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Abstract: A conventional local model network (LMN) consists of a set of affined local models. It has 
poor interpretability on the process dynamic characters. Recent research on velocity-based multiple 
models show that the velocity-based approach is ideally suited to the development of local controller 
(LC) networks. As the applications of digital computer are popular in control, both the discrete-time 
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1. INTRODUCTION 
 
A static model gives information about the steady 
state relation between the input and the output signal. 
A dynamic model should give the relationships 
between the input and the output signal during 
transients. It is naturally much more difficult to 
capture dynamic behaviour. In an attempt to 
accurately model nonlinear dynamical systems, a 
wide variety of techniques have been developed such 
as nonlinear auto-regressive moving average with 
exogeneous inputs (NARMAX) models (Chen and 
Billings, 1989), Weiner models (Schetzen, 1981), 
Hammerstein models (Billings and Fakhouri, 1982) 
and Multiple Layer Perceptron (MLP) neural 
networks (Narendra and Kannan, 1990). However, all 
of these methods have difficulty in exploiting the 
significant theoretical results available in the 
conventional modelling because of their so-called 
black-box representation on dynamics of nonlinear 
systems. In contrast, Local Model Networks (LMN) 
can produce highly transparent empirical models. 
The locally valid sub-models are easily interpreted, 
and also the weighted sum of the local sub-models 
provides a qualitative high-level description of the 
nonlinear system. 
However, recent research has questioned the ease of 
interpretability of the multiple model frameworks, 
demonstrating that dynamics of the LMN are only 
weakly related to the underlying local models. Leith 
and Leithead (1999) presented a novel class of 
blended multiple-model systems by which the global 
dynamics are directly related to the local models 
employed. The underlying sub-models are velocity-
based, continuous and linear. The resulting continuity 
with existing linear techniques is useful for analysis 
and controller design.  Further analytical results 
based on the complex nonlinear continuous stirred 
tank reactor (CSTR) process can be found in 
(McLoon, 2000). These results show that the 

velocity-based approach is ideally suited to the 
development of local controller networks.  
Considering that the applications of digital computer 
are popular in the field of control, this paper aims to 
construct the computer oriented mathematical models 
for both the conventional LMN and Velocity-based 
LM Networks in discrete time domain. Simulation on 
highly nonlinear system CSTR will be studied to 
prove the effectiveness of the discrete models.  

2. VELOCITY-BASED MULTIPLE MODEL 
NETWORKS IN CONTINUOUS TIME 

DOMAIN 
Consider the general nonlinear state space system, 
with state vector x and input u : 

( ) ( ) ( )( )tutxftx ,=�  
( ) ( ) ( )( )tutxgty ,=                                           (2.1) 

For convenience, it is assumed that Cxy =  without 
loss of generality, because the output y is effectively 
a constant multiplied by the state vector. In many 
cases, the behaviour of a nonlinear system near an 
operating point ( )00 ,ux  can be described by a linear 
time-invariant system. To see this, we consider state 
and input trajectories that are small perturbations 
away from the operating point: 

( ) ( )txxtx δ+= 0     
( ) ( )tuutu δ+= 0                                             (2.2) 

where 0u is nominal input and ( )tuδ  is the 
perturbation input. The input and state vector obey 
the differential equation, determined by submitting 
(2.2) into (2.1): 

( ) ( ) ( )( )tuutxxftx δδδ ++= 00 ,�                         (2.3) 
Expanding the right-hand side of (2.3) in a Taylor 
series about ( 0x , 0u ) and keeping only the linear 
terms yields 

( ) ( ) ( ) ( ) ( )tu
u
f

tx
x
f

uxftx uxux ∂
∂
∂+∂

∂
∂+=

0000 ,),(00 ||,�δ    

(2.4) 
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Notice that ( ) 0, 00 =uxf . Defining ),( 00
| uxx

f
A

∂
∂= , 

( )00 ,| uxu
f

B
∂
∂= , we can rewrite eqn.(2.4) as  

( ) ( ) ( )tuBtxAtx ∂+∂=�δ                                  (2.5)  
Substituting Eqn.(2.2) into (2.4) and differentiating 
Eqn.(2.4) with respect to time gives the linear 
velocity-based system equation 

( ) ( ) u
u
f

x
x
f

x uxux ������

0000 ,, ||
∂
∂+

∂
∂=                            (2.6) 

