information (password). Outsiders and insiders.|Insiders abusing legitimate privileges, et.Early work (see [Anderson 1980; Denning and Neumann 1985; Denning 1987;Sebring et al. 1988℄) identi�ed two major types of intrusion detetion strategies.Anomaly detetion The strategy of delaring everything that is unusual for thesubjet (omputer, user, et.) suspet, and worthy of further investigation. Theearly anomaly detetion systems were all self-learning, i.e they automatiallyformed an opinion of what the subjets normal behaviour was.Anomaly detetion promises to detet abuses of legitimate privileges that an-not easily be odi�ed into seurity poliy, and to detet attaks that are 'novel'to the intrusion detetion system. Problems inlude a tendeny to take up dataproessing resoures, and the possibility of an attaker teahing the system thathis illegitimate ativities are nothing out of the ordinary.Signature detetion The detetion strategy of deiding in advane what type ofbehaviour is undesirable, and through the use of predetermined signature ofsuh behaviour, deteting intrusions.Signature based detetion systems promise to detet known attaks and vio-lations easily odi�ed into seurity poliies in a timely and eÆient manner.Problems inlude a diÆulty in deteting previously unknown intrusions. If adatabase ontaining intrusion signatures is employed it must be updated fre-quently.Early in the researh it was suggested in [Halme and Kahn 1988; Lunt 1988℄that the two main methods ought to be ombined to provide a omplete intrusiondetetion system apable of deteting a wide array of di�erent omputer seurityviolations, inluding the ones listed above.For a more in depth review of these and other intrusion detetion onepts,the interested reader is referred to a survey of intrusion detetion systems [Axels-



The Base-rate Fallay and the DiÆulty of Intrusion Detetion � 3son 1998℄ and a taxonomy of intrusion detetion systems and priniples [Axelsson2000a℄, previously written by us.We wish to at least make this division between the di�erent priniples of detetionabove, sine it is easy to onjeture that these fundamentally di�erent modes ofdetetion will exhibit di�erent harateristis with regard to detetion and falsealarm rates. They probably also show di�erent performane in other harateristisas well, suh as runtime eÆieny, but a disussion of these parameters falls outsidethe sope of this paper.3. PROBLEMS IN INTRUSION DETECTIONAt present, many fundamental questions regarding intrusion detetion remain unan-swered. They inlude, but are by no means limited to:E�etiveness How e�etive is the intrusion detetion? To what degree does itdetet intrusions into the target system, and how good is it at rejeting falsepositives, so alled false alarms?EÆieny What is the run time eÆieny of the intrusion detetion system, howmany omputing resoures and how muh storage does it onsume, an it makeits detetions in real time, et?Ease of use How easy is it to �eld and operate for a user who is not a seurityexpert, and an suh a user add new intrusion senarios to the system? Animportant issue in ease of use is the question of what demands an be madeof the person responding to the intrusion alarm. How high a false alarm ratean he realistially be expeted to ope with, and under what irumstanes ishe likely to ignore an alarm? (It has long been known in seurity irles thatif you are an attaker you should attempt to irumvent an ordinary eletronialarm system during normal operation of the faility, sine if you happened totrigger the alarm, the supervisory sta� would more likely be lax beause theywould be more austomed to false alarms [Piere 1948℄).Seurity When ever more intrusion detetion systems are �elded, one would ex-pet ever more attaks direted at the intrusion detetion system itself, toirumvent it or otherwise render the detetion ine�etive. What is the natureof these attaks, and how resilient is the intrusion detetion system to them?Inter-Operability As the number of di�erent intrusion detetion systems in-rease, to what degree an they inter-operate and how do we ensure this?Transpareny How intrusive is the �elding of the intrusion detetion system tothe organisation employing it? How many resoures will it onsume in termsof manpower, et?Collaboration The best e�et is often ahieved when several seurity measuresare brought to bear together. How should intrusion detetion ollaborate withother seurity mehanisms to ahieve this synergy e�et? How do we assurethat the ombination of seurity measures provide at least the same level ofseurity as eah applied singly would provide, or that the ombination does notin fat lower the overall seurity of the proteted system?While interest is being shown in some of these issues, with a few notable exep-tions, mainly [Helman and Liepins 1993℄, they remain largely unaddressed by the



