
   

 

 

Hierarchical Compact Cube for Range-Max Queries 
 

 Sin Yeung Lee Tok Wang Ling HuaGang Li 
 

School of Computing 
National University of Singapore 

{jlee,lingtw,lihuagan}@comp.nus.edu.sg 
 
 

Abstract 
 
A range-max query finds the maximum value 
over all selected cells of an on-line analytical 
processing  (OLAP) data cube where the 
selection is specified by ranges of contiguous 
values for each dimension. One of the 
approaches to process such queries is to pre-
compute a prefix cube (PC), which is a cube of 
the same dimensionality and size as the original 
data cube, but with some pre-computed results 
stored in each cell. 
 
In this paper, we propose a new cube 
representation called Hierarchical Compact 
Cube, which is an hierarchical structure that 
stores not only the maximum value of all the 
children sub-cubes, but also stores one of the 
locations of the maximum values among the 
children sub-cubes. The storage requirement is 
much less than the prefix cube methods. 
Furthermore, both of our analysis and 
experiment results show that the average query 
time using our method is bounded by a constant 
independent on the number of data in the data 
cube, N. For a fixed dimension, the average 
update cost of our new structure in the worst 
case is also relatively low. It is only O(log N). 

1  Introduction 
 Aggregation is a common and computation-intensive 
operation in on-line analytical processing systems 
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(OLAP) [3, 4, 7], where the data is usually modelled as a 
multidimensional data cube [5, 6, 10], and queries 
typically involve aggregations across various cube 
dimensions. Formally, an n-dimensional data cube is 
derived from a projection of n+1 attributes from some 
relation R, where one of these attributes is classified as a 
measure attribute and the remaining n attributes are used 
as dimensional attributes. Each dimension of the data 
cube corresponds to a dimensional attribute, and the value 
in each cube cell is an aggregation of the measure 
attribute value of all records in R having the same 
dimensional attribute values. For instance, consider the 
database which stores the sales of each item in each day 
for each outlets, the data can be stored in a cube having 
three dimension --- item, date and outlets. The value in 
each cube will be the actual sales. 
 
Using the data cube model, we can answer many OLAP 
range queries [11] efficiently. In particular, we propose a 
new pre-computation technique for a class of OLAP 
queries called range-max queries. A range-max query 
finds the maximum value over all selected cells of an 
OLAP data cube where the selection is specified by a 
range of contiguous values for each dimension [6]. For 
example, finding the maximum sales of stationary items 
(each has an item code ranging from 1200 to 1258) 
between day 130 and day 136 in all the western outlets 
(branch-no ranging from 45 to 89) is a range-max query. 
It can be realized using the following SQL statement: 
 
    SELECT MAX(amount) FROM sales WHERE 
          ( (item>=1200) AND (item <= 1258) ) AND 
          ( (day>=130) AND (day<=136) ) AND 
          ( (branch>=45) AND (branch<=89) ); 
 
The most direct approach is a naïve approach. We 
evaluate a range-max query by accessing each individual 
cell from the data cube itself and find the maximum 
value. However, the cost of access is proportional to the 
size of the sub-cube specified by the range. To illustrate, 
given a 10-dimension data cube, if we double the size of 
each dimension in the range, we will increase the total 
access cost by 1024 times. This is clearly unacceptable. 
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Note that this naïve method can be applied to other 
aggregate functions such as SUM. 
 
To improve the range query for the aggregate function 
SUM, considerable research has been done in the 
database community [8, 9, 11, 12, 13]. One of the 
foundation stones for efficient range-sum query algorithm 
is to pre-compute a set of summary results [9] which will 
be used to speed up the processing of an OLAP query of 
arbitrary range. The most commonly found ideas is the 
Prefix Sum Method. In this method, a prefix cube PC, of 
the same size as the data cube DC, stores various pre-
computed prefix aggregation. In particular, PC<x1,… ,xd> 
stores the sum of all the data in DC ranging from <0,… ,0> 
to <x1,… ,xd>. With the use of PC, any range-sum query on 
d dimension can be answered with a constant (2d) cell 
accesses. To illustrate, the sum of all the data in DC 
ranging from <2,4> to <6,9> can be computed with only 
four cell accesses of the PC by using the formula: 

sum(<2,4>, <6,9>) =  
sum(<0,0>, <6,9>) – sum(<0,0>, <6,3>) – 
sum(<0,0>, <1,9>) + sum(<0,0>, <1,3>) 

or alternatively, 
 sum(<2,4>, <6,9>) = PC<6,9> – PC<6,3> –  

PC<1,9> + PC<1,3> 
 
Although the Prefix Sum Method has a very good 
constant time query cost, it is very expensive to update 
the prefix sum cube. A single update on the data at 
DC<0,… ,0> requires to update every cell in the PC. Other 
methods try to correct this weakness. For example, the 
Relative Prefix Sum method  [12] has a constant query 
cost and a much reduced O(nd/2) update cost. This 
achieves a better overall effect for frequently updated data 
cube. The Hierarchical Cubes method [13] further 
improves [12] to allow a dynamic fine-tuning between the 
query cost and update cost.  
 
