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Abstract

Modules and objects both contain variables whose values
may be constrained by invariants. For example, in the
object-oriented languages Java and C#, a module is a class
and its static fields, and an object is an instance of a class and
its instance variables. The invariants of modules work differ-
ently both from the invariants of objects alone and from the
invariants of modules in a procedural language. This paper
presents a methodology for module invariants in an object-
oriented setting. The methodology is sound, prescribes an
initialization order of a program’s modules, supports the dy-
namic loading of modules and classes, and is amenable to
static, modular checking.

0 Introduction

In a computer program, a module is a collection of variables
and procedures. An object, too, is a collection of variables
and procedures. The difference is that a program contains
one instance of a module, whereas it may contain any num-
ber of object instances. Moreover, the identity of a mod-
ule is a name that can be mentioned anywhere in a program,
whereas the identity of an object is a reference that is created
through dynamic allocation and is accessible only if this ref-
erence flows as a value to the site of use. Objects are there-
fore used in dynamic data structures whereas modules are
entities that are shared in a program. In programming, there
are uses of both modules and objects.

Both modules and objects can have data, represented, re-
spectively, as module variables (also called global variables)
and instance variables (also called fields). The data values
in each can be constrained by programmer-declared invari-
ants, as they are in, for example, the Java Modeling Lan-
guage [14]. The correctness of a program relies on these
invariants. Consequently, any tool or technique for checking
the correctness of the program—manual or automatic, static

or dynamic—depends on these invariants and a methodology
stating their exact meaning and guiding their use.

In this paper, we consider the specification and veri-
fication of module invariants in object-oriented programs,
which, perhaps surprisingly, require a methodology different
from that of module invariants in procedural languages and
different also from that of object invariants. We prove that
our methodology is sound for modular verification, mean-
ing that the separate verification of each module implies the
correctness of the whole program.

Our modules are similar to those in, for example, the
object-oriented language Modula-3. A module is a named
scope containing declarations of variables, procedures, and
classes. In some popular object-oriented languages, includ-
ing Java and C#, the notion of a module has been combined
with the notion of a dynamically instantiable class. To see
the connection between such languages and our paper, a Java
or C# class T can be modeled as a module MT whose vari-
ables are the static fields of T , whose procedures are the
static methods of T , and whose classes are a single class
CT , where CT is T with all static members removed.

Module invariants have been well understood since the
pioneering work of, especially, Hoare [11]. The solution is
to use a methodology that insists that each module’s invari-
ant hold on the module’s control boundaries, that is, at each
call into and return from a procedure defined in the module.
The module invariant thus holds whenever the program’s
control is outside the module. This solution requires that the
module’s variables can be modified only by the module’s
procedures and that modules cannot be reentered. These
requirements are easily met by a procedural language with
modules. In particular, the first requirement can be met by
a language-defined variable-accessibility policy; the second
requirement can be met by requiring a module to import an-
other module if it calls a procedure in the other module and
requiring the imports relation among modules to be acyclic.

This classic methodology for module invariants is insuf-
ficient in object-oriented programs where subtyping and dy-
namically dispatched methods give rise to useful patterns of
reentrancy into an object’s procedures. In these programs,
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the dynamic call structure between modules does not follow
the static imports relation between modules.

Because of reentrancy, object invariants, too, require
a richer methodology than one analogous to the classic
methodology for module invariants [0, 16, 1]. As part of
the support for object invariants, it seems useful to partition
a program’s objects into contexts, which are hierarchically
ordered by an ownership relation. This methodology is not
suitable for module invariants, because a module generally
cannot be “owned” by just one other module.

To our knowledge, the methodology we present in this
paper is the first methodology for module invariants in
object-oriented programs.

As part of our methodology for module invariants, we
prescribe a scheme for initializing modules. Our scheme is
flexible enough to handle dynamic module and class load-
ing. The scheme is different from the initialization schemes
of Java and C#. Nevertheless, the assumptions we make are
weak enough to be applicable to practical programming lan-
guages.

Given the combination of modules and objects, it is in-
teresting to consider not just invariants over global variables
alone or fields alone, but also to consider invariants over a
combination of global variables and fields: shared data is
often a dynamically allocated data structure rooted from a
global variable, and objects that share some data may need
invariants about their relation to the shared data. In this pa-
per, we include treatment of the first combination, but not
the second combination.

The rest of this paper is structured as follows. We start
by motivating and describing our core methodology (Sec. 1).
We then formalize the ideas (Sec. 2) and prove a soundness
theorem (Sec. 3). Using ownership, we extend the method-
ology to allow module invariants over more dynamic struc-
tures (Sec. 4), for which we also prove a soundness theorem
(Sec. 5). We end the paper with some discussion, related
work, and conclusions.

1 Methodology

In this section, we introduce our basic methodology for mod-
ule invariants, explain how we overcome the central problem
of abstraction in a multi-module setting, identify an issue
that arises when subclasses are declared in different mod-
ules, and prescribe the initialization of modules. We focus
on the general ideas, tightening up the details in the next
section.

1.0 Basic methodology

We allow every module to declare an invariant over its mod-
ule variables. For example, the module in Fig. 0 declares the
invariant B .x � B .y .

module B imports STRING {
int x ;
int y ;
invariant B .x � B .y ;
procedure increase( ) {

expose B {
B .x := B .x + 1 ; // invariant might be violated here
B .y := B .y + 2 ; // invariant is now restored
} // invariant is checked to hold here
B .x := 15 ; // illegal assignment; allowed only during

// execution of an expose block
}
procedure STRING.String getDifference( ) {

result := STRING.natToString(B .y − B .x) ;
}
}

Figure 0: An example program showing a module with two
variables, an invariant, and two procedures. The precondi-
tions of the shown procedures have been omitted in this fig-
ure; they are discussed in the text. Not shown in this example
is the fact that modules can also declare instantiable classes.

Since the invariant may relate the values of several vari-
ables, the methodology must permit times when the module
invariant becomes violated. For this reason, we introduce a
special program statement

expose A { S } (0)

which allows the invariant of module A to be violated for the
duration of the sub-statement S , throughout which time we
say that A is exposed. Any update of any variable A.x must
take place while A is exposed (but there are no restrictions
on when variables can be read). The module invariant is
checked to hold at the end of the expose block. So that
the module invariant can be relied on just inside an expose
block, expose blocks are non-reentrant. That is, it is illegal
to expose an already exposed module.

When reasoning modularly about a program, it is impor-
tant to know whether or not a module is exposed. For ex-
ample, procedure B .increase in Fig. 0 would want to de-
clare a precondition that says module B is valid, that is, not
exposed; otherwise, it would not be possible to prove that
the program meets the non-reentrancy requirement of the
expose block in the procedure’s implementation. To facili-
tate mentioning the validity status of a module, we introduce
for each module A a special variable A.si (whose possi-
ble values we’ll describe later), which can be mentioned in
procedure and method specifications. Note that A.si is an
abstraction of the invariant in A : a specification can mention
A.si to require A to be valid, which in effect says that A ’s
invariant holds but doesn’t give the details of the invariant
itself.

A program cannot update A.si directly. Instead, the
value of A.si is changed automatically on entry and exit of
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each expose statement (0). We postpone until Section 1.3
the issue of setting the initial value of A.si .