4 � Stefan Axelssonresearh ommunity. This is perhaps not surprising, sine many of these questionsare diÆult to formulate and answer.This paper is onerned with one aspet of one of the questions above, that ofe�etiveness. More spei�ally it addresses the way in whih the base-rate fallaya�ets the required performane of the intrusion detetion system with regard tofalse alarm rejetion.In what follows the �rst setion, setion 4 gives a desription of the base-ratefallay. Setion 5 then ontinues with an appliation of the base-rate fallay tothe intrusion detetion problem, given a set of reasonable assumptions. Setion 6desribes the impat the results presented in the previous setion would have onintrusion detetion systems. Setion 7 onsiders future work, with setion 8 on-luding the paper. Appendix A reprodues a base-rate fallay example in diagramform.4. THE BASE-RATE FALLACYThe base-rate fallay1 is one of the ornerstones of Bayesian statistis, stemming asit does diretly from Bayes' famous theorem that states the relationship between aonditional probability and its opposite, i.e. with the ondition transposed:P (AjB) = P (A) � P (BjA)P (B) (1)Expanding the probability P (B) for the set of all n possible, mutually exlusiveoutomes A we arrive at equation (2):P (B) = nXi=1 P (Ai) � P (BjAi) (2)Combining equations (1) and (2) we arrive at a generally more useful statementof Bayes' theorem: P (AjB) = P (A) � P (BjA)Pni=1 P (Ai) � P (BjAi) (3)The base-rate fallay is best desribed through example.2 Suppose that yourdotor performs a test that is 99% aurate, i.e. when the test was administered toa test population all of whom had the disease, 99% of the tests indiated disease,and likewise, when the test population was known to be 100% free of the disease,99% of the test results were negative. Upon visiting your dotor to learn the resultshe tells you he has good news and bad news. The bad news is that indeed you testedpositive for the disease. The good news however, is that out of the entire populationthe rate of inidene is only 1=10000, i.e. only 1 in 10000 people have this ailment.What, given this information, is the probability of you having the disease? Thereader is enouraged to make a quik 'guesstimate' of the answer at this point.1The idea behind this approah stems from [Matthews 1996; Matthews 1997℄.2This example is hinted at in [Russel and Norvig 1995℄.



The Base-rate Fallay and the DiÆulty of Intrusion Detetion � 5Let us start by naming the di�erent outomes. Let S denote sik, and :S, i.e.not S, denote healthy. Likewise, let R denote a positive test result and :R denotea negative test result. Restating the information above; given: P (RjS) = 0:99,P (:Rj:S) = 0:99, and P (S) = 1=10000, what is the probability P (SjR)?A diret appliation of equation (3) above gives:P (SjR) = P (S) � P (RjS)P (S) � P (RjS) + P (:S) � P (Rj:S) (4)The only probability above whih we do not immediately know is P (Rj:S).This is easily found though, sine it is merely 1 � P (:Rj:S) = 1% (likewise,P (:S) = 1 � P (S)). Substituting the stated values for the di�erent quantities inequation (4) gives:P (SjR) = 1=10000 � 0:991=10000 � 0:99 + (1� 1=10000) � 0:01 = 0:00980 : : :� 1% (5)That is, that even though the test is 99% ertain, your hane of atually havingthe disease is only 1=100, beause the population of healthy people is muh largerthan the population with the disease. (For a graphial representation, in the form ofa Venn diagram, depiting the di�erent outomes, turn to Appendix A). This resultoften surprises people, ourselves inluded, and it is this phenomenon|that humansin general do not take the basi rate of inidene, the base-rate, into aount