
DFuse: A Framework for Distributed Data Fusion *

Rajnish Kumar, Matthew Wolenetz, Bikash Agarwalla, JunSuk Shin,
Phillip Hutto, Arnab Paul, and Umakishore Ramachandran

{rajnish, wolenetz, bikash, espress, pwh, arnab, rama}@cc.gatech.edu

College of Computing
Georgia Institute of Technology

ABSTRACT
Simple in-network data aggregation (or fusion) techniques for
sensor networks have been the focus of several recent research
efforts, but they are insufficient to support advanced fusion ap-
plications. We extend these techniques to future sensor net-
works and ask two related questions: (a) what is the appropriate
set of data fusion techniques, and (b) how do we dynamically
assign aggregation roles to the nodes of a sensor network ? We
have developed an architectural framework, DFuse, for answer-
ing these two questions. It consists of a data fusion API and a
distributed algorithm for energy-aware role assignment. The
fusion API enables an application to be specified as a coarse-
grained dataflow graph, and eases application development and
deployment. The role assignment algorithm maps the graph
onto the network, and optimally adapts the mapping at run-time
using role migration. Experiments on an iPAQ farm show that
the fusion API has low-overhead, and the role assignment al-
gorithm with role migration significantly increases the network
lifetime compared to any static assignment.

Categories and Subject Descriptors : D.4.7 [Operating Sys-
tems]: Organization and Design – Distributed Systems, and
Embedded Systems.

General Terms : Algorithms, Design, Management, Measure-
ment.

Keywords : Sensor Network, In-network aggregation, Data
fusion, Role assignment, Energy awareness, Middleware, Plat-
form.

∗The work has been funded in part by an NSF ITR grant CCR-
01-21638, NSF grant CCR-99-72216, HP/Compaq Cambridge
Research Lab, the Yamacraw project of the State of Georgia,
and the Georgia Tech Broadband Institute. The equipment used
in the experimental studies is funded in part by an NSF Re-
search Infrastructure award EIA-99-72872, and Intel Corp.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’03, November 5–7, 2003, Los Angeles, California, USA.
Copyright 2003 ACM 1-58113-707-9/03/0011 ...$5.00.

1. INTRODUCTION
With advances in technology, it is becoming increasingly fea-

sible to put a fast processor on a single small sensor along with
a sizable memory and a radio transceiver. There is an ever-
evolving continuum of sensing, computing, and communica-
tion capabilities from smartdust, to sensors, to mobile devices,
to desktops, to clusters. With this evolution, capabilities are
moving from larger footprint to smaller footprint devices. For
example, tomorrow’s mote will be comparable in resources to
today’s mobile devices; and tomorrow’s mobile devices will be
comparable to current desktops. These developments suggest
that future sensor networks may well be capable of supporting
applications that require resource-rich support today. Exam-
ples of such applications include streaming media, surveillance,
image-based tracking and interactive vision. Many of these fu-
sion applications share a common requirement, namely, hierar-
chical data fusion, i.e., applying a synthesis operation on input
streams.

This paper focuses on challenges involved in supporting fu-
sion applications in wireless ad hoc sensor networks (WASN).
Developing fusion applications is challenging in general be-
cause of the time-sensitive nature of the fusion operation, and
the need for synchronization of the data from multiple streams.
Since the applications are inherently distributed, they are typi-
cally implemented via distributed threads that perform fusion in
a hierarchical manner. Thus, the application programmer has to
deal with thread management, data synchronization, buffer han-
dling, and exceptions (such as time-outs while waiting for input
data for a fusion function) - all in a distributed fashion. WASN
add another level of complexity to such application develop-
ment due to the scarcity of power in the individual nodes [5].
In-network aggregation and power-aware routing are techniques
to alleviate the power scarcity of WASN. While the good news
about fusion applications is that they inherently need in-network
aggregation, a naive placement of the fusion functions on the
network nodes will diminish the usefulness of in-network fu-
sion, and reduce the longevity of the network (and hence the
application). Thus, managing the placement (and dynamic re-
location) of the fusion functions on the network nodes with a
view to saving power becomes an additional responsibility of
the application programmer. Dynamic relocation may be re-
quired either because the remaining power level at the current
node is going below threshold, or to save the power consumed
in the network as a whole by reducing the total data transmis-
sion. Supporting the relocation of fusion functions at run-time
has all the traditional challenges of process migration [15].

114



We have developed DFuse, an architecture for programming
fusion applications. It supports distributed data fusion with au-
tomatic management of fusion point placement and migration
to optimize a given cost function (such as network longevity).
Using the DFuse framework, application programmers need
only implement the fusion functions and provide the dataflow
graph (the relationships of fusion functions to one another, as
shown in Figure 1). The fusion API in the DFuse architecture
subsumes issues such as data synchronization and buffer man-
agement that are inherent in distributed programming.

The main contributions of this work are summarized below:

1. Fusion API: We design and implement a rich API that
affords programming ease for developing complex sen-
sor fusion applications. The API allows any synthesis
operation on stream data to be specified as a fusion func-
tion, ranging from simple aggregation (such as min, max,
sum, or concatenation) to more complex perception tasks
(such as analyzing a sequence of video images). This is
in contrast to current in-network aggregation approaches
[11, 8, 6] that allow only limited types of aggregation
operations as fusion functions.

2. Distributed algorithm for fusion function placement and
dynamic relocation: There is a combinatorially large num-
ber of options for placing the fusion functions in the net-
work. Hence, finding an optimal placement that mini-
mizes communication is difficult. Also, the placement
needs to be re-evaluated quite frequently considering the
dynamic nature of WASN. We develop a novel heuristic-
based algorithm to find a good (according to some pre-
defined cost function) mapping of fusion functions to the
network nodes. The mapping is re-evaluated periodically
to address dynamic changes in nodes’ power levels and
network behavior.

3. Quantitative evaluation of the DFuse framework: The
evaluation includes micro-benchmarks of the primitives
provided by the fusion API as well as measurement of
the data transport in a tracker application. Using an im-
plementation of the fusion API on a wireless iPAQ farm
coupled with an event-driven engine that simulates the
WASN, we quantify the ability of the distributed algo-
rithm to increase the longevity of the network with a
given power budget of the nodes.

The rest of the paper is structured as follows. Section 2 an-
alyzes fusion application requirements and presents the DFuse
architecture. In Section 3, we describe how DFuse supports
distributed data fusion. Section 4 explains a heuristic-based
distributed algorithm for placing fusion points in the network.
This is followed by implementation details of the framework
in Section 5 and its evaluation in Section 6. We then compare
our work with existing and other ongoing efforts in Section 7,
present some directions for future work in Section 8, and con-
clude in Section 9.

2. DFUSE ARCHITECTURE
This section presents the DFuse architecture. First, we ex-

plore target applications and execution environments to iden-
tify the architectural requirements. We then describe the archi-
tecture and discuss how it is to be used in developing fusion
applications.

2.1 Target Applications and Execution En-
vironment

DFuse is suitable for applications that apply hierarchical fu-
sion functions (input to a fusion function may be the output of
another fusion function) on time-sequenced data items. A fu-
sion operation may apply a function to a sequence of stream
data from a single source, from multiple sources, or from a set
of sources and other fusion functions.

