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Abstract

The object-based storage model, in which files are made upeobomore data objects stored on
self-contained Object-Based Storage Devices (OSDs),asging as an architecture for distributed
storage systems. The workload presented to the OSDs willite djfferent from that of general-
purpose file systems, yet many distributed file systems gm@heral-purpose file systems as their
underlying file system. We present OBFS, a small and higfitjesit file system designed for use
in OSDs. Our experiments show that our user-level impleatient of OBFS outperforms Linux
Ext2 and Ext3 by a factor of two or three, and while OBFS is 1f#bsize of XFS, it provides only
slightly lower read performance and 10%—40% higher writefgenance.

1. Introduction

Object-based storage systems represent files as sets afsatifgred on self-contained Object-Based
Storage Devices (OSDs). By distributing the objects acneary devices, these systems have the
potential to provide high capacity, throughput, reliaijliavailability and scalability. We are de-
veloping an object-based storage system with a target itgpaEc2 petabytes and throughput of
100 gigabytes per second. In this system as, we expect, iy othars, files will be striped across
OSDs. The stripe unit size of the system will determine theimam object size and will be
the most common object size in the system. Because files aiikbiglly consist of many objects
and objects will be distributed across many OSDs, therebillittle locality of reference within
each OSD. The workload presented to the OSDs in this systdirbenjuite different from that of
general-purpose file systems. In object-based systemsldhabt employ this architecture we can
still expect that files will be distributed across multiplejects, objects will be distributed across
multiple OSDs, and there will be little locality of referancEven so, many distributed file systems
employ general-purpose file systems as their underlyingydtem.

We present OBFS, a very small, highly efficient object-bd#edystem developed for use in OSDs
in large-scale distributed storage systems. The basicGtl&BFS is to optimize the disk layout
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based on our knowledge of the workload. OBFS uses two blasssismall blocks, equivalent
to the blocks in general-purpose file systems, and largekblamual to the maximum object size,
to greatly improve the object throughput while still maintag good disk utilization. OBFS uses
regionsto collocate blocks of the same size, resulting in relagiViglle fragmentation as the file

system ages. Compared with Linux Ext2 and Ext3 [3, 28], OB&Sletter data layout and more
efficiently manages the flat name space exported by OSDs.ougdth developed for a workload

consisting mostly of large objects, OBFS does well on a mixeckload and on a workload con-
sisting of all small objects. Thus, in addition to being Hjgbuitable for use in high-performance
computing environments where large files (and hence objdotainate, we believe that it may also
prove effective in general-purpose computing environmerttere small files dominate.

Our results show that our user-level implementation of OBE®erforms Linux kernel implemen-
tations of Ext2 and Ext3 by a factor of 2 to 3, regardless ofdhgct size. Our user-level im-
plementation of OBFS is a little slower than a kernel implatagon of XFS [19, 27] when doing
object reads, but has 10% to 40% better performance on olgjées. We expect the performance
to improve further once we have fully implemented OBFS inkbmnel to avoid extra buffer copies.

OBFS is significantly smaller than Linux XFS, using only ab2/000 lines of code compared with
over 50,000 lines of code in XFS. This factor of 25 size ddfere and the corresponding simplicity
of OBFS make OBFS easy to verify, maintain, modify, and porother platforms. OBFS also
provides strong reliability guarantees in addition to higltoughput and small code size; the disk
layout of OBFS allows it to update metadata with very low tvead, so OBFS updates metadata
synchronously.

2. Background

A new generation of high-performance distributed file syste@re being developed, motivated by
the need for ever greater capacity and bandwidth. Theseybkeras are built to support high-
performance computing environments which have strongabidy and reliability requirements.
To satisfy these requirements, the functionality of tiadil file systems has been divided into two
separate logical componentsfile managerand astorage managerThe file manager is in charge
of hierarchy management, naming and access control, wiglstbrage manager handles the actual
storage and retrieval of data. In large-scale distributechge systems, the storage manager runs on
many independent storage servers.

Distributed object-based storage systems, first used ift kand currently used in systems such
as Lustre [4] and Slice [1], are built on this model. Howewembject-based systems the storage
manager is an object-based storage device (OSD or OSD)\B80th provides an object-level
interface to the file data. OSDs abstract away file storagalglstuch as allocation and scheduling,
semi-independently managing all of the data storage isandsleaving all of the file metadata
management to the file manager.

In a typical instance of this architecture, a metadata senuster services all metadata requests,
managing namespace, authentication, and protection, mnittimg clients with the file to object
mapping. Clients contact the OSDs directly to retrieve thigats corresponding to the files they
wish to access. One motivation behind this new architecsui@ provide highly-scalable aggregate
bandwidth by directly transferring data between storagecds and clients. It eliminates the file
server as a bottleneck by offloading storage management ©08Ds [8] and enables load balanc-
ing and high performance by striping data from a single filss multiple OSDs. It also enables
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high levels of security by using cryptographically securaegabilities and local data security mech-
anisms.