Despite all these works on range-sum query, they cannot 
be directly applied to the range-max query. In particular, 
most of the existing range-SUM methods explore the idea 
that, given two disjointed regions A and B,  
 sum(B) = sum(A+B) – sum(A) 
where A + B is the union of the two regions. This equality 
is exactly the corner stone to make prefix sum works. 
However, for the case of range-max query, even if we 
know the maximum value of both regions A and A+B, we 
still cannot decide the maximum value of the region B. 
  
Fortunately, there are many other aspects that we can 
explore to speed up the range-max query that the range-
sum query does not process: 

1. In a range-sum query, it is possible to prune some 
processes in the search for the maximum. In 
particular, given three regions A, B and C. If it is 

known that max(A+B) is not more than max(C), 
then both max(A) and max(B) are smaller than 
max(C). Therefore, we do not need to explore 
regions A nor B to find the exact value of max(A) 
nor max(B). Generalising this idea, if a requested 
range is covered by regions A1,… ,An, we can prune 
off any further investigation on Ai if the maximum 
value of Ai is not more than the current computed 
maximum value. This type of pruning allows a 
great reduction of the IO cost on cube accesses. 

2. While the order of the sub-cube visitation for the 
range-sum query is not very important in terms of 
IO accesses, it is no longer true in the case of 
range-max query. Due to the possibility of pruning 
some searching processes, it is highly beneficial to 
find a correct order of the evaluation of the sub-
range queries so as to increase the probability that 
a sub-range can be pruned. 

3. A maximum data is not just a result of an 
aggregation function, it is also a data that appears 
in the data cube. As a result, a maximum data can 
associate with the location of the data cube cell 
where the maximum appears. Using the location, 
some of the range-max query can be done much 
faster. For example, if we know that the overall 
maximum is at location <3,8,4>, then any range-
max query that includes <3,8,4> can be answered 
in just one cube access --- the access of the cell 
<3,8,4> itself. In this paper, we shall formulate our 
algorithm to use this location to further decrease 
the access cost of range-max query. 

2  Hierarchical Compact Cube 
Definition 2.2 A data cube DC of d dimension, is a d-
dimensional array. For each dimension, the index can be 
ranged from 0 till si-1 inclusively. We will denote si as the 
size of the ith dimension. In this paper, a cell in the data 
cube can be expressed in the following form, 
 DC<x1 ,… , xn> where 0 ≤ ji < si 
 
Example 2.1 Figure 2.1 shows a data cube of 2 
dimension. The size of the first dimension (represented as 
row in this paper) is 5, and the size of the second 
dimension (represented as column) is 7. 

0 1 2 3 4 5 6

0 5 24 17 32 9 21 34

1 30 11 2 20 25 8 14

2 16 26 1 13 15 3 28

3 31 4 29 6 33 18 28

4 23 22 12 19 10 27 35

Figure 2.1  A data cube  
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Definition 2.2 Given a data cube DC of d dimension, 
and d integers m1 ,… , md, the compact cube of DC, 
denoted as CC, is another data cube such that 

1. it has the same dimension d, and 
2. if the size of the ith dimension in DC is si, i.e., it 

ranges from 0 to si-1, then the dimension i in CC 

will be ranged from 0 to 





 −

i

i

m
s 1

. 

3. Each cell CC<x1,… ,xd> in CC stores two items 
• The maximum of all the cells DC< j1 ,… , jd > 

where m xi ≤ ji < min(mi(xi+1), si) and 
• the position of one of the cells that holds 

this maximum value. 
In this paper, we shall denote the maximum value stored 
in CC<x1,… ,xd> simply as CC<x1,… ,xd>.value, and the 
maximum location as CC<x1,… ,xd>.location. For 
simplicity’s sake, we assume m1 = …  = md = m, and we 
shall call this integer m the compact factor of the 
compact cube. However, our algorithm is equally 
applicable when mi are not the same. 
 
