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Hunger and satiety are usually discussed from the perspective of the central
nervous system. In this paper we instead find the foundation for an under-
standing of hunger in the basic biochemical and physiological processes of
energy metabolism. Such considerations suggest that the stimulus for hunger
should be sought among changes that occur in the supply of metabolic fuels
rather than in the utilization of specific nutrients or in the levels of fuel re-
serves. This line of reasoning diverts attention from the brain, which is not
usually subject to dramatic fluctuations in its fuel supply, and focuses instead
on the intestines, adipose tissue, and liver, the three peripheral organs that are
most involved in the production or delivery of metabolic fuels. We propose that
the stimulus for hunger derives from information provided to the brain by the
liver in the course of normal hepatic function. More specifically, the stimulus for
hunger may be associated with an alteration in oxidative metabolism within
the liver, with food intake reversing that change. This view of hunger con-
forms closely to the fundamental features of caloric homeostasis and makes
unnecessary such traditional hypothetical constructs as hunger and satiety
centers, glucostat, lipostat, and body weight set point.

Physiological psychologists have tradition-
ally viewed hunger from the perspective of
the central nervous system. The early findings
of Brobeck and his colleagues, that damage
to specific hypothalamic areas provokes dra-
matic alterations in food intake and body
weight (Anand & Brobeck, 1951; Brobeck,
Tepperman, & Long, 1943), first riveted at-
tention to the brain. Their concept of a ven-
tromedial hypothalamic satiety center, which
inhibits the activity of a primary feeding
center in the lateral hypothalamus, provided
the framework for much of the theorizing
about hunger that has occurred in the last
quarter of this century. Multiple physiolog-
ical factors are now believed to stimulate
feeding and thus to ensure the constancy of
body weight, body temperature, and glucose
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utilization, each of which has been assumed
to exert its influence on the medial or lateral
hypothalamic areas or both (e.g., Anand,
1961; Epstein & Teitelbaum, 1967; Stellar,
19S4; Stevenson, 1969).

We believe that preoccupation with central
controls has been premature and has led to
misconceptions about the stimuli for hunger,
misconceptions that become apparent when
experimental findings are viewed from a more
contemporary physiological perspective. Ac-
cordingly, rather than accepting the dual
hypothalamic model as the starting point, we
sought for the foundation of an understand-
ing of hunger in the basic biochemical and
physiological processes of energy metabolism
in higher mammals. We believe this approach
leads to a view of hunger that conforms more
closely to the fundamental features of
caloric homeostasis that have been disclosed
in recent years. Such a view also makes un-
necessary the notion of multiple stimuli for
hunger and the need for such traditional
hypothetical constructs as body weight set
point, lipostat, and glucostat.

The present paper is divided into three
sections. First, we briefly describe energy
metabolism, with an emphasis on those prin-
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FIGURE 1. Disposal of metabolic fuels in the post-
prandial state. (Because the liver plays a pivotal
role in determining the fate and availability of meta-
bolic fuels, insert shows the pattern of substrate flow
in that organ.)

ciples that seem most relevant to the present
discussion. Then, we relate that presentation
to our view of hunger, and from that perspec-
tive reexamine selected experimental findings
that have provided the strongest arguments
for traditional hypotheses. Finally, we re-
evaluate the evidence that dual hypothalamic
centers control hunger and satiety and then
consider the origin of the metabolic stimulus
that signals the animal to feed.

ENERGY METABOLISM

Metabolism in tissues requires continuous
supplies of utilizable fuels. These may be de-
rived from carbohydrate, fat, or protein,
which are ingested due to hunger or are mobi-
lized from bodily energy reserves. The physi-
ological and biochemical mechanisms that
maintain and direct energy metabolism have
been investigated extensively and are the sub-
ject of many excellent reviews (Newsholme

& Start, 1973; see also Cahill, 1970; Felig,
1973; Flatt & Blackburn, 1974; Levine &
Haft, 1970; Owen & Reichard, 1971a;
Tepperman & Tepperman, 1970). These
mechanisms can be conveniently grouped into
those that provide for the initial disposal of
ingested nutrients following a meal and those
that permit a measured recruitment of stored
fuels in the postabsorptive state. They are
briefly summarized as follows.

Disposal of Metabolic Fuels

Food consumption usually delivers meta-
bolic fuels to the animal in amounts that far
exceed its immediate requirements. Because
of the large capacity of the gastrointestinal
tract to accommodate food, and the relatively
slow absorption of nutrients therefrom, the
period during which metabolic fuels are pro-
vided by feeding extends well beyond the
meal itself. During this time, ingested nutri-
ents either are utilized directly or are stored
for later use (see Figure 1). Carbohydrates
are broken down into utilizable sugars, such
as glucose, and are absorbed from the small
intestine into capillaries going directly to the
liver via the hepatic portal system. Glucose
freely enters the liver and is there either
oxidized to provide energy, stored in limited
quantities as glycogen, or converted to lipids
(lipogenesis), which enter the circulation and
are transported to adipose tissue for storage.
The circulating glucose not removed by the
liver is used for energy production in brain,
muscle, and other tissues or else is stored in
adipose tissue as triglycerides. Wasteful gly-
cosuria is always avoided, regardless of how
much carbohydrate is ingested, except in
disease states (e.g., diabetes mellitus).

Protein from the food is degraded to amino
acids which, after absorption, are either re-
synthesized into new protein, used for energy
production (especially when they are in excess
and little carbohydrate is available), or me-
tabolized in the liver to carbohydrate or lipid.
Dietary fat, mainly as triglyceride, passes
from the intestine and is transported through
the lymphatic system to the general circula-
tion. The bulk of the triglyceride is hydro-
lyzed in the capillary beds to liberate glycerol
and free fatty acids. The glycerol is converted
in the liver to glucose, which is handled as
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described above. The free fatty acids can
enter tissues rapidly and be utilized, but usu-
ally they are esterified to reform triglycerides
within adipose tissue cells and then are stored
there. The storage capacity of adipose tissue
is virtually limitless, and thus, lipids de-
rived from carbohydrate, protein, or fat can
always be stored when caloric intake exceeds
expenditures.

Mobilization of Metabolic Fuels

The need for energy production by living
cells is continual. Thus, the animal with no
food to consume must consume itself. Com-
pared to the postprandial flood of nutrients
from the gastrointestinal tract, the post-
absorptive mobilization of metabolic fuels
from reserves (see Figure 2) is conservatively
attuned to tissue needs, thereby maximizing
the duration of adequate maintenance during
an indeterminate period of privation. Of
greatest significance is the lipid depot in
adipose tissue, which normally contains at
least 80-90% of the calories stored. Tri-
glycerides in adipocytes are hydrolyzed to
form glycerol and free fatty acids (lipolysis),
which are then released into the blood. Both
are taken up by the liver, in which glycerol is
transformed into glucose and the free fatty
acids are either used for energy or converted
to ketone bodies (ketogenesis). Glucose is
also synthesized (gluconeogenesis) from amino
acids and other substrates (see below), and
the reduction of liver glycogen (glycogenoly-
sis) adds to the glucose supply. The glucose
thus produced is released into the blood, and
the major portion of it is used by the brain;
the ketone bodies, in contrast, are used as
metabolic fuels by brain as well as other
tissues. Free fatty acids not taken up by the
liver provide a major fuel for muscle but
cannot be used by the brain.

Aside from this ebb and flow of nutrients,
there are four additional features of metabo-
lism that have important implications for our
view of hunger.

