DISPOSITION OF [1'-¹⁴C]STAVUDINE AFTER ORAL ADMINISTRATION TO HUMANS

Lian Zhou, Sanjeev Kaul, Peggy Liu-Kreyche, Scott B. Tran, Robert R. Espina,¹

Bethanne M. Warrack, Vikram A. Roongta, Ramaswamy A. Iyer

Department of Biotransformation (L. Z., P.LK., W.G.H., R.A.I.), Discovery Medicine and Clinical Pharmacology (S.K.), Chemical Synthesis (S.B.T.) and Discovery Analytical Sciences (R. R. E., B.M.W.), Bristol-Myers Squibb Co., Princeton, New Jersey, 08540, USA

Running Title:	Disposition of Stavudine in Humans				
Corresponding Author	or : Lian Zhou				
	Bristol Myers Squibb Co.				
	P.O. Box 4000				
	Princeton, NJ 088543				
	Tel: (609) 252 4037				
	Fax: (609) 252 6802				
	lian.zhou@bms.com				
Number of Text Pages: 4	2				
Number of Tables: 5					
Number of Schemes: 2					
Number of Figures: 5					
Number of References:1	8				
Number of Words in the Abstract: 247					
Number of Words in the Introduction: 610					
Number of Words in the Discussion: 1489					

ABBREVIATIONS: HIV, human immunodeficiency virus; ADME, absorption, distribution, metabolism and

elimination; NADPH, Reduced nicotinamide adenine dinucleotide phosphate; GSH, glutathione; NAC, *N*-acetyl-L-cysteine; TD, tissue distribution; TRA, total radioactivity; LSC, liquid scintillation counting; LC/MSⁿ, liquid chromatography with tandem mass spectrometry; NMR, nuclear magnetic resonance; TMS, tetramethylsilane; TOCSY, total correlation spectroscopy; RPM, revolutions per minute; DPM, disintegrations per minute; Cmax, maximum observed concentration; CV, coefficient of variation; Tmax, time of maximum observed concentration; AUC(INF), area under the plasma concentration-time curve from time zero extrapolated to infinite time; T-HALF, terminal elimination half life; %UR, percent of administered dose excreted in urine; CLR, renal clearance; CLT/F, oral clearance; %FE, percent of total administered dose excreted in feces; LTQ, linear ion trap; FTICR, Fourier transform ion cyclotron resonance.

ABSTRACT:

DMD #30239

The disposition of stavudine (d4T), a potent and orally active nucleoside reverse transcriptase inhibitor, was investigated in six healthy human subjects. Prior to dosing humans with [1'-¹⁴C]stavudine, a tissue distribution study was performed in Long Evans rats. Results from this study showed no accumulation of radioactivity in any of the tissues studied, indicating that the position of the ¹⁴C-label on the molecule was appropriate for the human study. After a single 80 mg (100 μ Ci) oral dose of [1'-¹⁴C]stavudine, approximately 95% of the radioactive dose was excreted in urine with an elimination half life of 2.35 h. Fecal excretion was limited, accounting for only 3% of the dose. Unchanged stavudine was the major drug-related component in plasma [61% of AUC(INF) of the total plasma radioactivity] and urine (67% of dose) The remaining radioactivity was associated with minor metabolites including mono and bis-oxidized stavudine, glucuronide conjugates of stavudine and its oxidized metabolite, and an N-acetylcysteine conjugate of the ribose (M4) after glycosidic cleavage. Formation of metabolite M4 was demonstrated in human liver microsomes incubated with 2',3'-didehydrodideoxyribose, the sugar base of stavudine, in the presence of N-acetylcysteine. Additionally, following similar microsomal incubations fortified with glutathione, two glutathione conjugates, 3'-GS-deoxyribose and 1'-keto-2',3'-dideoxy-3'-GS-ribose, were observed. This suggests that 2',3'-didehydrodideoxyribose underwent CYP-mediated oxidation leading to an epoxide intermediate, 2',3'-ribose epoxide, followed by glutathione addition. In conclusion, absorption and elimination of stavudine were rapid and complete after oral dosing with urinary excretion of unchanged drug as the predominant route of elimination in humans.

Introduction

Stavudine (2',3'-didehydro-3'-deoxythymidine; Zerit[®]; d4T), a synthetic thymidine nucleoside analog, is a potent, selective and orally active antiretroviral agent. Since its introduction to market in 1994, stavudine has been widely used in combination antiretroviral therapy for the treatment of human immunodeficiency virus (HIV) infections in adults and children (Lea and Faulds, 1996; Siegfried et al., 2006). The mechanism of action of stavudine involves sequential phosphorylation by cellular kinases to its active metabolite, stavudine-5'-triphosphate, which inhibits the HIV-1 reverse transcriptase enzyme, and causes DNA chain termination by incorporating into viral DNA (Huang et al., 1992).

A number of in vitro and in vivo studies have been conducted with ¹⁴C-labeled stavudine to understand its disposition and metabolic fate. In vitro biotransformation studies with stavudine in rat hepatocytes and monkey liver S9 fractions revealed that the majority of stavudine remained unchanged with limited stavudine converted to thymine. When stavudine was incubated with human liver slices for six hours, 87% of radioactivity was accounted for by unchanged drug, 2% was metabolized to thymine and 7% was associated with unidentified polar compounds (Kaul et al., 1999). These data suggested that stavudine was not metabolized extensively. Disposition studies in mice, rats and monkeys dosed orally with [2-¹⁴C]stavudine, [4-¹⁴C]stavudine or [5-³H]stavudine (all labels on the thymidine moiety) showed that the compound was well absorbed (Russell et al., 1990; Kaul and Dandekar, 1993; Cretton et al., 1993; Kaul et al., 1999). The

recovery of the drug in excreta varied in animals with the majority of the dose recovered in the urine. Fecal excretion was minimal averaging <1.5% of the dose in the animal studies. Furthermore, in rats about 14% of the dose was recovered as ¹⁴CO₂ in expired air (Kaul et al., 1999). In all three species, mice, rats and monkeys, the majority of the radioactivity in plasma, urine and feces was represented by unchanged drug consistent with the in vitro observation of relatively slow biotransformation of stavudine. Since the dose recovery in excreta was low in monkeys (40% in urine, <1.5% in feces), it has been suggested that a considerable portion of stavudine could be metabolized and retained in monkeys. This was based on the fact that thymine and its metabolite, β -aminoisobutyric acid, were detected in the plasma and urine of monkeys and thymine could have been incorporated into endogenous molecules through pathways of purine and pyrimidine metabolism(Cretton et al., 1993). Both the recovery of dose in expired air of rats and the poor recovery in the monkeys suggested that labeling the thymine ring was not ideal for further ADME (absorption, distribution, metabolism and elimination) studies.

The to tal f ate o f s tavudine in cluding m ass balance, r outes o f e xcretion, m etabolic pathways and e xposure to stavudine-related m aterial in c irculation has no t been completely e stablished y et i n humans. T he present s tudy inv estigated the pharmacokinetics and disposition of $[1'-^{14}C]$ stavudine after a single 80 mg (100 μ Ci) oral dose to six healthy human subjects. The decision to label the ribose ring instead of the thymine r ing w as bas ed on t he ani mal dat a de scribed above w here loss of l abel was observed. Prior to conducting the human ADME study, a tis sue distribution (TD) study in L ong-Evans ra ts w as c onducted w ith $[1'-^{14}C]$ stavudine t o en sure t he p rojected

radiation exposure in humans following a 100 μ Ci oral dose is below the safety exposure limit (International Commission on Radiological Protection, 2008). A s part of the rat study, expired air was collected to confirm the metabolic stability of the label. Here we present data from both the TD study in rats and the human ADME study. Also presented are metabolites that arise from metabolism of the ribose ring that could be easily followed because of the label on the ribose ring.

Materials and Methods

Downloaded from dmd.aspetjournals.org at ASPET Journals on April 8, 2016

Chemicals and Biologicals. Stavudine and its internal standard, d₄-stavudine (6-[D]-1-(5-(hydroxymethyl)-2,5-dihydrofuran-2-yl)-5-[CD₃]methylpyrimidine-2,4(1H,3H)dione), were synthesized chemically at Bristol-Myers Squibb Research and Development (Princeton, NJ). [1-¹⁴ClD-ribose (51 mCi/mmol, packaged in water / MeOH (5:1) at concentration 16.7 mCi/ml, radiochemical purity >97%) was purchased from Vitrax Co., Placentia, CA. Formic acid and ammonium acetate were purchased from J.T. Baker. Phillipsburg, NJ. Nicotinamide adenine dinucleotide phosphate sodium (NADPH), Glutathione (GSH) and N-acetyl-L-cysteine (NAC) were purchased from Sigma Chemical Co., St. Louis, MO. Carbo-Sorb E ¹⁴CO₂ trapping solution, Hionic Fluor and Permafluor E^+ liquid scintillation cocktail were obtained from PerkinElmer Life Sciences, Inc., Boston, MA. Ecolite[™] liquid scintillation cocktail was purchased from ICN Biomedicals, Inc., Costa Mesa, CA. Deionized water was prepared with a Milli-O plus ultrapure water system (Millipore Corp, Billerica, MA). Pooled human liver microsomes were purchased from Gentest Co. Woburn, MA. All other chemicals used were reagent grade or better.