Example 2.2  Figure 2.2 shows a compact cube of the 
data cube shown in Figure 2.1. The compact factor is set 
to 2. Note that among the data in DC<i, j> where 0 ≤ i, j 
≤ 1, the maximum value is 30, and it appears in location 
<1,0>. This information is stored in CC<0,0> of the 
compact cube. Note that for CC<1,3>, the maximum value 
28, can be derived from DC<2,6> and DC<3,6>. Our 
compact cube just randomly picks one of these locations 
and stores it. Note also that CC<2,3> only summarises the 
maximum of only one cell in the data cube: DC<4,6> and 
thus CC<2,3>.value is exactly equal to DC<4,6>. 

 

1 0 0 3 1 4 0 6

3 0 3 2 3 4 2 6

4 0 4 3 4 5 4 6
Figure 2.2   A Compact Cube
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Definition 2.3 Given a compact cube CC of dimension 
d, and d integers m1 ,… , md, its compact cube, CC2, is 
another compact cube such that 

1. it has the same dimension d, and 
2. if the dimension i in CC is ranged from 0 to si-1, 

then the dimension i in CC2 will be ranged from 0 

to 





 −

i

i

m
s 1

. 

3. Each cell CC2<x1,… ,xd> in CC2 stores two items 

• The maximum of CC< j1 ,… , jd >.value  
where m xi ≤ ji < min(m( xi+1), si) and 

• the location attribute of one of the cells 
which holds this maximum value. 

To simplify the discussion in this paper, we shall again 
assume that all mi are the same, and likewise refer it as 
the compact factor. 
 
Example 2.4 With the compact cube CC as shown in 
Figure 2.2, we can compact to generate another compact 
cube CC2. With compact factor to be 2, CC2<0,0> contains 
the maximum value among CC<0,0>, CC<0,1>, CC<1,0> 
and CC<1,1>. From Figure 2.2, we can conclude that the 
maximum value is 32, and it is at CC<0,1>. Hence, 
CC2<0,0>.value will be 32. CC2<0,0>.location will be 
equal to the location attribute of CC<0,1>, i.e., <0,3>. The 
completed CC2 is shown in Figure 2.3. 
 

0 3 0 6

4 0 4 6

A rank 2 compact cube

1
32 34

Figure 2.3

35

0

1

0

23

 
 
Definition 2.4 Given a data cube DC and an integer m, an 
Hierarchical Compact Cube denoted by HC, is a 
sequence of compact cubes CC0 ,… ,  CCh such that 

1. CC0 is the data cube DC itself. 
2. CCk (k ≥ 1) is the compact cube of CCk-1 with 

compact factor m. 
3. CCh is the only compact cube which contains 

only one single cell. 
We shall call the integer m the compact factor of the 
hierarchical compact cube HC, h the height of the HC. We 
shall refer CCi as the rank i compact cube of HC and CCh 
also as the topmost compact cube of HC. 
 
Example 2.4 With the data cube as shown in Figure 2.1, 
we can construct a hierarchical compact cube HC. The 
rank 0 compact cube is the data cube itself. The rank 1 
compact cube is shown in Figure 2.2, and the rank 2 
compact cube is shown in Figure 2.3. Lastly, Figure 2.4 
shows the rank 3, the topmost compact cube, which 
results from compacting the rank 2 compact cube. 
 

4 6

A rank 3 compact cube

35

Figure 2.4

0

0
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Definition 2.5 A max-range query with respect to a 
data cube DC of dimension d can be specified as 
 

[ < L1 ,… , Ld > , <H1 ,… , Hd > ] 
 
such that for each dimension i, 0 ≤ Li < Hi ≤ si where si 
is the size of the ith dimension of DC. The query returns 
the maximum value among all the data in < x1 ,… , xd > 
with Li ≤ xi < Hi. 
 
Example 2.5 In Figure 2.5, the shadowed area 
represents the range [<1,1>, <4,5>]. 
 

0 1 2 3 4 5 6

0 5 24 17 32 9 21 34

1 30 11 2 20 25 8 14

2 16 26 1 13 15 3 28

3 31 4 29 6 33 18 28

4 23 22 12 19 10 27 35

Figure 2.5  The range [<1,1>, <4,5>]  
 
 
Definition 2.6 Given a cell CCr<x1 ,… , xd> of a rth rank 
compact cube with compacting factor m, a region R = 
[<L1 ,… , Ld > , <H1 ,… , Hd >] is said to be contained in 
the cell if and only if for each i (1 ≤ i ≤ d), 

1. mr xi ≤ Li   and 
2. Hi ≤ min( mr(xi+1),  si ). 

where si is the size of the ith dimension of the compact 
cube CCr. The region R is said to be a full region with 
respect to the cell CCr<x1 ,… , xd> if all the equality signs 
in both conditions hold. Otherwise, R is called a partial 
region with respect to the cell CCr<x1 ,… , xd>. 