1.1 Multi-module issues

The special module variable si makes it possible for a pro-
gram to record, usually in preconditions of procedures and
methods, when each module’s invariant is expected to hold.
However, whenever one module uses another, it would be
clumsy, at best, to have to mention explicitly in a precon-
dition all modules whose validity is needed. For example,
suppose the STRING module contains a global cache of
integers and their String representations. Then, many pro-
cedures and methods in STRING , including natToString
which is called in Fig. 0, would have a precondition that
requires the STRING module to be valid. Procedure
B .getDifference , in turn, would then need to declare the
precondition that both B and STRING are valid. And
so on, for the procedures of other modules that may tran-
sitively call B .getDifference . Moreover, if one module
deep in a program one day is changed to call a procedure
in STRING , then all transitive callers would have to be
changed to add STRING validity as a precondition. Such
a programming methodology would not respect good princi-
ples of information hiding.

To address this problem, we provide the ability, using the
special module variable si , to express the transitive valid-
ity (or t-validity for short) of a module. It is now time we
introduce actual values for the si variables:

• A.si = tvalid says that A is transitively valid, that
is, that the invariant of A holds and that all modules
that precede A in the validity order (defined below) are
t-valid.

• A.si = valid says that the invariant of A holds, but
says nothing about the validity of A ’s predecessors.

• A.si = mutable says that A ’s invariant may be vio-
lated and that the program is allowed to execute state-
ments that assign to the module variables of A .

As suggested by these bullets, and as we later shall prove,
our methodology guarantees that the following properties
are program invariants, that is, that they hold at every point
in a program:

J0: (∀A,B • B ← A ∧ A.si = tvalid ⇒ B .si = tvalid )

J1: (∀A • A.si = tvalid ∨ A.si = valid ⇒ ModuleInv(A) )

where B ← A says that B precedes A in the validity order
and ModuleInv(A) denotes the invariant declared in mod-
ule A .

Having introduced these values, we can now spell out
the preconditions of the procedures involved in the Fig. 0

example. Let’s assume STRING precedes B in the valid-
ity ordering and assume the following declaration in module
STRING :

procedure STRING.String natToString(int n)
requires 0 � n ∧ STRING.si = tvalid ;

Procedure B .getDifference needs the precondition B .si =
tvalid , since it not only needs B ’s invariant in order for
the parameter passed to natToString to be non-negative,
but also needs the t-validity of STRING . Procedure
B .increase can use either B .si = tvalid or B .si =
tvalid ∨ B .si = valid as its precondition. However, the for-
mer is generally to be preferred, or the specification would
not allow the implementation to in the future rely on the va-
lidity of other modules.

The validity ordering is a programmer-specified partial
order on the modules of a program. We could introduce
a special declaration for introducing edges in the valid-
ity ordering, but since the ordering tends to follow certain
programming patterns, we instead tie the introduction of
validity-ordering edges to other declarations. The most com-
mon edge in the validity ordering arises when one module is
a client of another module. Therefore, we piggyback the in-
troduction of validity-ordering edges to the imports relation:
if a module A is declared to import a module B , then this
import also gives rise to the edge B ← A (“B precedes
A”). In other words, the validity ordering includes the im-
ports relation on modules.

The validity order on modules is a partial order, but it
is generally not a hierarchical tree order (unlike the some-
what analogous ownership relation on objects, used to rea-
son about object invariants [0, 16]). This requires some care
in our refined definition of the expose statement. In the
presence of transitive validity, the precondition of statement
(0) is

A.si = tvalid ∨ A.si = valid

The statement temporarily changes A.si to mutable . More-
over, for each module Z that transitively succeeds A (that
is, A transitively precedes Z ), if Z .si = tvalid , then the
expose statement (0) temporarily changes Z .si to valid .
At the end of the expose block, the initial values of A.si
and the Z .si ’s are restored. The reason for temporarily
changing these Z .si from tvalid to valid is to maintain
program invariant J0.

1.2 Modules and subclasses

In the validity-ordering edges introduced along with the im-
ports relation, a declared module becomes a successor of all
modules it imports. But there are cases when one wants to
“insert” a module as a predecessor of some other module. In
this subsection, we give a motivating example and set up a
way to introduce such a validity-ordering edge.
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module TH {
class Theory {method assertLiteral(Literal l) ; . . . }
. . .
}
module ARITH . . . {

class LATheory extends TH .Theory {
override assertLiteral(Literal l) { . . . } . . .
}
. . .
}

Figure 1: An example to illustrate the specification problem
of a method override that relies on a module invariant.

Consider a hierarchy of classes representing decision
procedures for various theories, as may be used in the im-
plementation of an automatic theorem prover (cf. [7]). Each
theory has a method assertLiteral that adds a constraint to
the decision procedure. Fig. 1 declares class Theory , the
root of the hierarchy, enclosed in a module TH .

Now, consider a particular theory, say the theory of linear
arithmetic, represented by a subclass LATheory declared in
a different module, ARITH , see Fig. 1. Being a method
override, LATheory.assertLiteral has the same specifica-
tion as Theory.assertLiteral , and in particular, the over-
ride cannot strengthen the precondition of the overridden
method.

Suppose the LATheory implementation of
assertLiteral makes use of some ARITH module
variables (perhaps indirectly, by calling some procedure in
TH ) and relies on the module invariant to hold of these
variables. The specification problem is then how to declare
a precondition for Theory.assertLiteral that is strong
enough to imply ARITH .si = tvalid (for the benefit of
the method override in LATheory ), but without explicitly
mentioning ARITH in TH (since TH may not know
about the existence of ARITH , which may be authored
long after the authoring of TH ).

If ARITH precedes TH in the validity ordering, then
we can solve the specification problem on account of pro-
gram invariant J0. The method in class Theory then de-
clares the precondition

requires TH .si = tvalid ;

which by J0 implies ARITH .si = tvalid , as needed in
the method override. In other words, a caller of method
assertLiteral , which may not even know about the exis-
tence of ARITH but may nevertheless hold a reference to
an object of allocated type LATheory , must establish the
t-validity of TH at the time of call, which gives the imple-
mentation of LATheory enough information to determine
that ARITH is t-valid, too.

To allow module ARITH to define the edge ARITH ←
TH in the validity ordering, we introduce a variant of the

imports relation. We call the variant extends, and it is used
as following in the example:

module ARITH extends TH { . . . } (1)

The extends relation is just like the imports relation in that
it allows a module to mention entities declared in the mod-
ules it extends. The difference is that the validity-ordering
edge introduced by extends goes in the other direction
from that introduced by imports . In other words, the valid-
ity ordering includes the converse of the extends relation on
modules. For example, the declaration (1) allows the class
declaration for LATheory in module ARITH to mention
TH .Theory , and it “inserts” ARITH as a predecessor of
TH in the validity ordering.

In general, we allow a module to import and extend any
number of other modules, but the resulting validity order
must be acyclic.

Viewed from a different perspective, if a module A needs
to mention the name of another module B , then A must
be declared to either import or extend B . The declara-
tion A imports B gives rise to B ← A , which means
that t-validity of A implies t-validity of B ; in contrast,
A extends B gives rise to A ← B , which means that
t-validity of B implies t-validity of A . (One could also
consider an “oblivious import”, which has no effect on the
validity ordering.) A programmer must choose between
imports and extends in such a way as to keep the va-
lidity ordering acyclic.

Note, by the way, that we do allow cyclic references be-
tween modules. For example, A and B can each refer to
entities in the other if A imports B and B extends A , or
vice versa (and cyclic references would also be possible with
oblivious imports).