Much research has gone into hierarchy management, sdgladild availability of distributed file
systems in projects such as AFS [18], Coda [11], GPFS [22F[26] and Lustre [4], but relatively
little research has been aimed toward improving the pedioa of the storage manager. Because
modern distributed file systems may employ thousands cdgéodevices, even a small inefficiency
in the storage manager can result in a significant loss obpaeince in the overall storage system.
In practice, general-purpose file systems are often usdwatdrage manager. For example, Lustre
uses the Linux Ext3 file system as its storage manager [4¢eSire workload offered to OSDs may
be quite different from that of general-purpose file systemescan build a better storage manager
by matching its characteristics to the workload.

File systems such as Ext2 and Ext3 are optimized for geparglose Unix environments in which
small files dominate and the file sizes vary significantly. yThave several disadvantages that limit
their effectiveness in large object-based storage systExi& caches metadata updates in memory
for better performance. Although it flushes the metadaté tiadisk periodically, it cannot provide
the high reliability we require. Both Ext3 and XFS employt@rahead logs to update the metadata
changes, but the lazy log write policy used by both of themstdinose important metadata (and
therefore data) in some situations.

These general-purpose file systems trade off the relwalfditbetter performance. If we force them

to synchronously update object data and metadata for betiability, their performance degrades

significantly. Our experimental results shows that in syachus mode, their write throughput is

only several MB/second. Many general-purpose file systerms as Ext2 and Ext3 use flat directo-
ries in a tree-like hierarchy, which results in relativetyop searching performance for directories of
more than a thousand objects. XFS uses B+-Trees to addiegsdhlem. OBFS uses hash tables
to obtain very high performance directory operations orflditeobject namespace.

In our object-based storage system as, we expect, in maBysptRAID-style striping with par-
ity and/or replication is used to achieve high performamebability, availability, and scalability.
Unlike RAID, the devices are semi-autonomous, internalgnaging all allocation and scheduling
details for the storage they contain. The devices themseheay use RAID internally to achieve
high performance. In this architecture, each stripe urstased in a single object. Thus, the maxi-
mum size of the objects is the stripe unit size of the disteéduile system, and most of the objects
will be this size. At the OSD level, objects typically have Ingical relationship, presenting a flat
name space. As a result, general-purpose file systems, wataclsually optimized for workloads
exhibiting relatively small variable-sized files, relaiy small hierarchical directories, and some
degree of locality, do not perform particularly well undeistworkload.

3. Assumptions and Design Principles

Our OBFS is designed to be the storage manager on each OSIt a$ pdarge-scale distributed
object-based storage system [13], which is currently bdewgloped at the University of California,
Santa Cruz, Storage System Research Center (SSRC). Out-bhged storage system has three
major components, the Metadata Server Cluster (MDSC), lieatGnterface (Cl), and the Storage
Managers (SMs). File system functionality is partitionedoag these components. The MDSC
is in charge of file and directory management, authentioaéiod protection, distributing work-
load among OSDs, and providing redundancy and failure exgovi he ClI, running on the client
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machines, provides the file system API to the applicatiotwsok running on the client nodes, com-
municates with the MDSC and SMs, and manages a local fileraysaehe. The SMs, running on
the OSDs, provide object storage and manage local requesdigliing and allocation.

The operation of the storage system is as follows: Applicesioftware running on client machines
make file system requests to the Cls on those machines. Th&pocess the requests and query
the MDSC to open the files and get information used to determimich objects comprise the files.
The Cls then contact the appropriate SMs to access the sltfettcontain the requested data, and
provide that data to the applications.

In our system, objects are limited by the stripe unit sizehaf $ystem. Thus, in contrast to a
file, whose size may vary from bytes to terabytes, the sizewee of an object is much smaller.

Moreover, the delayed writes in the file cache at the cliesh svill absorb most small writes and

result in relatively large object reads and writes. We pevé more detailed analysis of the object
workload characteristics in Section 4.

To enable parallel I/O, files are striped into fixed size olsjend spread across different OSDs.
The specific OSDs are selected based on the overall workligaibdtion intended to avoid "hot
spots” and increase potential parallelism [13]. From tleewaoint of a single OSD, incoming object
accesses will be relatively random. Thus inter-objectlicwill be insignificant.

Most file systems cache writes for fast response, to coalesagy small writes into fewer larger

ones, and to allow the file system to exploit locality of refeze within the request stream. In
object-based storage systems, most asynchronous wrltéksaxefore be cached by the client. As a
result, almost all of the writes to the OSDs will be synchrnamoT hus, the SMs should probably not
cache incoming writes in the OSDs. Furthermore, becausealbgcontiguous data is distributed

across many objects in many different OSDs, there is noitgaafl reference to be leveraged by
caching writes of different objects.

Another caching-related concern arises due to the blagkabture of the OSDs. Because the OSDs
provide a very high-level interface to the data, caching cause the storage system as a whole to
believe that the data has been saved, while data has adbealfylost due to power failure or other
hardware failures. While this may be addressable, we haveduvessed it in this version of OBFS.