With the appropriate initial conditions, eqn. (2.1) and 
eqn.(2.6) give identical solutions, and therefore there 
is no approximation at this stage. Eqn.(2.6) gives a 
direct relationship between the dynamics of velocity-
based  form of the nonlinear system and the velocity-
based linearisation near an operating point. 
Furthermore, members of the family of velocity-
based linearisation functions are all linear, which 
provides continuity with established linear theory and 
methods.  
A velocity-based, blended, multiple-model system is 
formed by weighting several velocity-based 
linearised models as follows: 

( ) ( ) ( ) ( ) uuxBxuxAx
i

iiii
i

iiii ����
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= �� ψρψρ ~,~~~,~~          

(2.7)       
where 

( ) ( ) ( )ii uxuxiii x
fuxA ,~,~|~,~

=∂
∂= ,

( ) ( ) ( )ii uxuxiii u
fuxB ,~,~|,~

=∂
∂= and ( )ii ux ,~  is the 

linearisation or freezing point of the ith  local model: 
( ) ( )uuxBxuxAx iiiiii ���� ,~,~ +=                                  (2.8) 

The normalised weighting function is given by 
( )ψρ ~

i , where ψ~ is the scheduling vector. 
The dynamics of the blended system, about the 
operating point ( )00 ,~ ux  is now considered. The 
velocity-based linearised form of Eqn.(2.7), at 
( )00 ,~ ux , is simply obtained by freezing the validity 
function ( )ψρ ~

i  at the operating point to produce the 
following linear system: 

( ) ( ) ( ) ( ) uuxBxuxAx
i
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(2.9) 
With the appropriate initial conditions, the solution to 
eqn.(2.9) is initially tangential to the solution of the 
velocity-based multiple model system in eqn.(2.7). 
The dynamics of the multiple model system local to 
an arbitrary operating point are therefore the same as 
the dynamics of the corresponding frozen-form linear 
system at the same operating point. Rewriting 
eqn.(2.9) as 

( ) ( ) ( )( )uuxBxuxAx iiiiii
i

i ���� ,~~,~~~
0 +=� ψρ              (2.10) 

which clearly highlights this direct relationship 
between the frozen-form eqn.(2.9) of the velocity-
based blended system and the underlying local 

models eqn.(2.10) at ( )00 ,~ ux . Thus, at any arbitrary 
operating point, the global dynamics of the multiple 
model system are described by a straightforward 
weighted sum of the local model dynamics. No such 
direct relationship exists between the dynamics of the 
conventional multiple model representation and the 
dynamics of the first-order expansion system. Further 
detailed theoretical analysis of both conventional and 
velocity-based nonlinear representations can be found 
in [5,6]. 

3. VELOCITY-BASED MULTIPLE MODEL 
NETWORKS IN DISCRETE TIME DOMAIN 

3.1. NORMAL LOCAL MODEL NETWORK 
DEVELOPMENT IN DISCRETTE TIME 
DOMAIN 

3.1.1. ZOH EQUIVALENT MODEL DEVELOP-
MENT 

 
The continuous time input to the plant is a zero-order 
hold of the compensator output 

( ) [ ]kutu = , TkTtkT +<≤        (3.1) 
and the output of the plant is sampled by an A/D 
converter: 

[ ] [ ]kTyky =                                                           (3.2) 
Assume that we have a state space model (A,b,c,d) 
for the plant G(s); that is, the behaviour of the plant is 
governed by the following equations: 

( ) ( ) ( )
( ) ( ) ( )tdutcxty

tbutAxtx

+=
+=�

                                               (3.3) 

Because (3.3) is a first order differential equation, if 
the value of ( )tx  is known at some time 0t , then the 
value of ( )tx  at future times is given by 

( ) ( ) ( ) ( ) ( ) τττ dbuetxetx t
t

tAttA
�

−− +=
00

0                  (3.4) 

where the symbol Ate stands for the matrix 
exponential function. If kTt =0 and TkTt += , 
where T is sampling time, then (3.4) gives an update 
formula for the state vector at sampling instants. That 
is, integrating the state equation over one sample 
period yields 

( ) ( ) ( )kTxeTkTx kTTkTA −+=+    

                   ( ) ( ) τττ dbue
TkT

kT
TkTA

�
+ −++           (3.5) 

