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Abstract
The somatostatin (SRIF) system, which includes the SRIF ligand and receptors, regulates

anterior pituitary gland function, mainly inhibiting hormone secretion and to some extent

pituitary tumor cell growth. SRIF-14 via its cognate G-protein-coupled receptors (subtypes

1–5) activates multiple cellular signaling pathways including adenylate cyclase/cAMP, MAPK,

ion channel-dependent pathways, and others. In addition, recent data have suggested

SRIF-independent constitutive SRIF receptor activity responsible for GH and ACTH inhibition

in vitro. This review summarizes current knowledge on ligand-dependent and independent

SRIF receptor molecular and functional effects on hormone-secreting cells in the anterior

pituitary gland.
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Introduction
The anterior pituitary gland is subjected to the stimulatory

and inhibitory effects of multiple regulators. Somatostatin

(SRIF) and its cognate receptors (sst1–sst5) exhibit a

dominant inhibitory role in pituitary gland regulation.

Hypothalamic SRIF was isolated from the hypothalamus

(Burgus et al. 1973) and subsequently demonstrated to

be secreted throughout the brain and from multiple

peripheral organs, affecting multiple tissues (Patel 1999).

The pituitary gland is positioned outside the blood–

brain barrier, and is composed of two entities that merge

during embryonic development, the anterior and inter-

mediate lobes that ascend from the oral ectoderm and the

posterior lobe that descends from the hypothalamus

(Drouin 2011). The anterior pituitary harbors hormone-

secreting epithelial-origin cell types, including those

expressing prolactin (PRL) and growth hormone (GH)

that compose most of the gland, centrally located

adrenocorticotropin (ACTH)-secreting and thyrotropin
(TSH)-secreting cells, and laterally scattered gonadotropin

(follicle-stimulating hormone (FSH) and luteinizing hor-

mone (LH)) cells. The intermediate lobe contains cells

secreting a-melanotropin; however, this lobe degenerates

in humans. The posterior lobe harbors axons descending

from neurons located in the hypothalamic nuclei and

release vasopressin (antidiuretic hormone) and oxytocin

(Bichet 2011). As various SRIF receptor expression levels

and subtype profiles were observed on all pituitary cell

types (Ben-Shlomo & Melmed 2010), a range of SRIF

system effects are exhibited in the different cell types.

Cortistatin (CST), a ligand with SSTR binding affinity

similar to that of SRIF, is expressed in the cerebral cortex

and hippocampus, but not in the hypothalamus (Spier &

de Lecea 2000); hence, it is not a major endocrine

regulator of pituitary signaling and function.

SRIF receptors (SSTRs) exhibit in vitro constitutive

activity, independently of SRIF or CST presence, and
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regulate GH and ACTH production (Ben-Shlomo et al.

2009, 2013). The SRIF ligand and the five SRIF receptor

subtypes (sst1–sst5) regulate pituitary function at two

levels, via ligand exposure and potentially via selective

receptors, independently of the ligand.
Somatostatin

Somatostatinergic neuronal cell bodies lie within the

anterior periventricular nucleus and comprise 80% of

hypothalamic SRIF immunoreactivity. The remaining

hypothalamic SRIF-producing neuronal bodies lie within

the paraventricular, arcuate, and ventromedial nuclei.

Retrograde-tracing functional topography of hypothalamic

SRIF neurons in the male rat demonstrated that SRIF

neurons regulating the pituitary are confined within the
Periventricular
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Figure 1

Somatostatin system: hypothalamus–anterior pituitary lobe axis. Soma-

tostatinergic neuron bodies located at the hypothalamic periventricular

(80%) and paraventricular (20%) nuclei travel through the median

eminence and pituitary stalk and secrete SRIF into the pituitary portal

circulation, reaching the cells of the anterior pituitary gland. Receptor

subtype distribution is represented by subtype numbers (1–5) inside the

specific cell type and is based on receptor profile in cell-respective human

tumors, i.e. GH-, ACTH-, PRL, TSH-secreting adenomas and non-functioning

http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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periventricular and paraventricular nuclei, but not in the

arcuate nucleus (Kawano & Daikoku 1988). These neurons

send axonal projections to the median eminence at the base

of the hypothalamus (Fig. 1). Ultrastructural morphometric

analysis of SRIF-like immunoreactive neurons indicated

that more than half of all terminals in the median

eminence exhibit SRIF-containing vesicles with estimated

0.7 mM concentration per vesicle (Foster & Johansson

1985). Hypothalamic SRIF neuron axons descend from the

median eminence toward the pituitary stalk and terminate

at the pituitary portal blood vessel system, releasing SRIF

into the blood reaching the anterior pituitary cells (Patel

1999) or travel through the neural pituitary stalk into the

posterior pituitary (Patel & Srikant 1986; Fig. 2).

SRIF is cleaved from a common SRIF prohormone into

several cyclic tetradecapeptide products by prohormone
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pituitary tumors that also include gonadotroph FSH/LH secreting tumors.