Synthesis of [1'-¹⁴C]stavudine. [1'-¹⁴C]stavudine was synthesized from its ¹⁴C-labeled precursor [1-¹⁴C]D-ribose based on a synthetic procedure reported by Discordia (Discordia RP, 1996). The synthesis of [1'-¹⁴C]stavudine was accomplished in ten chemical steps in a total yield of 20.5% with specific activity of 15.53 μ Ci/mg, chemical purity of 99.3%, and radiochemical purity of 99.6%.

DMD #30239 Acidic Hydrolysis of [1'-¹⁴C]stavudine. Hydrochloric acid solution (9% w/w) was prepared by mixing one volume of hydrochloric acid (approximately 36% w/w) with three volumes of water. Portions (1 ml each) of [1'-¹⁴C]stavudine methanol stock (15.6 μ Ci/ml) were transferred to a 5 ml glass tube and dried under a stream of N₂ gas. Hydrolysis reactions were started by adding 1 ml of 9% hydrochloric acid into glass tubes. The glass tubes were kept in a shaking water bath at 90°C for 2 h. The reaction mixtures were evaporated to dryness on a Savant Speed-Vac (Savant Instruments Inc., Holbrook, NY) at room temperature. The residue was suspended in 100 μ l of 100 mM phosphate buffer (pH 7.4) and kept at -20°C until incubated with human liver microsomes. The reaction was monitored by LC/MS and LC/radioactivity detection. About 70% of [1'-¹⁴C]stavudine was hydrolyzed to [1'-¹⁴C]2',3'-didehydrodideoxyribose after 2 h incubation. No further purification steps were performed on the final reaction mixtures. [1'-¹⁴C]2',3'-Didehydrodideoxyribose coexisted with its byproduct thymine and its precursor [1'-¹⁴C]stavudine.

Incubation with Human Liver Microsomes. Human liver microsomes were incubated with a substrate mixture of $[1'-^{14}C]$ stavudine, $[1'-^{14}C]$ 2',3'-didehydrodideoxyribose and thymine, in presence or absence of either glutathione or *N*-acetyl-L-cysteine. The substrate mixture was generated as described above. The concentration of 2',3'-didehydrodideoxyribose used in the microsomal incubation was approximate 40 μ M. The concentrations of microsomal proteins, NADPH and phosphate buffer were 1 mg/ml, 1 mM and 100 mM, respectively. For incubation performed in the presence of either glutathione or *N*-acetyl-L-cysteine, the concentrations of both the reagents used were 5

mM. The reaction was initiated by addition of NADPH to the incubation mixture. The incubations were carried out in microcentrifuge tubes at 37°C for 30 min in a shaking water bath at a final volume of 200 μ l. Incubations were stopped by cooling on ice following by addition of 200 μ l acetonitrile. The incubation mixture was then centrifuged at 14,000 rpm for 2 min in a Eppendorf model 5417C centrifuge (Eppendorf Company, Hamburg, Germany). The supernatants were removed and evaporated to near dryness under a stream of nitrogen. The residues were reconstituted in 50 μ l of water and kept at -20°C until analysis. Incubations with [1'-¹⁴C]stavudine (40 μ M) or with thymine (40 μ M) were performed in parallel. Incubation in the absence of the microsomal protein and incubation in absence of the cofactor NADPH were used as negative controls.

Tissue Distribution (TD) Study in Rats and Sample Preparation. Experiments were performed according to the Guide for the Care and Use of Laboratory Animals, National Research Council, Institute of Laboratory Animal Resources. The study consisted of eight groups of three male Long-Evans rats. $[1'-^{14}C]$ Stavudine in deionized water was administered at a target dose level of 5 mg/kg (100 µCi/kg) as a single oral gavage dose to overnight-fasted animals. The animals in Group 1 did not receive test article and were euthanized to provide control samples. The remaining animals were euthanized at 1 h (Group 2), 4 h (Group 3), 12 h (Group 4), 24 h (Group 5), 48 h (Group 6), 96 h (Group 7), and 168 h (Group 8) after dosing. Animals in Group 6 were placed in glass metabolism cages and their expired ¹⁴CO₂ was trapped in potassium hydroxide solution (6 M) and collected at 0-6, 6-12, 12-24, and 24-48 h postdose. Blood samples were collected just prior to euthanasia. A portion of blood samples was centrifuged for 10 min

DMD #30239 at 1000 g and 5°C for plasma. After euthanasia of the animals, 21 major tissues and gastrointestinal contents were excised from each animal.

Disposition Study in Humans and Sample Preparation. This was an open-label single-dose study. An 8 ml oral solution of $[1'-^{14}C]$ stavudine (80 mg, 100 µCi) was administered to six healthy male subjects. An 80 mg dose represents the total daily dose used in clinical practice for the treatment of HIV infection. Blood samples were collected for analysis of stavudine and total radioactivity (TRA) determinations at 0, 0.5, 1, 1.5, 2, 4, 6, 8, 12, 24, 36, and 48 h and every 24 h for the subsequent study period (0-168 h). Additional blood samples at 1, 2, 6, 12, 24 and 48 h were collected for biotransformation studies. Plasma was prepared from the blood samples by centrifuging for 10 min at 1000 g and 5°C. Urine was collected at 6 h intervals for the first day and over 24 h intervals until end of study period (0-168 h) for analysis of stavudine, TRA determination, and biotransformation studies. Feces were collected at 24 h intervals over the 168 h study period for TRA determination and biotransformation studies.

Pooled plasma, urine and fecal samples were prepared for biotransformation studies. Plasma samples at 1, 2, 4 and 6 h were pooled by combining equal volumes of individual plasma samples at a given time point. Pooled urine and fecal samples were prepared by combining 1% by weight of urine and fecal homogenates excreted during each collection interval from all six subjects over 168 h post-dose.

Liquid Scintillation Counting (LSC) for TRA Determination. Radioactivity in samples obtained from the rat TD study and the human disposition study was determined

with a Model LS 6500 liquid scintillation counter (Beckman Instruments, Inc., Fullerton, California) or a Tri-Carb 3100TR Liquid scintillation analyzer (Packard Instrument Company, Meriden, CT). Prior to radioanalysis, tissue samples, gastrointestinal content samples and fecal samples were homogenized with water to form a 20% (w/w) homogenate using a Model No. PT 45-80 probe homogenizer (Kinematica Polytron[®], Brinkmann Instruments, Westbury, New York). Aliquots of blood (approximately 0.05 g), homogenized tissue (0.02-0.05 g), of gastrointestinal content (0.2-0.3 g) and homogenized fecal (0.2-0.3 g) samples were placed in cones and pads, dried, and combusted. The combustions were performed using a Model 307 or Model 387 Sample Oxidizer (PerkinElmer Life Sciences, Inc., Boston, MA). The resulting ¹⁴CO₂ was trapped in Carbo-Sorb E. Following the ¹⁴CO₂ trapping, Permafluor E+ scintillation cocktail was added and the mixture was analyzed. Each small organ (adrenal glands, eyes, thyroids, and urinary bladders) that was not homogenized was dried and combusted as a single sample. Aliquots (0.08-0.1 g) of potassium hydroxide solution with trapped expired ¹⁴CO₂ were mixed with deionized water (1 ml) and Hionic Fluor liquid scintillation cocktail (5.5 ml) before LSC analysis for TRA. Aliquots (0.1 g) of individual plasma samples and aliquots (0.2-0.3 g) of individual urine samples were mixed with Emulsifier-Safe scintillation fluid and analyzed by LSC.

All samples were counted for 10 min or the time to reach 5% 2-sigma error. LSC data were automatically corrected for counting efficiency using an external standardization technique and an instrument-stored quench curve generated from a series of sealed

quench standards and reported as disintegrations per minute (DPM). The lower limit of quantitation (LLOQ) of radioactivity, based on a specific activity of 1.25 μ Ci/mg of [1'-¹⁴C]stavudine and detection background of 33.74 dpm, was 120 ng-equivalents (equiv.) of stavudine per gram of sample. The TRA was converted from ng-equiv./g to ng-equiv./ml for plasma and urine samples by considering specific gravity of both biological matrices to be 1. The TRA in feces was expressed in ng-equiv./g unit.

Assays of Stavudine in Plasma and Urine of Humans. Plasma and urine samples from human disposition studies were analyzed for unchanged stavudine by validated LC/MS/MS methods. The internal standard used for both assays was d_4 -stavudine. The samples were prepared by a solid-phase extraction using 3M Empore C18 96-well solidphase extraction plates (Varian Analytical Supplies, Harbor City, CA). The plates were conditioned sequentially with 100 µl of methanol and 200 µl of water. After loaded with 450 µl of the sample/internal standard mixture, the plate was washed with 250 µl of water and the elution was done with 75 µl of 0.1% formic acid in methanol. The eluant was directly analyzed by liquid chromatography/tandem mass spectrometry.

