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Selecting Discrete and Continuous Features Based on
Neighborhood Decision Error Minimization
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Abstract—Feature selection plays an important role in pattern
recognition and machine learning. Feature evaluation and classifi-
cation complexity estimation arise as key issues in the construction
of selection algorithms. To estimate classification complexity in
different feature subspaces, a novel feature evaluation measure,
called the neighborhood decision error rate (NDER), is proposed,
which is applicable to both categorical and numerical features.
We first introduce a neighborhood rough-set model to divide the
sample set into decision positive regions and decision boundary
regions. Then, the samples that fall within decision boundary
regions are further grouped into recognizable and misclassified
subsets based on class probabilities that occur in neighborhoods.
The percentage of misclassified samples is viewed as the estimate of
classification complexity of the corresponding feature subspaces.
We present a forward greedy strategy for searching the feature
subset, which minimizes the NDER and, correspondingly, mini-
mizes the classification complexity of the selected feature subset.
Both theoretical and experimental comparison with other feature
selection algorithms shows that the proposed algorithm is effective
for discrete and continuous features, as well as their mixture.

Index Terms—Continuous feature, decision error minimization,
discrete feature, feature selection, neighborhood, rough sets.

I. INTRODUCTION

A CLASSIFIER that is learned through inductive learning
assigns a given pattern to one of the classes. A typical

representation of a pattern comes in the form of a vector of
features. Patterns are points in the feature space. Classifica-
tion performance substantially depends on the selection of the
feature space (for example, see [47], [51], and [52]). Given
a limited size of learning sets, excessive numbers of features
may greatly deteriorate the quality of the classifiers, because
irrelevant and redundant features are highly confusing in the
learning process [9], [44]. Feature selection becomes much
more essential for pattern recognition [55], [59], [60].
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There are four problems in feature selection [28]:

1) feature evaluation;
2) search strategies;
3) stopping criterion;
4) validation strategies.

Among them, feature evaluation and search strategies play
essential roles in this process. A search strategy is a procedure
for finding optimal subsets of features with regard to a certain
evaluation function. Greedy selection [2], [6], [27], [24], [30],
branch and bound (B&B) [30], [41], floating search [35], and
genetic algorithms (GAs) [37], [44], [55] were studied in fea-
ture selection.

Feature evaluation functions are used to measure the quality
of the candidate subsets [21], [22], [46]. Evaluation criteria play
a very important role in feature selection. An optimal criterion
should naturally relate the Bayes error rate of classification
in the feature space [34], [43]. However, computing Bayes
error rates requires detailed knowledge of the class probability
distribution, whereas in practice, class probabilities are un-
known. One has to estimate these probabilities by making use
of a finite size of samples, which is very difficult, particularly
when dealing with highly dimensional feature spaces [21],
[23], [34], [36], [43]. Quite commonly, we focus on the design
of performance measures to determine the relevance between
features and decision. Distance [12], [39], correlation [9], [11],
mutual information [3], [60], consistency [7], and dependency
[18] are usually considered feasible alternatives. Mutual infor-
mation is widely applied to characterize the relevance between
categorical attributes and classification decisions [13], [24],
[34]. Wang introduced an axiomatic framework for feature
selection based on mutual information [46]. A dependency-
based feature selection algorithm was proposed in [17], where
dependency is defined as the ratio of the so-called positive
region in the rough set (RS) theory over the whole set of
samples. Samples with the same attribute values and different
decisions are called classification boundary. However, the rate
of positive region is not an effective estimate of classifica-
tion accuracy. According to the Bayes rule, samples with the
same feature values will be classified as belonging to the
majority class. Therefore, only the samples in the minority
classes are misclassified in this case. Based on this obser-
vation, Dash and Liu introduced the measure of consistency
and employed it to evaluate the quality of features [7], where
consistency is treated as the ratio of the samples that can
be recognized with the Bayes rule. We may contemplate that
consistency captures the natural objective of feature selection,
i.e., selecting the feature subset that minimizes the Bayes deci-
sion error rate. Unfortunately, mutual information, dependency,
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and consistency are all just applicable to evaluate discrete
features.

As far as continuous features are concerned, discretization
is introduced to segment their domains into several intervals
[11], [26]. Subsequently, the discretized features are evaluated
by making use of the aforementioned techniques. The quality
of the resulting feature subset depends not only on feature
selection algorithms but also on the discretization method that
is used at the beginning of the entire process. In addition,
there are also some techniques that were proposed for a direct
selection of numerical features. Distance is a general measure
for characterizing the class separability in a metric space [12],
[19], [39]. Intuitively, it is desired to find a feature space where
intraclass distance is minimal, whereas interclass distance is
maximal [8]. The ReliefF algorithm [39] relies on this idea.
It tries to find two sets of k-nearest samples (k ≥ 1) from the
same class and other classes, respectively, and then compute
the distance between two sets. Obviously, this algorithm is
computationally expensive for repeated calculation of k neigh-
bors and the determination of their distances. Moreover, the
theory about margin [10] shows that classification complexity
depends on the boundary samples, i.e., the so-called support
vectors, whereas ReliefF randomly selects samples to compute
the weights of features, which is not consistent with the essence
of the margin theory. The size of the decision boundary region
is another kind of measure for evaluating numerical features.
Lee and Landgrebe first captured this idea in their feature
extraction algorithm [25]. Thawonmas and Abe introduced this
idea for feature selection. They used hyperboxes or ellipsoids
to approximate decision region and calculate the overlap of
classes as a decision boundary [1], [42]. Obviously, this approx-
imation is rather coarse if the class regions are not of regular
shapes.

We propose a novel evaluation measure that is applicable to
discrete and continuous features by introducing a neighborhood
RS (NRS) model to compute the decision boundary in mixed
feature spaces [49], [57], [58]. The definition of NRS were
introduced and discussed in several literatures [57], [58]. Later,
this model is extended to deal with classification learning with
numerical features [49]. Usually, RSs evaluate the quality of
features based on the size of classification boundary; a number
of researches take the rate of boundary over the sample set
as the measure of feature quality [17], [18], [32], [49], [61].
However, as we know, not all the boundary samples are misclas-
sified [7], [61]. In this paper, the samples in boundary regions
are further divided into two subsets based on the information
of class distribution in samples’ neighborhoods: 1) samples
in the majority class and 2) samples in the minority classes.
The samples in the minority classes are misclassified accord-
ing to the Bayes rule. Then, the percentage of misclassified
samples is taken as the estimate of the classification com-
plexity encountered in the corresponding feature subspaces.
We call it the neighborhood decision error rate (NDER). We
show that the proposed measure is robust to outliers and
complex nonlinear decision boundary. We present a strategy
for feature subset selection based on the idea of neighbor-
hood decision error minimization (NDEM). We compare the
proposed technique with some current approaches by running
experiments for some University of California, Irvine (UCI)
data sets.