1. Both endocrine and neural events help
to satisfy the organism's needs for metabolic
fuels. For example, two antagonistic pancre-
atic hormones, insulin and glucagon, provide
a coordinated control over enzymes in the

FIGURE 2. Mobilization and disposal of metabolic
fuels in the postabsorptive state. (Because the liver
plays a pivotal role in determining the fate and
availability of metabolic fuels, insert shows the
pattern of substrate flow in that organ.)

liver and adipose tissue that direct the depo-
sition and mobilization of the different meta-
bolic fuels (e.g., Randle et al., 1966; Unger,
1974). Thus, the postprandial delivery of glu-
cose into the hepatic portal system, together
with other meal-related events, stimulates the
secretion of insulin, which promotes the for-
mation of lipids and glycogen (while inhibit-
ing their mobilization) as well as the uptake
of glucose into muscle and its utilization
there. In the postabsorptive period, on the
other hand, insulin secretion declines and
glucagon secretion increases; these changes
promote the mobilization of liver glycogen
,and fats from storage and the production of
new glucose from glucogenic precursors
(Cahill et al., 1966; Marliss, Aoki, Unger,
Soeldner, & Cahill, 1970). Some of these
metabolic effects are additionally stimulated
by growth hormone and by adrenal gluco-
corticoids and catecholamines, secretions of
which increase during fasting (e.g., Exton,
1972; Jeanrenaud, 1968). Complementing
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them still further (and, in part, modulating
all of the endocrine secretions) are the actions
of the autonomic nervous system. Thus, exci-
tation of the sympathetic nerves stimulates
glycogenolysis in the liver (Shimazu & Fukuda,
1965) and lipolysis in adipose tissues (Havel
& Goldfien, 1959), whereas converse effects
in the liver result from activation of the
parasympathetic fibers (Shimazu, 1967).

2. The supply of fuels to the brain is elabo-
rately defended even during prolonged fast-
ing. Insulin is not required for transporting
glucose into nerve cells, and thus glucose uti-
lization by the brain continues early in the
postabsorptive state despite reduced insulin
secretion. In contrast, utilization of glucose
by muscle is diminished when insulin levels
are reduced, and glucose is thereby spared
for use by the brain (Cahill et al., 1966).
Further conservation of glucose results from
the utilization of free fatty acids and ketone
bodies by muscle, since intermediates in their
metabolism retard the degradation of glucose
into pyruvate (glycolysis) and its subsequent
oxidation in the tricarboxylic acid cycle
(Randle, Garland, Hales, & Newsholme,
1963). Moreover, the pyruvate and lactate
formed from glucose in nonneural tissues are
returned to the liver for resynthesis into
glucose to be used by the brain (Owen, Felig,
Morgan, Wahren, & Cahill, 1969). Because
liver glycogen stores are relatively small,
these processes are important for conserving
glucose and thereby minimizing the need for
gluconeogenesis from amino acid substrates
(principally alanine) produced by muscle
catabolism (Felig, Owen, Wahren, & Cahill,
1969). Nevertheless, as fasting continues, the
production of glucose decreases, thus con-
serving body protein, and ketone bodies pro-
vide increasingly more of the substrate that
is used for metabolic fuel by the brain (Owen
et al., 1969; Sherwin, Hendler, & Felig,
1975). For example, it is estimated that more
than 60% of brain oxygen consumption in
obese human subjects during prolonged star-
vation is provided by the oxidation of ketone
bodies (Owen et al., 1967). At this time, the
utilization of ketone bodies by muscle dimin-
ishes, and free fatty acids are preferentially
oxidized, thus sparing the ketone bodies for
metabolism by the central nervous system

(Owen & Reichard, 1971b). Such alterations
in the mixture of glucose and ketone bodies
that is delivered to the brain permit it to
maintain its function without disruption
(see also Krebs, Williamson, Bates, Page, &
Hawkins, 1971; Sokoloff, 1973).

3. Lipid deposition and mobilization are
directly related to the content of triglycerides
already present in adipose tissue, in addition
to being influenced by hormones (especially
insulin) and autonomic tone. Thus, decreases
in tissue lipid levels shift equilibrium condi-
tions toward fat storage, whereas increases in
lipid levels tend to facilitate fat loss. This
feature of adipose tissue metabolism underlies
observations that postprandial glucose uptake
and lipogenesis are greater in a previously
fasted animal, whose adipocytes have been
partially emptied, than in an animal eating
ad libitum (Connor & Newberne, 1974;
Tepperman & Tepperman, 1958), whereas the
basal rate of lipolysis is greater in obese
subjects than in lean individuals (Goldrick &
McLoughlin, 1970; Hartman, Cohen, Richane,
& Hsu, 1971). The intrinsic tendency toward
maintenance of lipid mass in adipose tissue
might also provide the basis for apparent
alterations in the sensitivity of adipose tissue
to insulin as a function of body weight (Di
Girolamo & Rudman, 1968; Salans, Knittle,
& Hirsch, 1968), as well as for the long-term
stability of body weight at fairly steady levels
presumably set by genetic and early post-
natal factors (Johnson, Stern, Greenwood,
Zucker, & Hirsch, 1973; Knittle & Hirsch,
1968), which is commonly observed in adult
animals.

4. The liver is not entirely dependent on
activity in the tricarboxylic acid cycle for
energy production. In the fed state, glucose
is usually the primary substrate in nonrumi-
nants, and its oxidation to COa is the major
source of energy in the liver, as in all tissues.
In contrast, whereas peripheral tissues mainly
oxidize free fatty acids and ketone bodies
rather than glucose during fasting, the liver
uniquely lacks the enzyme needed to convert
the ketone bodies synthesized there into a
substrate that can be oxidized in the tri-
carboxylic acid cycle (Krebs et al., 1971).
Instead, the partial oxidation of free fatty
acids that occurs in ketogenesis may provide
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a considerable portion of the energy that is
produced (Krebs & Hems, 1970; Mayes &
Felts, 1967; Wieland, 1968).

To summarize, energy metabolism is main-
tained by alternating tides of nutrients that
sweep in from the intestines or adipose tissue
at regular intervals depending on when food
consumption occurs. Adipose tissue partici-
pates actively in metabolism by removing
the excess nutrients that are usually obtained
during each meal and by releasing them in the
subsequent postabsorptive period. This tissue
thus provides a massive energy buffer that
prevents dramatic shifts in nutrient supply
despite the episodic nature and inconstant
magnitude of food ingestion. The liver com-
plements the function of adipose tissue and
ensures that nutrient supplies are sufficient
and appropriate to the specific needs of indi-
vidual tissues. In satisfying those needs,
metabolic fuels are used interchangeably in
peripheral cells, while the brain's special re-
quirements for glucose and ketone bodies are
accommodated by the economic utilization of
these fuels by nonneural tissue. This harmony
of tissue metabolisms is orchestrated by neu-
ral and endocrine actions, which influence the
course of bidirectional biochemical reactions
both by establishing substrate availability
and by modifying enzyme activities. These
integrated physiological events, unaccountably
neglected in most essays on hunger (see dis-
cussion of a "bodiless psychology" by Le
Magnen, 1971), provide the background for
our present formulation.

HUNGER

Traditional interpretations given for the
appearance of hunger are that food intake
serves (a) to replete diminished fat reserves
(Kennedy, 19S3) and (b) to increase the
utilization of glucose (Mayer, 1955). We
believe that hunger instead occurs whenever
the immediate availability of utilizable meta-
bolic fuels is reduced below some critical level
(e.g., as might occur early in the post-
absorptive state). In essence, our arguments
rest on two basic observations regarding
energy metabolism. The first is the fact that
the supply of metabolic fuels to all tissues
always remains adequate for them to function

during physiological conditions and even
during prolonged food deprivation (until, of
course, the starving animal is in extremis).
The second is the fact that, with but a few
exceptions, each of the various metabolic
fuels is equally capable of providing energy
in all tissues. From the perspective of these
phenomena, it seems reasonable to focus on
caloric homeostasis, rather than the mainte-
nance of energy stores, as the goal of feeding
behavior and the complementary biochemical
and physiological mechanisms that serve to
maintain the fuel supply. Moreover, it does
not seem likely that quantitative changes in
the utilization of specific nutrients would pro-
vide a stimulus for hunger, because com-
pensatory changes in the utilization of other
nutrients would limit their functional signifi-
cance. Instead, we propose that the stimulus
for hunger should be sought among changes
that occur in the supply of metabolic fuels.
This line of reasoning diverts attention from
the brain, which is not usually subject to
dramatic fluctuations in its fuel supply, and
focuses instead on the intestines, adipose
tissue, and liver, the three peripheral organs
that are most involved in the production or
delivery of metabolic fuels.