Chromatographic separation was performed on a Shimadzu Class VP[®] system equipped with a system controller (model SCL-10A), two pumps (model LC-10AD) and an autoinjector (model SIL-10AD) (Shimadzu, Kyoto, Japan). A Metasil basic dC18 column (2 x 50 mm, 5 micron, Metachem Technologies, Inc., Torrance, CA) was used with the solvent system consisting of solvent A, 0.1% formic acid in water, and solvent B, methanol. A gradient was employed where solvent A was held at 90% for 0.3 min, then decreased to 30% in the next 1.7 min before re-equilibrium. A Sciex API 3000

(Applied Biosystems/MDS Sciex, Concord, Ontario, Canada) was employed for plasma analysis and An API 365 for urine analysis. Multiple reaction monitoring (MRM) mode under optimized conditions was used for detection of stavudine and internal standard d_4 stavudine. The transition $m/z 225 \rightarrow m/z 127$ was used for stavudine detection and m/z $229 \rightarrow m/z 131$ for d_4 -stavudine detection. The standard curve ranges for the plasma and urine assay were 0.500 to 1000 µg/ml and 5.00 to 1000 µg/ml, respectively. Spiked analytical quality control (QC) samples were analyzed along with the study samples for assessment of the accuracy and precision of each analytical run. The QC samples at low, medium and high concentration range of the standard curve were included in the analytical run in a minimum of two replicates. Deviations from the predicted concentrations for at least two-thirds of the QC samples were within ±15% of their nominal values at all concentration levels, with at least one QC sample at each level meeting the acceptance criteria. The LLOQs of the assay were 0.500 ng/ml in plasma and 5.00 ng/ml in urine.

Pharmacokinetic Analysis. In each sample of rats, the concentration of TRA was expressed as stavudine-equivalents. Blood, plasma, and tissue radioactivity concentration-time data were subjected to noncompartmental pharmacokinetic analysis.

Plasma concentration versus time data for stavudine and TRA from human disposition study were analyzed by a noncompartmental method using Kinetica [™] 4.2 within the eToobox (version 2.2) (Thermo Electron Corporation, Philadelphia, PA). The peak concentration (Cmax), and the time to peak concentration (Tmax), were obtained from

DMD #30239 experimental observations. The terminal log-linear phase of the concentration-time curve was identified by least squares linear regression of at least three data points that yield a maximum G-criteria. The half life of the terminal log-linear phase, T-HALF, was calculated as Ln2/k, where *k* is the absolute value of the slope of the terminal log-linear phase. The area under the concentration-time curve, AUC(INF), was determined by using the mixed log-linear trapezoidal method. Oral clearance (CLT/F) was calculated as the quotient of dose and AUC(INF). Renal clearance (CLR) was estimated by dividing total urinary recovery UR(0-T) by AUC(0-T), where T was the same for both matrices. The binding of stavudine to serum proteins was minor (<10%) (Kaul et al., 1999); therefore, the renal clearance was not corrected for plasma protein binding.

Extraction of Human Plasma, Urine and Fecal Samples for Biotransformation

Analysis. *Plasma.* A 2 ml aliquot of pooled plasma sample was extracted by sequentially adding 2 volumes of methanol/acetonitrile (1:1 v/v) and 120 μ l of 50% trichloroacetic acid. After addition of organic solvent, samples were vortexed to resuspend the solid material and then sonicated for 5 min. The extracted samples were centrifuged at 3,000 rpm for 60 min at 5°C in an Eppendorf model 5810R centrifuge, and the supernatant was removed and saved. The residue was re-extracted two more times as described above. The combined supernatants were evaporated to dryness at room temperature under a stream of nitrogen gas. The dried residue was reconstituted in methanol/water (1:1 v/v). The samples were then centrifuged at 14,000 rpm for 2 min in an Eppendorf model 5417C centrifuge. Aliquots of the supernatants were injected onto the HPLC system for biotransformation profiling or analyzed by liquid scintillation

DMD Fast Forward. Published on January 6, 2010 as DOI: 10.1124/dmd.109.030239 This article has not been copyedited and formatted. The final version may differ from this version.

counting (LSC) for radioactivity recovery. The extraction recovery of radioactivity ranged from 74 to 85%.

Urine. A 2 ml portion of the 0-168 h pooled urine was evaporated to dryness at room temperature under a stream of nitrogen. The dried residue was reconstituted in 100 μ L methanol/water (1:1 v/v). The sample was then centrifuged at 14,000 rpm for 2 min in an Eppendorf model 5417C centrifuge. An aliquot of the supernatants was injected onto the HPLC system for biotransformation profiling. The Pooled 0-24 h urine sample from subject 5 was used for isolation of metabolites M4. It was prepared by combining 50 ml of urine collected at 6, 12 and 24 h from subject 5. The sample was extracted by addition of 2 volumes of acetone/acetonitrile (1:1 v/v). After addition of organic solvent, the sample was vortexed, sonicated and centrifuged at 3000 rpm for 10 min. The supernatant was transferred and evaporated to dryness on a Savant Speed-Vac at room temperature. The residue was reconstituted in 10 ml of 10% acetonitrile in water and centrifuged at 14000 rpm for 2 min. The supernatant was injected onto a preparative HPLC system (Class VP[®], Shimadzu, Kyoto, Japan) for metabolite isolation.

Feces. A 1 g portion of the 0-168 h pooled fecal homogenate was extracted by addition of 2 ml of acetonitrile. The mixture was then vortexed, sonicated and centrifuged at 3000 rpm for 10 min. The supernatants were removed and saved. The pellet was then extracted two more times with 2 ml of acetonitrile/water (3:1, v/v). The supernatants were combined and evaporated to dryness on a Savant Speed-Vac. The residue was reconstituted in methanol/water (1:1 v/v). An aliquot of the supernatant was injected

DMD #30239

DMD #30239 onto an HPLC for biotransformation profiling or analyzed by LSC for radioactivity recovery. The extraction recovery of radioactivity was 91.5%.

High-Performance Liquid Chromatography (HPLC) for Biotransformation

Analysis. Three HPLC methods were developed for the following purposes: method 1 for biotransformation profiling, method 2 for metabolite M4 isolation and method 3 for sample analysis from acidic hydrolysis of [1'-¹⁴C]stavudine and from microsomal incubations. Biotransformation profiling of pooled plasma (1, 2, 4 and 6 h), urine (0-168 h), and fecal (0-168 h) samples was done by HPLC method 1. It was performed on a Shimadzu Class VP[®] system equipped with a system controller (model SCL-10A), two pumps (model LC-10AD), an autoinjector (model SIL-10AD) and a photodiode array detector (model SPD-M10A) (Shimadzu, Kyoto, Japan). A Waters Atlantis dC18 column (3.9 x 150 mm, 3 micron, Waters, Milford, MA) was used with the solvent system consisting of solvent A, 10 mM ammonium acetate buffer (pH 6.5), and solvent B, a mixture of 200 ml of solvent A, 500 ml of acetonitrile and 300 ml of methanol. A gradient was employed where solvent A was held at 100% for 15 min, then decreased to 75% in the next 25 min. Preparative HPLC isolation of M4 from the pooled urine sample was performed by HPLC method 2. It used a Shimadzu Class VP[®] system equipped with a system controller (model SCL-10A), two pumps (model LC-8A), an autoinjector (model SIL-10AP), a fraction collector (model FRC-10A) and an IN/US System radioactivity detector (β-ram model 3, Temple, FL). A Waters YMC[™] Europe GmbH C18 column (20 x 100 mm, 3 micron, Waters Corporation, Milford, MA) was used for separation of drug-related components. The solvent system employed was the same as in

HPLC method 1. A two step linear gradient was formed as follows: 0 min, 0% B; 30 min, 20% B; 31 min, 100 % B; 32 min, 100 % B. The column was re-equilibrated at 0% B for 5 min before the next injection. Fractions of column eluant collected at 18.5 min (M4), were evaporated to dryness on a Savant Speed-Vac (Savant Instruments Inc., Holbrook, NY) for further LC/MS/MS, accurate mass and NMR analysis. The samples from acidic hydrolysis of [1'-¹⁴C]stavudine and from microsomal incubations were analyzed by HPLC method 3, in which an Agilent 1100TM HPLC system (Agilent Technologies, Wilmington, DE) was employed. The mobile phases consisted of (A) water with 0.1% formic acid and (B) acetonitrile with 0.1% formic acid. The gradient and column used were the same as in HPLC method 1. HPLC method 3 used mobile phases containing no ammonium-related solvent modifiers to avoid observation of ammoniated adducts in the mass spectra. All HPLC methods had a column temperature at 40°C. HPLC methods 1 and 3 employed a flow rate of 0.5 ml/min, while the HPLC method 2 had a flow rate of 10 ml/min.