DFuse accepts an application as a task graph, where a vertex
in the task graph can be one of data source, data sink, or fu-
sion point. A data source represents any data producer, such as
a sensor or a standalone application. DFuse assumes that data
sources are known at query time (when the user specifies the ap-
plication task graph). A data sink is an end consumer, including
a human in the loop, an application, an actuator, or an output
device such as a display. Intermediate fusion points perform
application-specific processing on streaming data. Thus, an ap-
plication is a directed graph, with the data flow (i.e. producer-
consumer relationships) indicated by the directionality of the
associated edge between any two vertices.

x

2x

2x

3x

x

Sink (Display)

Sources
(Camera)

Filter

Collage

Figure 1: An example tracking application that uses dis-
tributed data fusion. Here, filter and collage are the two fu-
sion points taking inputs from cameras, and the face recog-
nition algorithm is running at the sink. Edge labels indicate
relative (expected) transmission rates of data sources and
fusion points.

For example, Figure 1 shows a task graph for a tracking ap-
plication. The filter fusion function selects images with some
interesting properties (e.g. rapidly changing scene), and sends
the compressed image data to the collage function. Thus, the
filter function is an example of a fusion point that does data con-
traction. The collage function uncompresses the images com-
ing from possibly different locations. It combines these images
and sends the composite image to the root (sink) for further
processing. Thus, the collage function represents a fusion point
that may do data expansion.

DFuse is intended for deployment in a heterogeneous ad hoc
sensor network environment. However, DFuse cannot be de-
ployed in current sensor networks given the limited capabilities
available in sensor node prototypes such as Berkeley motes [7].
But, as we add devices with more capabilities to the sensor net-
work, or improve the sensor nodes themselves, more demand-
ing applications can be mapped onto such networks and DFuse
provides a flexible fusion API for such a deployment. As will
become clear in later sections, DFuse handles the dynamic na-
ture of such networks by employing a resource-aware heuristic
for placing the fusion points in the network.

115



DFuse assumes that any node in the network is reachable
from any other node. Further, DFuse assumes a routing layer
that exposes hop-count information between any two nodes in
the network. Typically, such support can be provided by a sep-
arate layer that supports a routing protocol for ad hoc networks,
like Dynamic Source Routing (DSR) [10], and exposes an in-
terface to query the routing information.

2.2 Architecture Components
Figure 2(A) shows a high-level view of the DFuse architec-

ture that consists of two main runtime components: fusion mod-
ule and placement module. The fusion module implements the
fusion API used in the development of the application. The fu-
sion module interacts with the placement module to determine a
good mapping of the fusion functions to the sensor nodes given
the dynamic state of the network and the application behavior.
These two components constitute the runtime support available
in each node of the network.

Figure 2(B) shows the internal structure of the fusion mod-
ule. Details of the fusion module are discussed in section 3.
The modules that implement resource monitoring and routing
are external to the DFuse architecture. These modules help in
the evaluation of cost functions that is used by the placement
module in determining a good placement of fusion functions.

Launching an Application and Network Deployment
An application program consists of two entities: a task graph,

and the code for the fusion functions that need to be run on the
different nodes of the graph. DFuse automatically generates the
glue code for instantiating the task graph on the physical nodes
of the network. DFuse also shields the application program-
mer from deciding the placement of the task graph nodes in the
network.

Launching an application is accomplished by presenting the
task graph and the fusion codes to DFuse at some designated
node, let us call it the root node. Upon getting this launch re-
quest, the placement module of DFuse at the root node starts
a distributed algorithm for determining the best placement (de-
tails to be presented in Section 4) of the fusion functions. The
algorithm maps the fusion functions of the task graph onto the
physical network subject to some cost function. In this resulting
overlay network, each node knows the fusion function (if any)
it has to run as well as the sources and sinks that are connected
to it. The resulting overlay network is a directed graph with
source, fusion, and sink nodes (there could be cycles since the
application may have feedback control). The application starts
up with the sink nodes running their respective codes, resulting
in the transitive launching of the codes in the intermediate fu-
sion nodes and eventually the source nodes. Cycles in the over-
lay network are handled by each node remembering if a launch
request has already been sent to the nodes that it is connected
to.

The role of each node in the network can change over time
due to both the application dynamics as well as health of the
nodes. The placement module at each node performs periodic
re-evaluation of its health and those of its neighbors to deter-
mine if there is a better choice of placement of the fusion func-
tions. The placement module requests the fusion module to
affect any needed relocation of fusion functions in the network.
Details of the placement module are forthcoming in Section 4.

The fusion module at each node of the network retrieves the

fusion function(s) to be launched at this node. It is a space-
time trade-off to either retrieve a fusion function on-demand
or store the code corresponding to all fusion functions at every
node of the network. The latter design choice will enable quick
launching of a fusion function at any node while increasing the
space need at each node.

3. DISTRIBUTED DATA FUSION SUPPORT
DFuse utilizes a package of high-level abstractions for sup-

porting fusion operations in stream-oriented environments. This
package, called Fusion Channels, is conceptually language and
platform independent.

Data fusion, broadly defined, is the application of an arbi-
trary transformation to a correlated set of inputs, producing a
“fused” output item. In streaming environments, this is a con-
tinuous process, producing an output stream of fused items. As
mentioned previously, such transformations can result in the ex-
pansion, contraction, or status quo in the data flow rate after the
fusion. Note that a filter function, taking a single input stream
and producing a single output stream, is a special case of such
a transformation. We assume that fusion outputs can be shared
by multiple consumers, allowing “fan-out” from a fusion point,
but we disallow a fusion point with two or more distinct output
streams. Fusion points with distinct output streams can be eas-
ily modeled as two separate fusion points with the same inputs,
each producing a single output. Note that the input of a fusion
point may be the output of another fusion point, creating fusion
pipelines or trees. Fusion computations that implement control
loops with feedback create cyclic fusion graphs.

The Fusion Channels package aims to simplify the applica-
tion of programmer-supplied transformations to correlated sets
of input items from sequenced input streams, producing a (pos-
sibly shared) output stream of “fused items.” It does this by
providing a high-level API for creating, modifying, and ma-
nipulating fusion points that subsumes certain recurring con-
cerns (failure, latency, buffer management, prefetching, mobil-
ity, sharing, concurrency, etc.) common to fusion environments
such as sensor networks. Only a subset of the capabilities in the
Fusion Channels package are currently used by DFuse.

The fusion API provides capabilities that fall within the fol-
lowing general categories:

Structure management: This category of capabilities primar-
ily handles “plumbing” issues. The fundamental abstraction in
DFuse that encapsulates the fusion function is called a fusion
channel. A fusion channel is a named, global entity that ab-
stracts a set of inputs and encapsulates a programmer-supplied
fusion function. Inputs to a fusion channel may come from the
node that hosts the channel or from a remote node. Item fu-
sion is automatic and is performed according to a programmer-
specified policy either on request (demand-driven, lazy, pull
model) or when input data is available (data-driven, eager, push
model). Items are fused and accessed by timestamp (usually the
capture time of the incoming data items). An application can re-
quest an item with a particular timestamp or by supplying some
wildcard specifiers supported by the API (such as earliest item,
latest item). Requests can be blocking or non-blocking. To ac-
commodate failure and late arriving data, requests can include a
minimum number of inputs required and a timeout interval. Fu-
sion channels have a fixed capacity specified at creation time.
Finally, inputs to a fusion channel can themselves be fusion
channels, creating fusion networks or pipelines.

