
Approximate Databases and Query Techniques for Agents with
Heterogeneous Perceptual Capabilities

Patrick Doherty Witold Łukaszewicz Andrzej Szałas
Department of Computer Science Department of Computer Science

University of Linköping University of Economics and Computer Science
Linköping, Sweden Olsztyn, Poland

patdo@ida.liu.se and University of Linköping, Linköping, Sweden
witlu@ida.liu.se andsz@ida.liu.se

Abstract – In this paper, we propose a framework that provides
software and robotic agents with the ability to ask approximate
questions to each other in the context of heterogeneous and con-
textually limited perceptual capabilities. The framework focuses
on situations where agents have varying ability to perceive their
environments. These limitations on perceptual capability are for-
malized using the idea of tolerance spaces. It is assumed that each
agent has one or more approximate databases where approximate
relations are represented using intuitions from rough set theory.
It is shown how sensory and other limitations can be taken into
account when constructing approximate databases for each re-
spective agent. Complex relations inherit the approximativeness
inherent in the sensors and primitive relations used in their def-
initions. Agents then query these databases and receive answers
through the filters of their perceptual limitations as represented by
tolerance spaces and approximate queries. The techniques used
are all tractable.

Keywords: Rough sets, database and sensor fusion, approximate
reasoning, intelligent agents, cognitive robotics, software agents.

1 Introduction
Research in cognitive robotics is concerned with endow-
ing robots and software agents with higher level cognitive
functions that enable them to reason, act and perceive in
changing, incompletely known, and unpredictable environ-
ments. Research in robotics has traditionally emphasized
low-level sensing, sensor processing and control tasks. One
of the open challenges in cognitive robotics is to integrate
techniques from both disciplines and develop architectures
which seamlessly combine low-level sensing and sensor
processing with the generation and maintenance of higher
level knowledge structures. This implies signal-to-symbol
transformations at many levels of abstraction. One partic-
ularly difficult issue involves the quantitative to qualitative
transformations which are implied by the need for qualita-
tive knowledge structures in high-level reasoning tasks.

Low-level sensor data is quantitative in nature, yet
higher-level reasoning tasks require the use of properties
and relations among individuals in specific domains of dis-
course and the associated inference mechanisms which use
combinations of base properties and relations in reasoning
processes. To add to the difficulty, sensors, by their very
nature introduce uncertainty and noise in the data. In or-
der to provide an accurate representation of a robotic en-
vironment, some of this uncertainty, or lack of knowledge,

should be translated into the higher-level knowledge struc-
tures.

In other words, some of the high-level knowledge struc-
tures will be approximate in nature, having both quanti-
tative and qualitative characteristics. Such structures are
useful in bridging the gap between purely quantitative data
generated by sensors and purely qualitative data used in
symbolic reasoning tasks.

In addition, the perceptual limitations of a robotic agent
induced by its sensor suite should be taken into account not
only when the robotics agent reasons about its external and
internal environments, but also when one or more robotic
agents communicate with each other by asking questions
about each others knowledge about the world or them-
selves. In this case, two robotic agents communicating with
each other can only ever ask queries of an approximative
nature and receive answers of an approximative nature as
seen through their respective filters of perceptual limitation.

In this paper, we propose a technique that can provide
software and robotic agents with the ability to ask approx-
imate questions to each other in the context of heteroge-
neous perceptual capabilities and approximate knowledge
derived through uncertain sensor data. Even though they
may have concepts in common, their ability to perceive in-
dividuals as having specific properties or relations can be
distinct. The question then is how this affects the questions
that can be asked and the replies that can be generated by
agents with perception functions limited to varying degrees.

In order to provide the proper level of detail for the spe-
cific framework in question, the following set of abstrac-
tions will be used in the paper. Each robotic agent will have
access to the following functionalities and representations:

• An abstraction called a tolerance space which is used
to represent similarity of data points for both basic and
complex data domains.1

• A set of sensors and a sensor model for each sensor.
The sensor models will take into account the contex-
tual indiscernibility of signal data by using tolerance
spaces to represent that indiscernibility.

1Of course, similarity has been studied in many contexts. For
a discussion of a similarity-based measures that can be applied in
defining tolerance functions of tolerance spaces, see, e.g., [1]).

• One or more databases capable of holding relational
data. These databases may contain representations of
crisp relations or approximate relations. The approx-
imate relations will be represented using intuitions
from the discipline of rough set theory. The intention
is that sensor data is used in the generation of some
of these approximate relations stored in the databases.
Tolerance spaces again play a role in the generation of
approximate relations from specific attributes in vec-
tors or arrays of attributes representing sensors.

• A query mechanism which permits each robotics agent
to ask questions about knowledge in its own databases
or in the databases of other agents. These queries will
be approximate in nature due to the approximate na-
ture of the knowledge stored in the databases. They
will also be contextualized by perceptual limitations
represented as tolerance spaces on more complex data
domains.