Radioactivity Profiling of Human Plasma, Urine and Feces. For radioactivity profiling of pooled human plasma, urine and fecal samples, the HPLC eluant was collected in 0.25 min intervals on 96-well plates (Deepwell LumaPlate[™], Perkin Elmer Life Sciences, Boston, MA) with a Gilson Model FC 204 fraction collector (Gilson, Middleton, WI). Each fraction of column eluate was evaporated to dryness on a Savant Speed-Vac and counted for radioactivity with a Packard Top Count[®] microplate scintillation analyzer (Packard Biosciences, Downers Grove, IL). For each radiochromatographic profile, the average CPM value of several early wells, in the range DMD #30239 of 2-4 CPM, were designated as background (collected during elution of the void volume) and subtracted from the CPM value of each subsequent fraction. Profiles were prepared by plotting the resulting net CPM values against time-after-injection (Zhu et al., 2005). Radioactive peaks in the chromatographic profiles were reported as a percentage of the total radioactivity (CPM) recovered during the HPLC run.

Liquid Chromatography with Tandem Mass Spectrometry (LC/MSⁿ). Mass

spectrometric analyses of samples of pooled human plasma, urine and feces and microsomal incubations were performed on an LTQ mass spectrometer (ThermoFisher Scientific, San Jose, CA) equipped with an ESI probe operating in the positive ion mode. Samples were introduced into the mass spectrometer under the same HPLC conditions used for biotransformation profiling described above. For mass spectral analysis, half of the eluant from the HPLC was directed into the mass spectrometer through a post-column splitter. The capillary temperature, nitrogen gas flow, spray current, and voltages were adjusted as needed to provide maximum sensitivity.

Accurate MS Analysis. Metabolite M4 isolated from pooled 0-24 h human urine of subject 5 were analyzed using an LTQ-FT hybrid linear ion trap Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (ThermoFisher Scientific, San Jose, CA) equipped with a NanoMate HD source (Advion BioSciences, Ithaca, NY) operated in positive ion mode. Accurate mass and MS/MS spectra were acquired by delivering approximately 100 ng/ml of M4 in 1:1 water/acetonitrile containing 10 mM ammonium acetate at a flow rate of 150 nL/min. The resolving power of the FTICR mass analyzer

DMD #30239 was set at 12,500. Collision energy was set at 35%. The mass accuracy for all ions observed was within 1.7 ppm of theory.

Nuclear Magnetic Resonance (NMR). NMR analysis was performed on metabolite M4 isolated from pooled 0-24 h human urine of subject 5. NMR experiments were performed on a Bruker DRX-600 MHz NMR spectrometer (Bruker, Germany) equipped with an indirect detection 5 mm TXI Bruker Cryo-probe (Bruker, Germany) maintained at 30 °C. The sample was dissolved in 200 μ l of deuterium-labeled dimethyl sulfoxide (DMSO-*d*₆). Chemical shifts were recorded in δ values (ppm) relative to tetramethylsilane (TMS). The WATERGATE (WATER suppression by GrAdient Tailored Excitation) solvent suppression scheme was applied during data acquisition to remove residual solvent signals. In TOCSY (TOtal Correlation SpectroscopY), a total of 8K points were collected in t2 (24 transients per increment), and 480 points were collected in t1. Data was processed with zero filling to 8K points in F2, 2K points in F1. Gaussian and sine bell square apodization functions were applied in both F1 and F2.

Results

Tissue Distribution (TD) Study in Rats. Mean radioactivity concentration (μ g-equiv. of s tavudine/g) d ata for ti ssues and gastrointestinal c ontents a re li sted in Table 1. [1'-¹⁴C]Stavudine was widely distributed in the tissues of rats after oral administration of a 5 mg/kg dose. T_{max} for all tissues occurred at 1 h. T_{last} for tissues ranged from 4 h (skeletal muscle) to 168 h (heart, kidney, liver, and spleen). C_{max} values for tissues ranged from a high of 78.1 μ g-equiv./g for urinary bladder to a low of 0.280 μ g-equiv./g for brain. The next highest C_{max} values were for small intestine, kidneys, and stomach (8.40, 6.14, and 5.54 μ g-equiv./g, respectively).

Mean ti ssue to plasma ratios of s tavudine-equivalent concentrations of radioactivity at specified times through 48 h are listed in Table 2. The data are presented only through 48 h because that was the last sampling time for which all plasma concentrations were above the limit of quantitation. The t issues with the highest maximal mean ti ssue t o plasma concentration ratios were ur inary bladder (181.00 at 4 h), followed by s everal intestinal tr act ti ssues, adrenal g lands, l iver, a nd kidneys, with tissue:plasma v alues ranging from approximately 6 to 14. Heart, bone, skeletal muscle, and pigmented skin had mean ratios of <1 at all sampling times. The lowest maximal mean ratios were for heart (0.66) and bone (0.77).

The m ean m aximal c oncentration of ra dioactivity (0 .0833 μ g-equiv./g) i n exp ired ai r traps was observed at the first sampling time (0-6 h) after dosing. Mean concentrations at

6-12 h and 12-24 h were 0.0249 μ g-equiv./g and 0.00330 μ g-equiv./g, respectively. N o radioactivity was trapped in expired air from 24 to 48 h postdose. A mean total of 0.94% of dosed radioactivity was recovered in expired air traps during the first 6 h after dosing. An additional mean total of 0.34% was recovered through 24 h post-dose, for an overall total of 1.28%.

Pharmacokinetics of Stavudine and Radioactivity in Humans. The plasma

concentration versus time profiles for total radioactivity and unchanged stavudine in humans following a single oral administration of 80 mg $[1'-^{14}C]$ stavudine to six healthy male subjects are shown in Fig. 1. The pharmacokinetic parameters of stavudine and total radioactivity are summarized in Table 3. Following oral administration of [1'-¹⁴C]stavudine, peak plasma concentrations (T_{max}) of both stavudine and total radioactivity were achieved at 0.5 h, indicating rapid oral absorption. After the completion of absorption phase, concentrations of stavudine and total radioactivity declined rapidly from plasma with no quantifiable amount detected after 24 and 8 h postdose, respectively, suggesting fast elimination. This rapid absorption and elimination of total radioactivity was also observed in rats where T_{max} for plasma achieved at 1 h and T_{last} achieved at 48 h post-dose. The AUC(INF) value of 3363 ng•h/ml for stavudine was 61% of AUC(INF) value of radioactivity (5524 ng-equiv•h/ml), indicating a small but appreciable fraction of the circulating radioactivity was from metabolites. Approximately 67% of the administered stavudine dose was excreted as unchanged drug in urine. The average renal clearance of stavudine was 272 ml/min and the mean oral clearance was 400 ml/min (Table 3).

Recovery of Radioactivity in Humans. Greater than 70% of the radioactive dose was excreted in urine within 6 h (data not shown), and approximately 95% recovered in the urine by 168 h (Table 3). Urinary excretion of administered dose was the predominant route of elimination in humans. Fecal excretion was limited accounting for only 3% of the dose. The recovery of radioactivity was complete with 98% recovered in urine and feces combined.

Biotransformation Profiles in Human Plasma, Urine and Feces. The

biotransformation profiles of 1 h pooled plasma, 0-168 h pooled urine and 0-168 h pooled feces are shown in Fig. 2. The relative distribution of radioactivity among various metabolite peaks in the radiochromatographic profiles of 1 h pooled plasma, 0-168 h pooled urine and feces is shown in Table 4. The peak for [1'-¹⁴C]stavudine was identified based on its MSⁿ fragmentation and comparison of its chromatographic retention time with a reference standard. The metabolite peaks were designated as M1-M4 according to their relative HPLC retention times.

Unchanged stavudine accounted for 84.8% of radioactivity in 1 h pooled plasma (Table 4). It was also the most prominent peak in the biotransformation profiles of 2, 4 and 6 h pooled plasma samples (data not shown). Metabolites constituted minor components of the circulating radioactivity. Metabolite M2 accounted for 3.8% of the radioactivity in pooled 1 h plasma sample.

Unchanged s tavudine was the major d rug-related c omponent in 0-168 h p ooled u rine, accounting for 73.7 % of the radioactivity (67.2 % of dose, Table 4). Metabolites M1-

M4 w ere de tected as m inor co mponents, e ach accounting f or <3.2% o f the do se. Radioactivity e luting with the solvent front accounted for 13.1% of the administered radioactive dose. The radioactive peak at the solvent front, on isolation and separation by normal phase HPLC, comprised of five distinct peaks in similar radioactivity (data not shown). Of the five peaks, only one peak, metabolite M5, was identified. The identities of the other four peaks remain unknown.

Unchanged stavudine was also the major drug-related component in feces. It accounted for 62.0% (1.86% of dose) of the radioactivity. T he other metabolite as sociated with feces was M1, accounting for 20.8% (0.62% of dose) of the radioactivity.

LC/MSⁿ and NMR characterization of the metabolites. The structures of the

metabolites were proposed based upon their LC/MSⁿ characterization. A summary of the mass spectral fragmentation of [1'-¹⁴C]stavudine and its metabolites is compiled in Table 5. The protonated molecular ion of stavudine was observed at m/z 225. In its product ion spectrum, the ions at m/z 208 and m/z 207 were consistent with losses of •OH and H₂O, respectively, and the ion at m/z 165 was consistent with loss of a HOCH₂CHO. The elimination of the ribose moiety by cleavage of the glycosidic bond yielded the protonated thymine at m/z 127. Similar fragmentation was observed for a stavudine reference standard.