1.3 Module initialization

A module’s invariant is first established by the module’s ini-
tializer, a designated block of code that is invoked exactly
once. Module initializers are invoked by the runtime system,
so as to orchestrate the initialization of multiple modules. To
enable modular reasoning, module loading and initialization
adhere to the following policy:

0. Modules can be loaded and initialized only by a spe-
cial program statement fetch . This statement is exe-
cuted at program start before invocation of the Main
procedure and it can also be used by programs to load
modules dynamically.

1. The fetch statement loads a specified module and all
transitively imported and extended modules, except for
those modules that have been loaded during an earlier
fetch .
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module ARITH extends TH imports STRING {
STRING.String version ;
invariant ARITH .version �= null ;
initializer {

STRING.String v := STRING.natToString(3) ;
ARITH .version := v ;
}
. . .
}

Figure 2: An example of a module initializer.

2. Once loading has completed, the fetch statement ini-
tializes all newly loaded modules by invoking the mod-
ule initializers. The order of initialization follows the
validity ordering: a module A is initialized after the
initialization of all modules that precede A in the va-
lidity ordering.

Requirements 0 and 2 enforce an eager initialization of
modules, which provides stronger guarantees for both the
initializer and the clients of a module than the lazy initial-
ization used, for instance, in Java [12].

Requirement 1 guarantees that the set of loaded modules
is closed under the imports and extends relations. That is,
loaded modules do not have any unresolved references to
other modules.

Before invoking the initializer for a module A , fetch
sets A.si to mutable , which allows the initializer to assign
to the module’s variables. Upon return from the initializer,
fetch sets A.si to tvalid . Since fetch initializes modules
according to a specified partial order (Requirement 2), the
initializers of a module A can assume all predecessors of A
to be t-valid. This is in particular necessary to allow A ’s ini-
tializer to access variables and procedures of A ’s imported
modules. In return for being able to assume the precondition

A.si = mutable ∧ (∀B • B ← A ⇒ B .si = tvalid )

(where, here and throughout, quantifications over module
names range over loaded modules), the initializer is respon-
sible for making sure the following implicit assertion holds
on exit:

assert ModuleInv(A) ;

For example, consider module ARITH in Fig. 2.
Because STRING precedes ARITH , the second con-
junct of the precondition implies STRING.si = tvalid ;
therefore, the initializer can meet the precondition of
natToString . Because of the first conjunct of the precondi-
tion, the assignment to ARITH .version is permitted. Note,
by the way, that the ARITH initializer cannot assume TH
to be t-valid, since TH does not precede ARITH . Pro-
vided natToString returns a non-null value, the implicit as-
sertion at the end of the initializer body will hold.

Program ::= Module∗

ModuleDecl ::= module Id [ extends IdList ]
[ imports IdList ] {

VarDecl∗

invariant Expr ;
initializer { Stmt }
ProcDecl∗

ClassDecl∗

}
VarDecl ::= Type Id ;

ClassDecl ::= class Id [ extends Id ]
{ ClassMemberDecl∗ }

Figure 3: The grammar of modules and classes. Square
brackets indicate optional components, and ∗ indicates zero
or more occurrences.

2 Formalization

In this section, we formalize the notions introduced in the
previous section. We do so by defining an object-oriented
language with modules and then prescribing the operational
semantics of this object-oriented language as a mapping to a
conventional language.

2.0 Programming language

We consider a language where a program consists of a set
of module declarations. A module declares a set of mod-
ule variables, a module invariant, a set of procedures, an
initializer, and a set of classes, see Fig. 3. The set of ad-
missible invariants is described below. Every module B
named in a module A must explicitly be declared as being
imported or extended by A . We define the validity order-
ing to be the transitive closure of the union of the imports
relation and the converse of the extends relation. The dec-
larations in a program must ensure that the validity ordering
is acyclic. Class members include fields (instance variables)
and methods (dynamically-dispatched instance procedures),
for which we use a Java-like syntax.

The statement language is given in Fig. 4. It includes
assignments to local variables, module variables, and fields.
A new local variable is introduced by giving its type and an
initial assignment. A new instance of a class, an object, is al-
located in a special assignment statement. The fields of the
new object have zero-equivalent values. A custom initial-
ization can be achieved by the invocation of a method. Our
language thus separates allocation from initialization, which
will be convenient for our presentation and which can model
languages like Java and C# where the two are combined into
instance constructors.

The assert statement causes program execution to abort
if the given expression evaluates to false . References to
procedures, module variables, and classes use fully quali-
fied names; except, we sometimes omit the module name
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Stmt ::= [ Type ] x := Expr local variable
| A.g := Expr ; module variable
| x .f := Expr ; field update
| x := new A.T ; object allocation
| assert Expr ;
| [ y := ] A.P(Expr∗); procedure call
| [ y := ] x .M (Expr∗); method call
| expose A { Stmt }
| fetch Expr ; dynamic class load
| Stmt Stmt sequential composition
| if (Expr) { Stmt } [ else { Stmt } ]
| while (Expr) { Stmt }

Figure 4: The grammar of statements. To suggest the types
of expressions and identifiers, we write T for classes, x and
y for variables, and A for modules.

in our examples when the module is clear. Calls to pro-
cedures and dynamically dispatched methods are standard,
as are sequential, conditional, and iterative composition.
The expose and fetch statements were described in Sec-
tions 1.0 and 1.3, respectively.

We omit the exact grammar for expressions, which in-
clude literals, local and module variables, access expressions
(written E .f , to refer to the f field of the object denoted by
E ), and usual operators.

Program execution starts from a procedure named Main
in a given module, say START . Before START .Main is
called, module START and its transitively imported and
extended modules are loaded and initialized. This bootstrap-
ping process is thus:

fetch “START”; START .Main( ) ;

2.1 Admissible invariants

An important consideration for any methodology that uses
invariants is the set of variables and fields an invariant can
refer to [17, 21]. The invariant of a module A may only
refer to module variables declared in A and fields declared
in classes in A .

Definition 0 (Admissible simple invariant) The module
invariant J of a module A is admissible if every access
expression in J has one of the following forms:

0. a module variable A.g , or

1. (A.g).h1. · · · .hn .f where n � 0 and f is a field de-
clared in a class in A .

The variable g must not be the predefined variable si .

Note that each prefix (A.g).h1. · · · .hm (0 ≤ m ≤ n ) of
an access expression (A.g).h1. · · · .hn .f is again an access
expression. Therefore, for an access expressions of Case 1,
g must be declared in A , and all fields hi (1 ≤ i ≤ n ) must
be declared in classes in A .

OPSEM[ A.g := E ] ≡
assert A.si = mutable ;
A.g := E

OPSEM[ x .f := E ] ≡
assert x �= null ;
foreach access expression (A.g).h1. · · · .hn .f

mentioned in the module invariant of A {
assert x = (A.g).h1. · · · .hn ⇒ A.si = mutable ;
}
x .f := E

OPSEM[ expose A { S } ] ≡
assert A.si �= mutable ;
let Q = {C ��� A← C ∧ C .si = tvalid } ;
[ foreach C ∈ Q { C .si := valid ; } ]
A.si := mutable ;
OPSEM[ S ] ;
assert ModuleInv(A) ;
[ foreach C ∈ {A} ∪Q { C .si := old(C .si) ; } ]

Figure 5: The operational semantics of the object-oriented
language is given as a mapping to a conventional language.