The paper is structured as follows. In Section 2, repre-
sentations of approximate relations and queries are intro-
duced using intuitions from rough set theory. In Section 3,
the important concept of a tolerance space is introduced.
These spaces are used to represent indiscernibility, uncer-
tainty and similarity between data. In Section 4, a generic
sensor model is presented where uncertainty in sensor data
may be translated into parameterized tolerance spaces. This
convenient representation allows for the possibility of re-
lating sensor information to relational definitions in a ho-
mogeneous manner since tolerance spaces will also be as-
sociated with approximate relations in databases. This is
considered in Section 5 where approximate databases are
introduced. At this point, the basic representational struc-
tures for approximate knowledge derived through approxi-
mate sensor data will have been introduced. The main idea
of agent communication with heterogeneous perceptual ca-
pabilities is then introduced in Section 6 with examples.
Section 7 concludes with a discussion.

2 Set Approximation

The methodology we propose in this paper uses a general-
ization of a number of ideas associated with rough set the-
ory which was introduced by Pawlak (see, e.g., [2]). In
many AI applications one faces the problem of represent-
ing and processing incomplete, imprecise, and approximate
data. Many of these applications require the use of ap-
proximate reasoning techniques. The assumption that ob-
jects can be observed only through the information avail-
able about them (in this case, sensors with limits on dis-
cernibility) leads to the view that knowledge about objects
in themselves, is insufficient for characterizing sets or re-
lations precisely since the knowledge about objects is in-
complete. We thus assume that any imprecise concept is
replaced by a pair of precise concepts called the lower and
the upper approximation of the imprecise concept, where
(see also Figure 1):

• the lower approximation consists of all objects which
with certainty belong to the concept (Z+)

• the upper approximation consists of all objects for
which it is possible that they belong to the concept
(Z⊕)

• the complement of the upper approximation consists
of all objects which with certainty do not belong to the
concept (Z−)

• the difference between the upper and the lower ap-
proximation constitutes a boundary region of an im-
precise concept, i.e. the set of elements for which it is
unknown whether they belong to the concept (Z±).

�

Z⊕

�

Z+ Z±

Precise (crisp) set Z

Z−

Z�

�
��

�

Fig. 1: Approximations of a set.

More precise definitions follow.

Definition 2.1 By an approximate set we shall understand
a pair 〈X, Y 〉, where X and Y are sets such that X ⊆ Y .

The set X is interpreted as the lower approximation of a
set and Y as its upper approximation.

By lower and upper approximation operations, denoted
by indices + and ⊕ , we understand operations on sets such
that for any crisp set Z , Z+ ⊆ Z ⊆ Z⊕ .

By Z− we denote the complement of Z⊕ . The boundary
region of Z , defined as (Z⊕−Z+), is denoted by Z± . �

We will also need a notion of databases and approximate
queries.

Definition 2.2 By a (relational, crisp) database we under-
stand a tuple D =

〈
U, {rj | j ∈ J}〉, where U is a finite

set, called the domain of D and {rj | j ∈ J} is a finite
collection of relations over U .

By an approximate database we understand a tuple

D =
〈
U,

{
rj | rj =

〈
rj
+ , rj

⊕

〉
and j ∈ J

}〉
,

where rj
+s and rj

⊕s are crisp relations of the same arity, sat-
isfying rj

+ ⊆ rj
⊕ .

By the type of a (crisp or approximate) database D we
understand the sequence 〈aj | j ∈ J〉, where for any j ∈ J ,
aj is the number of arguments (arity) of r j . �

Observe that crisp relational databases are approximate re-
lational databases with equal lower and upper approxima-
tions of relations.

We will also require a definition of approximate queries.
In essence, an approximate query provides an upper and
lower approximation on an original crisp query.

Definition 2.3 By an approximate query we shall under-
stand a pair Q = 〈Q′(x̄), Q′′(x̄)〉, where Q′ and Q′′ are for-
mulas of a given logic, where x̄ are all free variables (com-
mon to Q′ and Q′′), such that for any underlying database2

D,

D |= Q′(x̄) → Q′′(x̄).

Formulas Q′, Q′′ are called the lower (respectively, upper)
approximation part of Q.

By Q′(x̄)D (respectively, 〈Q′(x̄), Q′′(x̄)〉D) we denote
the result of evaluating the query Q ′(x̄) (respectively, the
approximate query 〈Q′(x̄), Q′′(x̄)〉) in the database D. �

Given a crisp query represented as a logical formula in a
1st-order language, an approximate query can always be
generated automatically.