On each OSD there is a complete lack of information aboutiogiships between objects. Thus
a flat name space is used to manage the objects on each OSisBdumdreds of thousands
of objects might coexist on a single OSD, efficient searchmthis flat name space is a primary
requirement for the SMs.

As mentioned above, most of the incoming write requestsheilbynchronous. A client expects the
data to be on the permanent storage when it commits its wrias requires the OSDs to flush
the objects to permanent storage before committing thenis dlko means the metadata of those
objects should also be kept safely. In effect, OSDs in oHjased storage systems are like disks in
traditional storage systems, and file systems expect disksttially store committed write requests
rather than caching them.
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Figure 1. Data distribution in a large high-performance dis tributed storage system (data
courtesy of LLNL)

4. Workload Characteristics

Very large-scale distributed file systems may exhibit véffgcent performance characteristics than
general-purpose file systems. The total volume of a largeeddistributed file system may range
from several terabytes to several petabytes, orders of im@gnarger than typical general-purpose
file systems. The average file size in such a distributed fi#gesy may also be much larger than that
of current general-purpose file systems. Although our inteto develop a flexible and general file
system applicable in many different situations, one of @ifgymance goals is to handle workloads
encountered in high-performance computing environmeris tens or hundreds of thousands of
processors simultaneously accessing many files in mangtdiies, many files in a single directory,
or even a single file. These environments place extremely dggnands on the storage system.

Figure 1 shows the data distribution across files in a higfepmance distributed file system from
Lawrence Livermore National Laboratory (LLNL). Figure L&hows the file size distribution for
the more than 1.5 million files in this system. Most of the fdes larger than 4 KB and the majority
of all files are distributed between 32 KB and 8 MB. Those fited ire smaller than 4 KB (a typical
block size for a general-purpose file system) only accourd ficery small portion of the total files.
However, almost all of the disk space is occupied by filesdatgan 4 MB and the majority of all

bytes are in files between 4 MB and 1 GB, as shown in Figure I[be total number of bytes

in files smaller than 256 KB is insignificant. Though the filagger than 1 GB are only a small
percentage of the files, the total number of bytes in such diteeunt for more than 15% of the
bytes in the system.

The file access pattern of such systems is also different fhainof a typical general-purpose file
system. In the LLNL workload, most data transferred betwibenprocessors and the file system
are in several megabyte chunks. Most files are accessedaimaalsly by hundreds of processors.
and instead of flushing dirty data directly back to the sterdgvice, each processor caches the data
in its local memory and only writes the data once the bufféulis

Object-based storage may be used for smaller file systemelas Systems like those traced by
Roselli, et al. [20] have many small files; in the systems they studied, 6%-60the bytes trans-
ferred were from files smaller than 512 KB. Clearly, an OSD $¥stem must also be able to
efficiently handle workloads composed primarily of smaljemits.



For the OSDs to achieve the high throughput required of tls¢éeay and to fully take advantage
of the object-based storage model, our system stripes fike ataoss the OSDs. This is a very
compelling choice, analogous to that of earlier systemé siscSwift [6] and Zebra [9], and we
believe that this will be an architecture of choice in laspale object-based storage systems. In
such systems, each object stored on an OSD will be a stripéaunrpartial stripe unit) of data from
afile.

The system stripe unit size depends on the design requitsroéithe individual system. Stripe
units that are too small will decrease the throughput of €a8lb while stripe units that are too
large will decrease the potential parallelism of each filesss#ming a stripe unit size of 512 KB,
large files will be divided into several 512 KB objects andsfigenaller than 512 KB will be stored
in a single object. Consequently, no object in the systerhavigr exceed the system stripe unit
size. In the LLNL workload we estimate that about 85% of ajects will be 512 KB and 15% of
all objects will be smaller than 512 KB. We will refer to objethat are the same size as the system
stripe unit size akarge objectsand the rest asmall objects Workstation workloads [20] will likely
have more small objects and fewer large objects.

Because the object-based storage system is expected &l sheeobjects evenly across all of the
OSD devices, the object size distribution in the workloa@ sfngle OSD device will be the same
as that of the larger storage system. Thus, a single OSDalevider the LLNL workload should
expect that 85% of incoming objects are large objects andetsteare small objects. Since files are
distributed across many OSDs and directory hierarchiesnamaged above the OSD level, there
is no inter-object locality that can be exploited in the OSD&e workload of OSDs in this type
of system will be dominated by large fixed-size objects exinilp no inter-object locality. Under
workstation workloads, in contrast, the object size distibn will be closer to 25% large objects
and 75% small objects. An OSD file system should be able tolbaaither type of workload.

5. Design and Implementation

As described in Section 4, the expected workload of our OSBsrinposed of many objects whose
sizes range from a few bytes up to the file system stripe upd. siTherefore, OBFS needs to
optimize large object performance to provide substamtiaijher overall throughput, but without
overcommitting resources to small objects. Simply indreathe file system block size can provide
the throughput needed for large objects, but at the cost efeslastorage space due to internal
fragmentation for small objects. For the LLNL workload, mdhan 10% of the available storage
space would be wasted if 512 KB blocks are used, while less 1B&of the space would be lost if
4 KB blocks are used. In a 2 PB storage system, this 9% diféereapresents about 18 TB. The
situation is even worse for a workstation file system, whér2 KB blocks would waste more than
50% of the space in such a system.