In this section we shall reevaluate familiar
research from a perspective that focuses on
the availability of utilizable fuels during
various experimental conditions and empha-
sizes the changes in fuel supply that can
result from variations in diet, in tissue de-
mands, and in storage or mobilization of
nutrients. We have organized our discussion
around experiments related to the lipostatic
and glucostatic hypothesis, since these have
provided the focus for most of the research on
hunger during the past 25 years.1

1 A third familiar proposal is the "therraostatic
hypothesis" of Brobeck (1948) which, stated simply,
holds that "animals eat to keep warm." At the time
it was formulated, this hypothesis rested largely on
the incontrovertible facts that (a) food intake is
adjusted in accordance with changes of energy bal-
ance (i.e., it typically increases in cold environments
and decreases in warm environments), (b) meal
size could be influenced by the heat liberated during
the assimilation of the ingested nutrients, and (c)
the hypothalamus was involved in the controls of
both food intake and body temperature. Mechanisms
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Lipostatic Hypothesis

As animals mature, their progressive in-
crease in body weight reflects growth in a
variety of tissues, including bone, muscle,
and organs. In the adult animal, however,
such structures stop growing rapidly, and
changes in body weight result mostly from
changes in the mass of adipose tissue due to
energy imbalances. Thus, increases in body
weight that occur when caloric intake exceeds
expenditures can be attributed primarily to
storage of the extra calories as fat (obesity),
whereas decreases in body weight when ex-
penditures exceed intake reflect the mobiliza-
tion and utilization of body fat. As might be
expected, little change in body weight occurs,
even when food intake is unusually high, when
caloric expenditures are also elevated, as in
exercise, lactation, or the need for thermo-
genesis (e.g., Brobeck, 1948; Kennedy, 1953,
1961; Mayer, 19SS).

An increased utilization of calories result-
ing in the production of heat following over-
feeding, and a decreased utilization during
fasting, serve to minimize the consequences
of fluctuating volumes of food intake (e.g.,
Adolph, 1947; Lyon, Dowling, & Fenton,
19S3; Sims,Horton, & Salans, 1971). Because
these changes may not be entirely adequate
to this task (viz., metabolism does not stop
during food deprivation), changes in food
intake usually provide a major contribution
to the maintenance of energy balance. For
example, when rats are made obese by forced
hyperalimentation or by excessive voluntary
feeding induced either by injections of insulin
or by electrical brain stimulation, they reduce
their consumption of food when the respec-
tive treatment is terminated and remain

for thermorcgulation and for the regulation of
caloric homeostasis are more easily distinguished
now, as are neural controls within the hypothalamus.
In addition, subsequent investigations have shown
that food consumption is not correlated with fluctua-
tions of temperature in the brain (Rampone &
Shirasu, 1964). Furthermore, in a particularly illumi-
nating study, Rozin and Mayer (1961) found that
food intake by fish was depressed reliably by a
decrease in ambient temperature. These results would
be expected if feeding was responsive to the need for
metabolic fuels rather than to changes in body
temperature per se.

hypophagic until their body weights return
to normal (Cohn & Joseph, 1962; Hoebel &
Teitelbaum, 1966; Steffens, 197S). Similarly,
rats that have been starved increase their
food intakes and remain hyperphagic until
body weight losses have been restored
(Kennedy, 1950). According to the lipostatic
hypothesis, the increased body-fat reserves
resulting from the former treatments provide
the brain with a blood-borne signal for satiety
that results in decreased feeding, whereas the
depleted fat reserves resulting from the latter
treatment lead to a reduction of that stimulus
and, in consequence, increased feeding. In
both cases, it is believed that food intake is
adjusted appropriately so as to regulate body-
fat reserves around some predetermined "set
point" (Kennedy, 1953; Mayer, 1955).

As mentioned previously, we believe that
maintenance of body-fat stores is not the goal
of food intake but may instead reflect an
intrinsic tendency toward stability of lipid
levels in adipose tissue, and that observed
variations in food intake result from changes
in the supply of metabolic fuels. Thus, the
animal made obese may decrease its feeding
not because of some signal for satiety but
because of the absence of a stimulus for
hunger, due to the considerable nourishment
that is provided by the presumably heightened
availability of free fatty acids (Bjorntorp,
Bergman, & Varnauskas, 1969; Issekutz,
Bortz, Miller, & Paul, 1967; see also Le
Magnen, Devos, Gaudilliere, Louis-Sylvestre,
& Tallon, 1973). Similarly, the previously
fasted animal may increase its feeding not
because it receives less of a satiety signal but
because enhanced lipogenesis after a meal
more rapidly reduces the normal postprandial
availability of nutrients in the circulation (cf.
Brobeck, 1975). According to this conceptual-
ization, we would expect inhibition of lipoly-
sis to prevent the decline in food intake that
occurs when any of the above treatments
producing obesity are terminated, whereas
inhibition of lipogenesis should reduce food
intake in previously fasted animals. Evidence
consistent with both hypotheses has been
reported recently (Le Magnen & Devos,
1970; Sullivan & Triscari, 1976).

These same considerations are relevant to
an analysis of the periodic meals taken by
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rats feeding ad libitum. The patterning of
meals has been studied extensively by Le
Magnen and his colleagues, who discovered
that meal size is not dependent on the length
of time since the preceding meal but that it
does predict the interval until the onset of
the next meal (Le Magnen & Tallon, 1966).
These important findings suggest that feeding
is not initiated in order to replace metabolic
expenditures and therefore that meal size may
be strongly influenced by nonmetabolic fac-
tors. Ingestion of food thus provides an in-
constant quantuum of calories, and hunger
seems to recur only after those calories have
been expended. For example, meal fre-
quency is not nearly so great by day, when
free fatty acids are available due to lipolysis,
as at night, when fat is stored (Le Magnen
et al., 1973).

Perhaps the strongest arguments in support
of the lipostatic hypothesis have been based
on the hyperphagia and obesity that result
following ventromedial hypothalamic (VMH)
lesions. Animals with such lesions usually eat
voraciously for weeks but eventually reduce
food intake and stabilize body weight at a
new, elevated level (Brobeck, 1946; Hether-
ington & Ranson, 1940; Kennedy, 1950).
Their obesity seems to be as well defended
as normal body weight is in neurologically
intact animals, since even after being de-
prived of food and thereby forced to lose
weight, these brain-damaged rats quickly re-
attain their previous level of obesity when
given ad libitum access to food (Brobeck et
al., 1943). Furthermore, VMH lesions do not
induce hyperphagia in rats that have previ-
ously been made obese by chronic insulin
treatments, but they do prevent the loss of
body weight that otherwise would occur when
the injections of insulin are ended (Hoebel
& Teitelbaum, 1966).

In interpretations of these findings, the
controls of feeding have been linked to the
regulation of body fat in two ways. First, it
has been proposed that VMH lesions release
a primary "hunger center" from normal in-
hibitory influences (Brobeck, 1955; Hervey,
1959; Teitelbaum, 1961). According to this
hypothesis, VMH lesions induce hyperphagia
because satiety signals arising from body fat
are insufficient to activate the residual VMH

neurons, and thereby to suppress feeding,
until the animal becomes obese. Alternatively,
it has been proposed that the function of the
ventromedial hypothalamus is to stabilize fat
stores and that VMH lesions raise the "set
point" at which body fat is regulated (Keesey
& Pbwley, 1975; Kennedy, 1953). According
to this hypothesis, the hyperphagia seen
after VMH lesions is an appropriate, well-
controlled response designed to achieve a
higher level of regulated body fat.