Fig. 1. Classification complexity in a 1-D feature space.

Fig. 2. Classification complexity in a discrete feature space.

II. BASIC IDEA AND RELATED WORK

In feature selection, one has to find features that can
effectively distinguish between different classes. The opti-
mal criterion for classification complexity of feature spaces
would reflect the Bayes error rate that was observed in X =
{x1, x2, . . . , xN}, i.e.,

e =
∫ [

1 − max
i

p(ωi|X)
]
p(X)dX

where X is the value domain of features, ωi stands for class i,
and p(ωi|X) is the conditional probability density function [8].
To compute the classification complexity that was expressed in
feature space X , we have to know p(X) and p(ωi|X), which
are usually not readily available in case of real-world classifica-
tion tasks. Unfortunately, it is not feasible to estimate them in
a high-dimensional space, given a finite and, sometimes, quite
small number of samples.

For simplicity, we express the idea that refers to a binary
classification problem in a 1-D space, as shown in Fig. 1.
According to the class probability density function, the feature
space becomes divided into three parts: 1) a consistent region
of class 1; 2) a consistent region of class 2; and 3) an incon-
sistent region where the samples with the same feature values
may belong to different classes, because the class probability
densities of two classes overlap in this area. The size of the
inconsistent region reflects the classification complexity of the
corresponding feature spaces.

Fig. 2 shows a similar case in discrete spaces, where
the samples are divided into a set of equivalence classes
{E1, E2, . . . , EK} based on their feature values. Samples with
the same feature values are grouped into one equivalence class;
the height of the rectangles in Fig. 2 denotes the probability
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p(Ei) of the equivalence class, and p(ωi, Ej) is the joint
probability of ωi and Ej .

We can see that some of the equivalence classes are con-
sistent, because their samples belong to one of the decision
classes, e.g., E1, E2, E5, and E6. However, there are also some
inconsistent equivalence classes like E3 and E4, where samples
with the same feature values are assigned to different classes.
According to the RS theory, this kind of samples forms the
decision boundary region, and the union of consistent samples
is called the decision positive region [32].

Based on the comparison of the discrete feature spaces and
numerical spaces, it can be concluded that, in classification,
a main source of classification complexity comes with incon-
sistent regions of decision, where samples with identical (in
the discrete case) or similar (in the numerical case) feature
values belong to different decision classes; hence, inconsistent
samples lead to misclassification. The objective of feature
selection is to find a subset of features that minimizes the
inconsistent region, i.e., minimizes the Bayes decision error
[20]. It is therefore desirable to have a measure to reflect the
size of an inconsistent region for discrete and numerical spaces
for feature selection.

Let us review some measures for estimating complexity in
a discrete or numerical feature space. In the discrete space, a
dependency function [32] in the theory of RSs is defined as

γB(D) =
‖POSB(D)‖

‖U‖

where U is the set of samples, ‖X‖ is the cardinality of set X ,
POSB(D) = ∪N

i=1BXi, BXi = {xj |[xj ]B ⊆ Xi}, and [xj ]B
is the equivalence class that was induced by xj and attribute
subset B. [xj ]B is the set of samples with the same attribute
values as sample xj in terms of attribute subset B.

Dependency reflects a ratio of consistent samples over the
whole set of samples. Therefore, dependency does not take the
boundary samples into account when computing the signifi-
cance of specific attributes. Once there are inconsistent samples
in an equivalence class, these equivalence classes are com-
pletely ignored. However, inconsistent samples can be divided
into two groups: 1) a subset of samples from the majority
class and 2) a subset from the minority classes. According
to the Bayes rule, only samples under the minority classes
are misclassified. For example, the samples in E3 and E4 are
inconsistent (see Fig. 2). However, only the samples labeled as
P (ω2, E3) and P (ω1, E4) are misclassified. The classification
accuracy in this case is expressed as follows:

f =
6∑

i=1

P (Ei) − P (ω2, E3) − P (ω1, E4).

Consistency captures this idea [7], [16]. It is the percentage
of the samples that are recognizable according to the Bayes rule.
In the discrete case, P (Ei) can be calculated from ‖Ei‖/‖U‖,
and P (ωj |Ei) can be computed in a similar fashion.

For a numerical feature space, it is not easy to precisely
compute the decision boundary region. In [12], some measures
of the overlap of feature values were proposed to reflect com-
plexity in feature spaces. Fisher’s discriminant ratio is given by

F1 =
(u1 − u2)2

σ2
1 + σ2

2

where u1, u2, σ2
1 , and σ2

1 are the means and variances of
two classes. Ho used the maximum F1 over all the features
as complexity in [12]. However, F1 does not work if class
probabilities do not satisfy the normal assumption, particularly
in the case that the classification boundary is irregular. One
similar measure, which is denoted by F2, quantifies an overlap
of the tails of two class conditional distribution [12] defined
as in the equation shown at the bottom of the page. Here,
max(fi, ωj) and min(fi, ωj) are the maximum and minimum
values of feature fi in class ωj . It is known that the maximum
and minimum values are not robust to noise. F2 cannot reflect
the real complexity of the feature space if there are several noisy
samples. Furthermore, this measure completely overlooks the
influence of class probability densities. Therefore, efficiency,
which was denoted by F3, was introduced, where the effi-
ciency of each feature is defined as the fraction of samples
out of the overlap region [12]. F2 and F3 share two common
disadvantages. First, these measures are sensitive to noisy in-
formation that was conveyed by samples, because they define
the overlap region with the maximum and minimum values
of classes. Second, they consider only separating hyperplanes
that were perpendicular to the feature axes. Therefore, even for
a linearly separable problem, F2 and F3 may be less than 1
if the optimal separating hyperplanes happens to be oblique.
Subsequently, several other measures based on boundary re-
gion, e.g., N1, N2, N3, and T1 were introduced. Except for N3,
these measures regard samples in the boundary region as the
source of classification complexity. The sole difference lies in
the way of defining the decision boundary region. In fact, as
aforementioned, not all samples in the boundary region will be
misclassified. It is not rational to take the measures of F2, F3,
N1, N2, and T1, computing the probabilities of samples in the
boundary region, as complexity [12]. According to the Bayes
rule, only the boundary samples in the minority classes will be
misclassified. Therefore, they are the real source that implies
the classification complexity and the emergence of the decision
error. Given this condition, it is desirable to form a theoretic
framework and construct an algorithm for estimating the Bayes
error rate in feature subset selection.