Now recall from (3.1) that in the interval of 
integration, the function ( )tu  is equal to [ ]ku , a 
constant. This constant can be taken outside of the 
integral as follows: 

( ) ( ) ( ) [ ]kudbekTxeTkTx
TkT

kT

TkTAAT
	



�
�



�+=+ �
+ −+ ττ    

            (3.6) 
This formula is computing the value of the state 
vector ( )tx  only at sampling instants kTt = . Thus, if 
we define a discrete time state space equation 

[ ] [ ]kTxkx = , 
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ATe=Φ , 
( )

�
+ −+=Γ TkT

kT
TkTA bde ττ                                    (3.7) 

Then (3.6) becomes the discrete time state space 
sequence by 

[ ] [ ] [ ]kukxkx Γ+Φ=+1                                        (3.8) 
Note that Γ in (3.8) is a constant vector. Also, using 
the output equation of (3.3), we can write  

[ ] [ ] [ ]kdukcxky +=                                               (3.9) 
Equation (3.8) and (3.9) constitute a discrete time 
system whose output, by construction, exactly 
matches the output of the analog system if its input is 
piecewise constant. Note that if ( )sG  is a linear time 
invariant, then its ZOH equivalent will also be linear 
and time invariant.  

3.1.2. NORMAL LM NETWORK DEVELOP-
MENT  

Assuming we have a set of linearized local models 
for a nonlinear system described as eqn.(2.1); that is, 
each of them is governed  as eqn.(2.4) and eqn.(2.5) 
by the following equations: 

( ) ( ) ( ) ( ) ( )
( ) ( )tcxty

tuuxbtxuxAtx iiiiii

=
+= δδδ ,,�

           (3.10) 

in which  ( ) ( ) iextxtx −=δ , ( ) ( ) ieututu −=δ  , iex and 

ieu are the state vector and the input at the 
equilibrium points, near which the nonlinear system 
are linearized.    
According to the section 3.1.1, we have the ZOH 
equivalent models for each linearized model, as 
follows: 

[ ] ( ) [ ] ( ) [ ]kuuxkxuxkx iiiiii δδδ ,,1 Γ+Φ=+  

[ ] [ ]kxcky =                               (3.12) 

in which  ( ) ( ) iexkxkx −=δ  , 
( ) ( ) ieukuku −=δ , TA

i
ie=Φ ,

( )
�

+ −+=Γ
TkT

kT
i

TkTA
i dbe i ττ  

 We can rewrite the Eqn.(3.12) as 
[ ] ( ) [ ]( )ieiii xkxuxkx −Φ=+ ,1  

               ( ) [ ]( ) ieieiii xukuux +−Γ+ ,  

 [ ] [ ]kxcky =                                                    (3.13) 
 A normal, blended local model network system in 
discrete time domain is formulated by weighting 
several local models: 

[ ] ( ) ( ) [ ]( )
( ) [ ]( )� ��
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�
��
�

�

+−Γ+
−Φ

=+
i ieieiii

ieiii
i xukuux

xkxux
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,

,~1 0ψρ  

[ ] [ ]kcxky =                                                      (3.14)                                                        

3.2. VELOCITY-BASED MULTIPLE MODEL 
NETWORKS DEVELOPEMENT 

Recalling the linearized ith  velocity-based local 
model in eqn.(2.8), we define xw �= .  Rewriting it as 
follows: 
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Then, the linearized model output is 

 ( ) ��
�

�
��
�

�
=

w

x
cy 0                                                    (3.16) 

For simplicity, we write the eqn (3.15) as follows 

( ) ( )uuxBWuxAW iiiiii �
��

� ,~,~ +=        

WCy
�

=                                                              (3.17) 
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�

��
�

�
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I
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0
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�
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�
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w

x
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Then based on the section 3.1.1, we have the velocity 
based local state-space model 

[ ] ( ) [ ] ( ) [ ]kuuxkWuxkW iiiiii ,~,~1 Γ+Φ=+      

[ ] [ ]kWCky =                                                      (3.18) 
Where 

( ) ( )TuxA
iii

iiieux ,~
,~

�

=Φ ,

( ) ( )( )
�

+ −+=Γ
TkT

kT i
TkTuxA

iii dbeux iii ττ,~
,~

�

 and CC
�

= .  