2.2 Operational semantics

We give the operational semantics of our language by a
mapping into a conventional language. This operational-
semantics language includes the statements of our object-
oriented language in Fig. 4, with the following exceptions:
the assert statement is the only statement that can cause the
program to abort (all other statements are total); the fetch
and expose statements are not present; and the language
allows a statement S to be marked with atomicity brackets
[S ] , which have no semantic meaning but are used in the
soundness proof to treat a number of statements as one.

At the very beginning of program execution, no modules
have been loaded and no objects have been allocated. That
is, the following condition holds:

loadedModules = ∅ ∧ (∀ o • false )

where loadedModules is an operational-semantics variable
that keeps track of the set of loaded modules and, here and
throughout, quantifications over objects range over non-null
allocated objects.

The operational semantics of the language is given in
Figs. 5 and 6. Trivial cases, where OPSEM is the identity
or simply distributes over all sub-statements, are omitted.

The operational semantics for an assignment to a mod-
ule variable g declared in a module A reflects the decision
in the methodology to abort program execution if A is not
mutable. Note that we require A to be mutable even if the
update actually would maintain the module invariant of A ;
this centralizes the checking of module invariants to the end
of expose blocks (cf. [0]).

Updating a field f declared in a class in a module A
requires the receiver of the update, x , to be non-null. It
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also requires A to be mutable whenever A ’s invariant de-
pends on x .f , that is, when (A.g).h1. · · · .hn .f is some sub-
expression of the module invariant of A and the reference x
equals the value of (A.g).h1. · · · .hn . For example, suppose
the invariant of a module A mentions (A.g).f , where f is
a field declared in a class T in A . Then, in the program
fragment

x := new A.T ; y := A.g ;
x .f := 12 ; y.f := 14 ;

the operational-semantics asserts for the first field update al-
ways hold, whereas the asserts for the second field update
hold iff A is mutable.

The non-reentrancy of the expose statement requires
that the module A to be exposed is not already exposed. Be-
fore executing the sub-statement S , the expose statement
makes A mutable and changes all tvalid successors of A to
be just valid . After executing S , the module invariant of A
is checked and the initial values of all changed si variables
are restored.

The semantics of the fetch statement is presented in
Fig. 6. For simplicity, we forbid recursive fetch operations
(not shown in Fig. 6). That is, fetch must not be invoked
during module initialization.

The first half of the fetch statement performs the load-
ing as an atomic operation. It requires that all predecessors
of a newly loaded module are either uninitialized (which is
the case if they have been loaded during the same fetch
operation) or t-valid. The responsibility for establishing this
condition lies with the callers of fetch , as is indicated by the
operational-semantics assert. The si variable of all newly
loaded modules is set to uninitialized .

Because modules can be extended, a fetch may load
new predecessors for previously loaded and initialized mod-
ules. If this were to happen, program invariant J0 would be
at stake. Therefore, after loading the new modules, fetch
changes any such t-valid successor modules (i.e., those in
Q1 ) to be just valid.

The second half of the fetch statement initializes the
newly loaded modules and gradually restores the t-validity
of the modules in Q1 . A module C is initialized by setting
C .si to mutable , calling C ’s module initializer, and finally
setting C .si to tvalid .

For example, if ARITH and TH of Fig. 2 are loaded
by the same fetch , then TH ’s initializer is invoked after
ARITH ’s initializer. If TH is loaded by an earlier fetch ,
then either TH is not t-valid at the later fetch or the later
fetch changes TH .si from tvalid to just valid until after
ARITH has been initialized.

A loop invariant of the initialization loop is that each pre-
decessor B of a module C in Q is either itself in Q or is
t-valid. This loop invariant holds on entry to the initializa-
tion loop, because a loop invariant of the first loop is that
each predecessor of a t-valid or uninitialized modules is ei-
ther t-valid or uninitialized, and because between the two

OPSEM[ fetch “A” ] ≡
toBeLoaded := {A} ;�
�������������������������������

while toBeLoaded �= ∅ {
choose C ∈ toBeLoaded ;
toBeLoaded := toBeLoaded \ {C} ;
if C �∈ loadedModules {

load C ;
assert ( ∀B • B ← C ⇒

B .si = uninitialized ∨ B .si = tvalid ) ;
let R be the set of modules imported or extended by C ;
toBeLoaded := toBeLoaded ∪ R ;
set all module variables of C to zero-equivalent values ;
C .si := uninitialized ;
loadedModules := loadedModules ∪ {C} ;
}
}
let Q0 = {C ��� C .si = uninitialized } ;
let Q1 = {C ��� C .si = tvalid ∧

(∃D • D ∈ Q0 ∧ C ← D ) } ;
foreach C ∈ Q1 { C .si := valid ; }

�
�������������������������������

var Q := Q0 ∪Q1 ;
while Q �= ∅ {

choose C
��� C ∈ Q ∧

( ∀B • B ← C ⇒ B .si = tvalid ) ;
Q := Q \ {C} ;
if C .si = uninitialized {

C .si := mutable ;
C .init( ) ;
}
C .si := tvalid ;
}

Figure 6: Pseudo code for the fetch statement.

loops a module’s si field is changed only for modules in Q .
The loop invariant is preserved by the initialization loop, be-
cause modules removed from Q become t-valid. Since the
validity ordering is a partial order, this loop invariant guar-
antees that there is a module C that can be chosen by the
choose operation.

Since the fetch statement is the only operation that sets
an si field to uninitialized and since all uninitialized mod-
ules are initialized before fetch terminates, the statement
guarantees that all modules are initialized in all program
states in which there is no fetch in progress. That is, treat-
ing fetch as atomic operation, the following is a program
invariant: (∀C • C .si �= uninitialized ) . The proof
of this program invariant is straightforward and, therefore,
omitted.

3 Soundness

For our methodology, soundness means that the si variable
of each module A correctly reflects whether the module in-
variants of A and A ’s predecessors can be expected to hold.
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In this section, we formalize and prove this property for
well-formed programs. A program P is well-formed if P is
syntactically correct, type correct, P’s invariants are admis-
sible (see Def. 0), and the validity ordering induced by the
declarations in P is a partial order.

Theorem 0 (Soundness) Properties J0 and J1 (see Sec-
tion 1.1) are program invariants, that is, they hold in every
reachable execution state of a well-formed program.

3.0 Auxiliary lemma

The soundness proof makes use of the following auxiliary
lemma: a statement S has no net effect on the si variable of
modules that were loaded before the execution of S , and all
modules that are loaded during its execution are t-valid after
the execution of S .

Lemma 1 (Auxiliary lemma) Each statement S guaran-
tees the following postconditions

(i)(∀C •C ∈ old(loadedModules) ⇒ C .si=old(C .si) )

(ii) (∀C •C �∈ old(loadedModules) ⇒ C .si=tvalid )

where old(E ) denotes the value of expression E in the state
where execution of S begins.

Proof. The lemma is proved by rule induction. All cases ex-
cept expose and fetch are trivial since they do not modify
the si variable of loaded modules.
PART (I). The expose statement (Fig. 5) modifies the si
variable of modules, then invokes the sub-statement (which,
by the induction hypothesis does not have a net effect on
the si variable of loaded modules), and finally restores the
initial values of the si variables it had changed.