To use large blocks without wasting space, small objects ineistored in a more efficient way.
OBFS therefore employs multiple block sizes and usgsons analogous to cylinder groups in
FFS [15], to keep blocks of the same size together. Thus, @hd/write performance of large
objects can be greatly improved by using very large blocksleasmall objects can be efficiently
stored using small blocks.

Another important feature of OBFS is the use of a flat nameespas the low-level storage manager
in an object-based distributed file system, OBFS has nonmtion about the logical relationship
among objects. No directory information is available andiseful locality information is likely to
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be available. Note that in a small system where an OSD may deMdral objects of a file, some
locality information may available, but this does not extém multiple files in the same directory or
other tidbits that are useful to general-purpose file systéany general-purpose file systems such
as Linux Ext2 are extremely inefficient in managing very éadirectories due to the fact that they
do linear search, resulting @(n) performance on simple directory operations. To avoid tABFS
uses hash tables (like Ext3 [28]) to organize the objectsaahieve much higher performance on
directory operations.

5.1. Regions and Variable-Size Blocks

The user-level implementation of OBFS separates the rawimlis regions. As shown in Figure 2,
regions are located in fixed positions on the disk and havfeumisizes. All of the blocks in a region
have the same size, but the block sizes in different regiansba different. The block size in a free
region is undefined until that region is initialized. Reg@re initialized when there are insufficient
free blocks in any initialized region to satisfy a write regti In this case, OBFS allocates a free
region and initializes all of its blocks to the desired blaike. When all of the blocks in a used
region are freed, OBFS returns the region to the free redgtn |

Although our region policy supports as many different bleties as there are regions, too many
different block sizes will make space allocation and dataagament excessively complicated.
In our current implementation, OBFS uses two block sizesallsand large. Small blocks are
4 KB, the logical block size in Linux, and large blocks are KR, the system stripe unit size and
twice the block size of GPFS (256 KB). Those regions thataiantarge blocks are calleldrge
block regionsand those regions that contain small blocks are caltadll block regions With this
strategy, large objects can be laid out contiguously onidisksingle large block. The throughput of
large objects is greatly improved by the reduction in semlet@nd reduced metadata operations that
are inherent in such a design. Only one disk seek is incunugiglithe transfer of a large object.
OBFS eliminates additional operations on metadata by remgahe need for indirect blocks for
large objects. Dividing the file system into regions alsaucs the size of other FS data structures
such as free block lists or maps and thus make the operatiotm®se data structures more efficient.

This scheme reduces file system fragmentation, avoids esgsary wasted space and more effec-
tively uses the available disk bandwidth. By separatinddtge blocks in different regions from the
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small blocks, OBFS can reserve contiguous space for largetsband prevent small objects from
using too much space. Region fragmentation will only becarpeoblem in the rare case that the
ratio of large to small objects changes significantly dutimg lifetime of the system, as described
in Section 5.6.

Higher throughput in OBFS does not come at the cost of wassédsgace. Internal fragmentation
in OBFS is no worse than in a general-purpose Unix file systenalise the small block size in
OBFS is the same as the block size in most Unix file systemgellaiocks do not waste much space
because they are only used for objects that will fill or neéillghe blocks. The only wasted space
will be due to objects stored in large blocks that are nearly,not quite, as large as a stripe unit.
This can be limited with a suitable size threshold for sabgcthe block size to use for an object.
One minor complication can occur if an object starts small #xen grows past this threshold. Our
current implementation recopies the object into a largelblehen this occurs. Although this sounds
expensive, it will happen rarely enough (due to aggressiite woalescing in the client caches) that
it does not have a significant impact on system performanuoe ttee inter-region locality of the
small blocks makes this a very efficient operation.

5.2. Object Metadata

Object metadata, referred as @mode is used to track the status of each object. Onodes are preal-
located in fixed positions at the head of small block regisimjlar to the way inodes are placed in
cylinder groups in FFS [15]. In large block regions, showifrigure 3, onodes are packed together
with the data block on the disk, similar to embedded inodgsT[fis allows for very low overhead
metadata updates as the metadata can be written with thespornding data block.

Figure 3 shows that each onode has a unique 32-bit identiffesisting of two parts: a 16 bit region
identifier and a 16 bit in-region object identifier. If a regioccupies 256 MB on disk, this scheme
will support OSDs of up to 16 TB, and larger OSDs are possilith larger regions. To locate
a desired object, OBFS first finds the region using the reglentifier and then uses the in-region
object identifier to index the onode. This is particularlieefive for large objects because the object
index points directly to the onode and the object data, whrelhstored contiguously.