whenintuitively solving suh problems of probability|that is aptly named 'the base-ratefallay.'5. THE BASE-RATE FALLACY IN INTRUSION DETECTIONIn order to apply this reasoning in omputer intrusion detetion we must �rst �ndthe di�erent probabilities, or if suh probabilities annot be found, make a set ofreasonable assumptions regarding them.5.1 Basi frequeny assumptionsLet us for the sake of further argument hypothesize a �gurative omputer installa-tion with a few tens of workstations, a few servers|all running Unix|and a oupleof dozen users. Suh an installation ould produe in the order of 1,000,000 auditreords per day with some form of 'C2' ompliant logging in e�et [U.S. Depart-ment of Defense 1985℄, in itself a testimony to the need for automated intrusiondetetion.Suppose further that in suh a small installation we would not experiene morethan a few, say one or two, atual attempted intrusions per day. Even though itis diÆult to get any �gures for real inidenes of attempted omputer seurityintrusions, this does not seem to be an unreasonable number.Furthermore, assume that at this installation we do not have the manpower tohave more than one site seurity oÆer|SSO for short|who probably has otherduties, and that the SSO, being only human, an only reat to a relatively lownumber of alarms, espeially if the false alarm rate is high (50% or so).Even though an intrusion ould possibly a�et only one audit reord, it is likelyon average that it will a�et a few more than that. Furthermore, a lustering fator



6 � Stefan Axelssonatually makes our estimates more onservative, so it was deemed prudent to inludeone. Using data from a previous study of the trails that SunOS intrusions leavein the system logs [Axelsson et al. 1998℄, we an estimate that ten audit reordswould be a�eted in the average intrusion.5.2 Human mahine interation in intrusion detetionThe previous assumptions above are 'tehnial' in nature, i.e. anyone well versedin the �eld of omputer seurity an make similar preditions, or adjust the onesabove to suit his liking. It is a simple matter to verify or predit similar measures.However, the fator of the performane of the human operator does not lend itselfto the same tehnologial estimates. Thus, a ruial question in this disussionis the question of the apaity of the human operator to orretly respond to theoutput of the system. Espeially his apaity to tolerate false alarms.Unfortunately there have been no experiments onerning these fators in thesetting of omputer seurity intrusion detetion. There is, however, some researhin the ontext of proess automation and plant ontrol, suh as would be the asein a (nulear) power station, paper mill, steel mill, large ship et [Rasmussen 1986;Wikens 1992; Nygren 1994; Deatherage 1972℄. These studies seem to indiate thatour required level of false alarms, 50%, is a very onservative estimate. Most humanoperators will have ompletely lost faith in the devie at that point, opting to treatevery alarm with extreme septiism, if one would be able to speak of a 'treatment'at all. The intrusion detetion system would most likely be ompletely ignored ina 'ivilian' setting. More researh into this issue is learly needed.5.3 Calulation of Bayesian detetion ratesLet I and :I denote intrusive, and non-intrusive behaviour respetively, and A and:A denote the presene or absene of an intrusion alarm. We start by naming thefour possible ases (false and true positives and negatives) that arise by workingbakwards from the above set of assumptions:Detetion rate Or true positive rate. The probability P (AjI), i.e. that quantitythat we an obtain when testing our detetor against a set of senarios we knowrepresent intrusive behaviour.False alarm rate The probability P (Aj:I), the false positive rate, obtained in ananalogous manner.The other two parameters, P (:AjI), the False Negative rate, and P (:Aj:I), theTrue Negative rate, are easily obtained sine they are merely:P (:AjI) = 1� P (AjI);P (:Aj:I) = 1� P (Aj:I) (6)Of ourse, our ultimate interest is that both:|P (I jA)|that an alarm really indiates an intrusion (heneforth alled the Bay-esian detetion rate), and|P (:I j:A)|that the absene of an alarm signi�es that we have nothing to worryabout,remain as large as possible.