The fetch statement (Fig. 6) modifies the si variable of
modules in Q0 ∪Q1 , but the modules in Q0 were not previ-
ously loaded and the initial value of the si variable of each
module in Q1 is restored after some number of calls to mod-
ule initializers (each one of which has no net effect on the si
variables of loaded modules, by the induction hypothesis).
PART (II). By the induction hypothesis, we know that the
sub-statement of an expose statement satisfies the postcon-
dition. In the subsequent instructions, si variables are not
changed from tvalid to other values. Therefore, the prop-
erty is preserved.

The fetch statement loads a number of modules, each
one of which it will eventually assign to be t-valid. The calls
to module initializers don’t interfere with the si variables of
loaded modules (by Part (i)) and only produce newly loaded
modules that are t-valid (by induction hypothesis). There-
fore, any module loaded during the fetch will indeed by
t-valid on exit. �

3.1 Proof of program invariant J0

The program invariant J0 holds in the initial state of an ex-
ecution of a program P because no modules are loaded. We
show by rule induction that each statement of P preserves
J0. For the proof, only the statements that modify the state
or load new modules are interesting: module variable update
and field update for the base case, as well as expose and
fetch for the induction step. We omit all other cases for
brevity.
Module-variable and field update. Updates neither change
the value of si variables nor load new modules.
expose statement. Consider the statement
expose A { S } . We assume that J0 holds in the
state before execution of this statement and prove that it
is preserved by each of the instructions in the operational
semantics of expose (Fig. 5).

0. assert and let instructions do not change the state.

1. The first foreach statement sets all tvalid successors
of A to valid , which preserves J0.

2. Setting A.si to mutable preserves J0 because the si
variables of A ’s successors are different from tvalid .

3. By the induction hypothesis, S preserves J0.

4. To show that the last foreach statement preserves the
invariant, we consider two modules B and C , where
B ← C and prove C .si = tvalid ⇒ B .si = tvalid .
We continue by case distinction:

(a) If both B and C have been loaded before execution
of the expose statement, the property holds after the
foreach , which is the end of the expose statment,
because J0 holds before the execution of the expose
and the execution of an expose statement does not
have a net effect on si variables of loaded modules
(Lemma 1 (i)).

(b) If B is loaded during the execution of the expose ,
we apply Lemma 1 (ii) to show that B is tvalid after
execution of S . Since B �∈ {A} ∪ Q , B .si is un-
changed by the foreach , and thus C .si = tvalid ⇒
B .si = tvalid is preserved.

(c) If B has been loaded before and C during the exe-
cution of the expose , we apply Lemma 1 (ii) to show
that C is tvalid after execution of S . Since J0 holds
in the poststate of S , we get that all predecessors of
C , in particular B , are tvalid . Since A and all mod-
ules in Q are not tvalid in this state (Lemma 1 (i)), we
conclude that the foreach instruction does not change
B .si and C .si .

fetch statement. Consider the statement fetch “A”. We
assume that J0 holds in the state before execution of this
statement and prove that it is preserved by each of the atomic
instructions in the operational semantics of fetch (Fig. 6).



4 OWNERSHIP-BASED INVARIANTS 9

0. The atomic loading statement (that is, the group of
statements within the atomicity brackets) sets the si
variable of newly loaded modules to uninitialized and
then changes any t-valid successor of an uninitialized
module to just valid (precisely for the purpose of main-
taining J0).

1. The assignment that changes C .si from uninitialized
to mutable preserves J0.

2. By the induction hypothesis, execution of C ’s initial-
izer preserves J0.

3. The assignment C .si := tvalid ; preserves J0 because
C has been chosen such that all predecessors of C are
tvalid . This property is not changed by executing C ’s
initializer (Lemma 1 (i) and (ii)). �

3.2 Proof of program invariant J1

The proof for J1 is analogous to J0. We present the same
cases of the induction base and step.
Module-variable update. Consider a module-variable up-
date A.g := E . By the definition of admissible invariants
(Def. 0), only A ’s module invariant can be violated by this
update. The assertion in the semantics for module-variable
updates guarantees that A is mutable , and thus J1 is pre-
served.
Field update. Consider a field update x .f := E where f
is declared in a class in a module A . Again, only A ’s
module invariant can be violated by this update, namely if
it contains an access expression (A.g).h1. · · · .hn .f , where
x = (A.g).h1. · · · .hn . In this case, the assertion in the se-
mantics for field updates guarantees that A is mutable , and
thus J1 is preserved.
expose statement. Consider the statement
expose A { S } . We assume that J1 holds in the
state before execution of this statement and prove that it
is preserved by each of the instructions in the operational
semantics of expose (Fig. 5).

0. The instructions before the execution of S preserve J1
because they only change si for the modules in Q from
tvalid to valid , and A.si to mutable . Since module
invariants must not mention si (Def. 0), module invari-
ants are not affected by these modifications. Conse-
quently, J1 is preserved.

1. By the induction hypothesis, S preserves J1.

2. The last foreach statement sets A.si to its initial
value after asserting ModuleInv(A) . By Lemma 1 (i),
S does not change si for modules in Q ; thus, for mod-
ules in Q , the foreach statement changes si from
valid to tvalid , which does not affect J1. Therefore,
this statement preserves J1.

fetch statement. Consider the statement fetch “A”. We
assume that J1 holds in the state before execution of this
statement and prove that it is preserved by each of the atomic
instructions in the operational semantics of fetch (Fig. 6).

0. The atomic loading statement sets some si variables
to uninitialized and changes some si variables from
tvalid to valid . These operations preserve J1.

1. The assignment C .si := mutable; trivially preserves
J1.

2. By the induction hypothesis, execution of C ’s initial-
izer preserves J1.

3. The initializer for C ends with the implicit as-
sertion ModuleInv(C ) . Therefore, the assignment
C .si := tvalid ; preserves J1 if C ∈ Q0 . If C ∈ Q1 ,
the change of C .si from valid (Lemma 1 (i)) to tvalid
also preserves J1. �

4 Ownership-based invariants

So far, the invariant of a module A may depend only on
module variables and fields declared in A . Therefore, as-
signment to a field or module variable can only violate the
module invariant of the enclosing module. This restriction
allows us to guard such an assignment by the assertion that
the module is mutable.

However, preventing module invariants from depending
on variables and fields declared in different modules is too
restrictive for many interesting programs. For instance, a
module may want to use a global cache data structure, imple-
mented by an imported collection class, and impose certain
requirements on the elements stored in the collection. Fig. 7
shows such a program. A simple Cell is used to represent
the cache, and CLIENT ’s module invariant states that only
natural numbers are stored in the cache.

The reason the methodology introduced so far cannot
handle such programs is illustrated by the field update in
method set : this update potentially violates CLIENT ’s
module invariant. However, since this invariant is contained
in a different module, it is not possible to determine modu-
larly that the update has to be guarded by an assertion that
CLIENT is mutable.

In this section, we extend our methodology by the no-
tion of ownership. This extension allows the invariant of a
module A to depend on fields of objects owned by A with-
out restricting where these fields are declared. The extended
methodology ensures that a field can be updated only if its
owning module is mutable.

4.0 Ownership

Ownership organizes objects into a hierarchy of contexts,
where the objects in each context have a common owner
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module CELL {
class Cell {

int c ;
method set(int p) { this.c := p ; }
}
}
module CLIENT imports CELL {

Cell cache ;
invariant CLIENT .cache �= null ∧

(CLIENT .cache).c � 0 ;
initializer { CLIENT .cache := new Cell ; }
. . .
}

Figure 7: A simplified implementation of a module with a
global cache. Without ownership, the invariant of module
CLIENT is not admissible, because it refers to a field c
that is declared in a different module.