We believe that in neither of these inter-
pretations is the VMH syndrome viewed from
the correct perspective. Rather than adipose
tissue passively accommodating the extra food
that is consumed due to a primary disturb-
ance in the hypothalamic controls of feeding,
considerable evidence indicates that VMH
lesions produce a primary disruption in fat
metabolism in favor of lipogenesis, with sec-
ondary consequences for feeding. For example,
in vivo and in vitro studies have shown that
rats with VMH lesions incorporate more glu-
cose as fat, burn less fatty acids, and mobilize
less fat from adipose tissue than neurologically
intact control rats (e.g., Frohman, Goldman,
& Bernardis, 1972; Goldman, Schnatz, Ber-
nardis, & Frohman, 1970, 1972a; Haessler
& Crawford, 1967). This increased accumula-
tion of fat has been demonstrated to occur as
early as 12 to 48 hours after VMH lesions,2

even when food is withheld or restricted, with
the degree of lipogenesis correlating highly
with the hyperphagia observed when the ani-
mals are subsequently allowed to feed ad
libitum (Hustvedt & Lj%f, 1973; L0vp? &
Hustvedt, 1973; see also Hustvedt & Ljzfvjrf,
1972). Thus, an animal with VMH lesions
may not increase its food intake in order to
gain weight but because it is gaining weight.
That is, animals may become hyperphagic
after VMH lesions because more of the in-
gested food is removed from the circulation
to be deposited as fat than previously (see

2 Presumably, alterations in metabolism begin im-
mediately after VMH lesions, thereby contributing
to the ravenous feeding that is often reported as the
anesthesia dissipates (see also Rabin, 1968; Reynolds,
1963) as well as accounting for the augmented intakes
that occur following local anesthetization of the
ventromedial hypothalamus (Epstein, 1960).
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Han, 1967; Han & Frohman, 1970), and
because these expanding fat stores are also
less accessible.

Since lipogenesis is well-developed at night
in the intact rat, the primary metabolic effect
of the VMH lesions is to enhance fat deposi-
tion by day. Instead, these lesions eliminate
daytime lipolysis in rats despite excessive
eating during the previous dark period, and
glucose clearance rises to high rates through-
out the 24-hour period (Le Magnen et al.,
1973). The diminished availability of free
fatty acids by day is presumably responsible
for the increased food intake that occurs
then, and that increase amounts for most of
the hyperphagia that is observed in rats after
VMH lesions (Balagura & Devenport, 1970;
Brooks, Lockwood, & Wiggins, 1946; Le
Magnen et al., 1973). Thus, we would expect
treatments that either interfere with fat
storage or promote lipolysis to limit hyper-
phagia following VMH lesions (cf. Kennedy,
1953).

The physiological changes that follow
VMH lesions result, in part, from the well-
documented increases in circulating insulin
levels; in addition, the normal modulatory
action of growth hormone on hyperinsulinism
is prevented because secretion of that hor-
mone is impaired (e.g., Frohman & Bernardis,
1968; Steffens, 1970). However, since in-
creased lipogenesis occurs despite replace-
ment of growth hormone or elimination of
hyperinsulinemia (Goldman et al., 1970,
1972b; see also Friedman, 1972; Vilberg and
Beatty, 1975), it seems that alterations in
the neural controls of glucose and fat me-
tabolisms must parallel the endocrine effects.
The net result is an increased deposition of
fuels that is so pronounced that gluconeo-
genesis, normally seen only during fasting, is
found after brain damage despite hyperphagia
(Holm, Hustvedt, & L^v0, 1973; see also
Goldman & Bernardis, 1975). Presumably,
these metabolic dysfunctions continue until a
new equilibrium between lipogenesis and lipol-
ysis is attained that permits some mobiliza-
tion of the fat reserves and consequent stabi-
lization of body weight (Martin & Lamprey,
1974).

Genetic defects in adipose-tissue metabo-
lism of neurologically intact animals lead to

alterations in food intake and body weight
that are comparable to those observed after
VMH lesions (although the two conditions
differ in some respects; see Haessler & Craw-
ford, 1965; Mayer, 1957; Opsahl & Powley,
1974). For example, abnormal lipogenesis
occurs in at least two strains of rodents, the
obob mouse and the jaja rat, even when food
intake is restricted (Alonso & Maren, 1955;
Bates, Mayer, & Nauss, 1955; York & Bray,
1973; Zucker, 1975). This primary metabolic
dysfunction enhances the postabsorptive re-
moval of utilizable fuels from the circulation
and presumably is responsible for the increases
in food intake and body fat that develop. The
seasonal obesity of animals prior to migra-
tion or hibernation (Farner, Oksche, Kame-
moto, King, & Cheyney, 1961; Klain &
Rogers, 1970; see also Mrosovsky, 1974),
and the daily accumulation of fat in small
birds that precedes nocturnal inactivity
(Kendeigh, Kontogiannis, Mazac, & Roth,
1969; Wolf & Hainsworth, in press), may
promote hyperphagia for similar reasons.

In addition to the changes in fat metabo-
lism, a more rapid rate of gastrointestinal
clearance may reduce the duration of post-
prandial satiation in VMH-lesioned rats. In
this respect, as in the others, rats with VMH
lesions would then resemble unlesioned ani-
mals given ad libitum access to food after an
imposed fast (Booth, Toates, & Platt, 1976).
Nevertheless, it is well known that rats with
VMH lesions do not always behave like hun-
gry rats. For example, although rats usually
are hyperphagic soon after VMH lesions, they
may not work hard for food reinforcements
(McGinty, Epstein, & Teitelbaum, 1965;
Miller, Bailey, & Stevenson, 1950; Singh,
1973; Teitelbaum, 1957), they may become
hypophagic or refuse a less palatable diet that
is accepted readily by intact rats (Kennedy,
1950; Singh, 1974; Teitelbaum, 1955), and
they may not eat much following vagotomy
(Powley & Opsahl, 1974). We believe that
changes in sensory reactivity and emotional-
ity caused by the brain damage depressed the
feeding behavior and food-directed activities
in each of the experiments cited above and
thereby obscured the increased incidence of
hunger that resulted from concurrent meta-
bolic dysfunctions. Indeed, there is consider-
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able evidence that after VMH lesions, rats
become hyper-reactive and generally unwill-
ing to tolerate aversive experiences (e.g.,
Grossman, 1966; Lewinska & Romaniuk,
1966; Marshall, 1975).

In summary, excessive deposition and se-
questration of metabolic fuels appears to
underlie the observed hyperphagia in rats
following a fast or lesions of the ventro-
medial hypothalamus. The fact that hunger
occurs in rats with VMH lesions despite the
presence of an internal excess of metabolic
fuels suggests that the size of the fat depots
becomes important to feeding only if the ani-
mal has ready access to them. These and
other considerations dispute the traditional
lipostatic hypothesis by suggesting that body-
fat stores influence feeding only indirectly,
through an alteration in the immediate supply
of utilizable metabolic fuels that results from
changes in lipogenesis and lipolysis.

Glucostaiic Hypothesis

When peripheral models of hunger empha-
sizing gastric fill were abandoned early in
this century, attention was directed instead
to chemical changes in the blood that might
stimulate feeding behavior. One enduring
theory focused on glucose as the major meta-
bolic fuel and initially held that small de-
creases in blood sugar increased food intake
and that satiety resulted when blood sugar
levels were restored to normal (Carlson,
1916). The simple, negative-feedback control
of hunger inherent in this "glucostatic" hy-
pothesis was strongly supported by experi-
mental observations that insulin treatments
producing hypoglycemia promoted feeding in
rats (MacKay, Callaway, & Barnes, 1940)
and induced hunger sensations in human sub-
jects (Janowitz & Ivy, 1949). Indeed, the
ingestion of food in response to hypoglycemia
was perceived as another striking example of
the way in which appetites were appropriately
directed to relieve specific nutritional defi-
ciencies (Richter, 1942a, 1942b).