 
Example 2.6 Refer to the hierarchical compact cube 
HC as described in Example 2.4. The region 
[<0,0>,<4,4>] is contained in CC2[0,0] as 22*0 ≤ 0 and 4 
≤ 22*1. Indeed, as both the equality signs hold, the 
region is also a full region. The same region is also 
contained in CC3<0,0> as 23*0 ≤ 0 and 4 ≤ 23*1.  
However, the region is only a partial region with respect 
to CC3<0,0> as the second equality does not hold. Finally, 
the region is not contained in CC1<0,0> as the second 
condition “4 ≤ 21*1” fails. 
 

3 Using the Hierarchical Compact 
Cube for range query 

Before we present the algorithm to handle range-max 
query, we shall illustrate the idea behind using the 
following example: 
 
Example 3.1 Refer to the data cube as described in 
Example 2.1, we want to find the maximum value in the 
range R = [<1,1>, <5,5>]. This range is shown in the 
shadow area of Figure 3.1. 
 

0 1 2 3 4 5 6

0 5 24 17 32 9 21 34

1 30 11 2 20 25 8 14

2 16 26 1 13 15 3 28

3 31 4 29 6 33 18 28

4 23 22 12 19 10 27 35

Figure 3.1  A sample query  
 
Instead of accessing the data cube directly to find the 
maximum, we will first look at the topmost rank of the 
hierarchical compact cube, the rank 3 compact cube. This 
compact cube is shown in Figure 3.2. The dotted 
rectangle represents the region R (ranged [<1,1>, <5,5>]) 
wrt the Rank 3 compact cube (ranged [<0,0>, <5,7>]). 
 

4 6
350

0

Figure 3.2 Rank 3 compact cube

R

 
 
This compact cube cell reveals that the maximum within 
the region [<0,0>, <5,7>] is 35 and it is in the location 
<4,6>. Given any region R that is contained in CC3<0,0>, 
there are three possibilities, 

1. R is a full region with respect to CC3<0,0>,  
2. R is a partial region, but the maximum cell 

DC<4,6> is inside R, 
3. R is a partial region, and the maximum cell 

DC<4,6> is not inside R. 
In either case 1 or case 2, as the maximum element in the 
cell DC<4,6> is also inside R, the region R contains the 
maximum value. We can then return 35 as the answer 
immediately and do not need to do any further 
investigation. Only in case 3 do we need to investigate 
further. In this example, R belongs to case 3.  
 

235



   

 

We now apply the bound and branch [1] and the divide 
and conquer idea [2] to subdivide the region R into md 
sub-regions. In this example, it is divided into R1, R2, R3 
and R4 so that each sub-region is contained in exactly one 
rank 2 compact cube cell. This is shown in Figure 3.3. 
The original query can now be transformed into four sub-
queries to find the maximum values of region R1, R2, R3 
and R4, and the final result is the largest of these four 
maximums. 
 

0 3 0 6

4 0 4 6

A rank 2 compact cube

1
32 34

Figure 3.3

35

0

1

0

23 R1

R2

R3

R4
 

 
While the final answer is independent of which four sub-
queries is evaluated first, however, if we compute R1 and 
discovers that the maximum is indeed 35, then we can 
immediately prune the query on R2, as its maximum is at 
best 34. We therefore propose to compute the sub-queries 
in the following order: 

1. All the regions that are full regions first, then 
2. All the partial regions with the largest maximum 

evaluated first and the smallest maximum 
evaluated last. 

The full regions can be computed without any further 
subdivision. Hence, they should be evaluated first. On the 
other hand, a partial region may need to investigate 
furthermore if the maximum location is not inside the 
partial region. Hence, they are evaluated later. In order to 
compute the largest maximum first, we need to maintain 
some sorted order of these partial regions. A complete 
sorting is quite expensive. For instance, in our example, if 
35 is found to be the answer, it is a waste of resources to 
pre-sort the regions R2, R3 and R4. Consequently, a 
priority queue implemented using implicit heap is 
introduced to keep those “to-be-investigated” regions 
such that the largest cell-maximum can be immediately 
available in the front of the queue. Note that as we are 
using heap structure, we do not need all the elements in 
the queue completely sorted. 
 