3 Tolerance Spaces
Tolerance spaces have been introduced in [6]. Technically,
they allow us to classify a universe of individuals into indis-
cernibility or tolerance neighborhoods based on a parame-
terized tolerance relation. This is a generalization on the
indiscernibility partitions used in rough set theory where
instead of partitions, the neighborhoods provide a covering
of the universe. Conceptually, these spaces are quite versa-
tile. In this paper, they will be used for the representation
of limitations on an agent’s perceptual capabilities, sensor
uncertainty, and approximate databases.

Definition 3.1 By a tolerance function on a set U we mean
any function τ : U×U −→ [0, 1] such that for all x, y ∈ U ,

τ(x, x) = 1 and τ(x, y) = τ(y, x). �

Definition 3.2 For p ∈ [0, 1] by a tolerance relation to a
degree at least p, based on τ , we mean the relation τ p given

by τp def= {〈x, y〉 | τ(x, y) ≥ p}. The relation τ p is also
called the parameterized tolerance relation. �

In what follows, τ p(x, y) is used to denote the character-
istic function for the relation τ p.

A parameterized tolerance relation is used to construct
tolerance neighborhoods for individuals.

Definition 3.3 By a neighborhood function wrt τ p we
mean a function given by

nτp

(u) def= {u′ ∈ U | τp(u, u′) holds}.
By a neighborhood of u wrt τp we mean the value nτp

(u).�

The concept of tolerance spaces plays a fundamental role
in our approach.

Definition 3.4 A tolerance space is defined as the tuple
TS = 〈U, τ, p〉, consisting of

• a nonempty set U , called the domain of TS

• a tolerance function τ

• a tolerance parameter p ∈ [0, 1]. �

2We deal with relational databases, where queries are formu-
lated as first-order or fixpoint formulas (for textbooks on this ap-
proach see, e.g., [3, 4, 5]).

4 Sensor Models and Tolerance Spaces

In this section, we provide a simple sensor model (see
also [6]), based on a generalization of that in [7], and one
method for modeling uncertainty in sensor data which inte-
grates well with tolerance spaces.

A sensor is used to measure one or more physical at-
tributes in an environment E. The value sets associated
with a physical attribute might be the real numbers, as in the
case of measurement of the temperature or velocity of an
object; Boolean values, as in the measurement of the pres-
ence or absence of an object such as a red car; integer val-
ues, as in the case of measurement of the number of vehicles
in a particular intersection; or scalar values, such as the spe-
cific color of a vehicle. An environment E can be viewed
as an abstract entity containing a collection of physical at-
tributes that are measurable. Vectors or n-dimensional ar-
rays of attribute/value pairs could be used to represent a
particular environment. One may want to add a temporal
argument to E, so the current state of the environment is
dynamic and changes with time.

We denote a sensor Si as a function of the environment
E and time point t, Si(E, t). Si is a function which returns
a pair of functions,

Si(E, t) = {Vi(t), εi(t)}.
Depending on the type of sensor being modeled, V i(t) will
be a function that returns the values of the physical at-
tributes associated with the sensor. Vi might return a sin-
gle value, as in the case of a single temperature sensor, or a
vector or array of values for more complex sensors.

For any physical attribute measured, explicit accuracy
bounds will be supplied in the form of ε i(t). The tempo-
ral argument is supplied since the accuracy of a sensor may
vary with time. As in the case of Vi, εi might return a single
accuracy bound or a vector or array of accuracy bounds.

For example, suppose Stemp is a sensor measuring the
temperature of a PC104 box on an unmanned aerial ve-
hicle. Let atemp be the physical attribute associated with
temperature in the environment, where the actual tempera-
ture is E(t)(atemp) and the value returned by the sensor is
Vi(t)(atemp). The following constraint holds:

E(t)(atemp) ∈
[Vi(t)(atemp) − εi(t), Vi(t)(atemp) + εi(t)].

By using tolerance spaces, accuracy bounds for a physi-
cal attribute can be represented equivalently as tolerance re-
lations to degree p on the value set for the attribute. In this
manner, we can use neighborhood functions to reason about
the tolerance or accuracy neighborhoods around individual
sensor readings and combine these into neighborhoods for
more complex virtual sensors.

In the following, we will drop the temporal argument
for ε and assume the accuracy bounds for attributes do not
change with time. Let TSSik

= 〈VSik
, τsik

, psik
〉 be a tol-

erance space for the kth physical attribute, a ik
associated

with the sensor Si, where,

• VSik
= {x | lb ≤ x ≤ ub, x ∈ D}, where D is a value

domain such as the reals or integers. It is assumed that

the legal values for a physical attribute have a lower
and upper bound, lb, ub. We associate a distance mea-
surement δ(x) = |x−y| with the value set VSik

, which
includes all the values that can be read from the sen-
sor Si.

• Both the tolerance function τsik
, and the tolerance pa-

rameter psik
are defined as follows,

τsik
(x, y) = 1 − δ(x, y)

δ(lb, ub)
,

psik
= 1 − εi

δ(lb, ub)
.