III. THEORETICAL FRAMEWORK FOR NDEM

As underlined, classification complexity mainly results from
the existence of inconsistent regions (e.g., overlap regions
and decision boundary regions), where samples with identical
or similar feature values would belong to different classes.
Here, we introduce an RS methodology to form a theoretic

F2 =
∏

i

min (max(fi, ω1),max(fi, ω2)) − max (min(fi, ω1),min(fi, ω2))
max (max(fi, ω1),max(fi, ω2)) − min (min(fi, ω1),min(fi, ω2))
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framework for discrete and numerical feature selection based
on NDEM .

A. NRSs for Discrete and Numerical Features

Palawk’s RS model [33] is defined in a discrete information
space, where each attribute takes its values in a finite set. As a
result, RS-based attribute reduction can only be used to deal
with discrete features. Here, we first introduce an extended
model, called NRSs, which can be used to deal with discrete
and continuous features [49].

Formally, the samples for classification (learning) are ex-
pressed as IS = 〈U,A〉, where U is the nonempty set of
samples {x1, x2, . . . , xn}, which is called a universe or a
sample space, A is the nonempty set of attributes (which are
referred to as features, inputs, or variables) {a1, a2, . . . , am}
to characterize the samples, and f(x, a) is the feature value of
sample x. To be more specific, 〈U,A〉 is also called a decision
table if A = C ∪ {D}, where C is a set of condition attributes,
and D is a decision variable.

Definition 1: Given arbitrary xi ∈ U and B ⊆ C, a neigh-
borhood δB(xi) of xi in subspace B is defined as

δB(xi) = {xj |xj ∈ U,ΔB(xi, xj) ≤ δ}

where Δ is a metric. This relation means that, for all x1,
x2, and x3 in U , it satisfies the following three conditions:
1) Δ(x1, x2) ≥ 0, and Δ(x1, x2) = 0 if and only if x1 = x2;
2) Δ(x1, x2) = Δ(x2, x1); and 3) Δ(x1, x3) ≤ Δ(x1, x2) +
Δ(x2, x3).

There are a huge number of possible metrics that are
considered in practice. Considering x1 and x2 to be two objects
in an N -dimensional space, A = {a1, a2, . . . , aN}, with
f(x, ai) denoting the value of sample x in the ith dimension
ai, a general alternative known as the Minkowski distance can
be expressed as

ΔP (x1, x2) =

(
N∑

i=1

|f(x1, ai) − f(x2, ai)|P
)1/P

.

It is well known that this distance translates into a Manhattan
distance Δ1 if P = 1, a Euclidean distance Δ2 if P = 2, or a
Tchebyshev distance if P = ∞.

There have been a number of proposed distance functions
for mixed numerical and categorical data [45], [52], e.g., the
heterogeneous Euclidean−overlap metric (HEOM) function,
the value difference metric (VDM), heterogeneous VDM, and
interpolated VDM. HEOM is defined as follows:

HEOM(x, y) =

√√√√ m∑
i=1

wai
× d2

ai
(xai

, yai
)

where m is the number of attributes, wai
is the weight of

attribute ai, and dai
(x, y) is the distance between samples x

and y in terms of attribute ai, which is defined as

dai
(x, y) =

⎧⎪⎨
⎪⎩

1, if the attribute value of x
or y is unknown

overlapa(x, y), if a is a nominal attribute
rn_diffa(x, y), if a is a numerical attribute.

Here

overlap(x, y) =
{

0, if x = y
1, otherwise

rn_diffa(x, y) = |x − y|/max
a

−min
a

.

With different metric functions, the proposed technique can
be used to analyze categorical attributes, numerical attributes,
interval-valued attributes, and their mixtures [45].

Definition 2: Given a set of samples U , N is a neighborhood
relation on U , i.e., ∀x, y ∈ U , R(x, y) = 1 if y ∈ δ(x); other-
wise, R(x, y) = 0. We call 〈U,N〉 a neighborhood approxima-
tion space.

Definition 3 [49]: Given 〈U,N〉 for arbitrary X ⊆ U , two
subsets of objects, which are called the lower and upper ap-
proximations of X in terms of relation N , are defined as

NX = {xi|δ(xi) ⊆ X,xi ∈ U}
NX = {xi|δ(xi) ∩ X = ∅, xi ∈ U} .

Definition 4 [49]: Given a neighborhood decision table
(NDT; NDT = 〈U,C,D〉), X1,X2, . . . , XN are the sam-
ple subsets with decisions 1−N , and the lower and upper
approximations of decision D with respect to attributes B are
then defined as

NBD =
N
∪

i=1
NBXi

NBD =
N
∪

i=1
NBXi

where NBX = {xj |δB(xj) ⊆ X,xj ∈ U}, and NBX =
{xj |δB(xj) ∩ X = ∅, xj ∈ U}.

The decision boundary region of D with respect to attributes
B is defined as

BN(D) = NBD − NBD.

A decision boundary is the subset of objects whose neigh-
borhoods come from more than one decision class. The lower
approximation of decision, which is called the positive region
of decision and is denoted by POSB(D), is the subset of objects
whose neighborhoods consistently belong to one of the decision
classes.

Theorem 1: Given NDT = 〈U,C,D〉, B ⊆ C, we have
the following three relations: 1) NBD = U ; 2) POSB(D) ∩
BN(D) = ∅; and 3) POSB(D) ∪ BN(D) = U .