Metabolite M1 was determined to be an oxidation product of stavudine. The protonated molecular ion of M1was observed at m/z 241, which is 16 Da higher than that of the parent. The base peak in the product ion spectrum was observed at m/z 224 consistent

with loss of a hydroxyl radical (•OH). The presence of an ion at m/z 127, previously assigned as protonated thymine, suggested that the oxidation had occurred on the ribose moiety.

Metabolite M2 was identified as a glucuronide of the oxidized product of stavudine. The protonated molecular ion of M2 was observed at m/z 417. Fragmentation of the m/z 417 precursor yielded an ion at m/z 241, attributable to a neutral loss of 176 Da from the molecular ion, indicating that M2 is a glucuronide conjugate. The base peak in the product ion spectrum, m/z 399, was consistent with H₂O loss from the protonated molecular ion. Based on the observation of an ion at m/z 241, also seen for protonated molecular ion of M1, M2 was assigned as a glucuronide of oxidized stavudine. The MS³ spectrum of M2 (m/z 417 $\rightarrow m/z$ 241 \rightarrow) contained a major fragment at m/z 223 and a minor fragment at m/z 224, consistent with losses of H₂O and •OH, respectively. The ions at m/z 213 and m/z 195 could potentially arise from sequential losses of CO and H₂O molecules from m/z 241.

Metabolite M3 was identified as a glucuronide conjugate of the parent. The protonated molecular ion of M3 was observed at m/z 401. The base peak in the product ion spectrum, m/z 225, was generated by a neutral loss of 176 Da, indicating that M3 is a glucuronide conjugate. The MS³ spectrum of M3 (m/z 401 $\rightarrow m/z$ 225 \rightarrow) contained product ions consistent with stavudine, supporting the assignment of as a glucuronide conjugate of stavudine, most likely linked through the terminal OH group on the ribose moiety.

Metabolite M4 showed a protonated molecular ion at m/z 278. The product ion spectrum obtained from m/z 278 gave rise to two abundant ions at m/z 164 and m/z 162, consistent with an N-acetylcysteine molecule. The tentative assignment of M4 was an Nacetylcysteine conjugate of the ribose after a glycosidic cleavage. To confirm the structure, Metabolite M4 was isolated from pooled 0-24 h urine of subject 5 and characterized by accurate mass, MS/MS and NMR analyses. The elemental compositions determined for m/z 278 and its product ions agreed with the proposed structure. The 1D-¹HNMR spectrum of M4 with peak assignment is shown in panel A of Fig. 4. The TOCSY spectra are shown in panel B and C. A proton spin system consistent with the presence of a cysteine (Cys) moiety was observed in the TOCSY spectrum (highlighted in the rectangle in panel B). The TOCSY spectrum of the aliphatic region showed a continuous 4-bond proton spin system, which excluded the possibility of existence of double bond between either carbons 2-3 or carbons 3-4 in the ribose ring (highlighted in the rectangle in panel C and circled on the structure in Fig. 4). The NMR analysis, together with information provided by accurate mass analysis, confirmed the proposed structure for metabolite M4.

Metabolite M5 was a bis-oxidation product of stavudine. The protonated molecular ion for M5 was observed at m/z 259. The product ion spectrum exhibited fragmentation consistent with a bis-oxidation product of stavudine, including ions at m/z 242, m/z 241 and m/z 127.

Generating [1'-¹⁴C]2',3'-didehydrodideoxyribose. Acidic hydrolysis of [1'-¹⁴C]stavudine was conducted to obtain [1'-¹⁴C]2',3'-didehydrodideoxyribose (Shapiro R

and Danzig M 1972). With time, the disappearance of $[1'-^{14}C]$ stavudine from the reaction solution was accompanied by the appearance of a radioactivity peak at retention time of 17 min. LC/MS/MS analysis of the emerging peak was consistent with its assignment as $[1'-^{14}C]2',3'$ -didehydrodideoxyribose (data note shown). Its protonated molecular ion was observed at m/z 117 in the mass spectrum. Product ions at m/z 99 and m/z 89, was consistent with losses of H₂O and CO, respectively. Thymine, the byproduct of $[1'-^{14}C]$ stavudine hydrolysis, was also observed in the reaction mixture at retention time of 14.8 min by LC/MS detection. Less than 30 % of the $[1'-^{14}C]$ stavudine substrate remained after 2 h reaction.

Formation of Metabolite M4 in Human Liver Microsomes. Metabolite M4 was regenerated *in vitro* when human liver microsomes were incubated with [1'-¹⁴C]2',3'- didehydrodideoxyribose in the present of NAC. The incubation substrates, generated above, were a mixture of [1'-¹⁴C]2',3'-didehydrodideoxyribose, thymine and [1'-¹⁴C]stavudine in a ratio of 7:7:3 (data not shown). The MS/MS fragmentation and HPLC retention time of metabolite M4 purified from human urine were used as references for detection of metabolite M4 in human liver microsomes. The biotransformation profiles of the mixture of [1'-¹⁴C]2',3'-didehydrodideoxyribose, thymine and [1'-¹⁴C]stavudine with human liver microsomes in the presence or absence of NAC are shown in panel A and B in Fig. 4, respectively. Panel C in Fig. 4 presents the radiochromatogram of M4 which was isolated from urine. The turnover of [1'-¹⁴C]2',3'-didehydrodideoxyribose was very low in human liver microsomes. No major metabolites were observed. Metabolite M4 was detected as a minor peak at retention time of 27 min in the radiochromatogram.

DMD #30239 Two additional minor radioactivity peaks were observed but remain unidentified in the sample derived from incubations with human liver microsomes fortified with NAC. Metabolite M4 was not generated when the incubation was not fortified with NAC (panel B, Fig. 4). No metabolites were observed when human liver microsomes were incubated with either [1'-¹⁴C]stavudine or thymine in the presence or absence of NAC.

Formation of GSH conjugates in human liver microsomes. Detection of GSH

conjugates was performed by looking for the characteristic fragmentations for a GSH adduct in the product ion spectrum. Two GSH conjugates were detected in the microsomal incubations of $[1'-{}^{14}C]2',3'$ -didehydrodideoxyribose, thymine and [1'-¹⁴C]stavudine in the presence of NADPH and GSH. Of the two detected GSH conjugates, one, assigned as 3'-GS-ribose, had a retention time of 12.2 min, exhibiting a protonated molecular ion at m/z 440. The base peak in the product ion spectrum of m/z440 was observed at m/z 311, consistent with neutral loss of pyroglutamate (129 Da). Other ions included m/z 423, loss of NH₃ (17Da); m/z 365, loss of glycine (75 Da); and m/z 179, protonated cysteinylglycine (Fig. 5). The other GSH conjugate, assigned as 1'keto-2',3'-dideoxy-3'-GS-ribose, was observed at retention time of 18.1 min by LC/MSⁿ detection. Its protonated molecular ion was observed at m/z 422. Ions characteristic of GSH adducts, including m/z 293 (loss of 129 Da) and m/z 422 (loss of 75 Da) were observed in its product ion spectrum. Both GSH conjugates were minor metabolites and only detectable by LC/MS/MS analysis. No radioactivity peaks representing these metabolites were observed. No metabolites were observed when human liver

microsomes were incubated with either [1'-¹⁴C]stavudine or thymine alone in the

presence or absence of GSH.

Discussion

The study with a radiolabeled version of a new chemical entity in humans is a key study conducted to understand the role of m etabolic pathways or direct excretion in the elimination of drug-related material. One of the key considerations prior to initiating this study is the placement of the radiolabel. If the label is incorporated in a metabolically labile moiety of the molecule, there is a chance it may be liberated through metabolism. If the 1 abeled 1 abile m oiety is s imilar to a n e ndogenous compound, t here m ay be incorporation i nto ce llular co mponents o r l ost as ¹⁴CO₂ via e ndogenous ca tabolism. These events could lead to poor recovery of radioactivity and to safety concerns as there could be extended exposure to radioactivity. Therefore, labeling the appropriate part of the m olecule b ecomes c ritical t o e nsure good rec overy of t he d ose w hen d osed t o humans. For stavudine, studies with thymine labeled material in animals had shown that there c ould be significant loss through release of thymine and its metabolism through endogenous pa thways. T herefore, for t he hu man A DME s tudy t he ¹⁴C-label w as incorporated on the ribose ring. To confirm that this was a metabolically stable position a tissue distribution study was conducted in rats with the ¹⁴C-ribose-labeled stavudine ([1'- 14 C]stavudine). O nly ~1.2% of the dose was recovered in expired air as 14 CO₂ in this study, compared to a loss of 14% of the dose as $^{14}CO_2$ with thymine-labeled stavudine reported in a prior study in rats, suggesting a non-significant fraction of the dose may be shunted i nto an endogenous bi ochemical p athway with ¹⁴C-ribose-labeled s tavudine. Moreover, there was no significant accumulation in the tissues, particularly in the eyes and the s kin, suggesting that the $[1'-{}^{14}C]$ stavudine would be appropriate for do sing to

humans. This was confirmed when 98% of the dose was recovered in the human ADME study.