The Base-rate Fallay and the DiÆulty of Intrusion Detetion � 7Applying Bayes' theorem to alulate P (I jA) results in:P (I jA) = P (I) � P (AjI)P (I) � P (AjI) + P (:I) � P (Aj:I) (7)Likewise for P (:I j:A):P (:I j:A) = P (:I) � P (:Aj:I)P (:I) � P (:Aj:I) + P (I) � P (:AjI) (8)These assumptions give us a value for the rate of inidene of the atual numberof intrusions in our system, and its dual (10 audit reords per intrusion, 2 intrusionsper day, and 1,000,000 audit reords per day). Interpreting these as probabilities:P (I) = 1�1 � 1062 � 10 = 2 � 10�5;P (:I) = 1� P (I) = 0:99998 (9)Inserting equation (9) into equation (7):P (I jA) = 2 � 10�5 � P (AjI)2 � 10�5 � P (AjI) + 0:99998 � P (Aj:I) (10)Studying equation (10) we see the base-rate fallay learly. By now it shouldome as no surprise to the reader, sine the assumptions made about our systemmakes it lear that we have an overwhelming number of non-events (benign ativity)in our audit trail, and only a few events (intrusions) of any interest. Thus, thefator governing the detetion rate (2 � 10�5) is ompletely dominated by the fator(0:99998) governing the false alarm rate. Furthermore, sine 0 � P (AjI) � 1, theequation will have its desired maximum for P (AjI) = 1 and P (Aj:I) = 0, whihresults in the most bene�ial outome as far as the false alarm rate is onerned.While reahing these values would be an aomplishment indeed, they are hardlyattainable in pratie. Let us instead plot the value of P (I jA) for a few �xed valuesof P (AjI) (inluding the 'best' ase P (AjI) = 1), as a funtion of P (Aj:I) (see�gure 1 on the following page). It should be noted that both axes are logarithmi.It beomes lear from studying the plot in �gure 1 that even for the unrealistiallyhigh detetion rate 1.0 , we have to have a very low false alarm rate (on the order of1 �10�5) for the Bayesian detetion rate to have a value of 66%, i.e. about two thirdsof all alarms will be a true indiation of intrusive ativity. With a more realistidetetion rate of, say, 0.7, for the same false alarm rate, the value of the Bayesiandetetion rate is about 58%, nearing �fty-�fty. Even though the number of events(intrusions/alarms) is still low, it is our belief that a low Bayesian detetion ratewould quikly 'teah' the SSO to (un)safely ignore all alarms, even though theirabsolute numbers would theoretially have allowed a omplete investigation of allalarms. This beomes espeially true as the system grows; a 50% false alarm rate ofin total of 100 alarms would learly not be tolerable. Note that even quite a largedi�erene in the detetion rate does not substantially alter the Bayesian detetion
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Fig. 1. Plot of Bayesian detetion rate versus false alarm raterate, whih instead is dominated by the false alarm rate. Whether suh a low rateof false alarms is at all attainable is disussed in setion 6.It beomes lear that, for example, a requirement of only 100 false alarms perday is met by a large margin with a false alarm rate of 1 � 10�5. With 105 'events'per day, we will see only 1 false alarm per day, on average. By the time our eilingof 100 false alarms per day is met, at a rate of 1 � 10�3 false alarms, even in thebest ase senario, our Bayesian detetion rate is down to around 2%,3 by whihtime no-one will are less when the alarm goes o�.Substituting (6) and (9) in equation (8) gives:P (:I j:A) = 0:99998 � (1� P (Aj:I))0:99998 � (1� P (Aj:I)) + 2 � 10�5 � (1� P (AjI)) (11)A quik glane at the resulting equation (11) raises no ause for onern. Thelarge P (:I) fator (0.99998) will ompletely dominate the equation, giving it valuesnear 1.0 for the values of P (Aj:I) under disussion here, regardless of the value ofP (AjI).This is the base-rate fallay in reverse, if you will, sine we have already demon-strated that the problem is that we will set o� the alarm too many times in responseto non-intrusions, ombined with the fat that we do not have many intrusions to3Another way of alulating that di�ers from equation (10) is of ourse to realise that 100 falsealarms and only a maximum of 2 possible valid alarms gives: 22+100 � 2%.