The neighborhood function can be used to compute the
possible actual values of a physical attribute in the environ-
ment, given a sensor reading, under the assumption that the
accuracy bounds have been generated correctly for a partic-
ular sensor and the sensor remains calibrated. For example,
if Vi(atemp) is the current value measured by the sensor S i

then we would know that E(atemp) ∈ npsik (Vi(atemp)).
So, the tolerance neighborhood around a sensor reading al-
ways contains the actual value of the physical attribute in
the environment E and it would be correct to reason with
the neighborhoods of sensor values, rather than the sensor
value itself.

Example 4.1 Let SR, SG and SB be sensors detecting val-
ues of R, G, B color attributes.3 The universe of values is
restricted in those cases to integers in interval [0, 255]. As-
sume that all sensors have the same accuracy, say 5. Then
the tolerance space for all three cases is 〈[0, 255], τ, p〉,
where:

τ(x, y) = 1 − |x − y|
255

, p = 1 − 5
255

≈ 0.9804.

In this case an agent using sensor data from SR, SG,
SB will be unable to distinguish between color values
where values of τ on R, G, B attributes are not less than
0.9804. These physical attributes and their associated tol-
erance spaces can be used to construct more complex at-
tributes and knowledge structures in terms of these. These
new attributes and knowledge structures would inherit the
accuracy (inaccuracy) of the primitive sensor data used in
their construction. We consider this in Section 5. �

5 Approximate Databases and Sensors

Standard relational databases store relations as tables where
each column represents an argument to the relation and a
row represents the instantiation of each relational argument
to a value in that arguments value space. Each row is a
tuple of which the relation represented by the table holds.
In the standard case, each argument has a specific value in
its value space, but if a tolerance space is associated with an

3Relations related to color are perhaps not the best to use as
examples since there are many sophisticated techniques for deal-
ing with noise and uncertainty associated with color. On the
other hand, this domain provides a simple and intuitive vehicle
to present our ideas within the page constraints of the article.

argument then it has the effect of creating neighborhoods of
uncertainty, similarity, or indiscernibility around each argu-
ment value.

This should then induce a tolerance space for specific tu-
ple domains creating neighborhoods around tuples. This
should in turn affect the answers to any queries to relations
in the database since the question is not whether a tuple
holds for a relation, but whether the tuple through the filter
of its associated tolerance space holds. In addition, the re-
lations stored in the database will be rough relations having
both a lower and upper approximation.

For instance, suppose we were to use the sensor attributes
for SR, SG and SB from Example 4.1 in defining a relation
reddish or darkish in color where each of these relations
take SR, SG and SB as arguments. Each argument has a tol-
erance space associated with it which is determined by the
specific characteristics of the sensors used to measure these
attributes or even takes into account specific contexts of use.
Since these tolerance spaces are parameterized, parameters
can be contextualized and derived through machine learn-
ing techniques or statistical and probabilistic methods.

The next step is to integrate the approximate nature of
arguments into the definitions of relations which use these
arguments. The net result will be a tolerance space for an
approximate relation where any tuple in the relation has its
own neighborhood induced by the tolerance space for the
relation. Rather than asking whether a tuple is a member of
a relation, we will ask whether that tuples neighborhood is
a member of a lower approximation of the relation or inter-
sects with its upper approximation as in rough set theory. In
this case we will use tolerance spaces on tuples rather than
the usual discernibility partitions for attributes.

Suppose TSR, TSG and TSB are tolerance spaces for
the sensor attributes in Example 4.1 then in the case of
the relation darkish for example, we would like to gen-
erate a tolerance space TSD = 〈U, τ, p〉 where U is the
set of ternary tuples representing RGB values and where
TSD = f(TSR, TSG, TSB). The function f can be de-
fined in many ways or even machine learned. Its definition
will generally be dependent on the domain and application
in question.

In a similar manner, one can define additional tolerance
spaces for new relations in terms of the tolerance spaces
associated with the relations used to define the new rela-
tion. In this manner one can recursively construct com-
plex knowledge representations at many levels of abstrac-
tion which inherit the approximativeness of sensor output
and more primitive defining relations.

We also assume that each relation in the database has a
lower and upper approximation. In the case of the rela-
tion darkish, both darkish+ and darkish⊕ , the lower and
upper approximations for darkish would be stored or im-
plicitly represented in the database. There are a number of
ways to generate approximate databases. A direct method
would be to use rough set machine learning techniques to
automatically generate lower and upper approximations for
approximate relations. An indirect method would start with
a relational database and tolerance spaces for each of the
relations. These tolerance spaces could then be used to au-

tomatically generate lower and upper approximations for
each relation. This will be demonstrated in Example 5.4.
Under these assumptions, we would have an approximate
relational database with tolerance spaces associated with
some or all of the approximate relations.