In the current implementation, onodes for both large andlisoigects are 512 bytes, allowing
OBFS to avoid using indirect blocks entirely. The maximumesdf a small object will always
be less than the stripe unit size, which is 512 KB in our desB@cause the OBFS layout policy
assigns objects to a single region, we can use the relatdressito track the blocks. Assuming the



region size is 256 MB and the small block size is 4 KB, theré glfewer than 2 small blocks in

a region, allowing a two-byte addresses to index all of tleeld in the region. In the worse case,
a small object will be a little smaller than 512 KB, requirihig8 data blocks. Thus, the maximum
amount of space that may be needed to index the small blocks diject is 256 bytes, which can
easily fit into a 512 byte onode.

5.3. Object Lookup

Given an object identifier, we need to retrieve the objecanfithe disk. In a hierarchical name
space, data lookup is implemented by following the pathaated with the object to the destination
directory and searching (often linearly) for the objecthattdirectory. In a flat name space, linear
search is prohibitively expensive, so OBFS uses a hash, tdtd®bject Lookup Tabl€OLT), to
manage the mapping between the object identifier and thesadedtifier. Each valid object has an
entry in the OLT that records the object identifier and theesponding onode identifier. The size
of the OLT is proportional to the number of objects in the O8h 20,000 objects residing in an
OSD, the OLT requires 233 KB. For efficiency, the OLT is load®d main memory and updated
asynchronously.

Each region has a region head which stores information aheutgion, including pointers to the
free block bitmap and the free onode bitmap. All of the redieads are linked into the Region
Head List (RHL). On an 80 GB disk, the RHL occupies 8 MB of dipkee. Like the OLT, the RHL

is loaded into memory and updated asynchronously. Afteaioioty an onode identifier, OBFS
searches the RHL using the upper 16 bits of the onode iderttfigbtain the corresponding region
type. If the onode belongs to a large block region, the olgjatd address can be directly calculated.
Otherwise, OBFS searches the in-memory onode cache to fihdribde. A disk copy of the onode
will be loaded into the onode cache if the search fails.

5.4. Disk Layout Policy

The disk layout policy of OBFS is quite simple. For each inamrequest, OBFS first decides
what type of block(s) the object should use. If the object $&zabove the utilization threshold of
the large blocks, a large block is assigned to the objectratise, it uses small blocks.

For those objects that use large blocks, OBFS only needs datim nearest large-block region
that contains a free block, mark it as used, and write thecolipethat block. For objects that use
small blocks, an FFS-like allocation policy is employed. EBsearches the active region list to
find the nearest region that has enough free small block$éintoming object. After identifying
a region with sufficient space, OBFS tries to find a contiguclusnk of free blocks that is large
enough for the incoming object. If such a chunk of blocks isav@ilable, the largest contiguous
chunk of blocks in that region is assigned to the object. Theumt of space allocated in this step
is subtracted from the object size, and the process is regpeatil the entire object is stored within
the region. If no region has the desired number and type efitecks, the nearest free region will
be initialized and put into the active region list. The indogiobject will then be allocated to this
new region.

The OBFS data allocation policy guarantees that each oftige lobjects is allocated contiguously
and each of the small objects is allocated in a single reghbm.extra seeks are needed during a
large object transfer and only short seeks are needed taoreadte the small objects, no matter
how long the file system has been running. Compared with argleperpose file system, OBFS
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is much less fragmented after running for a long time, mining performance degradation as the
system ages.

5.5. Reliability and Integrity

As mentioned in section 5.3, OBFS asynchronously updatpsriiant data structures such as the
OLT and the RHL to achieve better performance. In order taantae system reliability, OBFS
updates some important information in the onodes synclusino If the system crashes, OBFS
will scan all of the onodes on the disk to rebuild the OLT anel RHL. For each object, the object
identifier and the region identifier are used to assemble aamény in the OLT. The block addresses
for each object are then used to rebuild each region fre&kliddmap. Because the onodes are
synchronously updated, we can eventually rebuild the Old RHL and restore the system. As
mentioned above, OBFS updates metadata either withoutteandigk seek or with one short disk
seek. In so doing, it keeps the file system reliable and miaistgstem integrity with very little
overhead.

5.6. Region Cleaning

Since OBFS uses regions to organize different types of Blogke potential problem is that there
will be no free regions and no free space in regions of therei@diype. Unlike LFS [21], which
must clean segments on a regular basis, OBFSnewWerneed cleaning unless the ratio between
large and small objects changes significantly over time o@&P which has been nearly full. This
can only happen when the object size characteristic of thklead changes significantly when the
file system is near its capacity. We do not expect this to happey often in practice. However, if it
happens, it can result in many full regions of one type, mareuwutilized regions of the other type,
and no free regions. In this situation, the cleaner can soaléhe data in the underutilized regions
and create free regions which can be used for regions ofedkfsipe.

If all of the regions are highly utilized, cleaning will notelp much: the disk is simply full. Low
utilization regions can only be produced when many objetsaaitten to disk and then deleted,
leaving “holes” in regions. However, unlike in LFS, thesddsoare reused for new objects without
the need for cleaning. The only time cleaning is needed iswatleof the holes are in the wrong
kind of region e.g., the holes are in small block regions, @BFS is trying to write a large block.
This situation only occurs when the ratio between large abjand small objects changes. In our
experiments, we only observed the need for the cleaner wieeartificially changed the workload
ratios on a nearly full disk.