116



Fusion API

Work Thread

Module

Prefetch Thread

Module

Buffers and Registers

Buffer

Management

Messaging Layer

(B)

Operating System / Routing Layer

Hardware

Fusion Module

Placement

Module

Resource Monitor, Routing

Layer Interface

Application
Task Graph

Fusion
Function Code

(A)

Figure 2: (A) DFuse architecture - a high-level view per node. (B) Fusion module components.

Correlation control: This category of capabilities primarily
handles specification and collection of “correlation sets” (re-
lated input items supplied to the fusion function). Fusion re-
quires identification of a set of correlated input items. A sim-
ple scheme is to collect input items with identical application-
specified sequence numbers or virtual timestamps (which may
or may not map to real-time depending on the application).
Fusion functions may declare whether they accept a variable
number of inputs and, if so, indicate bounds on the correla-
tion set size. Correlation may involve collecting several items
from each input (for example, a time-series of data items from
a given input). Correlation may specify a given number of in-
puts or correlate all arriving items within a given time inter-
val. Most generally, correlation can be characterized by two
programmer-supplied predicates. The first determines if an ar-
riving item should be added to the correlation set. The second
determines if the collection phase should terminate, passing the
current correlation set to the programmer-supplied fusion func-
tion.

Computation management: This category of capabilities pri-
marily handles the specification, application, and migration of
fusion functions. The fusion function is a programmer-supplied
code block that takes as input a set of timestamp-correlated
items and produces a fused item (with the same timestamp)
as output. A fusion function is associated with the channel
when created. It is possible to dynamically change the fusion
function after channel creation, to modify the set of inputs, and
to migrate the fusion point. Using a standard or programmer-
supplied protocol, a fusion channel may be migrated on demand
to another node of the network. This feature is essential for
supporting the role assignment functionality of the placement
module. Upon request from an application, the state of the fu-
sion channel is packaged and moved to the desired destination
node by the fusion module. The fusion module handles request
forwarding for channels that have been migrated.

Memory Management: This category of capabilities primar-

ily handles caching, prefetching, and buffer management. Typi-
cally, inputs are collected and fused (on-demand) when a fused
item is requested. For scalable performance, input items are
collected (requested) in parallel. Requests on fusion pipelines
or trees initiate a series of recursive requests. To enhance per-
formance, programmers may request items to be prefetched and
cached in a prefetch buffer once inputs are available. An aggres-
sive policy prefetches (requests) inputs on-demand from input
fusion channels. Buffer management deals with sharing gener-
ated items with multiple potential consumers and determining
when to reclaim cached items’ space.

Failure/latency handling: This category of capabilities pri-
marily allows the fusion points to perform partial fusion, i.e.
fusion over an incomplete input correlation set. It deals with
sensor failure and communication latency that are common,
and often indistinguishable, in sensor networks. Fusion func-
tions capable of accepting a variable number of input items
may specify a timeout on the interval for correlation set collec-
tion. Late arriving items may be automatically discarded or in-
cluded in subsequent correlation sets. If the correlation set con-
tains fewer items than needed by the fusion function, an error
event occurs and a programmer-supplied error handler is acti-
vated. Error handlers and fusion functions may produce special
error items as output to notify downstream consumers of er-
rors. Fused items include meta-data indicating the inputs used
to generate an item in the case of partial fusion. Applications
may use the structure management API functions to remove the
faulty input if necessary.

Status and feedback handling: This category of capabilities
primarily allows interaction between fusion functions and data
sources such as sensors that supply status information and sup-
port a command set (for example, activating a sensor or altering
its mode of operation - such devices are often a combination of
a sensor and an actuator). We have observed that application-
sensor interactions tend to mirror application-device interac-
tions in operating systems. Sources such as sensors and in-
termediate fusion points report their status via a “status regis-

117



ter1.” Intermediate fusion points aggregate and report the status
of their inputs along with the status of the fusion point itself
via their respective status registers. Fusion points may poll this
register or access its status. Similarly, sensors that support a
command set (to alter sensor parameters or explicitly activate
and deactivate) should be controllable via a “command” regis-
ter. The specific command set is, of course, device specific but
the general device driver analogy seems well-suited to control
of sensor networks.

4. FUSION POINT PLACEMENT
DFuse uses a distributed role assignment algorithm for plac-

ing fusion points in the network. Role assignment is a mapping
from a fusion point in an application task graph to a network
node. The distributed role assignment algorithm is triggered at
the root node. The inputs to the algorithm are an application
task graph (assuming the source nodes are known), a cost func-
tion, and attributes specific to the cost function. The output is
an overlay network that optimizes the role to be performed by
each node of the network. The “goodness” of the role assign-
ment is with respect to the input cost function.

A network node can play one of three roles: end point (source
or sink), relay, or fusion point [3]. An end point corresponds to
a data source or a sink. The network nodes that correspond to
end points and fusion points may not always be directly reach-
able from one another. In this case, data forwarding relay nodes
may be used to route messages among them. The routing layer
(Figure 2) is responsible for assigning a relay role to any net-
work node. The role assignment algorithm assigns only the
fusion point roles.

4.1 Placement Requirements in WASN
The role assignment algorithm has to be aware of the follow-

ing aspects of a WASN:

Node Heterogeneity: A given node may take on multiple
roles. Some nodes may be resource rich compared to others.
For example, a particular node may be connected to a perma-
nent power supply. Clearly, such nodes should be given more
priority for taking on transmission-intensive roles compared to
others.

Power Constraint: A role assignment algorithm should min-
imize data communication since data transmission and recep-
tion expend more power than computation activities in wireless
sensor networks [7]. Intuitively, since the overall communica-
tion cost is impacted by the location of data aggregators, the
role assignment algorithm should seek to find a suitable place-
ment for the fusion points that minimizes data communication.

Dynamic Behavior: There are two sources of dynamism in
a WASN. First, the application may exhibit dynamism due to
the physical movement of end points or change in the trans-
mission profile. Second, there could be node failures due to
environmental conditions or battery drain. So far as the place-
ment module is concerned, these two conditions are equivalent.
In either case, the algorithm needs to find a new mapping of the
task graph onto the available network nodes.

1A register is a communication abstraction with processor reg-
ister semantics. Updates overwrite existing values, and reads
always return the current status.

4.2 The Role Assignment Heuristic
Our heuristic is based on a simple idea: first perform a naive

assignment of roles to the network nodes, and then allow every
node to decide locally if it wants to transfer the role to any of
its neighbors. Upon completion of the naive assignment phase,
a second phase of role transfer begins. A node hosting any fu-
sion point role, checks if one of its neighbor nodes can host that
role better using a cost function to determine the “goodness” of
hosting a particular role. If a better node is found then a role
transfer is initiated. Since all decisions are taken locally, every
node needs to know only as much information as is required for
determining the goodness of hosting a given role for a given ap-
plication task graph. For example, if the cost function is based
upon the remaining power level at the host, every node needs to
know only its own power level.