The NRS model divides the samples into two subsets:
1) the positive region and 2) the boundary region. Intuitively,
the samples in the boundary region are easy to be misclassified.
In data acquisition and preprocessing, one usually tries to find
a feature space in which the classification task leads to the
simplest classification boundary.

B. ND and NDER

The size of boundary samples reflects the classification com-
plexity in a corresponding subspace. It also reflects the dis-
tinguishing capability or characterizing power of the condition
attributes. One evaluating function of an attribute’s significance,
which is called the neighborhood dependency (ND), is intro-
duced as follows.
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Definition 5: Given NDT = 〈U,C,D〉, the ND of D to B in
the neighborhood approximation space is defined as

γB(D) =
‖POSB(D)‖

‖U‖

where γB(D) reflects the ability of B to approximate D.
Obviously, 0 ≤ γB(D) ≤ 1. We say that D totally depends on
B or that the NDT is consistent if γB(D) = 1, which is denoted
by B ⇒ D; otherwise, we say that Dγ − depends on B, which
is denoted by B ⇒r D.

Dependency reflects the size of overlap between classes. If
the samples are completely separable, i.e., consistent (linearly
or nonlinearly separable), the dependency measure attains 1;
otherwise, we have γB(D) < 1.

Theorem 2: Given NDT = 〈U,C,D〉, B1, B2 ⊆ C, and
B1 ⊆ B2, with the same metric Δ and threshold δ for
computing neighborhoods, we have the following three re-
lations: 1) NB1 ⊇ NB2 ; 2) ∀X ⊆ U , NB1X ⊆ NB2X; and
3) POSB1(D) ⊆ POSB2(D), γB1(D) ≤ γB2(D).

Theorem 2 shows that adding a new attribute to the current
subset of attributes at least does not decrease the dependency.
In general, we hope to determine a minimal feature subset
with the same characterizing power as the whole features. The
monotonicity of dependency is very important for constructing
a greedy search algorithm [7], floating search [35], or B&B
method [41].

Considering parameter δ as the level of granularity at which
we analyze the classification problem, we can find that the
complexity of classification depends not only on the given
feature space but also on the assumed granularity level. Gran-
ularity, which was controlled by the values of parameter δ, can
qualitatively be characterized as “fine,” “coarse,” and the like.

The dependency in NRSs reflects the rate of boundary sam-
ples in numerical features, discrete features, or their mixture
spaces. In this sense, it naturally extends the definition of
dependency in “standard” RSs to deal with numerical and
discrete features without resorting to the discretization process.
Discrete and numerical features usually coexist in real-world
databases; thus, this extension greatly enhances the application
scope of RSs.

However, as mentioned in Section II, not all samples in the
decision boundary region are necessarily misclassified. Only
the samples in minority classes cannot be recognized. Given
this case, dependency cannot reflect the true classification
complexity. In the discrete cases, we can observe this effect
by comparing Figs. 2 and 3: Although the probabilities
of inconsistent samples are identical, the probabilities of
misclassification differ.

Fig. 4 illustrates a similar problem that arises in case of
numerical feature spaces. In Fig. 4(a) and (b), the feature spaces
are inconsistent, because two class probability densities are
greater than zero. As a result, the neighborhood of any sample
would not be “pure” (homogeneous), and the samples in it come
from two classes. Therefore, the dependency is zero, whereas
the probabilities of Bayes errors are less than 1 in these two
cases. We can also note that, according to the Bayes rule, the
error probability in A is far less than that in B. Dependency
cannot capture these differences. Fig. 4(c) and (d) visualize a
similar effect, i.e., the probabilities of inconsistent samples are
of little difference, but the Bayes error rates become distinct.

Fig. 3. Inconsistent discrete decision system.

Taking Fig. 4(c) as an example, we can observe that the
region between x0 and x1 is the decision positive region of class
ω1, and the region between x3 and x4 is the decision positive
region of class ω2. The region between x1 and x3 is the decision
boundary region. The inconsistency rate can be computed as

I =
2∑

i=1

x3∫
x1

p(ωi|x)dx.

However, the Bayes error rate is

e =

x2∫
x1

p(ω2|x)dx +

x3∫
x2

p(ω1|x)dx.

In general, e � I . Dependency is a good estimate of the
inconsistency rate but not of the error rate. Now, we define the
concept of neighborhood error rate. A neighborhood decision
function ND(x) is defined as follows.

Definition 6: Given NDT = 〈U,C,D〉, xi ∈ U , δ(xi) is the
neighborhood of xi, and P (ωj |δ(xi)), j = 1, 2, . . . , c, is the
class probability of class ωj . The neighborhood decision of xi is
defined as ND(xi) = ωl if P (ωl|δ(xi)) = maxj P (ωj |δ(xi)),
where P (ωj |δ(xi)) = nj/K, K is the number of samples in the
neighborhood, and nj is the number of samples with decision
ωj in δ(xi).

ND(xi) is the class assigned to xi according to the clas-
sification probability in the neighborhood of xi. Obviously,
ND(xi) = ω(xi) if xi is the samples that belong to the lower
approximation of decisions, where ω(xi) is the real class of
xi; otherwise, we should compute the class probability in the
neighborhood of xi for giving a class label to xi. ND(xi) =
ω(xi) if majority of the samples in the neighborhood of xi have
different classes with xi.

We introduce the following 0−1 loss function for misclassi-
fied samples:

λ (ω(xi)|ND(xi)) =
{

0, ω(xi) = ND(xi)
1, ω(xi) = ND(xi).

Definition 7: The NDER is defined as

NDER =
1
n

n∑
i=1

λ (ω(xi)|ND(xi))

where n is the number of samples.
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Fig. 4. Example of an inconsistent discrete system.

Theorem 3: Given NDT = 〈U,C,D〉, Δ is a metric on U ,
and δ ≥ 0 is a constant number. The following two conditions
hold.

1) γA(D) ≤ 1 − NDER.
2) γA(D) = 1 − NDER if the NDT is consistent in

the neighborhood approximation space. In this case,
γC(D) = 1, and NDER = 0.