In this example, none of the regions R1, R2, R3 or R4 is a 
full region, we therefore proceed to examine the four 
partial regions. The first region to be investigated is 
region R1. It is contained in the compact cube CC2<1,1> 
that also holds the largest possible maximum, 35. 
However, as 35 is at position <4,6>, it is outside the 
region R1. Hence, we cannot immediately conclude the 
maximum of R1. R1 is now inserted into the priority 
queue Q for further analysis. Similarly, regions R2, R3 
and R4 are all partial regions and their respective 
maximums do not fall in their corresponding regions. 

Hence, they are all inserted into Q. As Q always ensures 
that the largest element is in the front of the queue, hence, 
the elements contained in Q are regions R1, R2, R3 and 
R4, with R1 being in the front of the queue. 
 
Now we further investigate the largest element in Q, R1. 
The region can be further sub-divided into only one 
region R1a in the rank 1 compact cube, as shown in 
Figure 3.4.  
 

4 5 4 6

In a rank 1 compact cube

3

Figure 3.4

352

2
27

R1a

 
 

Now R1a is still just a partial region, and its maximum, 
27, is at position <4,5>, which is outside the region R1a. 
Hence, we again cannot conclude the maximum value of 
R1a yet and hence R1. We need to insert the region R1a 
into the queue for further processing. Now, the queue Q 
contains the regions R2(max=34), R3(max=32), 
R1a(max=27) and R4(max=23) with R2 being in the front 
of the queue. 
 
The next region dequeued from Q is region R2. It can be 
subdivided into R2a and R2b, as shown in Figure 3.5. 
 

1 4 0 6

3 4 2 6

In a rank 1 compact cube

3
25 34

Figure 3.5

28

0

1

2

33 R2b

R2a

 
 
 
None of them is a full region. However, as the maximum 
value stored in CC1<1,2>, 33, is within the region R2b, we 
can conclude that the maximum of region R2b is 33. In 
other words, the overall maximum of the original query is 
at least 33. Now R2a has a maximum value of 25, which 
is less than the current maximum, 33. Therefore, we can 
skip this region. At this moment, the current maximum is 
33, and the queue Q contains regions R3, R1a and R4. 
 
The next region R3 has only a maximum of 32, which is 
smaller than the current maximum, 33. We can skip 
region R3. But since the queue Q always removes the 
largest element from the queue, the remaining elements in 
Q are even smaller and can never improve the current 
maximum, 33. As a result, we can stop our algorithm and 
conclude that the current maximum is 33. 
 
The following summarizes our algorithm: 
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Algorithm 3.1 [Maximum Query] 
 
Let DC be a given data cube and let θ be the smallest 
domain value of the measure attribute. Let HC be the 
hierarchical compact cube of DC with compacting factor 
m and height h. We find the result of a range-max query 
R0 by the following steps: 
1. Let Q be an empty priority queue, which stores tuples 

of the form [R, maxguess , ht] where R is a range, 
maxguess is an estimated maximum of the range R, and 
ht is the smallest height of all the compact cubes in 
HC  that range R has investigated. 

2. To start with, if R0 covers the entire the data cube, 
then the topmost compact cube, CCh, is exactly R0. 
We return the maximum value stored in CCh<0,… ,0> 
as the query result and exit the algorithm. 

3. Otherwise, we insert [R0 , θ , h] inside the priority 
queue Q. The queue is inserted in a way that a larger 
maxguess will be dequeued first, and the smaller 
maxguess will be dequeued later. We also initialise the 
current maximum maxcur as θ – 1. We now perform 
the following processes: 

4. If Q is empty, then stop the algorithm, and report 
maxcur as the actual maximum. 

5. Otherwise, dequeue the largest item [R , maxguess , ht] 
from the priority queue Q. If the maxguess is not more 
than maxcur, stop the algorithm, and report maxcur as 
the actual maximum. 

6. Let {Cj} be the minimum set of rank (ht – 1)th 
compact cubes such that U jC  covers R. For each 

j, we denote Rj as the subregion of R that Cj overlaps. 
In other words, φ≠= I jj CRR . 

7. For each Rj such that Rj is a full region with respect 
to the compact cube Cj, we query the maximum value 
stored in the corresponding (ht – 1 )th compact cube 
Cj, which is exactly the maximum of Rj. If the 
returned value is more than the current maximum 
maxcur, we update maxcur to be the returned value. 