Naive Tree Building: The procedure of finding a naive role
assignment can start at any node. For simplicity, let us say it
starts at the root node, a node where an end user interacts with
the system. The user presents the application task graph to the
root node. The root node decides if it wants to host the root
fusion function of the task graph based upon its available re-
sources. If the root node does host the root fusion function, it
delegates the task of further building the sub-trees under the
root of the task graph to its neighbors, else it delegates the
building of complete tree to one of its neighbors. For exam-
ple, consider the case where the root node decides to host the
root fusion function. In this case, if the root fusion function
has two inputs from two other fusion points, the root node del-
egates the two subtrees, one corresponding to each of the in-
put fusion points, to two of its neighbors. For the delegation
of building subtrees, the root node selects two of its “richest”
neighbors. These neighbors are chosen based upon their re-
ported resources. The chosen delegate nodes build the subtrees
following a procedure similar to the one at the root. This recur-
sive tree building ends when the input to the fusion points are
data producer nodes (i.e. sources). The completion notification
of the tree building phase recursively bubbles up the tree from
the sources to the root.

Note that, during this phase, different fusion points are as-
signed to distinct nodes whenever possible. If there are not as
many neighbors as needed for delegation of the subtrees, the
delegating node assumes multiple roles. Also, even the data
producing nodes are treated similar to the non-producing nodes
for the role assignment purpose in this phase. During later
phases, a cost function decides if multiple fusion points should
be assigned to the same sensor node or if data sources should
not be allowed to host a fusion point.

Optimization Phase: After completion of the naive tree build-
ing phase, the root node informs all other nodes in the network
about the start of the optimization phase. During this phase,
every node hosting a fusion point role is responsible for either
continuing to play that role or transferring the role to one of
its neighbors. The decision for role transfer is taken solely by
the fusion node based upon local information. A fusion node
periodically informs its neighbors about its role and its health
– an indicator of how good the node is in hosting that role.
Upon receiving such a message, a neighboring node computes
its own health for hosting that role. If the receiving node de-
termines that it can play the role better than the sender, then it
informs the sender (fusion node) of its own health and its intent
for hosting that role. If the original sender receives one or more

118



intention requests from its neighbors, the role is transferred to
the neighbor with the best health. Thus, with every role trans-
fer, the overall health of the overlay network improves. Ap-
plication data transfer starts only after the optimization phase
to avoid possible energy wastage in an unoptimized network.
DFuse uses a third maintenance phase that works similar to the
optimization phase (same role transfer semantics). Details are
presented in Section 5.

4.3 Sample Cost Functions
Health of a node is quantified by an application-supplied cost

function. The choice of the particular set of parameters to use in
a cost function depends on the figure of merit that is important
for the application at hand.

We describe four sample cost functions below. They are mo-
tivated by recent works on power-aware routing in mobile ad
hoc networks [14, 9]. The health of a node k to run fusion role
f is expressed as the cost function c(k, f). A fusion node com-
pares its own health with the reported health of its neighbors,
and it does the role transfer if there is an expected health im-
provement that is beyond a threshold. Note that the lower the
cost function value, the better the node health.

Minimize transmission cost - 1 (MT1): This cost function
aims to decrease the amount of data transmission required for
running a fusion function. Input data needs to be transmitted
from sources to the fusion point, and the output data needs to be
propagated to the consumer nodes (possibly across hops). For a
fusion function f with m input data sources (fan-in) and n output
data consumers (fan-out), the transmission cost for placing f on
node k is formulated as:

cMT1(k, f) =

mX

i=1

t(sourcei) ∗ hopCount(inputi, k)

+
nX

j=1

t(f) ∗ hopCount(k, outputj)

Here, t(x) represents the transmission rate of the data source
x, and hopCount(i, k) is the distance (in number of hops) be-
tween node i and k.

Minimize power variance (MPV): This cost function tries to
keep the power of network nodes at similar levels. If power(k)
is the remaining power at node k, the cost of placing any fusion
function on that node is:

cMPV (k) = 1/power(k)

Minimize ratio of transmission cost to power (MTP): This
cost function aims to decrease both the transmission cost and
lower the difference in the power levels of the nodes. The intu-
ition here is that the cost reflects how long a node can run the
fusion function. The cost of placing a fusion function f on node
k can be formulated as:

cMTP (k, f) = cMT1(k, f) ∗ cMPV (k)

Minimize transmission cost - 2 (MT2): This cost function
is similar to MT1, except that now the cost function behaves
like a step function based upon the node’s power level. For a
powered node, the cost is same as cMT1(k, f), but if the node’s
power level goes below a threshold, then its cost for hosting

any fusion function becomes infinity. Thus, if a fusion point’s
power level goes down, a role transfer will happen even if the
transfer deteriorates the transmission cost. The cost function
can be represented as:

cMT2(k, f) = ( power(k) > threshold ) ?

( cMT1(k, f) : INFINITY )

4.4 Heuristic Analysis
For the class of applications and environments that the role

assignment algorithm is targeted, the health of the overall map-
ping can be thought of as the sum of the health of individual
nodes hosting the roles. The heuristic triggers a role transfer
only if there is a relative health improvement. Thus, it is safe
to say that the dynamic adaptations that take place improve the
life of the network with respect to the cost function.

The heuristic could occasionally result in the role assignment
getting caught in a local minima. However, due to the dynamic
nature of WASN and the re-evaluation of the health of the nodes
at regular intervals, such occurrences will be short lived. For
example, if ‘minimize transmission cost (MT1 or MT2)’ is cho-
sen as the cost function, and if the network is caught in a local
minima, that would imply that some node is losing energy faster
than an optimal node. Thus, one or more of the suboptimal
nodes will die causing the algorithm to adapt the assignment.
This behavior is observed in real life as well and we show it in
the evaluation section.

The choice of cost function has a direct effect on the behav-
ior of the heuristic. We examine the behavior of the heuristic
for a cost function that uses two simple metrics: (a) simple hop-
count distance, and (b) fusion data expansion or contraction in-
formation.

The heuristic leads mainly to two types of role transfers:
Linear Optimization: If all the inputs to a fusion node are

coming via a relay node (Figure 3A), and there is data contrac-
tion at the fusion point, then the relay node will become the
new fusion node, and the old fusion node will transfer its re-
sponsibility to the new one (Figure 3B.) In this case, the fusion
point is moving away from the sink, and coming closer to the
data source points. Similarly, if the output of the fusion node is
going to a relay node, and there is data expansion, then again
the relay node will act as the new fusion node. In this case, the
fusion point is coming closer to the sink and moving away from
the data source points.

Triangular Optimization: If there are multiple paths for in-
puts to reach a fusion point (Figure 4A), and if there is data
contraction at the fusion node, then a triangular optimization
can be effected (Figure 4B) to bring the fusion point closer to
the data source points. The fusion point will move along the
input path that maximizes the savings. In the event of data ex-
pansion at the fusion point, the next downstream node from the
fusion point in the path towards the sinks will become the new
fusion node. The original fusion point will simply act as a relay
node.