Because hyperphagia is associated with
hyperglycemia during diabetes mellitus,
Mayer (1952) later proposed that hunger was
due to a reduction in the utilization of glucose
rather than to a reduction in its concentration
in the blood. He further suggested that the

central receptors monitoring fluctuations in
glucose utilization required insulin for glucose
transport (Mayer, 1955; see also Panksepp,
1974), like peripheral tissue but unlike the
rest of the brain. Thus modified, the need for
glucostasis has been widely accepted as an
important factor in the control of food intake.
This need is believed to arise from the pre-
sumed dependence of the brain on glucose for
its function and is reflected in intermittent
feeding episodes both because glucose stores
are not appreciable and because they are
disproportionately depleted between meals.

Mayer believed that the glucoreceptors were
located in the ventromedial hypothalamus,
since destruction of this area and hyperphagia
resulted in mice that were administered
goldthioglucose but not other goldthio- com-
pounds (Mayer & Marshall, 1956). More
persuasive evidence in support of this hypothe-
sis was provided by Debons and his col-
leagues, who showed that goldthioglucose did
not produce brain damage in diabetic mice
or in mice pretreated with anti-insulin serum
but that brain damage did occur in these
animals when insulin was administered di-
rectly into the hypothalamus (Debons, Krim-
sky, & From, 1970; Debons, Krimsky, Li-
kuski, From, & Cloutier, 1968). However,
other experiments have revealed that (a) the
brain damage caused by goldthioglucose re-
sults from ischemia following the local de-
struction of cerebral capillaries (Arees, Velt-
man, & Mayer, 1969), (b) similar hypo-
thalamic damage, hyperphagia, and obesity
can be produced by vascular poisons not con-
taining glucose (Caffyn, 1972; Rutman,
Lewis, & Bloomer, 1966), and (c) insulin-
induced hypoglycemia promotes feeding even
in animals with lesions of the ventromedial
hypothalamus (Epstein & Teitelbaum, 1967).
These observations raise serious doubts about
the role of cerebral glucoreceptors in the con-
trol of food intake (see also Epstein, Nico-
laidis, & Miselis, 1975) and reopen the ques-
tion of why animals with diabetes mellitus or
insulin-induced hypoglycemia show increased
feeding,

In many respects, diabetes mellitus resem-
bles starvation. That is, the familiar increase
in circulating glucose levels results more
from a marked increase in gluconeogenesis
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than from decreased glycolysis, and in-
creased lipolysis and ketogenesis are evident
as well (Havel, 1972). While the abundance
of glucose provides the brain with more than
enough fuel, the periphery must depend on
fatty acids and ketone bodies for metabo-
lism, since neither of these substrates require
insulin for transport into cells. However,
lipid reserves are rapidly diminished in the
absence of insulin (Winegrad, 1965), and
consequently, ingested fats become an increas-
ingly important source of fuel to the diabetic
animal. From this perspective, the fat content
of the usual laboratory diet can be viewed as
"diluted" with carbohydrate, material of lit-
tle metabolic significance during diabetes. The
hyperphagia of diabetic animals thus resem-
bles the increased feeding that occurs in intact
rats when food is diluted with nonnutritive
bulk (Adolph, 1947) and may result because
the decrease in utilizable metabolic fuels in
the diet reduces the diet's capacity to satiate
the animal (cf. Booth, 1972b, 1972e; de
Castro & Balagura, 197S). Consistent with
this interpretation is the finding that diabetic
animals maintained on a high-fat diet do not
display hyperphagia despite continued im-
pairments in glucose utilization (Friedman,
197S; Janes & Prosser, 1947; Richter &
Schmidt, 1941).

The hyperphagia induced by insulin may
similarly be traced to a decrease in all utiliz-
able fuels, but here both peripheral tissue and
brain tissue suffer. It should be noted that in
addition to its well known effect on blood
glucose, insulin also tends to suppress fatty
acid catabolism, thereby minimizing keto-
genesis and the possible substitution of ketone
bodies for glucose as a metabolic fuel. Be-
cause insulin also retards glycogenolysis and
gluconeogenesis, the hormone is particularly
effective in lowering the circulating levels of
metabolic fuels. Thus denied ready access to
endogenous stores, the insulin-treated animal
(not unlike the rat with VMH lesions) can
only support metabolism by feeding and
thereby increasing the delivery of fuels from
the intestines.

The effects of insulin on cerebral glycolysis
are usually emphasized (Smith & Epstein,
1969; Steffens, 1969a), because hunger does
not appear unless blood sugar is depressed

well below the level (70 mg/100 ml) at which
glucose transport mechanisms in the brain are
saturated (Crone, 1965; Daniel, Love, &
Pratt, 1975). However, together with N.
Rowland and C. Sailer, we have recently ob-
served that intravenous administration of ke-
tone bodies to insulin-treated rats abolishes
the adrenal sympathetic response otherwise
prominent during severe hypoglycemia (see
also Drenick, Alvarez, Tamasi, & Brickman,
1972; Flatt, Blackburn, Randers, & Stan-
bury, 1974) but does not depress feeding.
Although energy metabolism in the brain is
evidently restored by this infusion, the feed-
ing behavior may have persisted due to de-
creased metabolism in the liver, the one organ
that cannot utilize ketone bodies (see below).
Consistent with this hypothesis are our addi-
tional findings that circulating catecholamines
remain elevated but increased feeding be-
havior is prevented in insulin-treated hypo-
glycemic rats following intravenous infusions
of fructose, a hexose that does not cross the
blood-brain barrier but is readily utilized by
the liver (Friedman, Rowland, Sailer, &
Strieker, Note 1; see also Hetenyi, 1972;
Haddock, Hawkins, & Holmes, 1939). Thus,
the hypothesis that insulin-induced feeding is
stimulated by cerebral cytoglucopenia appears
to mistakenly identify both the critical stim-
ulus and its source.

Administration of 2-deoxy-D-glucose (2-
DG) is frequently used as an alternative
means of producing cytoglucopenia and hunger.
This sugar inhibits glycolysis by competing
with glucose as a substrate both for transport
into cells and for subsequent phosphorylation
but is not itself further metabolized (Hor-
ton, Meldrum, & Bachelard, 1973; Wick,
Drury, Nakada, & Wolfe, 1957). In addition,
2-DG inhibits the secretion of insulin (Froh-
man, Muller, & Cocchi, 1973; Smith, Gibbs,
Strohmayer, Root, & Stokes, 1973), which
further retards peripheral utilization of glu-
cose. As a result of these inhibitory actions,
glucose utilization is decreased both in periph-
eral and brain tissue (Meldrum & Horton,
1973; Wick, Drury, & Morita, 1955), as
occurs in insulin-treated rats; furthermore, as
in diabetics, hyperglycemia and hunger co-
exist (Smith & Epstein, 1969). However, in
contrast to either of these conditions, in-
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creased food intake can do little to overcome
the cytoglucopenia caused by 2-DG. In this
regard, note that oxygen consumption de-
creases markedly after 2-DG treatment (Nico-
laidis, Epstein, & Le Magnen, 1972) despite
the increased production of glucose in the
liver (Brodows, Pi-Sunyer, & Campbell, 1975;
Hbkfelt & Bydgeman, 1961).