Let’s now assume an agent wants to access information
in its internal database which is in fact approximate and
represents that agent’s perceptual limitations as encoded
through the tolerance spaces used to generate the approx-
imate database. The database would then be queried in the
following manner. Given a query to the database repre-
sented as a logical formula in a first-order language, the
query is automatically transformed into an approximate
query.4 One can then generate all tuples satisfying the
lower and upper approximations of the query or simply ask
whether a specific tuple satisfies the query.

These techniques describe how approximate knowledge
structures which take both sensor and relational uncertainty
into account can be generated and represented as approxi-
mate databases using both rough sets and tolerance spaces.
In Section 6, it will be shown how tolerance spaces repre-
senting perceptual limitations of agents themselves can be
used together with approximate queries to take these limita-
tions into account when asking and receiving answers from
other agents. In fact, one can even model the fact that an
agent may have contextual perceptual limitations when ask-
ing questions of itself since additional tolerance spaces can
be applied in asking questions to an approximate database
as we will see.

Formal definitions and examples now follow.

Definition 5.1 Let TS = 〈U, τ, p〉 be a tolerance space and
let S ⊆ U . The lower and upper approximation of S wrt
TS, denoted respectively by STS+ and STS⊕ , are defined
by

STS+ = {u ∈ U : nτp(u) ⊆ S}
STS⊕ = {u ∈ U : nτp(u) ∩ S
= ∅}. �

In the definition, U might represent a primitive data set
such as that used for a particular sensor, or a complex data
set such as a set of tuples. For example, consider a rela-
tional database with one relation S of k-arity and with uni-
verse U consisting of all k-tuples. In this case, the relation
may represent raw data about S. Suppose there is also a
tolerance space TS = 〈U, τ, p〉. TS creates neighborhoods
around tuples. An agent, when asking whether a tuple x̄ is
a member of the relation is really asking whether the neigh-
borhood around the the tuple is a member of the relation. If
so, the answer is yes, if there is an intersection, the answer
is maybe, if the intersection is empty, the answer is no.

In fact, this particular use of tolerance spaces can be gen-
eralized to relational databases with an arbitrary number
of relations where the data in the database is assumed to
be raw data about the relations. Using tolerance spaces,
the relational database can be turned into an approximate
database where each relation is viewed as having an upper
and lower approximation. Rather than machine learning the

4Both the original and approximate query can be translated
into a SQL query in a straightforward manner.

approximate relations directly, one can assume the toler-
ance spaces as given and apply them to raw data to gener-
ate an approximate database. The following definition and
example show how this is done.

Definition 5.2 Let D =
〈
U, {rj | j ∈ J}〉 be a relational

database. Then we say that a sequence of tolerance spaces
TS = 〈TSj | j ∈ J〉 is compatible with D provided that
for any j ∈ J , TSj = 〈Uj, τj , pj〉, where Uj is the set of
all tuples of arity the same as the arity of rj . �

Definition 5.3 Let D =
〈
U, {rj | j ∈ J}〉 be a relational

database and TS be a sequence of tolerance spaces com-
patible with D. If D is crisp, then by an approximation of
D wrt TS, we mean the structure

DTS =
〈
U,

{〈
rj

TS+
j
, rj

TS⊕
j

〉
| j ∈ J

}〉
.

If D is approximate, where for j ∈ J , rj =
〈
rj
+ , rj

⊕

〉
, then

the approximation of D wrt TS is defined as

DTS =
〈
U,

{〈
(rj

+)
TS+

j

, (rj
⊕)

TS⊕
j

〉
| j ∈ J

}〉
. �

Note that in the latter case, one can still apply additional
tolerance spaces to upper and lower approximations of a
relation since these are also represented as relations in the
database.

Example 5.4 Consider a situation where a ground operator
(agent AgG) is communicating with a UAV5 (agent AgV),
which is flying over a road segment. Assume AgV can
provide information about the following relations, and that
AgV has these in common with AgG:

• V (x, y) – there is a visible connection between objects
x and y

• S(x, y) – the distance between objects x and y is small

• E(x, y) – objects x and y have equal speed

• C(x, z) – object x has color z, where we consider col-
ors b, r, dr, denoting “brown”, “red” and “dark red”,
respectively.

Let the actual situation on a road segment be given by the
(crisp) relational database shown in Table 1, where, e.g.,

• the first row means that there is a visible connection
between objects 1 and 2, the distance between object
1 and objects 2, 5 is small, object 1 has equal speed
with objects 2, 5 and that the color of object 1 is r

• the third row means that that there no visible connec-
tion between object 3 and any other objects, the dis-
tance between object 3 and object 2 is small, object
3 has equal speed with object 2 and that the color of
object 3 is dr.

Note that our UAV agent does not have direct access to this
information since it may have limited perceptual capabili-
ties relative to some attributes such as color which will be
modeled below.