(see, e.g., [2, 4, 21]). In our methodology, an owner is ei-
ther a module or a pair consisting of an object reference and
a class name. Other than ownership, we do not restrict ob-
ject references; an object may have non-owning references
to other objects.

Following our work on object invariants [16], we en-
code ownership by a special field owner for every ob-
ject. The value of owner is either a module or a pair
[obj , typ] . It is set when an object is created. We extend
the object allocation statement so that an owner can be in-
dicated: x := new 〈A〉T creates a new object of class T
owned by module A . Analogously, the object created by
x := new 〈[o,U ]〉T is owned by the pair of object o and
type U . In this paper, we assume owner to be immutable
after object creation. We described how to handle a mutable
owner field (ownership transfer) in a previous paper [16].

We say that an object X is (transitively) owned by a
module A if X .owner = A or if X .owner = [Y ,T ]
and Y is (transitively) owned by A . In this paper, we are
only interested in whether an object is owned by a module
or another object. The type component of an owner is only
used to handle inheritance in our methodology for object in-
variants and can, therefore, safely be ignored here. Conse-
quently, we say that an object X is owned by object Y if
X .owner = [Y ,T ] for some type T .

The owner field can be mentioned in module and ob-
ject invariants. To simplify the notation and to check the
definition of admissible invariants syntactically, any module
variable and field can be declared with the modifier rep .
This modifier gives rise to an implicit invariant. For the dec-
laration rep S g; of a module variable in a module A , A
contains the implicit module invariant

A.g �= null ⇒ (A.g).owner = A ;

Analogously, a field f declared rep in a class T gives rise

to the implicit object invariant

this.f �= null ⇒ this.f .owner = [this,T ]

4.1 Admissible invariants

Ownership allows us to support more module invariants.
In addition to the module variables and fields permitted by
Def. 0, the invariant of a module A may depend on fields of
objects that are (transitively) owned by A . This leads to the
following refined definition of admissible invariants.

Definition 1 (Admissible ownership-based invariant)
The module invariant J of a module A is admissible if
every access expression in J has one of the following forms:

0. a module variable A.g , or

1. (A.g).h1. · · · .hn .f where n � 0 and f is a field de-
clared in a class in A , or

2. (A.g).h1. · · · .hn .f where n � 0 and A.g as well as
each hi is declared rep , or

3. x .f where x is bound by a universal quantification of
the form (∀T x • x .owner = A ⇒ . . . x .f . . . ) .

The variable g must not be the predefined variable si .

The Cases 0 and 1 are identical to simple invariants
(Def. 0). Access expressions in Case 2 allow module in-
variants to depend on fields of owned objects. The fact that
these objects are owned by A can be derived from the fact
that they are reachable via a chain of rep references. Case 3
allows module invariants to quantify over all objects directly
owned by the module, even if the objects are not reachable
from a module variable.

By declaring CLIENT .cache in Fig. 7 as rep ,
CLIENT ’s invariant would be admissible according to this
refined definition. The access expressions CLIENT .cache
and (CLIENT .cache).c would then meet the requirements
of Cases 0 and 2, respectively.

4.2 Mutability of owned objects

Allowing module invariants to depend on fields of (transi-
tively) owned objects introduces a connection between the
methodologies for module invariants and object invariants,
for instance because we make use of the implicit object in-
variants introduced by rep modifiers in field declarations.
Our methodology for object invariants is based on owner-
ship, some special fields for objects, and statements to ex-
pose and unexpose objects. In this subsection, we summa-
rize those aspects of the methodology that are necessary to
understand our treatment of module invariants. For a de-
tailed presentation, see our previous paper [16].
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Mutability of objects is handled analogously to modules.
Each object has a special field committed . Only fields of
objects that are not committed can be updated. That is, a
field update x .f := E is guarded by the additional assertion

assert ¬x .committed ;

Consider a module A which (transitively) owns x . A ’s in-
variant may depend on x .f even if f is declared in another
module. Consequently, an update of x .f may violate A ’s
invariant. Our methodology handles this situation by the
following rule: a module is mutable whenever one of the ob-
jects it owns is not committed. That is, from ¬x .committed ,
we can conclude that A is mutable. Therefore, A ’s invariant
is allowed to be violated by the update of x .f .

The mutable and committed fields can only be manipu-
lated according to a strict protocol. This protocol guarantees
that an object can be uncommitted only if all of its owner ob-
jects are uncommitted and, consequently, the owning mod-
ule, if any, is mutable. To enforce this protocol, committed
can only be manipulated in a restricted way by the statements
for object creation, expose , fetch , and two special state-
ments to expose objects. We describe the effects of these
statements on committed in the following.
Object creation. The committed field is set to false
when an object is created. The creation statements
x := new 〈A〉T and x := new 〈[o,U ]〉T are guarded by
the assertions A.si = mutable and ¬o.committed , respec-
tively, to ensure that the direct owner is mutable (if it is a
module) or uncommitted (if it is an object).
expose statement. The statement expose A { S } mod-
ifies the committed field of objects that are directly owned
by A . It sets committed to false when A.si is set to
mutable . Analogously, committed is set to true when the
original value of A.si is restored at the end of the expose
statement. To preserve the property that an object Y can be
committed only if all objects transitively owned by [Y ,T ]
are committed, this operation requires an additional asser-
tion that objects that are transitively, but not directly owned
by A are committed. Fig. 8 shows the refined semantics of
the expose statement.
fetch statement. After initialization of a newly loaded
module C , the fetch statement sets the committed field
of objects directly owned by C to true . That is, in the se-
mantics of fetch (Fig. 6), the assignment C .si := tvalid ;
is replaced by the following atomic operation:[
C .si := tvalid ;
foreach X

⎪⎪⎪ X .owner = C { X .committed := true ; }
]

Analogously to the new assertion in the expose statement,
this operation leads to an additional implicit assertion at the
end of C ’s module initializer. Objects that are transitively,
but not directly, owned by C are committed:

assert (∀X ,Y ,T • X .owner = [Y ,T ] ∧
Y .owner = C ⇒ X .committed ) ;

OPSEM[ expose A { S } ] ≡
assert A.si �= mutable ;
let Q = {C ��� A← C ∧ C .si = tvalid } ;
[ foreach C ∈ Q { C .si := valid ; } ]�
A.si := mutable ;
foreach X

��� X .owner = A { X .committed := false ; }
�

OPSEM[ S ] ;
assert ModuleInv(A) ;
assert (∀X ,Y ,T • X .owner = [Y , T ] ∧

Y .owner = A ⇒ X .committed ) ;�
foreach C ∈ {A} ∪Q { C .si := old(C .si) ; }
foreach X

��� X .owner = A { X .committed := true ; }
�

Figure 8: Pseudo code for the ownership-aware expose
statement. The statement modifies the committed field of
objects directly owned by A .

unpack and pack statements. For objects that are owned
by other objetcs, our methodology for object invariants pro-
vides two additional statements, unpack and pack , anal-
ogous in functionality to expose . When applied to an un-
committed object X , unpack sets the committed field of
all objects owned by [X ,T ] to false , whereas pack sets
it to true . Neither statement modifies fields other than
committed . For a detailed description including a formal
semantics of these, see [0, 16].