The Base-rate Fallay and the DiÆulty of Intrusion Detetion � 9begin with. Truly a question of �nding a needle in a haystak.The author does not see how the situation underlying the base-rate fallay prob-lem will hange for the better in years to ome. On the ontrary, as omputers getfaster they will produe more audit data, while it is doubtful that intrusive ativitywill inrease at the same rate. In fat, it would have to inrease at a substantiallyhigher rate for it to have any e�et on the previous alulations, and were it everto reah levels suÆient to have suh an e�et|say 30% or more|the installationwould no doubt have a serious problem on its hands, to say the least!6. IMPACT ON INTRUSION DETECTION SYSTEMSThe previous setion developed requirements regarding false alarm rates and de-tetion rates in intrusion detetion systems in order to make them useful in thestated senario, where we would have 100,000 'events' (eah onsisting of ten auditreords), and only two intrusions per day, a�eting one event eah. This setion willompare these requirements with reported results on the e�etiveness of intrusiondetetion systems.As stated in the introdution, approahes to intrusion detetion an be dividedinto two major groups, signature-based and anomaly-based. It an be argued thatour senario does not apply to anomaly-based intrusion detetion as it, in someases tries not to detet intrusions per se, but rather to di�erentiate between twodi�erent subjets, agging anomalous behaviour in the hopes that it is indiative ofa stolen user identity. From that perspetive, our assumption that an 'attak' onlya�ets one event (ten audit reords) in the audit logs would be less well founded,sine it is possible that a masquerader would a�et onsiderably more audit reordsthan that. Lane and Brodley studies the problem of how to di�erentiate betweendi�erent users based on the traes their ations leave in audit logs [Lane and Brodley1999℄. However, we still think our senario is useful as a desription of a wide rangeof more 'immediate,' often network-based, attaks, where we will not have had theopportunity to observe the intruder for an extended period of time 'prior' to theattak. Sine anomaly-based intrusion detetion systems promise other advantages,the ability to detet 'novel' intrusions, or the ability to operate without a wellde�ned seurity poliy, they would of ourse be most valuable if the were appliableto the situation in our more diret senario as well.6.1 ROC urve analysisPlotting the detetion rate as a funtion of the false alarm rate we end up withwhat is alled a ROC|Reeiver Operating Charateristi|urve. (For a generalintrodution to ROC urves, and detetion and estimation theory, see [Trees 1968℄.A shorter introdution that attempts to tie detetion and estimation theory tointrusion detetion an be found in [Axelsson 2000b℄).A few points are about ROC urve analysis are worth mentioning here, however.First, the points (0; 0) and (1; 1) are members of the ROC urve for any intrusiondetetor. Obviously, if we say that that all events are intrusions, the detetion rateis 1, but in doing so we will inorretly lassify all benign ativity as intrusive, andonsequently we will have a false alarm rate of 1 as well.4 Conversely, the same an4If you all everything with a large red nose a lown, you'll spot all the lowns, but also Santa's
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The Base-rate Fallay and the DiÆulty of Intrusion Detetion � 11axis is trunated), sine this would make the sale muh too small to disern theregions of interest in the diagrams. In all ases the plot of the urves ontinuesuneventfully along the straight lines to the (1; 1) point.From the diagrams we see that the required ROC urve has a very sharp rise from(0; 0) sine we quikly have to reah aeptable detetion rate values (0:7) while stillkeeping the false alarm rate under ontrol. Note that we have indiated the possiblerandomised detetors by plotting the interpolated lines from (0; 0) and (1; 1) to ourrequired operational point. We have also plotted similar interpolation lines for allother detetors the results of whih we report. Even so, it should be pointed outthat we do not seriously advoate the onstrution of a randomised detetor asoutlined above, instead the interpolated lines serve only as a sanity hek whenomparing against a new detetor, or when we have varied the parameters for ourdetetor, resulting in a new operating point. The new operating point must lieabove the interpolated lines, otherwise we have not improved on our detetor, sinea naive randomised detetor would outperform it.6.2 Previous experimental intrusion detetion evaluationsAs previously mentioned, the literature is not overladen with experimental resultsfrom tests of intrusion detetion systems. Ideally we would like several di�erent re-sults from the di�erent lasses of intrusion detetion systems. Unfortunately thereonly exists one report of anomaly detetion performane in this regard (with astrong theoretial foundation) [Helman and Liepins 1993℄. However, several sig-nature based detetors have been tested for DARPA by Linoln labs [Lippmannet al. 2000℄ in the by far most ambitious evaluation of intrusion detetion systemsto date.Unfortunately we will not be able to evaluate the suitability of this study for ourpurposes sine the data is unavailable to us for independent evaluation beause ofU.S. export restritions.What has been made known about the latter study indiates that it was on-duted using a simulated network of