This study showed that $[1'-^{14}C]$ stavudine was completely absorbed and eliminated with urinary excretion of unc hanged drug as the p redominant route of eli mination after oral dosing to hum ans. T he r oute of elimination in h umans is in concurrence with the findings in m ice, rat s and monkeys (Ru ssell et a l., 1990; K aul and Dan dekar, 1993; Cretton et al., 1993; Kaul et al., 1999). The extent of absorption and oral bioavailability of s tavudine in hu mans w as a t lea st 95% and 67%, respectively, b ased on urinary recovery values of TRA and s tavudine. Consistent with the observation in ani mals, unchanged stavudine was the major drug-related component in plasma, urine and feces in humans. O byiously, metabolism played a limited role in the elimination of stavudine. Five minor metabolites of stavudine were identified in the study including mono and bisoxidation products (M1 and M5), glucuronide of s tavudine (M3) and i ts oxi dized metabolite (M2), a nd a n N-acetylcysteine co njugate o f t he r ibose af ter g lycosidic cleavage (M4). F ormation of M4 requires glycocidic cleavage of [1'-¹⁴C]stavudine and by inference, thymine is released in this reaction. No quantitative estimate for thymine and its breakdown products are provided in this study since the ¹⁴C-label was on the ribose ring. It is, however, expected that the thymine formed would undergo the normal biochemical pathways of metabolism known for pyrimidine nucleosides (Moran et al., 1994). T he endogenous t hymine c atabolism i nvolves r eduction of t hymine t o dihydrothymine. Hydrolysis of the latter gives rise to β -ureidoisobutyric acid which is further hydrolyzed to β -aminoisobutyric acid, CO₂ and NH₃. The β -aminoisobutyric acid

can be partly excreted intact in the urine, can be further metabolized to other compounds such as methylmalonate, an intermediate in the metabolism of propionic acid, or can be subject to further o xidation ultimately to CO_2 and H_2O (Griffith, 1986; Ni emann and Berech, 1981). T he p roposed biotransformation pa thways for [1'-¹⁴C]stavudine a re shown in Scheme 1.

It is well known that stavudine is metabolized in cells to the mono-, di- and triphosphate nucleotides. Further, the intracellular concentration of stavudine triphosphate has been correlated with its antiviral activity. The presence of extracellular stavudine mono-, di- and triphosphate has not been established yet. N either di d we detect any of the three phosphorylated species of stavudine in this study. O ne possible explanation is that the phosphorylated species of stavudine are trapped in the cells due to their poor permeability resulting from their good hydrophilicity and lack of transporter-mediated transport across the cell membrane. This is true for a number of nucleoside drugs where their cellular uptake and formation of the mono-, di- and triphosphate nu cleotides are ne cessary for activity. In those case also, these metabolites are mot recovered extracellularly for the reasons mentioned above (Balzarini, 1994).

The results of this study have indications on the types of clinical studies that may be needed in t he de velopment of s tavudine as p art of assessment of i ts safe ty an d effectiveness. These indications can be applied to a new chemical entity with a similar ADME profile. D ue to the l imited contribution of he patic clearance to i ts overall elimination, the impact on pharmacokinetics of stavudine is expected to be low when coadministered with drugs that are inducers or i nhibitors of C YP450s or ot her metabolic

enzymes. For the same reason, stay udine pharmacokinetic parameters in subjects with hepatic impairment are not expected to be altered; thus, do se a djustment will not be Indeed, cl inical s tudy de monstrated that stavudine p harmacokinetics in necessary. subjects with hepatic impairment was similar to those in age- and gender-matched control subjects and were not substantially different from those previously observed in human immunodeficiency vi rus-infected patients (Schaad et al., 1997). O n t he o ther hand, patients with renal impairment may have altered pharmacokinetics of stavudine due to the significant contribution of renal excretion to its overall elimination. This suggestion has been confirmed by two clinical studies where the oral clearance of stavudine decreased as creatinine cl earance decreased. T herefore, s tavudine do sage is r ecommended to be modified in patients with r educed cr eatinine cl earance and i n pa tients r eceiving maintenance hemodialysis (Grasela et al., 2000). Furthermore, the values of the mean T-HALF (2.3 h), mean CLR (272.5 ml/min), mean CLT/F (400.4 ml/min) and mean %UR (67.2) de termined in this study are all consistent with the observations of the other clinical studies in health subjects (Schaad et al., 1997; Grasela et al., 2000).

Investigation into the formation of metabolite M4 showed that an epoxide intermediate was involved. The origin of metabolite M4, likely, involves formation of a glutathione (GSH) conjugate in the liver and subsequent conversion to an *N*-acetylcysteine (NAC) conjugate via the mercapturic acid formation pathway (Moran et al., 1994). The fact that direct conjugation of stavudine with GSH or NAC was not observed in either humans or human liver microsomes suggested that *N*-glycosidic bond cleavage is a prerequisite for formation of metabolite M4. Thus, it is postulated that the formation of the GSH

conjugate is through generation of an epoxide on the ribose ring after N-glycosidic bond cleavage. Two distinct pathways are thereby proposed following N-glycosidic bond cleavage. One proceeds by oxidation of the unsaturated bond between the 2'- and 3' carbons of 2',3'-didehydrodideoxyribose to form an epoxide intermediate, followed by addition of GSH (Pathway A in Scheme 2). A second pathway could involve opening the ribose ring to generate an α , β -unsaturated ketone that undergoes 1,4-Michael addition reaction with GSH (Pathway B in Scheme 2). Both epoxides and α , β -unsaturated ketones have been reported to be excellent substrates for GSH addition reaction (Blair, 2006). The *N*-glycosidic bonds of nucleoside analogs can be cleaved either enzymatically by nucleosides hydrolases (Schinazi et al. 1992) or non-enzymatically under acidic conditions (Shapiro and Danzig, 1972). In this study, acid hydrolysis of the *N*- glycosidic bond of stavudine was employed to form 2'.3'-didehydrodideoxyribose. Incubation of human liver microsomes with 2',3'-didehydrodideoxyribose in the presence of GSH generated 3'-GS-deoxyribose and its subsequent product by loss of a water, 1'keto-2',3'-dideoxy-3'-GS-ribose. This suggests that 2',3'-didehydrodideoxyribose must have undergone CYP-mediated oxidation leading to an epoxide intermediate 2',3'-ribose epoxide. The absence of a 2',3'-dideoxy-3'-GS-ribose product suggests that the addition of GSH to an α , β -unsaturated ketone intermediate was not occurring in these incubations. Therefore, the involvement of the 1,4-Michael addition in the pathway for formation of metabolite M4 is not concluded to be the primary pathway. Metabolite M4 was generated in vitro in incubation of 2',3'-didehydrodideoxyribose and NAC with human liver microsomes. However, since no intermediates could be identified, it is not clear by

which pathway 2',3'-didehydrodideoxyribose interacts with NAC. Epoxides as electrophilic reactive intermediates are expected to be capable of formation of adducts with proteins, RNAs or DNAs and may thus contribute to drug-related adverse effects (Blair, 2006). However, metabolite M4 accounted for only 3.1% of the administered dose of stavudine. Given that the clinical dose of stavudine is <100 mg, of which only a small percentage is converted to metabolite M4, it is unlikely that the epoxide reactive intermediate would contribute to any stavudine-related toxicity.

In conclusion, absorption and elimination of $[1'-^{14}C]$ stavudine was rapid and complete after oral dosing with urinary excretion of the unchanged drug as the predominant route of elimination in humans. S tavudine was the only major drug-related component in plasma and metabolism played a limited role in its elimination.

Acknowledgments

We thank Dr. Donghui Cui (current affiliation: Merck and Co., Inc., West point, PA) for

helpful discussions.

References

Balzarini J (1994) Metabolism and mechanism of antiretroviral action of purine and pyrimidine derivatives. *Pharmacy World & Science* **16**:133-126.

Blair IA (2006) Endogenous glutathione Adducts. Curr Drug Metab 7:853-872.

Cretton EM, Zhou Z, Kidd LB, McClure HM, Kaul S, Hitchcock MJ and Sommadossi JP (1993) In vitro and in vivo disposition and metabolism of 3'-deoxy-2',3'didehydrothymidine. *Antimicrob Agents Chemother* **37:**1816-1825.

Discordia RP (1996) Synthesis of [1'-¹⁴C]stavudine (d4T). *J Labelled Comp Rad* **38:**614-623

Grasela DM, Stoltz RR, Barry M, Bone M, Mangold B, O'Grady P, Raymond R and Haworth SJ (2000) Pharmacokinetics of Single-Dose Oral Stavudine in Subjects with Renal Impairment and in Subjects Requiring Hemodialysis. *Antimicro. Agents Chemother* **44:**2149-2153.

Griffith OW (1986) Amino acids: mammalian metabolism and utility as amino acid analogues. *Annu Rev Biochem* **55**:855-878.

Huang P, Farquhar D and Plunkett W (1992) Selective action of 2',3'-didehydro-2',3'dideoxythymidine triphasphate on human immunodeficiency virus reverse transcriptase and human DNA polymerases. *J Biol Chem* **267**:2817-2822.