Because cleaning is rarely, if ever, necessary, it will Faegligible impact on OBFS performance.
However, cleaning can be used to improve file system perfocmay defragmenting small-block
regions to keep blocks of individual objects together. Tnscess would copy all used blocks of
a region to a free region on the disk, sorting the blocks asétsg Because this would occur on a
region-by-region basis and because a new region will aMsays enough free space for all of the
blocks in an old region, it would be trivial to implement. Tégstem need never do this, however.

6. OBFS Performance

We compared the performance of OBFS to that of Linux Ext23Extd XFS. Ext2 is a widely-used
general-purpose file system. Ext3 is used by Lustre for bsjecage and has the same disk layout
as Ext2 but adds a journal for reliability. XFS is a modernhRggrformance general-purpose file
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Capacity 80 GB
Controller Ultra ATA/133
Track-to-track seek 0.8 ms
Average seek 8.5 mg
Rotation speed 7200 RPM
Sustained transfer rat@4.2—-44.4 MB/s

Table 1. Specifications of the Maxtor D740X-6L disk used in th e experiments

system that uses B-trees and extent-based allocation.e\ikitR, Ext3, and XFS run as in-kernel
file systems, the version of OBFS used in these experimeatassr-level file system. An in-kernel
implementation of OBFS would take advantage of the verycéffe caching provided by the Linux
kernel, but our user-level implementation cannot. Thusyder to allow for a fair comparison, we
executed the following experiments with the system buffarthe bypassed: all of the file systems
were mounted using the “-o sync” parameter, which forcedsttstem buffer cache to use a write-
through policy. The results generated evaluates disk Igyolicies of different file systems. With
caching enabled, all three file systems will achieve higleefopmance. We expect the performance
change of OBFS to be comparable to those of XFS, Ext2, and Ext3

6.1. Experimental Setup

All of the experiments were executed on a PC with a 1 GHZ PentiuCPU and 512 MB of RAM,
running Red Hat Linux, kernel version 2.4.0. To examine tgggmance of the file systems with
minimal impact from other operating system activities, veelidated an 80 GB Maxtor D740X-6L
disk (see Table 1) to the experiments. This disk was dividemmultiple 8 GB patrtitions. The first
partition was used to install file systems and run experimertie rest were used to backup aged file
system images. We used aged file systems to more accuratauredehe long-term performance
of the file systems. For each experiment, we copied an agedysiem to the first partition of
the disk, unmounted the disk and rebooted Linux to clean tiffetbcache, then mounted the aged
partition to run the benchmarks. We repeated these steps times and took the average of the
performance numbers obtained.

Smith, et al. [25] used file system snapshots and traces to approximapotsible activities in file
systems. No object-based storage system snapshots aetlyuavailable so we used the simplest
approach: generate 200,000 to 300,000 randomly distdbcteate and delete requests and feed
these requests to a new file system. The create/delete rasi@ynamically adjusted based on the
disk usage, which guaranteed that it neither filled nor emdgtie available disk space.

Because our user-level implementation of OBFS bypassebuffier cache, all three file systems
were forced to use synchronous file I/O to allow for a fair cangopn of the performance. Ext2
uses asynchronous metadata I/O to achieve high throughentifesynchronous file I/O is used, so
we mounted the partitions in synchronous mode to force tlweatvtays flush the data in the buffer
cache back to disk.

The benchmarks we used consisted of semi-random sequemnuigiec requests whose character-
istics were derived from the LLNL workload described in $@mt#. On average, 80% of all objects
were large objects (512 KB). The rest were small objects whgize was uniformly distributed

between 1 KB and 512 KB. To examine the performance of thewarfile system, we generated
two kinds of benchmarks: microbenchmarks and macrobendsm®ur microbenchmarks each
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Benchmark | Benchmark Il
# of ops(total size) # of ops(total size)
Reads 16854 (7.4GB) 4049 (1.8GB)
Writes 4577 (2.0GB) 8969 (4.0GB)
Rewrites 4214 (1.8GB) 8531 (3.8GB)
Deletes 4356 (1.9GB) 8147 (3.9GB)
Sum 30001 (13.1GB) 29696 (12.5GB)

Table 2. Benchmark parameters
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Figure 4. Performance on a workload of mixed-size objects.

consisted of 10,000 requests of a single request type—wedd, or rewrite—and allowed us to ex-
amine the performance of the file systems on that request @pemacrobenchmarks consisted of
synthetic workloads composed of create, read, rewritedatate operations in ratios determined by
the workload mentioned above. These allowed us to exam@pdiformance of the file systems on
the expected workload. We used two different macrobencksn&enchmark | and Benchmark II,
whose parameters are listed in table 2. Benchmark | is airgedsive workload in which reads
account for 56% of all requests and the total size of the reqdests is around 7.4 GB. The writes,
rewrites, and deletes account for 15.3%, 14.0%, and 14.5%eakquests. In Benchmark Il, reads
account for 13.6% of the requests and writes, rewrites, afetel account for 29.8%, 28.4%, and
27.1%.