Table 1: Database considered in Example 5.4 reflecting a
situation on a road segment.

Object V S E C

1 2 2, 5 2, 5 r
2 1 1, 3, 4 1, 3, 4 b
3 - 2 2 dr
4 - 2 2 r
5 - 1 1 dr

Table 2: Approximation (lower approximations) of the re-
lational database given in Table 1 wrt the perception capa-
bilities of agent AgV .

Object V+ S+ E+ C+

1 2 2, 5 2, 5 r
2 1 1, 3, 4 1, 3, 4 -
3 - 2 2 -
4 - 2 2 r
5 - 1 1 -

Consider the approximation of the relational database
given in Table 1 wrt the tolerance space TV = 〈U, τV , pV 〉,
where τpV

V identifies equal elements and additionally dr
with b. This tolerance space represents a perceptual lim-
itation of the UAV agent. The resulting approximation is
presented in Tables 2 and 3. Now, e.g.,

• the first row in Table 2 indicates that there surely is
a visible connection between objects 1 and 2, the dis-
tance between object 1 and objects 2, 5 is surely small,
object 1 has surely equal speed with objects 2, 5 and
that the color of object 1 is surely r

• the third row in Table 3 indicates that there cannot
be any visible connection between object 3 and any
other object, the distance between object 3 and object
2 might be small, object 3 might have equal speed with
object 2 and that the color of object 3 might be b or dr.

Note that several tolerance spaces could be associated
with each type of data in a table if desired. �

We now consider how to generate an approximate query
from a crisp query represented as a logical formula.

Definition 5.5

• A relation symbol r occurs positively (respectively
negatively in a formula if it appears under an even (re-
spectively odd) number of negations.6

• For any formula α referring to relations in D,

– by α+ we understand the formula α in which any
positive occurrence of a relation symbol, say r j ,
is replaced by rj

+ and any negative occurrence of

rj is replaced by rj
⊕

5Unmanned Aerial Vehicle.
6As usual, it is assumed here that all implications of the form

p → q are substituted by ¬p ∨ q and all equivalences of the form
p ≡ q are substituted by (¬p ∨ q) ∧ (¬q ∨ p).

Table 3: Approximation (upper approximations) of the re-
lational database given in Table 1 wrt the perception capa-
bilities of agent AgV .

Object V⊕ S⊕ E⊕ C⊕

1 2 2, 5 2, 5 r
2 1 1, 3, 4 1, 3, 4 b, dr
3 - 2 2 b, dr
4 - 2 2 r
5 - 1 1 b, dr

– by α⊕ we understand the formula α in which any
positive occurrence of a relation symbol, say r j ,
is replaced by rj

⊕ and any negative occurrence of

rj is replaced by rj
+ . �

Example 5.6 Consider formula r1(x̄) ∧ ¬r2(ȳ). Then:

• [r1(x̄) ∧ ¬r2(ȳ)]+ ≡ [r1
+(x̄) ∧ ¬r2

⊕(ȳ)]

• [r1(x̄) ∧ ¬r2(ȳ)]⊕ ≡ [r1
⊕(x̄) ∧ ¬r2

+(ȳ)].

The two formulas on the righthand side would represent an
approximation of the original formula. �

We will allow for the possibility of providing a tolerance
space with an approximate query whose purpose is to rep-
resent a contextual perceptual limitation of the querying
agent. Such queries are called tolerance queries, the defi-
nition of which follows:

Definition 5.7 Let D be a (crisp or approximate) database.
By a tolerance query we mean a tuple 〈Q, TSQ〉, where

• Q = 〈Q′(x̄), Q′′(x̄)〉 is an approximate query

• TSQ is a tolerance space for tuples of arity the same
as the arity of x̄.

If TS is a sequence of tolerance spaces compatible with D,
then the meaning of tolerance query Q in database D wrt
context TS is given by〈

[(Q′(x̄)+)DT S]TS+
Q
, [(Q′′(x̄)⊕)DT S]TS⊕

Q

〉
. �

6 Agent Communication with
Heterogeneous Perceptual Capabilities

Consider a multi-agent application in a complex environ-
ment such as the Web where software agents reside, or a
natural disaster in an urban area where physical robots re-
side. Each agent will generally have its own view of its
environment due to a number of factors such as the use
of different sensor suites, knowledge structures, reasoning
processes, etc. Agents may also have different understand-
ings of the underlying concepts which are used in their re-
spective representational structures and will measure ob-
jects and phenomena with different accuracy. How then
can agents with different knowledge structures and percep-
tual accuracies understand each other and effect meaning-
ful communication and how can this be modeled? In this
section, we propose a framework to do this using tolerance

spaces as the main representational tool to model many of
these types of limitations and mismatches.