8. For the rest of Rj that is only a partial region with 
respect to the compact cube Cj, we query the (ht–1)th 
compact cube to find the maximum of Cj, maxquery. 
This value gives the upper bound of the maximum of 
Rj. We have three cases: 
a. If the returned value maxquery is not more than the 

current maximum maxcur, then the actual 
maximum of Rj cannot be more than maxcur and 
we can skip this region. We repeat step 8 for 
another region Rj’.  

b. On the other hand, if the returned value is more 
than the current maximum and if the maximum 
location is inside Rj, then we confirm that the 
maximum value of Rj is indeed maxquery. We 
update maxcur to be maxquery and continue step 8 
with another region Rj’.  

c. Finally, if the returned value is more than the 
current maximum, and the maximum location is 
outside Rj, we need to do further investigation on 
Rj to confirm its actual maximum. We insert the 
item [Rj , maxquery , ht –1] into Q. 

9. After all Rj have been processed, we repeat step 4 of 
the algorithm until Q is empty. 

 

4 The constant-time average access 
cost of our method 

In this section, we shall first formulate a recurring 
equation on the average number of compact cube 
accesses. We then prove that the average number of cube 
accesses is bounded by a constant that is independent of 
the size of the compact cube. To start with, we note that 
during the searching of the maximum value at the rth rank 
compact cube, the total cost costr can be divided into two 
parts: 
 

1. The query of the maximum values of all the 
immediate children of the rth rank compact cube, as 
required in step 7 and step 8 of the Algorithm 3.1. 
We can assume that there are N such (r – 1)th rank 
children. 

2. The possible further query on these N children as 
described in step 8, part (c) of the Algorithm 3.1. 

 
If kr is the expected number of children that are required 
to perform further query, then  
 
 costr = N + kr costr-1 
  
To estimate N, we assume that during the query R on the 
rth rank compact cube, the rth rank compact cube covers 
exactly wi  (r  – 1) 

th rank compact cubes in the i th 
dimension where 1 ≤wi ≤m. Clearly, the r 

th rank compact 
cube covers exactly  

∏
=

=
d

i
iwN

1

 

(r  – 1) 
th rank compact cubes. We denote the sub-regions 

that these compact cubes cover to be R1 ,… , RN. Note that 
according to Algorithm 3.1, during the processing of any 
region R of the rth rank cube, we need to access the 
maximum value stored inside all the sub-cubes Rj in step 
7 and 8 of the algorithm. Hence, our algorithm needs to 
access exactly N compact cubes of rank (r  – 1).  
 
Given that the compact factor is m, each wi will be ranged 
between 1 and m. Thus, the value of N, in the worst case, 
is at most md, which is a constant. Note that in average, 
the expected value of N is much smaller. If either the 
starting value or the ending value for the ith dimension of 
the given range is a random variables, then expected 
value of each wi can be shown to be only about m/2. Thus, 
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the expected value of N is 1/2d smaller than the worst 
case. In conclusion, the number of the (r – 1)th rank 
compact cubes needed to be investigated from a rth rank 
compact is bounded by the constant md in the worst case. 
 
To estimate exactly the value of kr is much more 
complex. However, we can show that the value of kr 
approaches to 0 for lower rank compact cube as the data 
cube size increases. According to the step 8 of our 
algorithm, it is required that a sub-region Rp will be 
inserted into the queue Q for further investigation only if 
the following conditions are satisfied: 
 

1. The children Rp is a partial region, and 
2. the returned maximum on query of Rp is more 

than the current maximum, and 
3. the location of the maximum is not inside Rp. 

 
There can be plenty of compact cubes can do not satisfy 
the first condition. As illustrated in Figure 4.1, given a 
region R in the d-dimension rth compact cube, in the worst 

case, there are only at most ∏∏
==

−−
d

i
i

d

i
i ww

11

)2(  

partial regions in the (r – 1)th compact cube where wi is 
the length of the ith dimension that R overlaps with the (r-
1)th compact cube. The proportion of partial regions is 
even smaller when the compact factor m increases, as 
well as when some dimension ranges falls exactly at the 
division mark (as shown on the row 5 in figure 4.1) which 
frequently occurs in lower rank compact cubes. 
 

Figure 4.1
Illustration on the numbers of full sub-regions.

(5-2)*
(3-1) =
6 full sub 
regions.