We formalize two program invariants about the relation
between the si and committed fields in Section 5.

4.3 Example

The implementation of a web server in Fig. 9 illustrates the
expressiveness of ownership-based module invariants. Al-
though arrays are not covered by the formalization presented
in this paper, we use arrays in this example to show that our
methodology can handle them. Array elements behave like
public fields declared in class Object . That is, every pro-
cedure or method that has a reference to an array object can
modify its elements. Reading and updating array elements
is handled analogously to field read and update.

Module SERVER maintains a global cache of web
pages, which is represented by the array cache . As indi-
cated by the rep keyword, this array object is owned by
module SERVER .

The module invariant requires cache to be different from
null . Moreover, different slots of the array have to store
different references or null . This invariant is not admissi-
ble according to Def. 0, because it refers to fields such as
length and the array elements, which are not declared in
classes in SERVER . However, the invariant is an admis-
sible ownership-based invariant, since these fields belong to
objects owned by SERVER . SERVER ’s module invariant
as well as the implicit invariant about ownership is estab-
lished by the module initializer.
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module WEBPAGE {
class WebPage { rep String theURL ; . . . }
}
module SERVER imports WEBPAGE ,STRING,RANDOM {

rep Webpage[ ] cache ;
invariant SERVER.cache �= null ∧

(∀ i , j • 0 ≤ i < j < (SERVER.cache).length ∧
SERVER.cache[i ] �= null ⇒

SERVER.cache[i ] �= SERVER.cache[j ] ) ;
initializer {

SERVER.cache := new 〈SERVER〉Webpage[10] ;
}
class WebServer {

Webpage Request(String url)
requires SERVER.si = tvalid ∧ url �= null ;
{

int i := 0 ;
result := null ;
while (i < (SERVER.cache).length ∧ result = null) {

if (url .Equals(SERVER.cache[i ].theURL)
{ result := SERVER.cache[i ] ; }

i := i + 1 ;
}
if (result = null) {

result := . . . //retrieve webpage
i := RANDOM .Generate( ) ;
expose SERVER { SERVER.cache[i ] := result ; }
}
}
}
}

Figure 9: An implementation of a simple web server. The
module invariant of SERVER refers to the state of the
cache array owned by SERVER . The module has to be
exposed before updating the cache.

Method Request requires SERVER to be tvalid . From
this precondition, we can conclude that the imported mod-
ules STRING and RANDOM satisfy their module in-
variants (program invariants J0 amd J1). This property is
necessary to meet the preconditions of the methods and
procedures called in Request , such as String .Equals and
RANDOM .Generate . (The specifications of these meth-
ods are not shown in the code.)

The update SERVER.cache[i ] := result; in
method Request illustrates how ownership-based
invariants are handled. To satisfy the assertion
¬(SERVER.cache).committed of the update, SERVER
has to be exposed. The expose statement sets SERVER.si
to mutable and allows the array update to temporarily vio-
late SERVER ’s module invariant as long as the invariant
is reestablished before the expose block ends. In our
example, the invariant is not violated by the update because
a reference is stored in cache only if the preceding loop

does not find the reference in the array.

5 Soundness in the presence of ownership

In addition to the program invariants J0 and J1, the extended
methodology guarantees that an object X can be committed
only if all objects owned by [X ,T ] are committed, and that
an object directly owned by a module A is committed if and
only if A is not mutable.

In the extended methodology, a program P is well-
formed if P is syntactically correct, type correct, P’s invari-
ants are admissible according to Def. 1, and the validity or-
dering induced by the declarations in P is a partial order.

Theorem 2 (Soundness in presence of ownership) In
each reachable execution state of a well-formed program,
the program invariants J0 and J1 (see Lemma 0) as well as
the following program invariants hold:

J2: (∀ x , o,T • x .owner = [o,T ] ∧ o.committed ⇒
x .committed )

J3: (∀ x ,A • x .owner = A ⇒
(A.si �= mutable ≡ x .committed) )

where x and o range over non-null allocated objects.

In this section, we show that the program invariants J0
and J1 are still valid in the presence of ownership-based in-
variants. We omit the proofs for J2 and J3 for brevity. They
are analogous to the proofs for J0 and J1. The interesting
cases are those statements that manipulate the si variable
or the committed field: object creation, expose , fetch ,
unpack , and pack .

5.0 Proof of program invariant J0

The program invariant J0 neither refers to committed nor
depends on the definition of admissible invariants. There-
fore, its proof is not affected by the ownership extensions,
since all modifications in the semantics of statements are ei-
ther assertions or manipulate committed . �

5.1 Proof of program invariant J1

For program invariant J1, we have to adapt the proof (see
Section 3.2) to cover the additional cases in the definition of
admissible invariants (Def. 1).

The proof for Case 2 of Def. 1 relies on properties about
object invariants, in particular the implicit object invariants
about owner stemming from rep declarations. These prop-
erties are guaranteed by our methodology for object invari-
ants [16]. However, for self-containedness, we do not want
to use these properties here. Therefore, we present the proof
of a restricted part of the theorem: for Case 2 of Def. 1, we
assume that n = 0 . That is, the invariant of a module A may
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depend on fields of objects directly referenced by A.g , but
not of transitively referenced objects. Consequently, these
objects are directly owned by A . We have proved that J1
holds also in the general case.

The only proof case that is affected by the refined defi-
nition of admissible invariants is the case for field updates.
Consider a field update x .f := E . We have to show that if
the module invariant of a module A depends on the value
of x .f , then A is neither valid nor tvalid . Following the
cases in Def. 1:

0. The access expression does not depend on any field.

1. f is declared in a class in module A . This case is cov-
ered by the proof in Section 3.2.

2. A ’s module invariant contains an access expression
(A.g).f , where A.g is declared rep and A.g = x .
We show by contradiction that A is neither valid nor
tvalid .

Assume that A is valid or tvalid . By the induction
hypothesis, we have that J1 holds before the update.
Therefore, A ’s module invariants hold. From the im-
plicit invariant for the rep variable A.g and A.g = x ,
we know x .owner = A . From the assertion guarding
the update, we get ¬x .committed , which, by program
invariant J3, implies A.si = mutable . However, this
is a contradiction to the assumption that A is valid or
tvalid .

3. A ’s module invariant contains an access expression
o.f where o is bound by a universal quantification,
o.owner = A , and o = x . Analogously to Case 2,
we have x .owner = A , ¬x .committed , and, there-
fore, A.si = mutable . �

6 Discussion

6.0 More invariants

An interesting extension of the methodology we’ve pre-
sented expresses relations between a module variable A.g
and fields of objects that are not necessarily reachable from
A ’s module variables. For instance, one might specify that
for all T objects x , x .theValue is bounded by a global
maximum value:

x .theValue � A.theMaximum

Basically, such properties can be specified as a module
invariant in A or as an object invariant of x . The method-
ology we present in this paper can express such properties
only for the objects x owned by A (Case 3 of Def. 1). If
such an invariant has to be expressed for all T objects x ,
independently of x ’s owner, then it has to be specified as
an object invariant. We have extended our methodology for

object invariants [16] to allow object invariants to mention
module variables. However, these extensions are beyond the
scope of this paper.

6.1 Static verification

Soundness of our methodology is essentially guaranteed by
the assertions in the semantics of statements. For instance, if
the module invariant of module A does not hold at the end
of the body of an expose A statement, the program aborts.
However, it is possible to statically verify that a program
does not abort due to a violated assertion. To do that, each
assertion is turned into a proof obligation.