The approach may be summarized as follows. it is as-
sumed that each agent has its own database. The database
may be crisp or approximate and generated in any number
of ways, some having been demonstrated already. The idea
is that some perceptual and other limitations have already
been encoded in the respective databases of the agents. For
any tolerance agent, we will also assume an additional con-
text consisting of a sequence of tolerance spaces. These
may cover all, some or none of the relations in the database
and are intended to represent additional limitations which
are contextual in nature. The agent need not be aware
of these limitations, but will always view its knowledge
through this filter when asking questions internally and this
context may be used when generating a tolerance query to
be asked of another agent.

When an agent asks a question of another agent using
a tolerance query, the question is interpreted by the other
agent through its context and its database. Two sets of
tuples are returned, representing the lower and upper ap-
proximation of the original query. The agent who asked
the question, will then apply the tolerance space associated
with its tolerance query to the result returned by the ques-
tioned agent. The net result will be an answer which takes
into account both the perceptual limitations of the ques-
tioned agent and the current limitation associated with the
tolerance query. Initial work with these ideas may be found
in [6].

We begin with a general definition of a tolerance agent
specializing that provided in [6].

Definition 6.1 By a tolerance agent we shall understand
any tuple

〈
Ag, D, TS

〉
, where Ag is an agent, D is its

(crisp or approximate) database and TS, called the context
of agent Ag, is a sequence of tolerance spaces compatible
with D. �

Here we do not define what an agent is specifically, as
the framework we propose is independent of the particu-
lar details. The assumption is that the Ag part of a tol-
erance agent consists of common functionalities normally
associated with agents such as planners, reactive and other
methods, knowledge bases or structures, etc. The knowl-
edge bases or structures are also assumed to have a rela-
tional component consisting of a relational database (D).
When the agent introspects and queries its own knowledge
base its limited perceptual capabilities are reflected in any
answer to a query due to its context.

Suppose that two tolerance agents have different per-
ceptual capabilities and consequently different tolerance
spaces. It will then be necessary to define the meaning of
queries and answers relative to the two tolerance agents. As
previously advocated, a tolerance agent, when asked about
a relation, answers by using the approximations of the re-
lation wrt its tolerance space. On the other hand, the agent
that asked the query has to understand the answer provided
by the other agent wrt to its own tolerance space.

The dialog between two agents:

• query agent TA1 =
〈
Ag1, D1, TS1

〉

• answer agent TA2 =
〈
Ag2, D2, TS2

〉
,

will then conform to the following schema:

1. TA1 asks TA2 a question using a tolerance query
Q =

〈 〈Q′, Q′′〉 , TQ

〉
; in fact, it sends to TA2 the

approximate query 〈Q′, Q′′〉 without TQ,

2. TA2 computes the answer approximating its database
according to its current context TS 2 and returns as
an answer the approximate relation

〈
Q′

+ , Q′′
⊕
〉

D
T S2
2

. In

order to simplify notation, we denote this relation by
R = 〈R′, R′′〉

3. TA1 receives R as input and interprets it according to
the context TQ indicated in the query. The resulting

interpretation,

〈
R′

T+
Q

, R′′
T⊕

Q

〉
, provides the answer to

the query, as understood by TA1 and takes into ac-
count the perceptual limitations of both agents.

This schema will only work properly under the assumption
of a common vocabulary.

Remark 6.2 Observe that the context of agent Ag1 is not
present in the schema directly. One can, however, observe,
that TQ will usually strongly depend on TS1. In particular,
if Q is of the form rj(x̄) then, in most cases, TQ will be the
j-th tolerance space in TS1. �

The definitions describing this interaction now follow.

Definition 6.3 Let TA1 and TA2 be as above. Let Q =
〈〈Q′, Q′′〉 , TS1〉 be a tolerance query, which is asked by
TA1 and answered by TA2. Then the result of query Q is
defined as the meaning7 of Q in database D2 wrt context
TS2. �

Example 6.4 Consider first a tolerance agent
〈AgV , D, TV 〉, where AgV and the tolerance space
TV are as provided in Example 5.4 (i.e., AgV does not
recognize the difference between colors dr and b).

Consider the following query which the agent will ask
itself internally:8

〈
V (x, y) ∧ [C(x, r) ∨ C(y, b)],

V (x, y) ∧ [C(x, r) ∨ C(y, b)], TV

〉
.

To compute the answer we first consider (cf. Defini-
tion 5.7):

〈[
V (x, y) ∧ [C(x, r) ∨ C(y, b)]

]
+

,[
V (x, y) ∧ [C(x, r) ∨ C(y, b)]

]
⊕

〉
,

7As provided by Definition 5.7.
8For simplicity we provide one tolerance space and assume

that two tuples are identified if the arguments representing color
have values within the same neighborhood and arguments not rep-
resenting colors have equal values.

which, according to Definition 5.5, is〈
V+(x, y) ∧ [C+(x, r) ∨ C+(y, b)],

V⊕(x, y) ∧ [C⊕(x, r) ∨ C⊕(y, b)]
〉

.