Proof: First, assuming that U is divided into subsets
D1,D2, . . . , DN by decision attribute D, ∀xi ∈ POSC(D),
∃Dj ∈ {D1,D2, . . . , DN} such that δ(xi) ⊆ Dj . xi ∈ Dj ;
thus, P (δ(xi)|Dj) = 1, and ND(xi) = Dj . Hence, ND(xi) =
ω(xi). This result means that all the samples in the decision
positive region have zero decision loss. Therefore, γC(D) is
not greater than 1 − NDER. Second, if the NDT is consistent
in the neighborhood approximation space, POSC(D) = U , and
γC(D) = 1. In this case, ∀xi ∈ U , λ(ω(xi)|ND(xi)) = 0; thus,
NDER = 0. We get γC(D) = 1 − NDER.

For convenience, we call 1 − NDER a neighborhood recog-
nition rate (NRR). The NDER is an estimate of the Bayes deci-
sion error. NDEM is an idea for feature selection by minimizing
the NDER or maximizing the NRR in different feature subsets.

δ is a parameter for controlling the granularity of a neigh-
borhood approximation space. Neighborhood decision errors
vary with different resolution-granulated spaces. In essence, the
NRR employs samples’ neighborhoods to estimate the class
probabilities of the local region. Therefore, a neighborhood
can be considered as a Parzen window function that is used in
problems of the probability density estimation. It is well known
that the size of a window has great influence on the estimate;
thus, it is important to select a proper value for parameter δ.
We will discuss this problem in the experiment section. The
NDER can be considered the Bayes error rate where the rate is
estimated with a neighborhood window. We here estimate the
local class probabilities with the distribution of samples in the
neighborhood.

The following advantages are some properties of the NDEM
strategy that was used in feature selection. First, the search
algorithm based on NDEM can be used to deal with discrete and
numerical data without discretizing numerical features, because
the NDER is applicable to evaluating discrete and numerical
features. Second, NDEM is robust to noisy samples. In real-
world recognition tasks, learning samples are usually corrupted
by various kinds of noise. NDEM , like the k-nearest neighbor
(KNN) classifier, is robust to mislabeled samples [14], [45]. If
there are some mislabeled samples, only these samples will be
taken into account when computing the NDER. The samples
around them will be recognized; thus, they will not be counted
in computing neighborhood decision errors. Third, NDEM can
approximate complex classification boundary regions. Similar
to KNN and the neighborhood classifier (NEC) [14], NDEM

can precisely localize the decision boundary region; thus, the
classification complexity that was calculated with the NDER
can reflect the real Bayes decision error rate. Unlike discretiza-
tion, NRSs generate neighborhood granules of samples in a
pointwise manner and then approximate the class local regions
with these granules. We can thus approximate arbitrary com-
plex nonlinear and multimodal class regions with the neigh-
borhood granules if we specify a proper level of granularity.
Moreover, compared with mutual information [3], [46] and the
pattern recognition using information slicing method (PRISM)
[38], it is easier to design a stopping criterion, because the
NDER is linear with respect to the decision errors.

IV. FEATURE SELECTION BASED ON NDEM

Feature evaluation and optimal subset search are crucial
to the overall process of feature selection. NDEM offers an
idea for feature selection by minimizing the NDER. Here, the
NDER is a measure, which is independent of a specific search
algorithm, for evaluating the quality of feature subspaces.

There are a number of candidate search procedures. Greedy
search strategies [17], [29], [43], [53] seem to be particularly
computationally advantageous and robust against overfitting.
They come in the following two variants: 1) sequentially for-
ward selection (SFS) and 2) sequentially backward elimination
(SBE). Both of them are suboptimal search procedures. One
feature at a time is added to the current feature subset in
the SFS. At each stage, the feature that will be included is
selected from the remaining available features so that the new
enlarged feature set yields a maximum value of the evaluation
function that is used. The SBE starts with a set of all features
and progressively eliminates the least promising ones. These
algorithms may stop at some local minimum; thus, there is no
guarantee that we can find an optimal solution. B&B [30] is
a search technique in which all possible subsets are implicitly
checked without running exhaustive search. B&B returns the
optimal subset that is quantified in terms of the function if the
feature evaluation function is monotonic. However, in the worst
case, the B&B algorithm may exhibit exponential complexity.
However, one may come up with some simple heuristics that, in
practice, can result in substantial performance gains. Additional
heuristics for facilitating further speedup of the B&B algo-
rithm was proposed in [41]. Sequential forward floating search
is also a near-optimal search procedure with computational
complexity lower than the complexity of B&B. It performs
sequential forward search with provision for backtracking. GA
is a stochastic algorithm that mimics the genetic principles
of natural evolution [37], [44]. The most distinct aspect of
this algorithm is that it maintains a set of solutions (called
individuals or chromosomes) in a population based on their
fitness. Similar to the case of biological evolution, it has a
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mechanism for selecting fitter chromosomes at each generation.
To simulate the process of evolution, the selected chromosomes
undergo genetic operations, e.g., crossover and mutation. The
shortcomings in the design of GA-based feature selection are
that it comes with a significant number of variations and param-
eters that need to properly be selected to achieve a reasonable
or good performance of the optimization procedure.

In this paper, the objective is to design a sound evaluation
function for feature selection and classification complexity
estimation rather than to focus on search strategies. Hence, we
introduce SFS to compare several feature evaluation functions
with regard to their computational efficiency. The algorithm
employs a bias of minimal features, i.e., it selects the minimal
set of features to achieve the minimal classification complexity.

With the NRR, we define the significance of feature a relative
to B as follows:

SIG(a,B,D) = NRRB∪a(D) − NRRB(D)

where NDRB(D) stands for the NRR in feature subset
spaces B.

Algorithm: SFS based on NDEM (SFS−NDEM)
Input: decision table 〈U,C, d〉; delta δ // Control the size of

the neighborhood
Output: feature subset red.
1: ∅ → red; // red is the pool for containing the selected
features.

2: do while C − red = ∅

3: for each ai ∈ C − red
4: Compute SIG(ai, red, d)=NRRred∪ai

(d)−NRRred(d)
5: end
6: select the attribute ak that satisfies the condition:
7: SIG(ak, red, d) = maxi(SIG(ai, red, B))
8: if SIG(ak, red, d) > 0,
9: red ∪ ak → red
10: else
11: break
12: end
13: end
14: return red

There are several main steps in this reduction process. First,
we rank the samples with each attribute and find the neigh-
borhood of each sample with a sliding-window technique.
We consider only the samples in the neighborhood window
in searching the neighborhood. The time complexity of this
step is n log n + kn, where n is the number of samples, and
k is a constant value that was used in searching the neigh-
borhood of each sample. To compute the neighborhood of x
in a multidimensional space, we use the intersection of the
neighborhoods of x in each feature space. Then, we compute
the class probability in neighborhoods whose time complexity
is O(n). Finally, we evaluate the remaining features and add
the informative features into the reduct one by one. The overall
complexity is Nm(n log n + kn + n) if there are N candidate
features, and m features are selected. There exist some other
strategies for speeding the algorithm up. For instance, ReliefF
and RReliefF come with a time complexity of Nn log n [39].