5. IMPLEMENTATION
DFuse is implemented as a multi-threaded runtime system,

assuming infrastructure support for timestamping data produced
from different sensors, and a reliable transport layer for moving
data through the network. Multi-threading the runtime system

119



Source Relay
Fusion
Point Sink

1000

1000
1000

1000

1500

Source
Fusion
Point

Relay Sink

1000

1000
1500 1500

(A) (B)

Figure 3: Linear Optimization example.

Two nodes are directly reachable.

fp4

fp2

fp1

1000

1000

1000

Relay

fp3

1500

fp2

fp1
1000

1000

fp3

1500

Two nodes are directly reachable.

fp4

fp2

fp1

1000

1000

1000

Relay

fp3

1500

fp2

fp1
1000

1000

fp3

1500

(A) (B)

Figure 4: Triangular Optimization example .

enhances opportunities for parallelism in data collection and fu-
sion function execution for streaming tasks. The infrastructural
assumptions can be satisfied in various ways. As we mentioned
in Section 3, the timestamps associated with the data can be
virtual or real. Virtual timestamping has several advantages,
the most important of which is the fact that the timestamp can
serve as a vehicle for propagating the causality between raw and
processed data from a given sensor. Besides, virtual timestamps
allows an application to choose the granularity of real-time in-
terval for chunking streaming data. Further, the runtime over-
head is minimized since there is no requirement for global clock
synchronization, making virtual time synchrony attractive for
WASN. For transport, given the multi-hop network topology of
WASN, a messaging layer that supports ad hoc routing is desir-
able.

Assuming above infrastructure support, implementing DFuse
consists of the following steps:

1. Implementing a multi-threaded architecture for the fu-
sion module that supports the basic fusion API calls (Sec-
tion 3), and the other associated optimizations such as
prefetching;

2. Implementing the placement module that supports the
role assignment tasks (Section 4); and

3. Interfacing the two modules for both instantiating the ap-
plication task graph and invoking changes in the overlay
network during execution.

The infrastructural requirements are met by a programming
system called Stampede [13, 2]. A Stampede program consists
of a dynamic collection of threads communicating timestamped
data items through channels. Stampede also provides registers
with full/empty synchronization semantics for inter-thread sig-
naling and event notification. The threads, channels, and reg-
isters can be launched anywhere in the distributed system, and

the runtime system takes care of automatically garbage collect-
ing the space associated with obsolete items from the channels.
Though Stampede’s messaging layer does not support adaptive
multi-hop ad hoc routing, we adopt a novel way of performing
the evaluation with limited routing support (Section 6). For the
ease of evaluation, we have decoupled the fusion and placement
module implementations. Their interface is a built-in commu-
nication channel and a protocol that facilitates dynamic task
graph instantiation and adaptation using the DFuse API. Trans-
mission rates exhibited by the application are collected by this
interface and communicated to the placement module.

5.1 Data Fusion Module
We have implemented the fusion architecture in C as a layer

on top of the Stampede runtime system. All the buffers (in-
put buffers, fusion buffer, and prefetch buffer) are implemented
as Stampede channels. Since Stampede channels hold times-
tamped items, it is a straightforward mapping of the fusion at-
tribute to the timestamp associated with a channel item. The
Status and Command registers of the fusion architecture are im-
plemented using the Stampede register abstraction. In addition
to these Stampede channels and registers that have a direct re-
lationship to the elements of the fusion architecture, the imple-
mentation uses additional Stampede channels and threads. For
instance, there are prefetch threads that gather items from the
input buffers, fuse them, and place them in the prefetch buffer
for potential future requests. This feature allows latency hiding
but comes at the cost of potentially wasted network bandwidth
and hence energy (if the fused item is never used). Although
this feature can be turned off, we leave it on in our evaluation
and ensure that no such wasteful communication occurs. Sim-
ilarly, there is a Stampede channel that stores requests that are
currently being processed by the fusion architecture to elimi-
nate duplication of work.

120



The createFC call from an application thread results in
the creation of all the above Stampede abstractions in the ad-
dress space where the creating thread resides. An application
can create any number of fusion channels (modulo system lim-
its) in any of the nodes of the distributed system. An at-
tachFC call from an application thread results in the applica-
tion thread being connected to the specified fusion channel for
getting fused data items. For efficient implementation of the
getFCItem call, a pool of worker threads is created in each
node of the distributed system at application startup. These
worker threads are used to satisfy getFCItem requests for
fusion channels created at this node. Since data may have to
be fetched from a number of input buffers to satisfy the get-
FCItem request, one worker thread is assigned to each input
buffer to increase the parallelism for fetching the data items.
Once fetching is complete, the worker thread rejoins the pool
of free threads. The worker thread to fetch the last of the req-
uisite input items invokes the fusion function and puts the re-
sulting fused item in the fusion buffer. This implementation is
performance-conscious in two ways: first, there is no duplica-
tion of fusion work for the same fused item from multiple re-
questers; second, fusion work itself is parallelized at each node
through the worker threads.

The duration to wait on an input buffer for a data item to
be available is specified via a policy flag to the getFCItem.
For example, if try for time delta policy is specified, then the
worker thread will wait for time delta on the input buffer. On
the other hand, if block policy is specified, the worker thread
will wait on the input buffer until the data item is available.
The implementation also supports partial fusion in case some
of the worker threads return with an error code during fetch of
an item. Taking care of failures through partial fusion is a very
crucial component of the module since failures and delays can
be common in WASN.

As we mentioned earlier, Stampede does automatic recla-
mation of storage space of data items in channels. Stampede
garbage collection uses a global lower bound for timestamp
values of interest to any of the application threads (which is de-
rived from a per-thread state variable called thread virtual time).
Our fusion architecture implementation leverages this feature
for cleaning up the storage space in its internal data structures
(which are built using Stampede abstractions).

5.2 Placement Module
The placement module implementation is an event-based sim-

ulation of the distributed heuristic for assigning roles (Section
4) in the network. It takes an application task graph and the net-
work topology information as inputs, and generates an overlay
network, wherein each node in the overlay is assigned a unique
role of performing a fusion operation. It currently assumes an
ideal routing layer (every node knows a route to every other
node) and an ideal MAC layer (no contention). It should be
noted that any behavior different from this ideal one can be en-
coded, if necessary, in an appropriate cost function. Similarly,
any enhancement in the infrastructure capabilities such as mul-
ticast can also be captured in an appropriate cost function.

The placement module runs in three phases, each for a pre-
defined duration. The application is instantiated only at the end
of the second phase. The three phases are:

1. Naive tree building phase: This phase starts with regis-
tering the “build naive tree” event at the root node with

the application task graph as the input. In this phase, the
task graph is simply mapped to the network starting from
the root node (or the set of sinks in the task graph) as
described in Section 4, disregarding cost function eval-
uation. At the end of this phase, there will be a valid,
though naive, role assignment. Every node will know its
role, if any, and it will know the addresses of the producer
and consumer nodes corresponding to its role.