Using the approximations of V , S, E and C wrt TV , from
Tables 2 and 3, the above query evaluates to:〈{ 〈1, 2〉} ,

{ 〈1, 2〉 , 〈2, 1〉}〉
.

One may interpret the result as stating that the tuple 〈1, 2〉
definitely satisfies the original query while the tuple 〈2, 1〉
may satisfy the original query, but more precision would be
required to state this with certainty. �

Example 6.5 Consider the tolerance agents 〈AgV , TV 〉
and 〈AgG, TG〉 where:

• AgV and TV are as described in Example 6.4

• TG = 〈U, τG, pG〉 such that τpG

G identifies equal ele-
ments and additionally dr with r.

Suppose AgG wants to ask AgV for information about col-
ors of objects satisfying the following tolerance query: 9

〈 〈∃x, y.[V (x, y) ∧ C(x, z)],

∃x, y.[S(x, y) ∧ E(x, y) ∧ C(x, z)]
〉
, TG

〉
.

Using Definition 6.3, agent AgV will then evaluate this tol-
erance query in the context of its perception capabilities,
i.e., according to the database approximation given in Ta-
bles 2 and 3. The answer returned by AgV is〈

∃x, y.[V+(x, y) ∧ C+(x, z)],

∃x, y.[S⊕(x, y) ∧ E⊕(x, y) ∧ C⊕(x, z)]
〉

.

Thus AgV will return the following answer to AgG:〈
{r}, {r, b, dr}

〉

AgG will then compute the final answer by interpreting the
above one relative to its tolerance space TG using Defini-
tion 6.3 and the database approximation shown in Tables 4

and 5. The final answer is then
〈
∅, {r, b, dr}

〉
. �

7 Conclusions

The techniques described in this paper provide a basis
for developing an efficient and tractable formal frame-
work for fusing sensor data with approximate knowledge
in databases and querying that knowledge while taking
into account the inherent perceptual or contextual limita-
tions associated with robotic or softbotic systems. Many
techniques that were assumed but not described in de-
tail in this paper, such as the generation of approximate
relations through rough set machine learning techniques,

9Observe that V (x, y) → (S(x, y) ∧ E(x, y)) thus the lower
approximation part of the query is indeed included in its upper
approximation part.

Table 4: Approximation (lower approximations) of the rela-
tional database given in Table 1 wrt perception capabilities
of agent AgG as defined in Example 6.5.

Object V+ S+ E+ C+

1 2 2, 5 2, 5 -
2 1 1, 3, 4 1, 3, 4 b
3 - 2 2 -
4 - 2 2 -
5 - 1 1 -

Table 5: Approximation (upper approximations) of the rela-
tional database given in Table 1 wrt perception capabilities
of agent AgG as defined in Example 6.5.

Object V⊕ S⊕ E⊕ C⊕

1 2 2, 5 2, 5 r, dr
2 1 1, 3, 4 1, 3, 4 b
3 - 2 2 r, dr
4 - 2 2 r, dr
5 - 1 1 r, dr

their representation in standard relational databases, trans-
lating approximate queries into SQL queries, fusing toler-
ance spaces, or generating complex approximate relations
in terms of primitive relations have been developed else-
where and described in submitted or published references.
These techniques are also being implemented and tested in
a UAV project where physical sensors and real-time con-
straints must be taken into account. A book [8] describing
some of this additional work is forthcoming.

Acknowledgment
The paper has been supported in part by the WITAS project
grant under the Wallenberg Foundation, Sweden.

References
[1] X. Wang, B. De Baets, and E. Kerre. A comparative study of

similarity measures. Fuzzy Sets and Systems, 73(2):259–268,
1995.

[2] Z. Pawlak. Rough Sets. Theoretical Aspects of Reasoning
about Data. Kluwer Academic Publishers, Dordrecht, 1991.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley Pub. Co., 1996.

[4] H-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer-Verlag, Heidelberg, 1995.

[5] N. Immerman. Descriptive Complexity. Springer-Verlag,
New York, Berlin, 1998.

[6] P. Doherty, W. Łukaszewicz, and A Szałas. Tolerance spaces
and approximative representational structures. In A. Günter,
R. Kruse, and B. Neumann, editors, Proceedings 26th Ger-
man Conference on Artificial Intelligence, volume 2821 of
LNAI, pages 475–489. Springer-Verlag, 2003.

[7] R. R. Brooks and S.S. Iyengar. Multi-Sensor Fusion. Prentice-
Hall, 1998.

[8] P. Doherty, W. Łukaszewicz, and A. Szałas. Knowledge En-
gineering: A Rough Sets Approach. Springer Physica-Verlag,
2004. To appear in 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