DMD #30239

DMD #30239 International commission on radiological protection (2008) Publication 103: Recommendations of the ICRP. Elsevier, Philadelphia.

Kaul S, Dandekar KA (1993) Pharmacokinetics of the anti-human immunodeficiency virus nucleoside analog stavudine in cynomolgus monkeys. *Antimicrob Agents Chemother* **37:**1160-1162.

Kaul S, Dandekar KA, Schilling BE and Barbhaiya RH (1999) Toxicokinetics of 2',3'didehydro-3'-deoxythymidine, stavudine (d4T). *Drug Metab and Dispos* **27:**1-12.

Lea AP and Faulds D (1996) Stavudine: A review of its pharmacodynamic and pharmacokinetic properties and clinical potential in HIV infection. *Drugs* **51**:854-864.

Moran LA, Scrimgeour KG, Horton HR and Rawn JD (1994) *Biochemistry* pp 22.26-22.27, Neil Patterson, New Jersey.

Niemann MA and Berech J (1981) Thymidine catabolism and reutilization of its degradative products in Tetrahymena pyriformis. *Biochim Biophys Acta* **652:**347-353.

Schaad HJ, Petty BG, Grasela DM, Christofalo B, Ray mond R and Stewart M (1997) Pharmacokinetics and safety of a single dose of s tavudine (d4T) in patients with severe hepatic impairment. *Antimicrob. Agents Chemother.*, **41:**2793-2796.

Shapiro R and Danzig M (1972) Acid hydrolysis of deoxycytidine and deoxyuridine derivatives. The general mechanism of deoxyribonucleoside hydrolysis. *Biochemistry* **11:**23-29.

DMD #30239 Siegfried NL, Van Deventer PJ, Mahomed FA and Rutherford GW (2006) Stavudine, lamivudine and nevirapine combination therapy for treatment of HIV infection and AIDS in adults. *Cochrane Database Syst Rev* Issue 2:CD004536

Russell JW, Whiterock VJ, Marrero D and Klunk LJ (1990) Disposition in animals of a new anti-HIV angent: 2',3'-didehydro-3'-deoxythymidine. *Drug Metab and Dispos* **18:**153-157.

Zhu M, Z hao W, V azquez N, Mitr oka J G (2005) A nalysis of low level radioactive metabolites in bi ological flu ids us ing h igh-performance li quid ch romatography w ith microplate s cintillation c ounting: Met hod va lidation and ap plication. *J Pharm Biomed Anal* **39:**233-245.

Footnotes

¹Current affiliation: Wyeth Research, Collegeville, PA

Footnotes to Scheme 1.

*denotes the location of the ¹⁴C-label

Note: Since [1'-¹⁴C]stavudine undergoes glycosidic cleavage, by inference, thymine should also be a metabolite of stavudine. However, no quantitative estimate for thymine and its breakdown products are provided in this study since the ¹⁴C-label was on the ribose ring. It is, however, expected that the thymine formed from stavudine in humans, would undergo metabolism via the normal biochemical pathways known for pyrimidine nucleosides.

Footnotes to Scheme 2.

- a: *N*-glycosidic bond cleavage
- b: GSH epoxide addition

c: 1,4-Michael addition

Note: Incubation of human liver microsomes with 2',3'-didehydrodideoxyribose in the presence of GSH revealed intermediate 3'-GS-deoxyribose but not 2',3'-dideoxy-3'-GS-ribose. This result lends support to pathway A over pathway B.

Footnotes to Fig 2.

^a The biotransformation profiles of 2, 4 and 6 h pooled plasma samples (data not shown) were qualitatively similar to the 1 h plasma profile. Only Stavudine and metabolite M2 were observed in 1, 2, 4, and 6 h pooled plasma.

^b A small amount of radioactivity eluted with the solvent front in plasma, urine and feces. Further chromatographic separation of the radioactivity in this region revealed at least five components in similar quantity (data not shown). Of the five components only metabolite M5 was identified.

Footnotes to Fig 4.

Note: Thymine was not detected by radioactivity detection since it was not radiolabeled.

DMD #30239

LEGENDS FOR SCHEMES AND FIGURES

Scheme 1
humansProposed biotransformation pathways for [1'-14C]stavudine in
humansScheme 2Two hypothetical metabolic pathways proposed for the formation of
metabolite M4 in humans.

Fig. 1. Plasma concentration versus time profiles for total radioactivity and unchanged stavudine in humans following a single oral administration of 80 mg [1'-¹⁴C]stavudine to six healthy male subjects. Plasma stavudine was measured by HPLC/MS/MS analysis (LLOQ: 0.500 ng/ml). The total radioactivity, expressed as ng-equiv. to stavudine, was measured by liquid scintillation counting and corresponds to stavudine and its metabolites (LLOQ: 120 ng/ml).

Fig. 2. Biotransformation profiles of 1 h pooled plasma ^a, 0-168 h pooled urine and 0-168 h pooled feces after single oral administration of 80 mg [1'-¹⁴C]stavudine to six healthy male subjects ^b.

Fig. 3. 1D proton spectrum (Panel A) and ¹H-¹H TOCSY of Metabolite M4 (Panels B and C). Panel C shows the enlarged ¹H-¹H TOCSY of the its aliphatic region. Abbreviations used on the resonances are as follows: d = doublet, dd = doublet of doublet, s = singlet, m = multiple, br = broad peak.

Fig. 4. Biotransformation profiles of a mixture of 2',3'didehydrodideoxyribose, thymine and stavudine (7:7:3) in human liver microsomes in the presence (A) or absence (B) of *N*-acetylcysteine. Panel C shows the radiochromatogram of metabolite M4 standard isolated from human urine.

Fig. 5. MS/MS spectra and fragmentation of 3'-GS-deoxyribose and 1'-keto-2',3'-dideoxy-3'-GS-ribose, which were detected in the microsomal incubations of [1'-¹⁴C]2',3'-didehydrodideoxyribose in the presence of NADPH and GSH.

TABLE 1

	Concentration (µg-equiv. of stavudine /g)													
		1 h		4 h	12 h		24 h		48 h		96 h		168	8 h
Matrix	Mean S	S D	Mean S	D Me	an	SD Me	an	SD Me	an S	D	Mean S	D	Mean S	D
Adrenal Glands	1.53	0.52	0.75	1.12	0.06	0.01	0.04	0.00	0.02	0.00	0.01	0.01	0.00	0.00
Blood	1.64	0.11	0.10	0.04	0.05	0.00	0.03	0.01	0.01	0.02	0.00	0.00	0.00	0.00
Bone (femur)	0.41	0.06	0.07	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bone Marrow (femur)	1.75	0.08	0.15	0.07	0.05	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Brain	0.28	0.01	0.09	0.02	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cecum	1.03	0.09	0.61	0.22	0.12	0.05	0.03	0.01	0.01	0.00	0.00	0.00	0.00	0.00
Cecum Contents	0.06	0.03	0.49	0.14	0.05	0.04	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Eyes	1.10	0.12	0.13	0.03	0.02	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00
Heart	1.16	0.07	0.05	0.02	0.02	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Intestinal Contents, Large	0.01	0.01	0.11	0.09	0.03	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Intestinal Contents, Small	1.11	0.29	0.06	0.05	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Intestine, Large	1.52	0.08	0.65	0.11	0.16	0.09	0.03	0.02	0.02	0.00	0.01	0.00	0.00	0.00
Intestine, Small	8.40	0.22	1.12	1.22	0.08	0.00	0.03	0.01	0.02	0.00	0.00	0.00	0.00	0.00
Kidneys	6.14	1.17	0.51	0.31	0.06	0.00	0.03	0.01	0.03	0.00	0.01	0.00	0.01	0.00
Liver	2.19	0.40	0.53	0.15	0.24	0.01	0.14	0.02	0.11	0.01	0.05	0.00	0.03	0.00
Lungs	1.57	0.12	0.10	0.03	0.03	0.00	0.02	0.00	0.01	0.00	0.01	0.00	0.00	0.00
Plasma	1.77	0.13	0.09	0.04	0.03	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Skeletal Muscle (pectoral)	1.50	0.21	0.05	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Skeletal Muscle (thigh)	1.44	0.28	0.07	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Skin, Nonpigmented	1.30	0.19	0.10	0.05	0.04	0.01	0.02	0.02	0.01	0.01	0.00	0.00	0.00	0.00
Skin, Pigmented	1.34	0.25	0.09	0.02	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Spleen	1.24	0.13	0.30	0.39	0.04	0.01	0.02	0.00	0.01	0.00	0.01	0.00	0.00	0.00
Stomach	5.54	1.51	0.20	0.11	0.04	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Stomach Contents	1.06	0.09	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Testes	1.05	0.11	0.26	0.05	0.03	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00
Thyroid	1.90	0.72	0.20	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Urinary Bladder	78.10	52.80	13.50	16.50	0.03	0.00	0.03	0.02	0.02	0.01	0.00	0.00	0.00	0.00