The NRS model divides the samples into the following two
parts: 1) the positive region and 2) the boundary region (bound-
ary). Moreover, the boundary can also be classified into the
following two subsets: 1) the set of samples that can correctly
be recognized with the neighborhood information and 2) the
remaining samples that cannot be recognized. With regard to
the positive region, we have the following property.

Corollary 1: Given NDT = 〈U,C,D〉 and metric Δ, M ,
N ⊆ C, M ⊆ N , we have xi ∈ POSN (D) if xi ∈ POSM (D).

Corollary 1 shows that an object necessarily belongs to the
positive region with respect to an attribute set if it belongs to
the positive region with respect to its subset. In forward attribute
selection, the attributes are added into the selected subset one
by one according to their significance levels. Accordingly,
we have ∀M ⊇ B, xi ∈ POSM (D) if object xi ∈ POSB(D).
Therefore, we need not compute the objects in POSB(D)
when computing POSM (D), because they are necessarily in
POSM (D). In this case, we only need to discuss the objects in
U − POSB(D). The objects in U − POSB(D) and the remain-
ing features get much fewer as the attribute reduction goes on,
and the computation size is reduced in selecting a new feature.
Based on this observation, we can give a mark to the samples
in the positive region with the current features and omit them
in computing the significance of the rest features. For example,
we just need to analyze 25% of the samples to compute the
significance of N−m features if 75% of the samples belong
to positive regions with the selected m features. With this
strategy, in some applications, the computation overhead is
greatly reduced.

There are two stopping criteria for SFS−NDEM . The search
stops if all candidate features have been selected or an inclusion
of any new feature into the current subset does not reduce the
NDER. In practice, this condition is very strong and restrictive,
and it may result in overfitting. By applying SFS−NDEM to
feature selection, we usually find that the NRR rapidly goes
up when the first features have been added and then slowly
rises until it completely stops. The last several features result
in a very limited increase in the values of the recognition rates.
NDEM employs the empirical risk minimization strategy; thus,
the resulting feature subset may overfit the samples.

We can introduce a postpruning strategy to alleviate the effect
of overfitting. In this case, feature selection consists of two
steps. The SFS−NDEM searches a feature subset red such
that ∀ak ∈ C − red : SIG(ak, red,D) = 0 in the first step. In
this step, it produces a series of nested feature subsets, i.e.,
red1 ⊂ red2 ⊂ · · · ⊂ redm. Then, we can introduce a learning
algorithm to assess the quality of redi one by one. The subset
with the highest accuracy is then selected. This procedure can
be understood as a feature selection algorithm that combines
the filter and wrapper strategies [54].

V. EXPERIMENTAL ANALYSIS

One of the important issues in feature selection is to estimate
the classification complexity in different feature subspaces and
rank the corresponding subsets of features, given this estimate.
In this section, we will first test the influence of parameter δ
on the estimate and get a good value domain for it. Then, we
conduct NDEM-based feature selection and compare it with
some existing techniques.
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TABLE I
UCI DATA [FEATURES (CLASSES) SAMPLES]

AND CLASSIFICATION COMPLEXITIES

TABLE II
AVERAGE ACCURACIES WITH TENFOLD CV USING FOUR CLASSIFIERS

TABLE III
CORRELATION COEFFICIENTS BETWEEN ACCURACIES

AND CLASSIFICATION COMPLEXITIES

A. Comparison of Different Complexity Measures

To compare the effectiveness of the estimates, ten data sets
from the UCI Machine Learning Repository are considered
(see Table I) [5]. We estimate their classification complexity
by making use of the following four measures, as presented in
Table I:

1) ASH ;
2) ASNN [40];
3) ND;
4) NDEM .

We specify the size δ of the neighborhood to be 0.14; this
particular value has been reported in the literature [49]. We
also consider the following four well-known learning algo-
rithms to estimate classification errors based on a tenfold cross
validation [14]:

1) Classification and Regression Tree (CART);
2) Radial Base Function Support Vector Machine

(RBF−SVM);
3) KNN;
4) NEC.

Intuitively, we could anticipate that the correlation coefficient
between complexities and classification error rates should be
high, which shows that the complexity is a sound estimate
of the classification capabilities of the data. The classifica-
tion complexity and classification accuracies are shown in
Tables I and II, respectively. Then, we compute the values of
the correlation coefficient between them, as given in Table III.

Table III shows the values of correlation between the classifi-
cation accuracies that were obtained for four classifiers and the
four complexity measures. NDEM consistently produces the
highest values of correlation among these measures, whereas
ND comes with the lowest correlation values. As pointed out
in Section III, dependency reflects the ratio of samples in the
boundary region over the whole sample set. However, not all
the boundary samples are misclassified according to the Bayes
rule. Therefore, dependency is not a good estimate of the classi-
fication complexity. Recall that NDEM is the percentage of the
misclassified samples determined with the local information of
samples. Based on Table III, we can conclude that NDEM is a
better estimate of classification complexity than ASH , ASNN ,
and ND, and all the four coefficients assume values that were
higher than 0.9. We also see that ASH and ASNN yield rather
good estimates of complexity.

The values of ND and NDEM vary with respect to the size
of the neighborhoods that were used in the computing boundary
samples and misclassified samples. To show the influence of the
values of parameter δ, we consider a series of numeric values,
e.g., δ = 0.005, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1,
0.12, 0.14, 0.16, 0.18, 0.20, 0.25, 0.30, 0.40, and compute the
values of ND and NDEM for each size of neighborhood,
respectively. The obtained values of the correlation coefficients
between the classification accuracies and complexities are
shown in Fig. 5. In Fig. 5, we can observe that the complexity of
ND is much sensitive to the size of the neighborhood, whereas
NDEM is rather robust. We can observe that a wide range of
parameter δ yields good estimates of complexity with regard to
NDEM . The size of the neighborhood can be regarded as the
granularity of classification; thus, we can conclude that NDEM
is robust to the granularity of the complexity analysis.