The basis for hunger following systemic
2-DG treatment has not yet been specified.
Intraportal injections of 2-DG have been
shown to increase feeding (Hernandez, Mac-
Kenzie, & Hoebel, 1976; Novin, VanderWeele,
& Rezek, 1973; Rowland & Nicolaidis, 1974),
thus suggesting that a decrease in hepatic
metabolism may provide the stimulus for hun-
ger (see below). However, because admini-
stration of 2-DG into the cerebral ventricles
also elicits feeding behavior in rats (Miselis
& Epstein, 197S), central receptors may ad-
ditionally participate in mediating the feeding
response to systemic 2-DG treatment. If so,
other studies demonstrating that alternative
metabolic fuels can suppress the physiological
responses that occur during cerebral cyto-
glucopenia (Fiorentini & Miiller, 1975; Flatt
et al., 1974; Hetenyi, 1972; Friedman et al.,
Note 1) suggest that feeding probably does
not result from a decrease in glucose utiliza-
tion per se.

The stimulation of hunger following treat-
ment with substantial doses of insulin or
2-DG is disrupted by lateral hypothalamic
(LH) lesions (Epstein & Teitelbaum, 1967;
Wayner, Cott, Millner, & Tartaglione, 1971),
even though rats with such brain damage
maintain body weight by ad libitum feeding.
It is also known that rats with LH lesions
increase their food intake when placed in a
cold environment (Epstein & Teitelbaum,
1967; see also Marshall & Teitelbaum, 1973;
Zigmond & Strieker, 1972). These two find-
ings have had an important influence on the-
ories of hunger by suggesting that separate
glucoregulatory and thermoregulatory con-
trols of feeding exist. However, in collabora-
tion with M. Zigmond, we have recently
found that rats with LH lesions, whose food
intake did not increase in response to 2-DG
or large doses of insulin, did become hyper-
phagic when given repeated low doses of long-
acting protamine zinc insulin. Furthermore,

although these rats increased their food in-
takes when exposed to an ambient tempera-
ture of 5 °C, they failed to eat when the cold
stress was made more severe by shaving off
their fur prior to testing (Strieker, Friedman,
& Zigmond, 1975). These results do not sup-
port the concept of multiple stimuli for hun-
ger ; instead, they suggest that the permanent
feeding deficits of rats with LH lesions sim-
ply reflect their inability to behave appropri-
ately when the homeostatic imbalance is
marked and abrupt (see also Strieker, 1976).

To summarize, we believe that glucostasis
is not the specific goal of feeding behavior.
While it is true that several different condi-
tions of cytoglucopenia can lead to increased
feeding, it does not seem to be the decrease
in glucose utilization per se that elicits hun-
ger but, rather, a general decrease in the uti-
lization of all metabolic fuels for energy pro-
duction. Thus, food intake can be decreased
in cytoglucopenic rats following the restora-
tion of metabolism by substrates other than
glucose. Recent studies of rats with goldthio-
glucose-induced lesions of the VMH area or
electrolytic lesions of the LH area have re-
moved the other major props for the gluco-
static hypothesis, and consequently, it appears
that there is now little basis for maintaining
that fluctuations in glucose utilization in the
brain provide the signal for the short-term
control of food intake.

IMPLICATIONS OF THE PHYSIOLOGICAL
PERSPECTIVE

Thus far, we have reexamined a number
of experimental findings from a perspective
that takes into account well-known physio-
logical mechanisms that maintain the supply
of metabolic fuels. In each case we believe the
data can be interpreted readily if one as-
sumes that an alteration in the supply of
utilizable fuels provides the stimulus for
hunger. This theory is much more simple
than contemporary notions of hunger, which
we believe have been overburdened by such
unsubstantiated hypothetical constructs as
lipostat, glucostat, body weight set point, and
the like. However, in abandoning these tradi-
tional concepts in favor of a more tangible
physiological model, we recognize that two
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basic questions still remain to be answered.
First, given our perspective, what is the
status of the dual hypothalamic model for
the control of feeding? And second, in the
absence of lipostatic and glucostatic recep-
tors, what is the origin of the stimulus that
signals the animal to feed? We shall now con-
sider each of these general issues in turn.

Central Controls oj Hunger

The ventromedial hypothalamus was first
viewed as a satiety center whose function was
to suppress the activity of a primary feeding
center in the adjacent lateral hypothalamic
area. Thus, VMH lesions were believed to in-
crease food intake by attenuating the satiety-
inducing effects of feeding (Brobeck, 1955;
Miller et al., 1950), whereas LH lesions were
thought to abolish ingestive behaviors by
eliminating the signal for hunger (Anand &
Brobeck, 1951; Stellar, 1954). A more recent
view of these dual control mechanisms has
them interacting to determine body weight
set point. According to this model, VMH le-
sions raise the body weight set point, and
hyperphagia results so that the animal will
reestablish weight regulation, albeit at a new
and elevated level; conversely, LH lesions are
believed to lower the set point, and aphagia
results so that the animal, perceiving its sud-
den "obesity," will reduce its weight to the
new desired level (Keesey & Powley, 1975).

It is difficult to reconcile the proposal that
VMH lesions disrupt satiety mechanisms
with subsequent findings that when brain-
damaged rats feed ad libitum, the intermeal
interval is decreased but remains proportional
to the size of the preceding meal (Le Mag-
nen et al., 1973; Thomas & Mayer, 1968).
It is also difficult to accept the hypothe-
sis that hyperphagia occurs after VMH
lesions in order to elevate fat reserves, since
as discussed previously, the change in fat
metabolism toward lipogenesis may precede
the increase in food intake and even predict
its magnitude (Hustvedt & L0v0, 1973). To
describe the complex changes that increase the
deposition and storage of metabolic fuels as
an increase in body weight set point seems to
obscure the details of the phenomenon un-
necessarily, to attribute set point properties

prematurely to the maintenance of fat re-
serves, and to mistakenly identify the cause
of the hyperphagia as its consequence.

Damage in several brain areas other than
the ventromedial hypothalamus has recently
been reported to induce hyperphagia, but as
with VMH lesions, in no instance is it clear
that the increased food intake is the primary
effect. Thus, feeding is increased (a) follow-
ing parasagittal knife cuts lateral to the
ventromedial hypothalamus (Albert & Stor-
lien, 1969; Gold, 1970; Sclafani & Grossman,
1969)—but hyperinsulinemia results in these
animals even when food is restricted (Tan-
nenbaum, Paxinos, & Bindra, 1974); (b)
following lesions of the ventral diencephalon
presumed to specifically interrupt noradre-
nergic fibers ascending to the hypothalamus
(Ahlskog & Hoebel, 1973; Ahlskog, Randall,
& Hoebel, 1975)—but this hyperphagia is
abolished by hypophysectomy (Ahlskog, Hoe-
bel, & Breisch, 1974); and (c) following de-
struction of central serotonin-containing neu-
rons (Sailer & Strieker, 1976; see also
Breisch, Zemlan, & Hoebel, 1976)—but rats
lesioned when juvenile continue to grow in
size as adults and show no remarkable ac-
cumulation of abdominal fat despite their ele-
vated body weights. Thus, it seems likely that
in each of these preparations hyperphagia is
associated with, and possibly secondary to,
some disruption in peripheral metabolism.