workstations, transmitting simulated traÆ.This traÆ was generated base on real traÆ observed on a large US Air Forebase, and a large researh institute. This lends some redibility to an argumentabout the generality of the bakground traÆ, but no suh argument is made bythe authors. Of ourse, the degree to whih the bakground traÆ is representativeof the bakground traÆ in the �eld is a ruial question when it omes to thequestion of the value of the test as an indiator of false alarm rates during normalusage.In the test, a number of di�erent attaks were then inserted into the simulatednetwork, inluding denial of servie attaks against the network, and "root" ex-ploits against individual workstations. The experimenters invited several di�erentintrusion detetors to partiipate in the study. These were all signature based de-tetors operating on either network or host data. Even though there is onsiderablevariation in the study (the detetion rate varies between approximately 20%{90%for the best soring detetor for all attaks) we will limit the presentation to thebest overall sores for the best of the partiipating detetors, we take 'best' here tomean the highest detetion rates, oupled with the lowest false alarm rates.Also not all detetors performed equally well when dealing with all intrusions, and



12 � Stefan Axelssonit is a general ritiism that in the ase of signature based detetion, the designerof the signature an easily trade o� detetion rate for false alarm rate by varyingthe generality of the signature. The more general, abstrat if you will, it is, themore variations of the same intrusive behaviour it will detet, but at the ost ofa higher false alarm rate. It is not known to what extent the DARPA evaluationused variations of the attaks presented to the designers of the intrusion detetionsystems for training purposes, in the �nal evaluation. This is an important pointin that when suh systems are ommerialised, it will be impossible to keep thedetetion signatures seret from the would be intruders, and the more savvy amongthem will of ourse attempt to vary their tehniques to evade the intrusion detetionsystem.5Furthermore, when the detetors were subjeted to previously unknown attaks,their detetion rates fell sharply. Their false alarm rates did not see a orrespondinginrease, but we onjeture that this is beause while the attaks in this ase werevaried between the training data and test data, the bakground traÆ was not. Thisin turn will favour intrusion detetion systems with an overly spei� view of whatthe bakground traÆ onsists of, it will not be stressed suÆiently to expose alower false alarm rejetion apabilities in a novel, but benign, situation. We wouldhave liked to on�rm or rejet suh a hypothesis, but as mentioned before, theevaluation data is not available to us.Muh more an be said about this evaluation. For an independent and detailedritique of the DARPA evaluation, the reader is direted to [MHugh 2000℄, whihraises some of the above questions and many others, in detail.The seond study [Warrender et al. 1999℄ lists test results for six di�erent in-trusion detetion methods that have been applied to traes of system alls madeinto the operating system kernel by nine di�erent privileged appliations in a Unixenvironment. Most of these traes were obtained from 'live' data soures, i.e. thesystems from whih they were olleted were prodution systems. The authors'hypothesis is that short sequenes of system alls exhibit patterns that desribenormal, benign ativity, and that di�erent intrusion detetion mehanisms an betrained to detet abnormal patterns, and ag these as intrusive. The researhersthus trained the intrusion detetion systems using part of the 'normal' traÆ, andtested their false alarm rate on the remaining 'normal' traÆ. They then trainedthe systems on intrusive senarios, and inserted suh intrusions into normal traf-� to asertain the detetion rate. The experimental method is thus lose to theone desribed in setions 4 and 5. This study evaluated as one of the systems theunonventional self learning detetor, RIPPER, desribed by Lee [Lee 1999℄.The third study [Helman and Liepins 1993℄ is a treatise on the fundamental limitsof the e�etiveness of intrusion detetion. The authors onstruts a model of theintrusive and normal proess and investigate the properties of this model from ananomaly intrusion detetion perspetive under ertain assumptions. Their approahdi�ers from ours in that they do not provide any estimates of the parameters in theirmodel, opting instead to explore the limits of e�etiveness when suh informationis unavailable. Of greatest interest here is their onlusion in whih the authors5Compare with a so alled polymorphi omputer virus, that will undergo random semanti pre-serving ode transformations, in order to avoid detetion by virus sanning tools.