Mean concentrations of radioactivity in tissues and gastrointestinal contents after a single oral (5 mg/kg) administration of [1'-¹⁴C]stavudine to male rats

p.44 DMD #30239

TABLE 2

Mean tissue to plasma ratios of stavudine-equivalent concentrations of radioactivity

in rats after a single oral (5 mg/kg) administration of $[1'-{}^{14}C]$ stavudine ^a

	Tissue:Plasma Concentration Ratios									
	1 h		4 h		12 h		24 h		48 h	
Matrix	Mean	SD	Mean	SD	Mean	SD	Mea	an SD	Mean	SD
Adrenal Glands	0.88	0.36	9.93	15.36	1.79 0.4	0	1.73	0.23	1.65	0.20
Blood	0.93	0.01	1.08	0.06	1.46 0.0)9	1.31	0.63	0.58	1.00
Bone (femur)	0.23	0.04	0.77	0.72	0.00 0.0	00	0.00	0.00	0.00	0.00
Bone Marrow (femur)	0.99	0.03	1.67	1.11	1.44 1.2	26	0.00	0.00	0.00	0.00
Brain	0.16	0.02	1.00	0.15	0.49 0.0)8	0.36	0.09	0.28	0.24
Cecum	0.58	0.01	7.36	4.24	3.70 1.5	52	1.41	0.05	0.89	0.13
Eyes	0.63	0.12	1.40	0.16	0.70 0.0)9	0.24	0.27	0.10	0.18
Heart	0.66	0.02	0.58	0.01	0.50 0.0)7	0.49	0.10	0.54	0.29
Intestine, Large	0.86	0.10	7.51	2.92	4.72 2.7	74	1.52	0.52	1.22	0.25
Intestine, Small	4.76	0.46	14.43	17.31	2.49 0.1	9	1.28	0.12	1.20	0.11
Kidneys	3.45	0.44	6.01	4.73	1.80 0.0)7	1.52	0.12	1.85	0.28
Liver	1.23	0.14	6.12	2.78	7.20 0.4	3	6.98	0.37	7.83	0.07
Lungs	0.88	0.03	1.06	0.31	0.90 0.0)2	0.76	0.26	0.97	0.06
Skeletal Muscle (pectoral)	0.85	0.06	0.54	0.04	0.00 0.0	00	0.00	0.00	0.00	0.00
Skeletal Muscle (thigh)	0.81	0.11	0.79	0.44	0.00 0.0	00	0.00	0.00	0.00	0.00
Skin, Nonpigmented	0.73	0.05	1.01	0.28	1.10 0.4	0	0.88	1.01	0.87	0.75
Skin, Pigmented	0.76	0.09	0.96	0.30	0.15 0.2	25	0.00	0.00	0.00	0.00
Spleen	0.70	0.06	3.90	5.44	1.12 0.2	21	0.90	0.11	0.82	0.15
Stomach	3.13	0.77	2.29	1.61	1.14 0.0)7	0.90	0.07	0.82	0.07
Testes	0.59	0.02	2.87	0.48	0.95 0.0)7	0.64	0.12	0.39	0.34
Thyroid	1.08	0.44	2.25	1.79	0.00 0.0	00	0.00	0.00	0.00	0.00
Urinary Bladder	44.68	30.57	181.00	225.53	0.83 0.0)3	1.29	0.69	1.07	0.92

^a The data are presented only through 48 h because that was the last sampling time for which all plasma

concentrations were above the limit of quantitation.

DMD Fast Forward. Published on January 6, 2010 as DOI: 10.1124/dmd.109.030239 This article has not been copyedited and formatted. The final version may differ from this version.

TABLE 3

Pharmacokinetic parameters of stavudine and total radioactivity in plasma after oral administration of $[1'-^{14}C]$ stavudine to six healthy male subjects

Pharmacokinetic Parameter	Stavudine	Total Radioactivity
Cmax (ng/ml or ng-equiv./ml) - Mean (CV%)	1372.9 (19.0)	1593.2 (17.0)
AUC (INF) (ng•h/ml or ng-equiv.•h /ml) - Mean (CV%)	3362.9 (15.0)	5524.3 (19.0)
Tmax (h) - Median (Min, Max)	0.5 (0.5, 0.5)	0.5 (0.5, 1.0)
T-HALF (h) - Mean (SD)	2.3 (0.5)	2.4 (0.6)
CLR (ml/min) - Mean (SD)	272.5 (80.3)	258.8 (54.1)
CLT/F (ml/min) - Mean (SD)	400.4 (61.3)	245.3 (49.2)
%UR - Mean (SD)	67.2 (14.9)	95.1 (11.0)
%FE - Mean (SD)	NA ^{<i>a</i>} 2.7	(4.2)
%Total - Mean $(SD)^b N$	А	97.8 (10.3)

^{*a*}NA, not applicable.

^b %Total, percent of total administered dose recovered in urine and feces

TABLE 4

Relative distribution of radioactivity (%) among various peaks in the radiochromatographic profiles of pooled 1 h plasma, 0-168 h urine and 0-168 h feces after oral administration of [1'-¹⁴C]stavudine to six healthy male subjects

Metabolite ^a	Retention Time	Percent Distribution in Pooled Samples ^b						
		1 h Plasma	0-168 h Urine (Percent of Dose)	0-168 h Feces (Percent of Dose)				
Stavudine	36.5	84.8	73.7 (67.2 ^{<i>c</i>})	62.0 (1.9)				
M1	32.1	$N.D.^{f}$	1.4 (1.3)	20.8 (0.6)				
M2	29.8	3.8	0.3 (0.3)	N.D.				
M3	25.0	N.D.	1.4 (1.3)	N.D.				
M4	22.8	N.D.	3.3 (3.1)	N.D.				
Solvent Front ^d (Containing M5)	2-3 6.9	13.8	(13.1) 8.8	(0.3)				
Others ^e		4.5	6.1 (5.8)	8.4 (0.2)				

^{*a*} Structures of metabolites are shown in Scheme 1.

^b The relative %distribution of radioactivity represents the percent of radioactivity in each peak compared to the total radioactivity recovered from the HPLC column eluant after background subtraction. The percentage of dose for metabolites was calculated from the relative %distribution of radioactivity and the average percent of the radioactive dose excreted in the urine or feces.

^c A validated LC/MS/MS assay was used for the determination of the concentration of stavudine in human urine. The percentage of dose for stavudine in urine was calculated from the amount of stavudine in urine and dose administered.

^{*d*} These values represent the total radioactivity eluted with solvent front. M5 eluted with the solvent front in plasma, urine and feces. Further chromatographic separation of the radioactivity in solvent front from the 0-168 h pooled urine samples revealed at least five components in similar radioactivity (data not shown). Of the five components only metabolite M5 was identified. The structures of other four components were not identified.

^{*e*} Remaining radioactivity distributed in small amounts in various fractions throughout the radiochromatogram.

^{*f*}N.D., Not detected.

TABLE 5

MS^n fragmentation of $[1'-^{14}C]$ stavudine and its metabolites detected in humans

Metabolites ^{<i>a</i>}	Positive Electrospray Ionization
Stavudine	MS: 225 MH ⁺ ; MS ² on 225: 208 (MH ⁺ -OH), 207 (MH ⁺ -H ₂ O), 165 (MH ⁺ -
	HOCH ₂ CHO), 127 (thymine moiety)
M1	MS: 241 MH ⁺ ; MS ² on 241: 224 (MH ⁺ - OH), 127 (thymine + H ⁺)
M2	MS: $417 \text{ MH}^+_{;} \text{MS}^2$ on 417 : 399 (MH ⁺ - H ₂ O), 241 (MH ⁺ - glucuronide); MS ³ on 241:
	224 (MH ⁺ - glucuronide, and - OH), 223 (MH ⁺ - glucuronide, and - H ₂ O), 213 (MH ⁺ -
	glucuronide, and - CO), 195 (MH ⁺ - glucuronide, - CO, and - H ₂ O)
M3	MS: 401 $MH^+_{:}MS^2$ on 401: 225 (MH ⁺ - glucuronide); MS ³ on 225: 207 (MH ⁺ -
	glucuronide, and - H ₂ O)
M4 ^{<i>b</i>}	MS: 278 MH ⁺ ; MS ² on 278: 260 (MH ⁺ - H ₂ O); 218 (MH ⁺ - H ₂ O and - CH ₂ CO); 164 (N-
	acetyl-cysteine + H ⁺); 162 (MH ⁺ -ribose moiety)
M5	MS: 259 MH ⁺ ; MS ² on 259: 242 (MH ⁺ - OH), 241 (MH ⁺ - H ₂ O); 127 (thymine moiety)

^a Structures of metabolites are shown in Scheme 1.

^b Accurate mass measurement was done for metabolite M4 and it fragments. MS: 278.06943 MH^+ ; MS² on 278.06943: 260.05840 (MH⁺ - H₂O); 218.04780 (MH⁺ - H₂O and - CH₂CO); 164.03731 (*N*-acetyl-cysteine + H⁺); 162.02167 (MH⁺-ribose moiety)

Scheme 1

Scheme 2

Fig. 1.

Fig 2.

Fig 3.

H17 (s)

Downloaded from dmd.aspetjournals.org at ASPET Journals on April 8, 2016