In the absence of data demonstrating the
existence of a central system that specifically
mediates satiety, the possibility arises that
satiation originates in the periphery. For ex-
ample, it has recently been proposed that
intestinal glucoreceptors or hormones provide
signals forecasting satiation (Davis, Camp-
bell, Gallagher, & Zurakov, 1971; Novin,
Sanderson, & VanderWeele, 1974). However,
the involvement of pancreatic hormones in
mediating these effects has not yet been ex-
cluded (see Footnote 3, below). More re-
cently, cholecystokinin has been reported to
suppress feeding in hungry rats (Smith &
Gibbs, 1976), but it is still uncertain whether
the doses used fall within the physiological
range. Alternatively, satiation may result
from removal of a peripheral metabolic stimu-
lus that activates feeding, both due to condi-
tioned effects of food consumption (Booth,
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1972a; Louis-Sylveslre, 1976; Stunkard,
197S) and to unconditioned physiological
changes that result from the ingestion and
rapid absorption of carbohydrates (Pilcher,
Jarman, & Booth, 1974; Steffens, 1969b;
Strubbe & Steffens, 1975; Wiepkema, Alingh
Prins, & Steffens, 1972; see below). Indeed,
Booth and his colleagues have successfully
simulated meal patterns of intact and brain-
damaged rats with a computer model that
consists essentially of a single-loop, negative-
feedback system, with a diminished fuel sup-
ply from the intestines and adipose tissue in
the face of ongoing energy consumption as the
sole stimulus for hunger (Booth & Toates,
1974; Booth et al., 1976; Toates & Booth,
1974). Those remarkable findings obviously
are in accord both with the possibility of
peripheral controls for hunger and satiety and
with the theoretical approach we have taken
in this paper.

The role of the lateral hypothalamus as a
feeding center also must be reexamined in
light of repeated findings that aphagia and
starvation can be obtained with lesions or
knife cuts that spare the lateral hypothalamus
(e.g., Albert, Storlien, Wood, & Ehman, 1970;
Gold, 1967; Grossman & Grossman, 1971;
Morgane, 196la). These findings are con-
sistent with the fact that the most effective
placements for the production of feeding
deficits have been localized in the far-lateral
aspects of the tuberal hypothalamus (Anand
& Brobeck, 19S1; Morgane, 1961b; Oltmans
& Harvey, 1972), a region consisting largely
of ascending and descending fibers of passage
rather than compact cellular masses (Mor-
gane, 1969). Destruction of one particular
pathway, the dopamine-containing neurons of
the nigrostriatal bundle, has been emphasized
by Ungerstedt (1971), since that pathway is
damaged by effective LH lesions as well as by
extrahypothalamic lesions that result in simi-
lar behavioral impairments (see also Fibiger,
Zis, & McGeer, 1973; Marshall, Richardson,
& Teitelbaum, 1974; Zigmond & Strieker,
1972).

The seminal experiments by Teitelbaum
and his colleagues, which showed that volun-
tary feeding behavior would ultimately reap-
pear if rats with LH lesions were initially
maintained by intragastric intubations of

liquid nutrients (Teitelbaum & Epstein, 1962;
Teitelbaum & Stellar, 1954), have been repli-
cated using rats with extrahypothalamic,
dopamine-depleting lesions (e.g., Marshall et
al., 1974; Zigmond & Strieker, 1973). A re-
cent neurochemical model of the "lateral
hypothalamic syndrome," proposed by Strieker
and Zigmond (1976), suggests that destruc-
tion of central dopaminergic fibers disrupts
not the differentiating aspects of specific mo-
tivated behaviors but a nonspecific activa-
tional component that is common to all moti-
vation. This hypothesis accounts for the broad
range of motivated activities that are dis-
rupted by LH or other dopamine-depleting
brain lesions, such as feeding, drinking, ma-
ternal, and thermoregulatory behaviors (e.g.,
Avar & Monos, 1969; Satinoff & Shan, 1971;
Strieker, 1976; Strieker & Zigmond, 1974) as
well as for the reversal of these deficits by
such nonspecific activators as amphetamine,
caffeine, tail pinch, and environmental stress
(Antelman & Rowland, 1975; Marshall, Levi-
tan, & Strieker, 1976; Strieker & Zigmond,
1976; Teitelbaum & Wolgin, 1975). Non-
catecholaminergic pathways, as yet unidenti-
fied, presumably mediate the specific signals
for hunger and other drives (Strieker & Zig-
mond, 1976).

The broad disruption of behavior following
LH lesions apparently accounts for the alter-
ations in food intake and body weight that
are observed following combined VMH and
LH lesions. The effects of combined lesions
do not cancel one another as might be pre-
dicted by the set point hypothesis of Keesey
and Powley (1975). Instead, rats become
aphagic and lose weight initially (Anand &
Brobeck, 1951), but later, after they resume
feeding behavior, they become hyperphagic
and obese (Williams & Teitelbaum, 1959).
While the ventromedial and lateral hypothala-
mus thus do not simply determine a body
weight set point, or serve as satiety and feed-
ing centers, they may nevertheless contribute
to the control of peripheral metabolism
(Frohman, 1971). Indeed, following consump-
tion of a meal, electrophysiological activity in
the ventromedial hypothalamus is known to
increase, while that in the lateral hypothala-
mus decreases or does not change (Anand,
Chhina, Sharma, Dua, & Singh, 1964; Anand
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& Pillai, 1967; Oomura et al., 1964). Further-
more, electrical stimulation of loci in the hy-
pothalamus has been shown to alter carbo-
hydrate metabolism in the liver, with sympa-
thetic nerves being activated by stimulation
in medial areas and parasympathetic fibers
activated by more lateral placements (Shim-
azu, Fukuda, & Ban, 1966). It therefore
seems possible that LH lesions alter fat me-
tabolism toward increased lipolysis, mirroring
the effects of VMH lesions (see also Steffens,
Mogenson, & Stevenson, 1972). This hypothe-
sis, which resembles a central feature of the
recent proposal by Keesey and Powley (1975)
without subscribing to their notions about
body weight set point, awaits experimental
investigation.

Origin of the Stimulus for Hunger

Receptors that monitor changes in the
availability of utilizable nutrients may be lo-
cated in the brain. Indeed, central receptors
are well known to trigger a massive sympa-
thetic discharge when stimulated during in-
sulin-induced hypoglycemia (Cannon, Mclver,
& Bliss, 1924). Such receptors are presuma-
bly involved in mediating the hyperglycemia
and associated feeding responses that are
seen in rats after intracranial injections of
2-DG (Miselis & Epstein, 1975; Muller,
Cocchi, & Forni, 1971), although, as noted
earlier, the specific stimulus that activates
them may not be a decrease in the utiliza-
tion of glucose per se (Fiorentini & Muller,
1975; Flatt et al., 1974; Hetenyi, 1972;
Friedman et al., Note 1). However, it is not
likely that pronounced decreases in cerebral
glycolysis ever occur except under nonphysio-
logical experimental conditions, because the
brain is normally protected from such emer-
gencies. Thus, the usual stimulus for hunger
should be sought elsewhere.

Our recent findings that insulin-induced
feeding is abolished by infusions of fructose,
but not ketone bodies, strongly implicate the
liver as the origin of the hunger signal (Fried-
man et al., Note 1). The liver appears to be
a likely site for peripheral receptors because
of its strategic location and critical involve-
ment in the traffic of metabolic fuels from
both exogenous and endogenous sources. In the

postabsorptive state, when hunger normally
occurs, glucogenic precursors are diverted
from energy production to the service of glu-
coneogenesis. The liver then becomes increas-
ingly dependent on the supply of free fatty
acids from adipose tissue, but free fatty acids
are converted to ketone bodies in proportion
to their availability (Van Harken, Dixon, &
Heimberg, 1969). Although total hepatic en-
ergy production may not be compromised
(Mayes & Felts, 1967), it is tempting to
speculate that the shift in substrate flow away
from the tricarboxylic acid cycle somehow
provides the signal for hunger.