6.2. Results

Figure 4 shows the performance of Ext2, Ext3, XFS, and OBF& mixed workload consisting of
80% large objects and 20% small objéctas seen in Figure 4(b), OBFS exhibits very good write
performance, almost twice that of Ext2 and Ext3 and 10% to Bé%ter than XFS. The large block
scheme of OBFS contributes a lot to the strong write perfomaa With large blocks, contiguous
space has been reserved for the large objects, allowing @gects to be written with only one
disk seek. Because OBFS uses regions to organize large alidbdmaks, limiting the amount of
external fragmentation, the performance of OBFS remaimgl g disk usage increases. At the
same time, the performance of Ext2 and Ext3 drops significaluie to the insufficient availability
of large contiguous regions, as seen in Figures 4(b), 5(i), &b).

INote that in all of the microbenchmark graphs write perfano®is displayed starting at 0% disk utilization but
because reads and rewrites cannot be done on an empty disloge to start those experiments at 25% utilization.
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Figure 5. Performance on a workload of large objects.
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Figure 6. Performance on a workload of small objects.

OBFS outperforms Ext2 and Ext3 by nearly 3 times, but is ali®d slower than XFS, as Fig-
ure 4(a) shows. We suspect that a more optimized implementat XFS contributes to its slightly
better read performance. As seen in Figure 4(c), the rewdatéormance of OBFS beats that of
Ext2 and Ext3 by about 3 times, and beats XFS by about 20-30%.pdor performance of Ext2
and Ext3 in both read and rewrite can be explained by theicafion policies and small blocks.
XFS uses extents rather than blocks to organize files, sofifestan get contiguous space. This
results in excellent performance in both read and write. &él@s;, OBFS still shows slightly better
performance on object rewrite.

Figure 5 shows the performance of the four file systems orelalgects and Figure 6 shows the
performance on small objects. Figure 5 is almost the saméaseH4 because large objects domi-
nate the mixed workload of Figure 4. In Figure 6, we see thaESBieets the performance of XFS,
almost triples the performance of Ext2 and Ext3 when doirgiseand rewrites, and exceeds the
performance of all three when doing creates.

The benchmark results are shown in Figures 7 and 8. As descabove, Benchmark | is a read-
intensive workload and Benchmark Il is a write-intensiverkimad. Notice that in our benchmarks,
XFS beats both Ext2 and Ext3 by a large margin in all cases;difiers from other benchmark

studies [5] that found that Ext2 and XFS have comparableopednce. There are three factors
in our experiments that favor XFS over Ext2 and Ext3. First, lmenchmarks include many large
objects, which benefit from XFS extent-based allocatiopeeiglly when disk utilization is high.

Second, while other benchmarks used fresh disks, our bear&smse disks subjected to long-term
aging [25] to reflect more realistic scenarios. After agitiig, performance of Ext2 and Ext3 drops
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Figure 7. Performance under Benchmark 1.

dramatically after aging due to disk fragmentation, whileES<Xmaintains good performance because
of its extent-based allocation policy. Third, in our objbetsed benchmarks, we assume a flat name
space in which all objects are allocated in the root dirgciorall file systems. The linear search
of directories used by Ext2 and Ext3 performs poorly whemimber of objects scales to tens of
thousands. XFS uses B+trees to store its directories, iagsfaist name lookup even in very large
directories.

Ext2 and Ext3 outperform OBFS when the disk is nearly empgtghown in Figures 7(a) and 8(a).
This is due in part to the significant likelihood that an objedl be in the buffer cache because
of the low number of objects that exist in a nearly empty diskr example, an 8 GB partition at
10% utilization has only 800 MB of data. With 512 MB of main matyy most objects will be
in memory and Linux Ext2, Ext3 and XFS reads will proceed atnmowey speeds while our user-
level implementation of OBFS gains no advantage from thé&ebafche and must therefore always
access the disk. However, as disk usage increases, thtd sffeninimized and Ext2 and Ext3
read performance decreases rapidly while OBFS performameains essentially constant. The net
result is that OBFS read performance is two or three timesah&xt2 and Ext3. OBFS is still
about 10% slower than XFS on reads, similar to the resulis fearlier read microbenchmarks.
OBFS outperforms all three other file systems on writes, hewes Figures 7(b) and 8(b) show.
For writes, OBFS is 30—-40% faster than XFS and 2-3 timesrfédsém Ext3. Overall, OBFS and
XFS are within 10% of each other on the two macrobenchmaritb,ome file system winning each
benchmark. OBFS clearly beats both Ext2 and Ext3, howeuaning three times faster on both
benchmarks.

Although our macrobenchmarks focused on large-objecopadnce, Figure 6 shows that OBFS
meets or exceeds the performance of the other file systemswarkdoad consisting entirely of
small objects, those less than 512 KB. OBFS doubles or $riffle performance of Ext2 and Ext3
and matches that of XFS on reads and rewrites and exceedsiidyt 25% on writes. As OBFS
also does well on large objects, we conclude that it is as sweted to general-purpose object-
based storage system workloads as it is to terascale hifiiapance object-based storage system
workloads.