Region R

 
 
To satisfy the second condition, we note that Algorithm 
3.1 will first compute the maximum of all the full regions 
first in step 7. The probability that a partial block Rp has a 
maximum more than the current maximum is the 
probability that among all the “explored” regions and the 
partial block, the largest value is at that partial block. 
Now, when we start our algorithm by first investigating 
the topmost rank h compact cube, there are at least 
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been explored during the visit of these full regions 
covered by these rank (h-1)th compact cubes. 
Subsequently, for the remaining partial regions, some full 
regions of lower rank cubes will also be explored. This 
further increases the “explored” area and thus decreases 
the chance that the maximum is found in Rp. However, for 
simplicity sake, we shall ignore these surpluses in this 
analysis. In other words, we only assume that at least 
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Rp. The size of the partial block of rth rank compact cube 
is about mrd. Consequently, the probability that the first Rp 
contains a larger maximum than the current maximum is 
not more than 
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Finally, even if the second condition is satisfied --- Rp has 
a cell maximum that is greater than the current maximum, 
as long as this maximum is in the region Rp, it does not 
fulfil the third condition. In this case, we need not do any 
further investigation. To estimate this probability, we first 
illustrate the computation using d=3 case. For a partial 
region in a compact cube of size m, it can fall into three 
different cases: 

1. The region is on the surface. There 

are 21 )2(2
1
3

−





m  such regions. The 

probability that a chosen point is in the region is 
½. 

2. The region is on the edge of the cube. There 

are 12 )2(2
2
3

−





m  such regions. The 

probability that a chosen point is in the region is 
¼. 

3. Finally, the region can be on the corner of the 

cube. There are 03 )2(2
3
3

−





m  such regions. 

The probability that a chosen point is in the 
region is 1/8. 
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We can generalise the sum for any dimension d, the 
probability that a particular point is in a partial region is 
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Hence, we can deduce that the expected value of kr is not 
more than 
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Since the value of m, wi, and d are all independent on the 
size of the original data cube, we can simply rewrite the 
above expression as, 
 cm(r+1–h) d 
where the expected value of the constant c only depends 
on the value of d and m. With the bound of kr, we have 

1
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Expanding the sum, and putting r = h, we have, 
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Note that the sum at the right hand infinite sum converges 
to a fix number. In other words, for any arbitrary large 
data cube, the total number of cell accesses, costh is 
bounded by a constant, which is independent on the size 
of the data cube. 
 
4.1 Experiment Result 
The following figures show some of our experiment 
results.  
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Figure 4.1   Impact of cube size for  

different compact factor for 2-D Cube 
 
We generated a set of hierarchical compact cubes by 
varying the data size, compact factor and dimension 
independently. For simplicity, we consider data cubes 

with equal sized dimension. We then generate about 
100,000 queries of random size and measure the average 
cell accesses required. The experiment is run in Linux 
Red hat 6.0 and several observations can be concluded: 

 

HC with Dimension=3

0

20

40

60

80

100

120

0 20 40 60 80 100

Size of each dimension
A

ve
ra

ge
 c

el
l a

cc
es

se
s

m=2
m=3
m=5

 
Figure 4.2   Impact of cube size for  

different compact factor for 3-D Cube 
 

1. From Figure 4,1 and Figure 4.2, there are strong 
evidences that the average number of cell accesses 
does converge to a constant when the size of the data 
cube increases. For large set of data, the performance 
is not dependent on the number of data in the data 
cube. This coincides with our analysis. Furthermore, 
the convergent rate is faster for smaller compact 
factor and lower dimension. 

2. The performance also improves when the compact 
factor decreases. The best compact factor, as shown 
in both Figure 4.1 and 4.2, is 2. 

 
As shown in Figure 4.3, the average number of cell 
accesses grows exponentially as the dimension increases. 
This also coincides with the factor md shown in the 
analysis result. 

 
 
 
 
 
 
 
  
 
 
 
 

Figure 4.3 
Impact of dimension on the overall performance 
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5 Updates and storage costs of the 
hierarchical compact cube 

When we update a data in the data cube, we may need to 
update also the hierarchical compact cube. As mentioned 
in [6,13], our hierarchical compact cube is imperfect if it 
incurs a huge update cost. Likewise, our method should 
not incur too much extra storage costs. In this section, we 
shall show that the maintenance cost of the hierarchical 
compact cube containing N data is only O( logm N). 
Furthermore, the extra storage cost is a factor smaller as 
compared to range-sum query methods. [9,13] 
 
There are two types of update to the data cube. We can 
either increase a value or to decrease a value of a data 
cube cell. These two updates require a different average 
update cost analysis on the hierarchical compact cube. 
 