2. Optimization phase: In this phase, the heuristic runs with
a cost-function based upon the hop-count information and
fusion function characteristic (data expansion or contrac-
tion) at the fusion points. The application has not yet
been launched. Therefore the nodes do not have actual
data transmission rates to incorporate into the cost func-
tion. The nodes exchange the hop-count and fusion char-
acteristics information frequently to speed up the opti-
mization, and lead to an initial assignment of roles prior
to launching the application.

3. Maintenance phase: This phase behaves similarly to the
optimization phase, with the difference that the applica-
tion is actually running. Therefore, the cost function will
use real transfer rates from the different nodes in possi-
bly changing the role assignments. In principle, we could
have moved directly from the first phase to this phase.
The reason for the second (optimization) phase prior to
application startup is to avoid excessive energy drain with
actual application data transmissions before the network
stabilizes to an initial good mapping. The frequency of
role transfer request broadcasts in the third phase is a tun-
able parameter.

During the optimization phase, the cost function uses the
fusion function characteristics such as data expansion or con-
traction. If such information is not available for a role, then
data contraction is assumed by the placement module. If there
are multiple consumers for data produced at some fusion point,
then it is tricky to judge if there is an effective data expansion
or contraction at such nodes. Even if the fusion characteristic
indicates that there is data contraction, if the same data is to be
transmitted to more than one consumer, effectively there may
be data expansion. Also, if two or more consumers are within
a broadcast region of the fusion point, then a single transmis-
sion may suffice to transport the data to all the consumers, and
this will lessen the effect of the data expansion. However, these
effects are accountable in the cost function.

6. EVALUATION
We have performed an evaluation of the fusion and place-

ment modules of the DFuse architecture at two different levels:
micro-benchmarks to quantify the overhead of the primitive op-
erations of the fusion API including channel creation, attach-
ments/detachments, migration, and I/O; ability of the place-
ment module to optimize the network given a cost function.
The experimental setup uses a set of wireless iPAQ 3870s run-
ning Linux “familiar” distribution version 0.6.1 together with
a prototype implementation of the fusion module discussed in
section 5.1.

6.1 Fusion API Measurements
Figure 5 shows the cost of the DFuse API. In part (a), each

API cost has 3 fields - local, ideal, and API overhead. Local

121



0 20 40 60 80 100 120

consumeFCItem

getFCItem(1K) - 0 1 2

getFCItem(10) - 0 1 2

getFCItem(1K) - 0 0 1

getFCItem(10) - 0 0 1

getFCItem(1K) - 0 1 0

getFCItem(10) - 0 1 0

getFCItem(1K) - 0 1 1

getFCItem(10) - 0 1 1

putFCItem(1K)

putFCItem(10)

detachFC

attachFC

destroyFC

createFC

Time (ms)

Local
Ideal (Messaging Latency Only)
API Overhead for Remote

Number in () = Item Size

# # # - Configuration of Different
           Input,  Fusion Channel, and
           Consumer locations
           (example)
           0 1 1 - InpAS:0, ChanAS:1, 
                      ConsAS:1

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

Number of Items in Fusion Channel (Each item size = 1024 Bytes)

C
o

st
 (

m
s)

API Overhead

Ideal Cost(Messaging Latency Only)

R
2R

R
2L

L2R

L2R - Local to Remote moveFC
R2L - Remote to Local moveFC
R2R - Remote to Remote moveFC

(a) (b)

Figure 5: (a) Fusion Channel APIs’ cost (b) Fusion channel migration (moveFC) cost

Round Msg overhead Round Msg overhead
API Trips (bytes) API Trips (bytes)

createFC 3 596 getFCItem(1K) - 0 1 0 6 3112
destroyFC 5 760 getFCItem(10) - 0 0 1 10 1738
attachFC 3 444 getFCItem(1K) - 0 0 1 10 4780
detachFC 3 462 getFCItem(10) - 0 1 2 10 1738

putFCItem(10) 1 202 getFCItem(1K) - 0 1 2 10 4780
putFCItem(1K) 1 1216 consumeFCItem 2 328

getFCItem(10) - 0 1 1 4 662 moveFC(L2R) 20 4600
getFCItem(1K) - 0 1 1 4 1676 moveFC(R2L) 25 5360
getFCItem(10) - 0 1 0 6 1084 moveFC(R2R) 25 5360

Table 1: Number of round trips and message overhead of DFuse. See Figure 5 for getFCItem and moveFC configuration
legends.

cost indicates the latency of operation execution without any
network transmission involved, ideal cost includes messaging
latency only, and API overhead is the subtraction of local and
ideal costs from actual cost on the iPAQ farm. Ideally, the re-
mote call is the sum of messaging latency and local cost. Fusion
channels can be located anywhere in the sensor network. De-
pending on the location of the fusion channel’s input(s), fusion
channel, and consumer(s), the minimum cost varies because it
can involve network communications. getFCItem is the most
complex case, having four different configurations and costs in-
dependent of the item sizes being retrieved. For part (a), we cre-
ate fusion channels with capacity of ten items and one primitive
Stampede channel as input. Reported latencies are the average
of 1000 iterations.

On our iPAQ farm, netperf [12] indicates a minimum UDP
roundtrip latency of 4.7ms, and from 2-2.5Mbps maximum uni-
directional streaming TCP bandwidth. Table 1 depicts how
many round trips are required and how many bytes of overhead
exist for DFuse operations on remote nodes. From these mea-
surements, we show messaging latency values in Figure 5(a)
for ideal case costs on the farm. We calculate these ideal costs
by adding latency per round trip and the cost of the transmis-
sion of total bytes, presuming 2Mbps throughput. Comparing
these ideal costs in Figure 5(a) with the actual total cost illus-

trates reasonable overhead for our DFuse API implementation.
The maximum cost of operations on a local node is 5.3ms. For
operations on remote nodes, API overhead is less than 74.5%
of the ideal cost. For operations with more than 20ms observed
latency, API overhead is less than 53.8% of the ideal cost. This
figure also illustrates that messaging constitutes the majority of
observed latency of API operations on remote nodes. Note that
ideal costs do not include additional computation and synchro-
nization latencies incurred during message handling.

The placement module may cause a fusion point to migrate
across nodes in the sensor fusion network. Migration latency
depends upon many factors: the number of inputs and con-
sumers attached to the fusion point, the relative locations of the
node where moveFC is invoked to the current and resulting fu-
sion channel, and amount of data to be moved. Our analysis in
Figure 5(b) assumes a single primitive stampede channel input
to the migrating fusion channel, with only a single consumer.
Part (b) shares the same ideal cost calculation methodology as
part (a). Our observations show that migration cost increases
with number of input items and that migration from a remote to
a remote node is more costly than local to remote or remote to
local migration for a fixed number of items. Reported latencies
are averages over 300 iterations for part (b).