In Fig. 5, we can also observe that the four classifiers share
a similar variation in correlation coefficients, which means that
the estimates of complexity are independent of the classifiers
that were used, and NDEM can be treated as a general measure
of classification complexity. With the experimental results,
we can also see that [0.1, 0.2] is an appropriate domain for
parameter δ.

B. Comparison of Feature Selection Algorithms
on Discrete Data

In what follows, we experimented with different algorithms
of feature selection using 16 data sets, as outlined in Table IV,
where four sets come with discrete features (i.e., lymphography,
soybean, votes, and zoo), six data sets come with numerical
features (i.e., Diab, Iono, sonar, WDBC, WPBC, and wine), and
the rest of the data sets come with mixed numerical and cate-
gorical features. The last two columns show the classification
rates that were obtained for the raw data sets without feature
selection. Next, we use sequentially greedy forward search to
form the best features when we compare the algorithms that
evaluate features based on RSs, information entropy, NRSs,
and consistency, respectively. That is, we only replace the
evaluation function in Line 6 of the SFS−NDEM algorithm.
With regard to correlation-based feature selection (CFS), Re-
liefF, and the support vector machine (SVM)-based algorithm,
they have special search strategies, and we keep their search
strategies in the experiments.
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Fig. 5. Variation of correlation between accuracies and complexities with different sizes of neighborhoods. (a) ND. (b) NDEM.

TABLE IV
DATA DESCRIPTION

TABLE V
NUMBER OF FEATURES THAT WERE SELECTED

WITH DIFFERENT MEASURES

We first show the results of discrete feature selection. The
number of selected features of the discrete data is given in
Table V, where the second column is the number of features
of the raw data sets. Entropy means mutual-information-
based feature selection, whereas VPRS denotes feature selec-
tion based on variable precision RS. To distinguish numerical
feature selection, we denote the NDEM algorithm by NDEM.
NDEM is denoted as RDEM if there are only discrete features
or numerical features that have been discretized before feature
selection. In this case, RDEM is equivalent to the consistency-
based feature selection [7]. There is a parameter that will be
specified in the VPRS-based feature selection, i.e., α, whose
intent is to control the approximation precision. We specify
α = 0.8 based on the suggestion in [4].

In Tables V–VII, we observe that most of the features in raw
data have been deleted by all the feature selection algorithms.
At the same time, there is no remarkably large deterioration
in the classification performance. The results show that these
algorithms are effective in retaining classification abilities.
However, the RS-based algorithm yields an empty set when
it is applied to the “votes” data, because no equivalence class
is consistent at the first stage. In this case, the dependency
of each single feature is zero. Therefore, the algorithm stops

here. Noisy information has great influence on the results that
were produced by RS-based algorithms. VPRS introduces a
relaxing parameter to control the noise effect. RDEM further
generalizes the idea to deal with noise with neighborhood
decision. The noisy sample has little influence on the decisions
of proximate samples. Furthermore, there is no parameter that
will be specified with RDEM.

The last columns of Tables V–VII show the number of
features and classification performance after postpruning. The
number of the selected features has largely been reduced, and
at the same time, the classification performance improved with
data reduction.

C. Comparison on Numerical or Mixed Data
and Overfitting Problems

Fig. 6 shows the variation of attribute significance with the
number of selected features obtained for the soybean data.
The significance of feature subset is computed with the RS-
based dependency, VPRS-based dependency, and RDEM, re-
spectively. The values of the RDEM rapidly increase before
the set of features is formed by six features. Then, the increase
slows down until it completely stops when the set of features
has 13 elements. In fact, only a few samples are recognized
when adding the remaining features, i.e., increasing the size
of the feature space. In particular, the NRR achieves a value
of 99.27% when we have included the tenth feature. Adding
other three features contributes to further improvements to a
very limited extent by distinguishing the remaining 0.073% of
the samples. A similar behavior happens to VPRS and RS. We
also observe the relationship RDEM ≥ VPRS ≥ RS.

Fig. 7 shows the relation between the number of selected
features and the classification performance. In the beginning,
the recognition rate steeply climbs to some maximum value and
then decreases. This case shows that the features that were se-
lected after the peak are superfluous for classification, although
they augment the evaluation function. Their impact is negative,
and they should be eliminated from the selected feature subsets.

Now, we test the algorithm on data sets with numerical
or mixed features. We compare the proposed algorithm with
some classical algorithms. The entropy and classical RS-based
algorithms can be used to deal with discrete features; thus, we
introduce the minimum descriptive length (MDL) discretization
[24] to segment the numerical features into several intervals and
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TABLE VI
CLASSIFICATION ACCURACIES OF FEATURES THAT WERE SELECTED WITH DIFFERENT MEASURES BASED ON CART (IN PERCENT)

TABLE VII
CLASSIFICATION ACCURACIES OF FEATURES THAT WERE SELECTED WITH DIFFERENT MEASURES BASED ON SVM (IN PERCENT)

Fig. 6. Attribute significance versus the number of selected features.

form the discretized data sets. Then, feature selection based
on mutual information, RS, and RDEM is employed to select
discretized features. Meanwhile, we also apply ND and NDEM
to directly select numerical features, where numerical features
are normalized into the unit interval. We set δ = 0.14 (refer
to the discussion on the selection of the numeric value of this
parameter).

The selected features with different evaluation functions are
presented on the order of selecting in Table VIII, where MDL
is the discretization algorithm; entropy, RS, RDEM, NRS, and
NDEM are algorithms that were used for feature selection. The
MDL+RS feature selection algorithm yields two empty sets for
the heart and sonar data sets. This result states that, for these
data sets, no sample is consistent in terms of a single feature if
the numerical features are discretized with the MDL algorithm.
However, all the other feature selection algorithms determine a
subset of features. We can also find that the selected features
are distinct when applying different algorithms.

The “classical” RS-based dependency, RDEM, NRS-based
dependency, and NDEM reflect ratios of consistent samples or
recognized samples, respectively. They take values in interval
[0, 1].