A decrease in oxidative metabolism in the
liver would be expected when there is a
decline in the supply of utilizable fuels to that
organ, as following large doses of insulin or
2-DG, and that change may contribute to the
observed feeding response. Alterations in oxi-
dative metabolism also may account for the
appearance of hunger in the postabsorptive
state, when the flood of nutrients to the liver
abates and fuels are diverted from tricarbox-
ylic-acid-cycle activity toward gluconeogenesis
and ketogenesis. In this regard, note that he-
patic glucose production in rats is increased
both after VMH lesions (Holm et al., 1973)
and during alloxan diabetes (Friedmann,
Goodman, & Weinhouse, 1967), the two con-
ditions in which chronic hyperphagia is most
prominent. Glucose output also is increased
after 2 hours of fasting (Schimmel & Knobil,
1970), at which time feeding may be expected
(Snowdon, 1970). On the other hand, note
that hunger is not associated with enhanced
glucose output when the supply of utilizable
fuels for the liver is abundant, as occurs when
rats are fed high-protein or high-fat diets
(Eisenstein, Strack, & Steiner, 1974).

An important role for the liver in stimulat-
ing hunger has been advocated previously,
most notably by Russek (1963, 1971). In
support of his position, Russek (1970) has
demonstrated that infusions of glucose di-
rectly into the portal vein can depress food
intake in hungry animals (see also Booth &
Jarman, in press; Campbell & Davis, 1974;
Novin, Sanderson, & VanderWeele, 1974). In
addition, feeding by fasted animals results in
a prompt reversal of hepatic metabolism
toward glycogen formation (Foster, 1967;
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Mayes, 1962 ).3 While these results clearly are
consistent with Russek's (1975) notion of a
hepatic glucoreceptor participating in the
"glycogenostatic" control of hunger, they
neither specify the critical event nor do they
demand that it is a change in the metabolism
of glucose per se. Indeed, intragastric injec-
tions of fatty acids and intermediary metabo-
lites similarly reduce feeding in mildly hungry
animals, after a delay suitable for absorption,
in proportion to the estimated energy yield of
the load (Booth, 1972c, 1972d; Booth & Jar-
man, in press). Moreover, a model based on
changes in liver glycogen levels or glycolysis
rates cannot explain recent findings that de-
spite pronounced depletions of liver glycogen,
overeating did not occur in diabetic rats fed
a high-fat diet (Friedman, 1975). Collec-
tively, these observations are instead consis-
tent with our suggestion that alterations in
hepatic oxidative metabolism provide the
stimuli for hunger and satiety.

In order for hepatic events to have behav-
ioral repercussions they must influence the
brain. Both blood-borne and neural signals
should be considered, but unfortunately,
there are few unambiguous data at present
that bear on this point. Nevertheless, it is
interesting to note that electrical stimulation
of the vagus has been found to elicit feeding
in satiated cats (Penaloza-Rojas, Barrera-
Mera, & Kubli-Garfias, 1969), while DC
blockade of the vagus decreases feeding in
hungry cats (Penaloza-Rojas & Russek,
1963). Furthermore, portal infusions of glu-
cose have been shown to affect the firing rates
of afferent fibers from the liver (Niijima,
1969) as well as single neurons in the hypo-
thalamus (Schmitt, 1973). Taken together

3 According to our proposal, this shift in metabo-
lism would tend to remove hunger as a stimulus for
feeding rather early in the meal, and the increasing
dependence of ingestion on nonmetabolic factors
(e.g., palatability of the diet) might explain why
meal sizes are so unpredictable (Le Magnen &
Tallon, 1966). Because metabolic shifts within the
liver are strongly influenced by fluctuations in insulin
level, or in insulin/glucagon ratios (Cahill et al.,
1966; Exton & Park, 1967; Friedman et al., 1967;
Menahan & Wieland, 1969; Seyffert & Madison, 1967),
such endocrine changes might have a considerable
indirect effect on satiety (cf. de Castro & Balagura,
197S; Steffens, 1975).

with the apparent centrifugal influence on
liver function (Ban, 1967; Frohman, 1971),
these observations raise the admittedly spec-
ulative but exciting possibility of an interac-
tion between the brain and the liver in the
control of food intake and energy metabolism.

SUMMARY AND CONCLUSIONS

Many physiological changes occur with the
development of hunger. As we have seen,
insulin secretion diminishes as the gastroin-
testinal tract empties, and the utilization of
glucose in cells that are dependent on insulin
for its entry decreases too. Conversely, there
is an increase in the secretions of glucagon,
growth hormone, and epinephrine, all of which
provide for the mobilization of glucose and
lipid from body stores. Almost every one of
these correlated events has provided a basis
for a single-factor theory concerning the
physiological stimulus for hunger (e.g., Ken-
nedy, 1953; Mayer, 1953; Snowdon, 1970;
Woods, Decke, & Vasselli, 1974). However,
we believe these theories have focused on
secondary issues and have missed the phe-
nomenon at the core—-namely, the continued
availability of diverse metabolic fuels to main-
tain the energy supply (Adolph, 1947; Booth,
1972c, 1972d; Ugolev & Kassil, 1961).

Hunger usually is associated with a de-
creased supply of fuels from the intestines.
Elaborate physiological and biochemical
mechanisms can maintain energy production
in the postabsorptive state, and the internal
reserves they draw on are adaptively doled
out in response to tissue needs. The principle
storage reserve is fat. When the lipid supply
from adipose tissue is unusually abundant,
this surplus is utilized and hunger is fore-
stalled. However, when the availability of fat
is relatively low, the need for exogenous fuels
increases. The liver is the organ that is most
responsive to differences of this kind in the
supply of metabolic fuels from both endoge-
nous and exogenous sources. We propose that
the stimulus for hunger arises in the liver,
when fuel delivery from the intestines and
adipose tissue is inadequate for the mainte-
nance of bodily functions without significant
hepatic contributions. The stimulus for hun-
ger may be associated with some shift in
hepatic metabolism, and food intake may
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reverse that change. In other words, it is the
liver that may integrate information about
caloric homeostasis and provide the specific
stimulus for hunger to the brain, and it is the
liver whose function seems to be most af-
fected by feeding and thus allow rapid feed-
back for the termination of hunger.

This discussion has been directed solely
toward deducing the metabolic factors that
might underlie the urge to eat. However, we
recognize that animals with nutritional needs
may not choose to eat, and that animals with
no such needs may eat anyway. Although we
have neglected these issues, we do not wish to
minimize their importance or the significance
of additional questions regarding the recogni-
tion, detection, and selection of food, the
effects on feeding of individual experience,
learning, affective state, competing drives, and
the like. Indeed, these psychological variables
ultimately will have to be integrated with the
physiological factors to obtain a balanced
appreciation of feeding behavior. From this
broad context we have selected hunger as a
single issue for consideration and have em-
phasized the following two points.

First, we do not find it useful to divide the
signals for hunger into glucostatic and lipo-
static, subserving short-term and long-term
controls of food intake. Instead, we believe
that hunger appears and disappears accord-
ing to normally occurring fluctuations in the
availability of utilizable metabolic fuels, re-
gardless of which fuels they are and how full
the storage reserves.

Second, we believe that the traditional de-
scription of central control mechanisms in
terms of feeding and satiety centers or sys-
tems cannot be maintained in light of recent
evidence. Instead, lateral hypothalamic lesions
appear to interrupt all motivated behaviors,
not just feeding, while ventromedial hypo-
thalamic lesions primarily disrupt nutrient
processing so that animals cannot readily ob-
tain fuel from bodily stores.

These conclusions have been reached by
taking a physiological approach in considering
the physiological basis of hunger. This may
seem ironic, but physiological psychology has
traditionally contained little classical physi-
ology and instead has found its evolutionary
roots in neurology. Thus, while the Sherring-

tonian metaphor of reciprocal excitatory and
inhibitory controls is evident in the popular
theories of dual hypothalamic centers and
body weight set points, we believe that hunger
and satiety are more appropriately analogous
to the coordinated mechanisms that normally
control gluconeogenesis and lipogenesis (cf.
Tepperman & Tepperman, 1970). We hope
that future work on the physiological basis of
hunger will focus on these pathways of me-
tabolism instead of so exclusively pursuing
pathways in the brain.
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