7. Related Work

Many other file systems have been proposed for storing dathsén however, nearly all of them
have been optimized for storing files rather than object& Bérkeley Fast File System (FFS) [15]
and related file systems such as Ext2 and Ext3 [28] are widsdy woday. They all try to store
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Figure 8. Performance under Benchmark 1.

file data contiguously irylinder groups—regions with thousands of contiguous disk blocks. This
strategy can lead to fragmentation so techniques such astsxnd clustering [16, 24] are used
to group blocks together to decrease seek time. Analysis32Bhas shown that clustering can
improve performance by a factor of two or three, but it is difft to find contiguous blocks for
clustered allocation in aged file systems.

Log-structured file systems [21] group data by optimizingfite system for writes rather than reads,
writing data and metadata to segments of the disk as it arrivhis works well if files are written

in their entirety, but can suffer on an active file system heediles can be interleaved, scattering a
file's data among many segments. In addition, log-strudttite systems require cleaning, which
can reduce overall performance [2].

XFS [19, 27] is a highly optimized file system that uses extemid B-trees to provide high perfor-
mance. This performance comes at a cost: the file system &g ¢nom 50,000 to nearly 200,000
lines of code, making it potentially less reliable and lettsaative for commodity storage devices
because such devices cannot afford data corruption duesteyitem errors. In addition, porting
such a file system is a major effort [19].

Gibson,et al. have proposed network-attached storage devices [8], leut $iftle time describing
the internal data layout of such devices. WAFL [10], a fileteys for network-attached storage
servers that can write data and metadata to any free logaiayptimized for huge numbers of
small files distributed over many centrally-controlledkdis

Many scalable storage systems such as GPFS [22], GFS [28], [P2], Swift [6], RAMA [17],
Slice [1] and Zebra [9] stripe files across individual staragrvers. These designs are most similar
to the file systems that will use OSDs for data storage; Skpéaitly discusses the use of OSDs to
store data [1]. In systems such as GFS, clients manage i@kd#ocation, making the system less
scalable. Systems such as Zebra, Slice, Petal, and RAMA lication to the individual storage
servers, reducing the bottlenecks; such file systems canadkantage of our file system running
on an OSD. In GPFS, allocation is done in large blocks, algvthe file system to guarantee few
disk seeks, but resulting in very low storage utilizationdmall files.

Existing file systems must do more than allocate data. Thest mgo manage large amounts of
metadata and directory information. Most systems do noedata contiguously with metadata,
decreasing performance because of the need for multiptesvriog-structured file systems and
embedded inodes [7] store metadata and data contiguouslgjrag this problem, though they still
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suffer from the need to update a directory tree correctlghmeues such as logging [29] and soft
updates [14] can reduce the penalty associated with matadaes, but cannot eliminate it.

8. Conclusions

Object-based storage systems are a promising architefciutarge-scale high-performance dis-
tributed storage systems. By simplifying and distributthg storage management problem, they
provide both performance and scalability. Through stashddniping, replication, and parity tech-
niques they can also provide high availability and relibiHowever, the workload characteristics
observed by OSDs will be quite different from those of geheuapose file systems in terms of size
distributions, locality of reference, and other chardstis.

To address the needs of such systems, we have developed @BEiy,small and highly efficient
file system targeted specifically for the workloads that Wwél seen by these object-based storage
devices. OBFS currently uses two block sizes: small bloaiksghly equivalent to the blocks in
general purpose file systems, and large blocks, equal to #xéwam object size. Blocks are laid
out in regions that contain both the object data and the anfmtethe objects. Free blocks of the
appropriate size are allocated sequentially, with no efftade to enforce locality beyond single-
region object allocation and the collocation of objects tradr onodes.

At present, we have tested OBFS as a user-level file systemexpariments show that the through-
put of OBFS is two to three times that of Linux Ext2 and Extgjamlless of the object size. OBFS
provides slightly lower read performance than Linux XFS,1£6—-40% higher write performance.
At a fraction of the size of XFS—2,000 lines of code versusr &@&000 for XFS—OBFS is both

smaller and more efficient, making it more suitable for cootgembedded implementations. Ulti-
mately, because of its small size and simplicity, we expeat it will also prove to be both more

robust and more maintainable than XFS, Ext2, or Ext3.

Finally, we successfully implemented a kernel-level vargf the OBFS file system in about three
person-weeks. The short implementation time was possdilause of OBFS’s simplicity and very
compact code. At present the performance of our in-kernplementation does not match that of
our user-level implementation because our carefully meddgrge blocks get broken into small
blocks by the Linux buffer management layer, as encounteydtie XFS developers. We intend to
rewrite the buffer management code, as they did, to avosdatuiblem. With this change, we expect
the in-kernel OBFS performance to exceed that of the uset-lmplementation, further solidifying
OBFS’s advantage over general-purpose file systems fonusgect-based storage devices.
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