Such proof obligations are introduced for the assertions
in module-variable and field updates, expose statements,
and object creation statements as well as for the implicit as-
sertions in module initializers. Technically, these statements
are replaced by their pseudo code including assertions. One
can then use an appropriate program logic to show that the
assertions hold (cf. [24, 10]).

The argument to fetch is an expression denoting a
string, whose characters name the module to be fetched.
At compile time, there is no information about the set of
modules imported or extended by this module to be fetched.
Therefore, it is in general not possible to prove the assertion
in the fetch statement (Fig. 6) statically. For this reason,
the assertion in fetch has to be checked at run time. Note,
however, that this assertion can never abort for the initial
fetch that is performed at the start of a program execution.

A crucial element of modular static verification is reason-
ing about which variables a call may modify. Analogous to
the interpretation of modifies specifications for fields [0], we
envision using a policy that allows any procedure or method
to have a net effect on the module variables of modules that
are valid or t-valid, without explicitly having to mention such
modifications in the procedure or method’s modifies decla-
ration.

6.2 Hidden imports

In this paper, the imports and extends relations for modules
have always been visible to the clients of a module. This has
the advantage that the acyclicity requirement for the validity
ordering can be checked at compile time. However, for the
sake of information hiding, it may be desirable to hide por-
tions of the imports or extends relations. In such a setting,
the acyclicity test may have to be done later (for example, at
link time or load time), and a failing acyclicity test may then
come as a surprise to the programmer.
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7 Related work

7.0 Module and object invariants

Our treatment of module invariants is based on our method-
ology for reasoning about object invariants [0, 16]. Analo-
gously to the work presented in this paper, this methodology
uses a special field to represent explicitly when an object
invariant is allowed to be violated. This field can be manip-
ulated only by the special statements unpack and pack ,
which are analogous to the expose statement we use here,
and field updates require an object to be unpacked (exposed)
before it can be modified.

There are significant differences between module invari-
ants and object invariants. Our methodology for object in-
variants uses hierarchical ownership as an abstraction mech-
anism, where a client object exclusively owns the objects of
its internal representation. Since modules are not owned by
one owner, but shared by all clients in a program, this paper
uses a different abstraction mechanism, namely an acyclic
ordering on the modules. However, ownership is still used to
allow module invariants to depend on object fields. The own-
ership encoding is identical in both methodologies. How-
ever, our earlier paper enables dynamic ownership transfer,
whereas here we use a fixed owner relation to simplify the
formalization. An extension to dynamically changing own-
ers is straightforward.

Barnett and Naumann [1] extend our methodology for
so-called visibility-based object invariants [16]. Such an in-
variant of an object X may depend on fields of objects that
are not owned by X . Visibility-based invariants are expres-
sive, but make it difficult to determine all objects that have to
be unpacked before a field update. However, due to the static
nature of modules, the modules that are potentially affected
by a field update can easily be determined.

Pierik et al. [23] add so-called creational guards to Bar-
nett and Naumann’s work to allow invariants to quantify over
all objects of a class, for instance, to specify that a singleton
object is the only instance of a class. Pierik et al. do not
address either the abstraction problem for class invariants or
the initialization-order problem for classes.

Müller’s thesis [21] uses a visible state semantics for ob-
ject invariants, which requires invariants of relevant objects
to hold in pre- and postconditions of all exported methods,
whereas our methodology allows invariants to be violated as
long as such violations are made explicit by the si field.
Müller’s thesis supports invariants over so-called abstract
fields in a sound way, which we consider future work for
the methodology presented here.

Leino and Nelson [15, 17] developed a sound modular
treatment of object invariants over abstract fields. How-
ever, their work is not based on the notion of ownership,
which makes the soundness proof difficult. The Extended
Static Checker for Modula-3 [8] uses the technique of Leino

and Nelson to reason about validity of object structures by
defining a boolean abstract field valid to represent valid-
ity. Usage of this field in specifications is similar to our si
field. Leino and Nelson treat some aspects of module invari-
ants and module initialization order, but neither Müller’s nor
Leino and Nelson’s work fully supports module invariants.

The Extended Static Checker for Java [10] and
ESC/Java2 [6] use heuristics to determine which object in-
variants to check for method invocations. Described in detail
in the ESC/Java User’s Manual [18], these heuristics are a
compromise between flexibility and likelihood of errors and
do not guarantee soundness.

JML [13, 14] provides static invariants to express proper-
ties of static fields and objects referenced from static fields.
Static invariants correspond to our module invariants. Anal-
ogously to our methodology, the static invariant of a class C
has to be established by C ’s static initializer. However, in
contrast to our work, JML applies a visible state semantics,
where invariants have to hold in the pre- and post-states of
all non-helper methods.

7.1 Global data

Our realization of global data as module variables is sim-
ilar to static fields in Java and C#. Directly supporting
static class invariants would require programmers explicitly
to specify an acyclic validity ordering among classes as a
means of abstraction. To avoid this overhead, we use mod-
ules and their imports relation, with module variables and
procedures instead of static fields and static methods. This
solution does not restrict the generality of our methodology.
Every Java and C# program can easily be mapped to our no-
tation.

In Eiffel [20], global data is implemented by once meth-
ods. The body of these methods is executed only when the
method is called for the first time. For further calls, the
cached result of the first execution is returned. That is, global
data is essentially realized by objects that are shared by all
objects that have to access the global data. However, since
a shared object must be accessed from several other objects,
it cannot, in general, be owned exclusively by another ob-
ject. Therefore, it is unclear how to express invariants such
as the module invariant in module SERVER (Fig. 9) for
such global objects.

7.2 Loading and initialization

Dynamic class loading and linking has been studied in-
tensely in the context of type safety [5, 9, 19, 25]. We build
on this work by assuming that the load operation applies a
type safe load and link mechanism. However, we abstract
from the details of loading, resolution, and bytecode verifi-
cation in the semantics of fetch .

Java uses lazy class initialization. That is, classes are
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initialized before they are first used. Although lazy intializa-
tion can be formalized in operational semantics and Hoare
logics [22], it entails several problems. Kozen and Stiller-
man [12] illustrate that modular reasoning is extremely dif-
ficult in the presence of lazy initialization because the ini-
tialization order of classes and, thus, the initial values of
static fields, depend on their clients. The focus of Kozen and
Stillerman’s paper is on a static analysis for Java bytecode to
determine class initialization dependencies. Such an analy-
sis is not needed in our approach since the initialization order
is given explicitly by an acyclic imports relation. Börger and
Schulte [3] report on several problems of Java’s lazy initial-
ization mechanism related to portability, concurrency, and
compiler optimizations. These problems are avoided by the
eager initialization used in our paper.

8 Conclusions

We presented the first modular verification methodology for
global module invariants in object-oriented programs. These
invariants can express properties of global data, that is, val-
ues stored in module variables. In addition, ownership al-
lows module invariants to refer to fields of objects or object
structures such as global caches. The methodology is proved
to be sound.

The methodology for module invariants complements
our previous treatment of object invariants [16]. Both
methodologies are based on the same formal model, for in-
stance on the same encoding of ownership. Therefore, they
can easily be combined.

As future work, we will extend our methodology to allow
method calls in invariants. Moreover, we plan to implement
our methodology as part of the .NET program checker Boo-
gie at Microsoft Research and use this implementation for
non-trivial case studies.
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