122



(A) MT1: Minimize Transmission Cost - 1

0

500

1000

1500

2000

2500

3000

3500

4.
2E

+0
2

1.
2E

+0
3

1.
0E

+0
5

4.
5E

+0
5

8.
0E

+0
5

1.
2E

+0
6

1.
5E

+0
6

1.
9E

+0
6

2.
2E

+0
6

2.
6E

+0
6

2.
9E

+0
6

3.
3E

+0
6

3.
6E

+0
6

4.
0E

+0
6

Time (ms)

N
et

w
o

rk
 T

ra
ffi

c 
(B

yt
es

/S
ec

o
n

d)
Actual Placement Best Placement

(B) MPV: Minimize Power Variance

0

500

1000

1500

2000

2500

3000

3500

4.
2E

+0
2

1.
2E

+0
3

1.
0E

+0
5

4.
5E

+0
5

8.
0E

+0
5

1.
2E

+0
6

1.
5E

+0
6

1.
9E

+0
6

2.
2E

+0
6

2.
6E

+0
6

2.
9E

+0
6

3.
3E

+0
6

3.
6E

+0
6

4.
0E

+0
6

Time (ms)

N
et

w
o

rk
 T

ra
ffi

c 
(B

yt
es

/S
ec

o
n

d)

(C) MTP: Ratio of Transmission Cost to Available Power

0

500

1000

1500

2000

2500

3000

3500

4.
2E

+0
2

1.
2E

+0
3

1.
0E

+0
5

4.
5E

+0
5

8.
0E

+0
5

1.
2E

+0
6

1.
5E

+0
6

1.
9E

+0
6

2.
2E

+0
6

2.
6E

+0
6

2.
9E

+0
6

3.
3E

+0
6

3.
6E

+0
6

4.
0E

+0
6

Time (ms)

N
et

w
o

rk
 T

ra
ffi

c 
(B

yt
es

/S
ec

o
n

d)

(D) MT2: Minimize Transmission Cost - 2

0

500

1000

1500

2000

2500

3000

3500

4.
2E

+0
2

1.
2E

+0
3

1.
0E

+0
5

4.
5E

+0
5

8.
0E

+0
5

1.
2E

+0
6

1.
5E

+0
6

1.
9E

+0
6

2.
2E

+0
6

2.
6E

+0
6

2.
9E

+0
6

3.
3E

+0
6

3.
6E

+0
6

4.
0E

+0
6

Time (ms)

N
et

w
o

rk
 T

ra
ffi

c 
(B

yt
es

/S
ec

o
n

d)

Actual Placement Best Placement Actual Placement Best Placement

Actual Placement Best Placement

Figure 6: The network traffic timeline for different cost functions. X axis shows the application runtime and Y axis shows the
total amount of data transmission per unit time.

6.2 Placement Algorithm Measurements
To verify the design of the fusion module and placement

algorithm, we have implemented the tracker application (Fig-
ure 1) using the fusion API and deployed it on the iPAQ farm.

0
Sink

1

2 5

4

3

8

7

6

11
Src

10
Src

9
Src

Figure 7: iPAQ Farm Experiment Setup. An arrow repre-
sents that two iPAQs are mutually reachable in one hop.

Figure 7 shows the topological view of the iPAQ farm used
for the tracker application deployment. It consists of twelve

iPAQ 3870s configured identically to those in the measurements
above. Node 0, where node i is the iPAQ corresponding to ith
node of the grid, acts as the sink node. Nodes 9, 10, and 11 are
the iPAQs acting as the data sources. The location of filter and
collage fusion points are guided by the placement module.

The placement module simulator runs on a separate desktop
in synchrony with the fusion module. At regular intervals, it
collects the transmission details (number of bytes exchanged
between different nodes) from the farm. It uses a simple power
model (discussed later) to account for the communication cost
and to monitor the power level of different nodes. If the place-
ment module decides to transfer a fusion point to another node,
it invokes the moveFC API to effect the role transfer.

For transmission rates, we have tuned the tracker application
to generate data at consistent rates as shown in Figure 1, with
x equal to 6KBytes per minute. This is equivalent to a scenario
where cameras scan the environment once every minute, and
produce images ranging in size from 6 to 12KBytes after com-
pression.

The network is organized as the grid shown in Figure 7. For
any two nodes, the routing module returns the path with a min-

123



0
10
20
30

40
50
60

70
80

90
100

Run Time

(normalized)

Remaining

Capacity (%)

Number of Role

Transfers

(absolute)

MT2

MPV

MTP

(B)(A)

0.0E+00

5.0E+05

1.0E+06

1.5E+06
2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06
4.5E+06

42
0

16
20

3E
+

05

8E
+

05

1E
+

06

2E
+

06

2E
+

06

3E
+

06

3E
+

06

3E
+

06

4E
+

06

Time (ms)

P
o

w
er

 V
ar

ia
n

ce

MT2

MPV

MTP

Figure 8: Comparison of different cost functions. Application runtime is normalized to the best case (MT2), and total remain-
ing power is presented as the percentage of the initial power.

imum number of hops across powered nodes. To account for
power usage at different nodes, the placement module uses a
simple approach. It models the power level at every node, ad-
justing them based upon the amount of data a node transmits or
receives. The power consumption corresponds to ORiNOCO
802.11b PC card specification [1]. Our current power model
only includes network communication costs. After finding a
naive tree, the placement algorithm runs in optimization phase
for two seconds. The length of this period is tunable and it in-
fluences the quality of mapping at the end of the optimization
phase. During this phase, fusion nodes wake up every 100ms to
determine if role transfer is indicated by the cost function. Af-
ter optimization, the algorithm runs in maintenance phase until
the network becomes fragmented (some consumer cannot reach
one of its inputs). During the maintenance phase, role transfer
decisions are evaluated every 50 seconds. The role transfers are
invoked only when the health improves by a threshold of 5%.

Figure 6 shows the network traffic per unit time (sum of the
transmission rate of every network node) for the cost functions
discussed in Section 4.3. It compares the network traffic for the
actual placement with respect to the best possible placement of
the fusion points (best possible placement is found by compar-
ing the transmission cost for all possible placements). Note that
the application runtime can be increased by simply increasing
the initial power level of the network nodes.

In MT1, the algorithm finds a locally best placement by the
end of optimization phase itself. The optimized placement is
only 10% worse than the best placement. The same placement
continues to run the application until one of the fusion points
(one with the highest transmission rate) dies, i.e. the remaining
capacity becomes less than 5% of the initial capacity. If we do
not allow role migration, the application will stop at this time.
But allowing role migration, as in MT2, enables the migrating
fusion point to keep utilizing the power of the available net-
work nodes in the locally best possible way. Results show that
MT2 provides maximum application runtime that is more than
twice as long as that for MT1. The observed network traffic is
at most 12% worse than the best possible for the first half of the
run, and it is same as the best possible rate for the latter half
of the run. MPV performs worst, while MTP has compara-
ble network lifetime as MT2. Figure 6 also shows that running

the optimization phase before instantiating the application im-
proves the total transmission rate by 34% compared to the naive
placement.