The Base-rate Fallay and the DiÆulty of Intrusion Detetion � 13plot experimental data for two implementations, one a frequentist detetor that|it is laimed|is lose to optimal under the given irumstanes, and an earliertool designed by the authors, Wisdom & Sense [Vaaro and Liepins 1989℄. Thesetools are interesting in that their outputs are ontinuous, inreasing with dereasingobserved frequeny of the measured phenomenon. The operator deides when hewants to ag a partiular behaviour as intrusive by applying a threshold, suh thatthe alarm will be raised when the output signal exeeds that threshold. By varyingthe threshold the performane point of the detetor an be tuned to meet therequirements of the operating environment. Thus, by raising the threshold we willlower our false alarm rate, but also lower our detetion rate, and vie versa. Thesame general argument is also valid for 'Ripper' although it is not an 'anomaly'system per se, and the partiulars of the implementation are di�erent. Henethese systems begin to trae out the onvex ROC urve that is familiar to thoseaustomed to studying ROC urves of for example digital radio ommuniationsdetetors.Unfortunately, only one type of anomaly detetion system, one that operates withdesriptive statistis of the behaviour of the subjet, is overed. More 'sophistiated'detetors, suh as neural network based detetors (suh as [Debar et al. 1992℄),that take time series behaviour of the subjet into aount, are unfortunately notovered.Lak of spae preludes a more detailed presentation of these experiments, andthe interested reader is referred to the ited papers where available.6.3 Interpretation of resultsThe results from the three ited studies above have been plotted in �gures 2 and 3.Where a range of values were given in the original presentation, the best|most'attering' if you will|value was hosen. Furthermore, sine not all the work itedto provided atual numerial data, some points are based on our interpretation ofthe presented values. In the ase of the DARPA study the results were resaled toonform with our requirements. (The original DARPA test assumes 66,000 eventsper day instead of our 100,000 events per day.) Even though it is diÆult toexpress with ertainty how many audit reords these events onsists of, there issome indiation that they are variable in size, and perhaps larger than ours. Wefeel that these values are aurate enough for the purpose of giving the reader anidea of the performane of the systems, in relation to our stated senario.The ited work an be roughly divided into two lasses depending on the mini-mum false alarm rate values that are presented, and hene, for larity, the presenta-tion has been divided into �gures, where the �rst (�gure 2) presents the �rst lass,with larger values for the false alarm rate. These onsists of the all the anomalydetetion results in this study, and the DARPA results 'E2' and 'DM.' In the �gure'Helman frequentist,' and 'W&S' denote the detetion results from [Helman andLiepins 1993℄. It is interesting, espeially in the light of the strong laims made bythe authors of this evaluation, to note that all of the presented false alarm ratesare at least an order of magnitude larger than the requirements put forth in se-tion 5. We also put the two DARPA results here, sine they are at least an orderof magnitude from the top performer (E1) in the DARPA evaluation, and henewould fall to the right of �gure 3.



14 � Stefan AxelssonThe seond lass of detetors, depited in �gure 3, onsists of the average resultsof Ripper [Lee 1999℄, a high performane Hidden Markov Model detetor (labeled'HMM' in the �gure) tested by Warrander et. al. in [Warrender et al. 1999℄, andthe top performer from the DARPA results, listed as E1. Here the piture is lesslear. Warrander reports false alarm results lose to zero for lower detetion rates,with one performane point nearly overlapping our required performane point.The HMM detetor is also lose to what we would require. It is more diÆultto generalize these results, sine they are based on one method of data seletion,and the authors do not make as strong a laim as those made for the previous setof detetors. The DARPA data from [Lippmann et al. 2000℄, show up as 'E1' in�gure 3. It too is lose to our required performane. It is unfortunately impossibleto give a better name to the systems partiipating in the DARPA evaluations,or to ompare these results with other results reported, sine the names of thepartiipating systems have been intentionally withheld in the ited study.As we an see in the �gures above several systems are between one and threeorders of magnitude larger than our false alarm requirement, and some of them noteven reahing our 70% target detetion rate, at this high false alarm rate. As isevident from �gure 1, this would result in Bayesian detetion rates on the order of0.15 to 0.0015, that is, one in ten alarms to one in one-thousand alarms would beorretly indiating an intrusion. Sifting through that many false alarms, espeiallyon the higher end, would of ourse be anything from disouraging, to ompletelyinfeasible for the human operator.We feel a more detailed disussion would be of little additional value, sine ourmodel is really quite simple. It only deals with one kind of intrusion, with a �xedunit of measurement. The ited work somewhat departs from suh a simple model,sine the systems were all tested in an environment with at least two di�erent typesof intrusions.7. FUTURE WORKOne stiking point is the basi probabilities that the previous alulations arebased on. These probabilities are subjetive at present, but future work should in-lude measurement