5.1  Maintenance cost for increment 
In the case of increment of a cell c in a rth rank compact 
cube, if the increased value does not exceed the overall 
maximum of the (r+1)th rank compact cube that c belongs 
to, then no further update is required. The total update 
cost is to access the cell c itself, and to query the overall 
maximum by accessing one cell of the (r+1)th rank 
compact cube. On the other hand, if the increment affects 
the overall maximum (for instance, the update is to 
increase the actual largest value), then the cell of the 
(r+1)th rank compact cube which contains the overall 
maximum needed to be updated also. This propagates the 
update to the (r+1)th rank compact cube, and we now 
need to query the (r+2)th rank compact cube recursively. 
The propagation will stop when the update does not affect 
the maximum stored in its parents or in the worst case, r 
is the height of the hierarchical compact cube. In other 
words, in the worst case, the update cost is h. Given that 
m is the compact factor of the hierarchical compact cube, 
and d is its dimension, the total number of data in the data 
cube N, is about mhd. Hence, the update cost h is about 

  N
d mlog1

 

In other words, for a fixed dimension, the worst case 
increment cost is only O(logmN). The average update 
case, however, is only a constant. An update of cell c is 
propagated only when the updated value overtakes the 
overall maximum. Given that the cell being increased is 
the kth largest cell, we can assume that with only 
probability 1/k, the value of this kth largest cell is 
increased to overtake the maximum. By summing k from 
1 to md, and assuming that each cell is updated with the 
same probability 1/md, the probability that a cell is 
increased to overtake the overall maximum, and thus 
propagation to its parent is required, is about 

 dm
md γ+ln

  

where γ is the Euler’s constant (=0.5771..).  
  
As this probability is independent of the rank, hence, an 
update of a cell in the data cube (a rank 0 cell) can be 
propagated to a rank 1 parents cell has the same 
probability that this update will be further propagated to 
rank 2. It is a geometric progress, and the expected 
number of cells that requires update is 
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In other words, the average increment cost is bounded by 
a constant, regardless of the size of the data cube. 
Furthermore, for data cube with high dimension, the 
average number of cells that needed to be updated 
triggered by an increment operation is very closed to 1. 
 
5.2  Maintenance cost for decrement 
In the case of decrement of a data cube cell, there are two 
different cases. If the decrement cell does not appear as a 
maximum value in some of the compact cubes, then no 
update on the hierarchical compact cube is required. The 
total update cost is to access the cell c itself, and to verify 
that it indeed does not appear as maximum in any 
compact cube query by an one-cell access of its parent 
rank 1 compact cube. On the other hand, if the decrement 
cell appears to be a maximum of its parent compact cube, 
then the cell c itself may not necessarily remain to be the 
overall maximum. We need to access all the siblings cells 
of c in the rank 0 compact cube to elect the new overall 
maximum. This requires an additional md queries. As the 
value of the overall maximum is changed, the update 
always needs to propagate to the higher level compact 
cube. The propagation is done recursively until the 
updated cell is not the maximum cell held by its parents, 
or in the worst case, when we reach the topmost compact 
cube. This gives us the average cost to be h cell accesses 
and the worst cost to be h md cell accesses. Both the 
average and worst case decrement costs are O(logmN). 
 
5.3  Extra Storage cost 
Finally, although our method needs to store a set of 
compact cubes of different levels, the overall storage cost 
is still acceptable. For an hierarchical compact cube such 
that d dimensions are compacted with compacting factor 
m, the overall number of extra compact cube cells is only 

1
1
−dm

of the number of data in the data cube. As 

compared to the prefix sum method where the prefix sum 
cube is as big as the underlying data cube, our method has 
a far small extra storage cost then many existing methods 
[9,12,13,14]. 
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6 Conclusion 
Due to an increasing demand for OLAP and data cube 
applications, efficient calculation of range queries such as 
the range-max queries has become more important in 
recent years. Several pre-computations and indexing 
techniques have been developed to answer the range-sum 
queries efficiently, but these methods may not be able to 
apply to the case of range-max. In this paper, we propose 
the hierarchical compact cube method for processing the 
range-max queries. We have explored and incorporated 
the following ideas into our method: 
1. We employ an hierarchical structure that, applying 

bound-and-branch as well as divide-and-conquer 
techniques in multidimensional data, allows an 
efficient incremental refinement to query the 
maximum value of any arbitrary range-max query.  

2. Different from the range-sum query, we observe that 
order of the sub-ranges investigation has a huge 
impact on the overall performance of the query. We 
propose to use a priority queue implemented using 
heap to store unprocessed regions. This partial 
ordering process is proven to greatly improve the 
performance of our algorithm. 

3. We introduce the maximum-location attribute to 
further improve the performance of a range-max 
query. This location allows many early pruning of 
unnecessary searches. 

 
Both the analysis and experiment results show that our 
method provides in average a constant time evaluation of 
range-max queries, and yet incurs only a low O(logm N) 
update cost. Finally, the extra storage requirement for the 
hierarchical compact cube is also much smaller as 
compared to the prefix cube used in many efficient range-
sum queries algorithms. 
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