Though MPV does not provide comparably good network
lifetime (Figure 6B), it provides the best (least) power variance
compared to other cost functions (Figure 8A). Since MT1 and
MT2 drain the power of fusion nodes completely before role
migration, they show worst power variance. Also, the number
of role migrations is minimum compared to other cost functions
(Figure 8B). These results show that the choice of cost function
should be dependent upon application context and network con-
dition. If, for an application, role transfer is complex and ex-
pensive, but network power variance is not an issue, then MT2
should be preferred. However, if network power variance needs
to be minimized and role transfer is inexpensive, MTP should
be preferred. Simulation results for other task graph configu-
rations have been found to provide similar insight into the cost
functions’ behavior.

6.3 Discussion
By running the application and role assignment modules sep-

arately, we have simplified our evaluation approach. This ap-
proach has some disadvantages such as limited ability to com-
municate complex resource monitoring results. Transferring
every detail of the running state from the fusion module to
the placement module is prohibitive in our decoupled setup due
to the resulting network perturbation. Such perturbation, even
when minimal state is being communicated between the mod-
ules, prevents accurate network delay metric usage in a cost
function. However, our simplified evaluation design has al-
lowed us to rapidly build prototypes of the fusion and place-
ment modules.

7. RELATED WORK
Data fusion, or in-network aggregation, is a well-known tech-

nique in sensor networks. Research experiments have shown
that it saves considerable amount of power even for simple fu-
sion functions like finding min, max or average reading of sen-
sors [11, 8]. While these experiments and others have motivated
the need for a good role assignment approach, they do not use
a dynamic heuristic for the role assignment and their static role

124



assignment approach will not be applicable to streaming media
applications.

DFuse employs a script based interface for writing applica-
tions over the network similar to SensorWare [4]. SensorWare
is a framework for programming sensor networks, but its fea-
tures are orthogonal to what DFuse provides. Specifically, 1)
SensorWare does not employ any strategy for assigning roles to
minimize the transmission cost, or dynamically adapt the role
assignment based on available resources. It leaves the onus to
the applications. 2) Since DFuse focuses on providing support
for fusion in the network, the interface to write fusion-based ap-
plications using DFuse is quite simple compared to writing such
applications in SensorWare. 3) DFuse provides optimizations
like prefetching and support for buffer management which are
not yet supported by other frameworks. Other approaches, like
TAG [11], look at a sensor network as a distributed database
and provide a query-based interface for programming the net-
work. TAG uses an SQL-like query language and provides in-
network aggregation support for simple classes of fusion func-
tions. But TAG assumes a static mapping of roles to the net-
work, i.e. a routing tree is built based on the network topology
and the query in hand.

Recent research in power-aware routing for mobile ad hoc
networks [14, 9] proposes power-aware metrics for determin-
ing routes in wireless ad hoc networks. We use similar metrics
to formulate different cost functions for our DFuse placement
module. While designing a power-aware routing protocol is
not the focus of this paper, we are looking into how the routing
protocol information can be used to define more flexible cost
functions.

8. FUTURE WORK
We plan to extend our work in two directions: extending the

fusion API to accommodate more applications, and further ex-
ploring the role assignment algorithm behavior and capabili-
ties. DFuse assumes that the addresses of the data sources
are known at query time. This assumption may be a limiting
assumption for many applications where data sources are un-
known at query time. We are exploring different ways of ex-
tending DFuse to handle such data-centric queries. One pos-
sible approach is to have an interest-dissemination phase be-
fore the naive tree building phase of the role assignment algo-
rithm. During this phase, the interest set of individual nodes
(for specific data) is disseminated as is done in directed dif-
fusion. When the exploratory source packets reach the sink
(root node of the application task graph), the source addresses
are extracted and recorded for later use in other phases of the
role assignment algorithm. We plan to study the role assign-
ment behavior in the presence of node mobility and/or failure.
We expect future iterations of this algorithm to gracefully adapt
fusion point placements in the presence of mobility and fail-
ures as is done currently to conserve power. The cost function
may need to include parameters pertaining to mobility and node
failures. We would also like to investigate cost functions exten-
sions to include cross-layer information (such as placement of
relay nodes) to further improve fusion point placement.

9. CONCLUSION
As the form factor of computing and communicating devices

shrinks and the capabilities of such devices continue to grow, it
has become reasonable to imagine applications that require rich

computing resources today becoming viable candidates for fu-
ture sensor networks. With this futuristic assumption, we have
embarked on designing APIs for mapping fusion applications
such as distributed surveillance on wireless ad hoc sensor net-
works. We argue that the proposed framework will ease the
development of complex fusion applications for future sensor
networks. Our framework uses a novel distributed role assign-
ment algorithm that will increase the application runtime by
doing power-aware, dynamic role assignment. We validate our
arguments by designing a sample application using our frame-
work and evaluating the application on an iPAQ based sensor
network testbed.

10. REFERENCES
[1] ORiNOCO PC Card (Silver/Gold) Specification:

http://www.hyperlinktech.com/web/orinoco/-
orinoco pc card spec.html, 2003.

[2] S. Adhikari, A. Paul, and U. Ramachandran. D-stampede:
Distributed programming system for ubiquitous computing. In
Proceedings of the 22nd International Conference on Distributed
Computing Systems(ICDCS), Vienna, July 2002.

[3] M. Bhardwaj and A. Chandrakasan. Bounding the lifetime of
sensor networks via optimal role assignments. In IEEE
INFOCOM, 2002.

[4] A. Boulis, C. C. Han, and M. B. Srivastava. Design and
implementation of a framework for programmable and efficient
sensor networks. In The First International Conference on
Mobile Systems, Applications, and Services(MobiSys), San
Francisco,CA, 2003.

[5] E. Cayirci, W. Su, and Y. Sankarasubramanian. Wireless sensor
networks: A survey. Computer Networks (Elsevier),
38(4):393–422, March 2002.

[6] J. S. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, and D. Ganesan. Building efficient wireless sensor
networks with low-level naming. In Symposium on Operating
Systems Principles, pages 146–159, 2001.

[7] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister. System architecture directions for networked sensors. In
Architectural Support for Programming Languages and
Operating Systems, pages 93–104, 2000.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm for
sensor networks. In Mobile Computing and Networking, pages
56–67, 2000.

[9] Jae-Hwan Chang and Leandros Tassiulas. Energy conserving
routing in wireless ad-hoc networks. In IEEE INFOCOM, pages
22–31, 2000.

[10] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad
hoc wireless networks. In Imielinski and Korth, editors, Mobile
Computing, volume 353. Kluwer Academic Publishers, 1996.

[11] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tag: a tiny aggregation service for ad-hoc sensor networks. In
Operating System Design and Implementation(OSDI),
Boston,MA, Dec 2002.

[12] Netperf. The Public Netperf Homepage: http://www.netperf.org/,
2003.

[13] U. Ramachandran, R. S. Nikhil, N. Harel, J. M. Rehg, and
K. Knobe. Space-time memory: A parallel programming
abstraction for interactive multimedia applications. In Principles
Practice of Parallel Programming, pages 183–192, 1999.

[14] S. Singh, M. Woo, and C. S. Raghavendra. Power-aware routing
in mobile ad hoc networks. In Mobile Computing and
Networking, pages 181–190, 1998.

[15] E. Zayas. Attacking the process migration bottleneck. In
Proceedings of the eleventh ACM Symposium on Operating
systems principles, pages 13–24. ACM Press, 1987.

125