either to attempt to alulate these probabilities from observedfrequenies|the frequentist approah|or to dedue these probabilities from somemodel of the intrusive proess and the intrusion detetion system|the objetivistapproah. The latter would in turn require real world observation to formulaterealisti parameters for the models.Furthermore, this disourse treats the intrusion detetion problem as a binarydeision problem, i.e. that of deiding whether there has been an 'intrusion' or not.The work presented does not di�erentiate between the di�erent kinds of intrusionsthat an take plae, and nor does it reognise that di�erent types of intrusions arenot equally diÆult or easy to detet. Thus on a more detailed level, the intrusiondetetion problem is not a binary but rather an n-valued problem, where in realitywe would make binary deisions between n di�erent types of intrusions.Closely related is the unit of analysis problem, i.e. how muh data does theindividual intrusion detetion system need to examine before it an detet theintrusion, or perhaps more important form our perspetive, before it an be saidto have missed the detetion of an intrusion. Here we have somewhat skirted the



The Base-rate Fallay and the DiÆulty of Intrusion Detetion � 15issue, by delaring the unit length to be ten audit reords. Even though we arenot alone in treating the problem in this way [Warrender et al. 1999℄, we believe amore detailed study would de�ne di�erent units of measurement for both di�erentintrusion detetion mehanisms, and di�erent types of intrusions.Another area that needs attention is that of the SSO's apabilities. How doesthe human-omputer interation take plae, and preisely whih Bayesian detetionrates would an SSO tolerate under what irumstanes?The other parameters disussed in the introdution (eÆieny, et.) also needfurther attention.8. CONCLUSIONSThis paper aims to demonstrate that intrusion detetion in a realisti setting isperhaps harder than previously thought. This is due to the base-rate fallay prob-lem, beause of whih the fator limiting the performane of an intrusion detetionsystem is not the ability to identify behaviour orretly as intrusive, but rather itsability to suppress false alarms. That is, one should measure the false alarm ratein relation to how many intrusions one would expet to detet, not in relation tothe maximum number of possible false alarms. Thus, a very high standard, lessthan 1=100; 000 per 'event' given the stated set of irumstanes, will have to bereahed for the intrusion detetion system to live up to these expetations as far ase�etiveness is onerned.The ited studies of intrusion detetor performane that were plotted and om-pared indiate that anomaly-based methods may have a long way to go before theyan reah these standards, sine their false alarm rates are several orders of magni-tude larger than what we demand. When we ome to the ase of signature-baseddetetion methods the piture is less lear. Even though the ited work seems toindiate that urrent signature intrusion detetors an operate lose to the requiredperformane point, how well these results generalise in the �eld is still an openquestion.Of ourse whether some of the more diÆult demands, suh as the detetion ofmasqueraders or the detetion of novel intrusions, an be met without the use ofanomaly-based intrusion detetion is still an open question.Muh work still remains before it an be demonstrated that urrent IDS ap-proahes will be able to live up to real world expetations of e�etiveness. However,we would like to stress that, the present results notwithstanding, an equal amountof work remains before it an be proven that they annot live up to suh highstandards.ACKNOWLEDGMENTSI would like to thank my olleague Ulf Lindqvist for valuable disussion and om-ments on early drafts of this paper. John MHugh and Roy Maxion also providedvaluable disussion, omments and support, espeially during the later stages ofthis work. Erisson Mobile Data Design AB kindly let me spend time �nishingthis manusript. I would also like to thank the anonymous reviewers for theirsuggestions.



16 � Stefan AxelssonAPPENDIXAppendix A. VENN DIAGRAM OF THE BASE-RATE FALLACY EXAMPLEThe Venn diagram in �gure 4 depits the situation in the medial diagnosti exampleof the base-rate fallay given earlier.
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Fig. 4. Venn diagram of medial diagnosti exampleAlthough for reasons of larity the Venn diagram is not to sale it learly demon-strates the basis of the base-rate fallay, i.e. that the population in the outomeS is muh smaller than that in :S and hene, even though P (RjS) = 99% andP (:Rj:S) = 99%, the relative sizes of the missing 1% in eah ase|areas 2) and4) in the diagram|are very di�erent.Thus when we ompare the relative sizes of the four numbered areas in thediagram, and interpret them as probability measures, we an state the desiredprobability, P (SjR)|i.e. \What is the probability that we are in area 3) given thatwe are inside the R-area?" It may be seen that, area 3) is small relative to theentire R-area, and hene, the fat that the test is positive does not say muh, inabsolute terms, about our state of health.REFERENCESAnderson, J. P. 1980. Computer seurity threat monitoring and surveillane. TehnialReport Contrat 79F26400 (26 Feb. revised 15 April), James P. Anderson Co., Box 42,Fort Washington, PA, 19034, USA.Axelsson, S. 1998. Researh in intrusion-detetion systems: A survey. Tehnial Report98{17 (De.), Department of Computer Engineering, Chalmers University of Tehnology,SE{412 96, G�oteborg, Sweden.
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