A velocity-based, blended, multiple model system in 
discrete time domain is formed by weighting several 
velocity-based local models: 

[ ] ( ) ( ) [ ] ( ) [ ]( )� Γ+Φ=+
i

iiiiiii kuuxkWuxkW ,~,~~1 0ψρ  

[ ] [ ]kCWkY =                                                    (3.19) 

4. CASE STUDY 

4.1. CONTINUOUS STIRRED TANK REAC-
TOR PROCESS 

 
CSTR (Continuous Stirred Tank Reactor) is a highly 
non-linear process. A schematic of the CSTR system 
is shown in Figure 1. A single irreversible, 
exothermic reaction is assumed to occur in the 
reactor. The process model consists of two non-linear 
ordinary differential equations (McLoon,2000),  
 

( ) ( )( ) ( ) ( ) �� +��
�

�
��
�

�
−+−=

tRT
E

tCKtTT
V

q
tT f

f exp1
 

       ( ) ( ) ( )( )tTT
tq

K
tqK cf

c
c −

	
	



�

�
�



�
��
�

�
��
�

�
−−+ 3

2 exp1�  

( )( ) ( ) ( )���
�

��
�

�
−−−=

tRT
E

tCKtCC
V

q
tC f

f exp)( 0
�  

( )tqc  is the coolant flow rate, T(t) is the temperature 

of solution, )(tC is the effluent concentration. The 
model parameters defined, and the nominal operating 
conditions are shown in table 1. The objective is to 
control )(tC by manipulating ( )tqc .   
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Table 1.  Nominal CSTR Operating Conditions 
 

fq = 100 l/min, product flow rate fC =1 mol/l,input concentration 

fT =350 K,input temprature        cfT =350 K,temprature of coolant 

K1=1.44*1013 Kl/min/mol,         V =100 l , container volume 

R
E =104 K,activation energy     01.02 =K /l  , constant 

K3=700 l/min. constant              10
0 10*2.7=K min-1 , constant 

The CSTR plant is highly nonlinear with exponential 
terms and product terms. Furthermore, open-loop 
step tests show that the output concentration 
responses vary from over-damped to under-damped, 
indicating the variable dynamics in the CSTR 
process.  Figure 2 is the loci of equilibrium 
distribution of input )(tqc  versus output )(tC . The 
CSTR exhibits highly non-linear dynamical 
behaviour. Eigenvalue analysis shows that the stable 
equilibrium regime of the CSTR lies in 

( ) lmoltC /13566.0,0)( ∈  and 

)(tqc ( ) min/0.111,0 l∈ .   
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Fig 2  Loci of continuous stirred tank reaction 
 

4.2. IMPLEMENTATION OF THE VELOCITY-
BASED NETWORK 

 
Recalling the eqn.(2.7), we see that the input of the 
velocity-based multiple model is the time differential 
of the control signal u . It is a pulse response model 
rather than a normal step response model. Practically, 

it is very difficult to formulate a pulse input signal 
because of the differential problem.  Mathematically, 
in continuous time domain, 

( ) ( ) ( )
τ

τ
τ

tutu
tu

−+=
→0

lim�  

McLoon (2000) skilfully combined sinusoids and 
constant signals to approximate step changes, which 
can contribute a very good approximation of pulse 
signal for the velocity-based model. However, in the 
discrete time domain, the problem is simplified as 

 [ ] [ ] [ ]
T

TkTukTu
kTu

−−=� , 

which exactly matches the definition of the 
differential. There is no approximation at this stage. 
Figure 3 shows how the pulses are produced from 
step changes in both the continuous time domain and 
the discrete time domain. 

 
 
 
 
 
   
 

(a) Using a sinusoid and step to formulate a 
pulse signal in the continuous time domain 

 
 
 
 

 
 
 
 
 

(b) Pulse formulating in the discrete time 
domain 

 
 

4.3. MODELLING THE CSTR PROCESS 
 
The key issue of this paper is to deduce the 
conventional LM network and velocity-based LM 
network in discrete time domain and to show the 
effectiveness of the proposed approach by simulation. 
For simplicity, the authors employed the model 
structure applied successfully in (McLoon,2000). 
McLoon (2000) employed two local models to model 
the relationships between the coolant flow rate ( )tqc  

and the product concentration, )(tC , for the 

operating space bounded by input: ( )tqc =[85, 111] 
l/min. These two local models are obtained by 
freezing the nonlinear velocity model at the 
appropriate linearisation points:  

min/0.90,7522.448,/062.0 111 lqKTlmolC cooo ===

min/0.110,9487.432,/1298.0 112 lqKTlmolC cooo ===

Coolant flow-rate )(tqc  (l/min) 
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Fig.3   Pulse formulation 
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Fig. 1. Continuous Stirred Tank 

in discrete time 
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in which  ( i
co

i
o

i
o qTC ,, ) denotes the linearisation point 

of the ith local model.  