Fig. 8 visualizes a change of significance with respect to
the number of selected features. All four significance functions
climb fast at the beginning of the selection process, and this
phenomenon occurs for the heart, Iono, sonar, WDBC, and
wine data sets. The feature significance of credit data slowly
increases, and this result constitutes a different pattern of be-
havior compared with the four other data sets. Feature selection
algorithms may stop very early if we specify a threshold to stop
the search in this case.

Here, we show a technique that combines the idea of filter
with wrapper to overcome this problem. That is, we first select
the relevant features that were evaluated with significance in the
forward selection step. We then employ a learning algorithm to
evaluate the selected features by tenfold cross validation, where
the selected features are added to the learning algorithm one
by one on the order of selection. The results are presented in
Tables IX and X. The results in Table IX are evaluated with
CART, and the results in Table X are evaluated with SVM,
where A is the optimal classification performance, and N is the
corresponding feature number. We can find that there is little
difference in the results if the entropy, RDEM, and NDEM algo-
rithms are in the optimal states, respectively. However, entropy-
based algorithms require discretizing numerical features in
advance. The results also show that wrapper-based postpruning
is necessary for feature selection. A number of features that
were selected with filter techniques are excluded in the final
results. The numbers of features in optimal subsets are greatly
reduced in most of the cases. In addition, the optimal number
of features varies from one learning algorithm to another. No
general conclusion is applicable to various learning algorithms.
It is efficient to use a filter in selecting a candidate subset for
a subsequent wrapper. Therefore, this method integrates the
advantage of a filter in efficiency with that of a wrapper in
effectiveness.

Tables XI–XIII show the number of selected features and
the corresponding classification performance based on fuzzy
entropy [13], [15], NRS-based dependency, NDEM , the com-
bined filter and wrapper (selection and postpruning) algorithm,
CFS [11], ReliefF [37], and the SVM-based technique [10],
respectively, where feature subsets are directly selected from
numerical data. P-CART and P-SVM denote the number of
features that were selected using NDEM + CART or NDEM +
SVM (see Table XI). Among the 12 data and eight algorithms
of feature selection, P-CART comes with the minimal number
of features (which occurs for seven data sets), whereas P-SVM
returns the minimal number of features as far as six data sets
are concerned. On the average, P-CART and P-SVM select 5.17
and 5.25 features for classification, which are the least two val-
ues among the size of features that the eight algorithms offered.

With regard to the performance of CART-based classifica-
tion, as shown in Table XII, P-CART, i.e., NDEM + CART,
comes with the highest accuracy in six cases. At the same
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Fig. 7. Variation of average classification accuracies with the number of selected features.

TABLE VIII
FEATURES THAT WERE SEQUENTIALLY SELECTED WHEN USING DIFFERENT SIGNIFICANCE CRITERIA

Fig. 8. Evaluation functions versus the number of selected features.

time, P-SVM comes with the highest accuracy in seven cases.
By scanning the results in Tables XI–XIII, we conclude that
NDEM + CART and NDEM + SVM give rise to the highest
feature reduction while retaining classification performance
that is comparable to the one reported for some well-known
algorithms.

VI. CONCLUSION AND FUTURE WORK

A novel feature evaluation measure that is applicable to
discrete and continuous features has been proposed in this
paper. We first introduced the NRS model to define and com-
pute decision positive regions and decision boundary in metric
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TABLE IX
CLASSIFICATION PERFORMANCE OF OPTIMAL FEATURES FILTER + WRAPPER (CART)

TABLE X
CLASSIFICATION PERFORMANCE OF OPTIMAL FEATURES THAT WERE SELECTED WITH FILTER + WRAPPER (SVM)

TABLE XI
NUMBER OF SELECTED MIXED FEATURES

TABLE XII
CLASSIFICATION ACCURACY (IN PERCENT) OF MIXED DATA THAT WERE OBTAINED FOR CART CLASSIFIERS

TABLE XIII
CLASSIFICATION ACCURACY (IN PERCENT) OF MIXED DATA THAT WERE OBTAINED FOR SVM CLASSIFIERS
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spaces. The size of classification boundary was used to reflect
on the classification complexity in NRSs. We showed that not
all samples but only the samples in minority classes in boundary
regions become misclassified. This measure of dependency in
RSs is not an unbiased estimation of classification complexity.
Decision boundaries lead to the following two subsets based
on the class distribution of neighborhoods: 1) recognized parts
and 2) misclassified parts. Finally, the ratio of the misclassified
samples is taken as the estimate of complexity. There are some
potential advantages of using the strategy of NDEM for feature
selection. First, the NDER is applicable to discrete and contin-
uous features; thus, the search algorithm based on NDEM can
be used to deal with mixed data without discretizing numerical
features. Second, NDEM is robust to outliers. NDEM , like the
KNN classifier, is robust to mislabeled samples. If there are
some mislabeled samples, only these samples are taken into
account in the computation of the NDER, whereas the samples
around them may be recognized. However, dependency con-
siders all these samples as being uncertain. Third, NDEM can
approximate complex classification boundary regions. NDEM
considers the local samples of feature spaces, which leads the
model to compute the nonlinear classification boundary.

We have presented a forward greedy strategy for searching
feature subsets to minimize the neighborhood decision error
and, correspondingly, minimize the classification complexity in
the selected feature subspaces. We compared the proposed algo-
rithm with some classical algorithms, e.g., mutual information,
CFS, ReliefF, and SVM-based feature selection. The results
show that the proposed algorithm is effective when dealing with
discrete data, numerical data, and their mixtures. We showed
the phenomenon of overfitting, which may occur in forward
feature selection. We integrated the filter-with-wrapper strategy
and showed how one can delete the superfluous features by
the postpruning technique. Experiments showed that the clas-
sification performance consistently increases with the pruned
features.

Margin, which was first used to estimate the structure risk of
classification in the statistical learning theory, was introduced
in the research works of Gilad−Bachrachy et al. and Sun to
evaluate the quality of a set of candidate features. The experi-
ments showed that these techniques are promising. According
to the statistical learning theory, we know that classification
risks depend on empirical risks and the complexity of the
learning machine. The latter factor can roughly be estimated by
the margin of classification. Therefore, margin should be inte-
grated with the classification error rate in evaluating the quality
of features. This topic may offer a new direction for future
studies.
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