To transform the velocity-based LM network to a 
discrete-time model, the sampling time is selected as 
0.1 min according to Shannon’s sampling theorem.  

4.4. SIMULATION RESULTS 

In this section, simulation will be done in two parts. 
To get a clear idea about the performance of all the 
kinds of multiple models we discussed, we choose 
the same set of step signal ( )tqc , which varies from 
88 l/min to 110 l/min as shown in Figure 4. Firstly, 
continuous-time outputs from the velocity-based LM 
network are compared with the corresponding 
discrete-time outputs; meanwhile, continuous-time 
outputs from the conventional LMN are compared 
with their corresponding outputs in the discrete time 
domain. Secondly, both of the outputs from the 
conventional LMN and the velocity-based multiple 
models, in the discrete time domain, are compared 
with the output from the CSTR process. 
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Fig.4  Step changes in coolant flow rate qc(t) 

A. Comparison of the concentration outputs from 
the models in the discrete time domain with those 
from the models in continuous time domain. 
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a) Velocity-based LM network 
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b) Conventional LM network 
 

Fig.5. Comparison of the concentration outputs in 
continuous time domain with those in discrete 
time domain from Velocity-based LM network 
(a) and conventional LM network (b). Solid line 
represents the outputs from discrete time 
domain, and dash-dot line represents the outputs 
from the continuous time domain. 

Fig.5. shows that the discrete model outputs follow 
the continuous models outputs and their matching is 
good in both types of model outputs. We zoom in on 
the highly dynamic areas to show the goodness of the 
match. The results prove the feasibility of the 
proposed continuous-to-discrete model transform 
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approach. One thing worthwhile to mention is that in 
Figure (a), the discrete-time velocity-based LM 
network doesn’t exactly follow the continuous-time 
velocity-based LM network outputs, in the term of 
steady-state error. This is because modelling errors 
exist in both the continuous-time and discrete-time 
velocity-based LM network. These errors are out of 
the control of the network and therefore accumulate 
with time. More detailed information is shown in 
Figure 6.  

B. Comparison of concentration outputs from the 
CSTR process with those from the velocity-based 
LM network and conventional LM network in 
discrete time domain. 
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a) Velocity-based LM network 
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b)      Conventional LM network 
 
Fig.6.Comparison of concentration output from the 

CSTR process with those from the velocity-based 
LM network in (a) and conventional LM network 
in (b) in discrete time domain. The dashed line 
represents the output from the CSTR process. 
The solid line represents the output from the 
models in discrete time domain. 

Figure 6 shows that the performances of both 
networks are relatively poor, especially in terms of 
steady-state accuracy. The discrete-time conventional 
LM network does represent the CSTR plant 
accurately at points where only one model is valid. 

However, in the space between the models the 
steady-state accuracy is poor for the LM network is 
globally affined. This is very close to the analysis that 
Mcloon (2000) made on the models in continuous 
time domain. One thing should be noted is that the 
discrete-time velocity based LM network shows 
better capability in capturing the dynamics of CSTR 
process than the discrete-time conventional LM 
network, especially when C(t) is about 0.11 mol/l. 
However, steady state error is still significant, while 
the addition of more local models will improve the 
model accuracy as presented in (Gao, et al., 2002). 
Moreover, from the control point of view, the steady-
state error can be compensated by introducing an 
integrator to the controller.  

5. RESULTS 
The main objective of this paper is to develop the 
discrete velocity-based LM network. In section 3, 
both of the velocity-based LM network and 
conventional LM network are transformed to the 
discrete time domain mathematically. Then 
simulations prove the effectiveness of proposed 
continuous-to-discrete model transform approach and 
highlight the better capability of the velocity-based 
LM network in capturing the dynamics of CSTR. 
Further work will focus on local controller networks 
design based on the developed discrete velocity-
based LM network. 
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