Large size red letter indicates that w90% of selective tumor type are

positive for that receptor subtype, medium size blue letter indicate that

w70% of selective tumor types are positive for that receptor subtype, small

size black letters that w50% of selective tumor type are positive for that

receptor subtype. Lower percentages are not presented. Receptor profile

data is based on Ben-Shlomo & Melmed (2010).
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Figure 2

Selected SRIF-dependent pituitary signaling pathways. SRIF and SRIF

analogs activate multiple molecular signaling pathways depicted here,

which control pituitary hormone secretion as well as cell growth. These

include Ca2C and KC channels, phosphatases such as SHP1 and PP2A, cyclic

nucleotide synthases such as guanylyl and adenylyl cyclase, nitric oxide,

NFkB, MAPK/ERK, PKC, as well as BMPs.
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convertases (Galanopoulou et al. 1995); however, SRIF-14,

which contains 14 amino acids, is the predominant

form of SRIF in the brain, including the hypothalamus

(Acunzo et al. 2008), and therefore the predominant

pituitary regulator.

Multiple factors regulate hypothalamic SRIF-14

production and secretion. Table 1 lists factors demon-

strated to have a direct effect on hypothalamic SRIF

production and/or secretion. Of note, most studies

utilized either ex vivo hypothalamic slices or hypothalamic

primary cell cultures, attempting to isolate the effects of

the studied molecule on SRIF.

SRIF half-life is short (w2 min) as it is rapidly

internalized and inactivated by peptidases inside the cell

after internalization (Roosterman et al. 2008) and in the

circulation (Werle & Bernkop-Schnurch 2006). To over-

come this limitation for clinical use, analogs such as

octreotide (Bauer et al. 1982), lanreotide (Sassolas et al.

1989), and pasireotide (Bruns et al. 2002) were synthesized

as stable SRIF agonists.
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-14-0034 Printed in Great Britain
SRIF regulates pituitary function through the

G-protein-coupled receptors (GPCRs): SRIF receptor sub-

type 1 (sst1), sst2, sst3, and sst5. The expression of sst4

in the normal adult pituitary gland remains unclear.

Although sst2 is alternatively spliced to sst2a and sst2b,

only the sst2a isoform is expressed in the human pituitary

tumors (Panetta & Patel 1995). The five human SSTR genes

are located on five different chromosomes and encode

receptor protein of size ranging from 356 to 391 amino

acid residues with 39–57% sequence identity among the

receptors (homology derives mostly from the trans-

membranal domain; Patel 1999). Multiple factors that

regulate SSTR expression levels (Ben-Shlomo & Melmed

2010) are provided in Table 2.

SRIF-14 exhibits high binding affinity (few hundreds

pM in membrane extracts from cell transfectants in vitro)

to all receptor subtypes (Patel 1999). Upon ligand binding,

the receptors bind the Gai/o subunit of the Gabg tetramer,

releasing Gbg, initiating multiple cascades of signaling

pathways. Most studies on SRIF-14 regulation of pituitary
Published by Bioscientifica Ltd.
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Table 1 Molecules regulating hypothalamic SRIF production

Effect Molecule Method utilizeda References

Stimulation Acetylcholine Rat fetal hypothalamic primary cultures (d18) Peterfreund & Vale (1983)
Dopamine Male rat hypothalamic segments Negro-Vilar et al. (1978), Maeda &

Frohman (1980) and Lengyel et al.
(1985)

Neurotensin Rat hypothalamic segments Sheppard et al. (1979), Maeda & Frohman
(1980) and Shimatsu et al. (1982)

Melatonin Rat hypothalamic segments Richardson et al. (1981)
Glucagon Perfused hypothalamic halves of male rats Shimatsu et al. (1982)
Growth hormone Rat hypothalamic segments Sheppard et al. (1978)
IGF1 Rat hypothalamic segments Berelowitz et al. (1981)
Sex steroidsb In vivo and in vitro approaches. SRIF mRNA,

protein, or hypothalamic neuron number
Werner et al. (1988), Zorrilla et al. (1990),

Senaris et al. (1992), Simonian et al.
(1998), Pillon et al. (2004) and Zhang
et al. (2009)

Thyroid hormones Rat hypothalamic segments Berelowitz et al. (1980)
Insulin Rat hypothalamic segments Berelowitz et al. (1982)
GHRH Cultured fetal rat hypothalamic cells Iwasaki et al. (1987) and

Richardson et al. (1988)
CRH Cultured fetal rat hypothalamic cells Iwasaki et al. (1987)
TRH Cultured fetal rat hypothalamic cells Iwasaki et al. (1987)
NPY Rat hypothalamic segments Korbonits et al. (1999)
Bombesin SRIF in the hypophysial portal blood Abe et al. (1981)
Norepinephrine Dispersed adult male rat hypothalamic cells Negro-Vilar et al. (1978) and

Richardson & Twente (1990)
Substance P Rat hypothalamic segments Sheppard et al. (1979)
Cytokines: IL1 and IL2 Dispersed fetal rat diencephalic cells;

mediobasal hypothalamus section
Scarborough et al. (1989), Honegger et al.

(1991) and Karanth et al. (1993)
Inhibition g-aminobutyric acid (GABA) Rat fetal hypothalamic primary cultures (d18) Peterfreund & Vale (1983)

Serotonin Rat fetal hypothalamic primary cultures (d18) Richardson et al. (1981) and
Peterfreund & Vale (1983)

Acetylcholine Male rat hypothalamic segments Richardson et al. (1980)
Vasoactive intestinal

polypeptide (VIP)
Perfused hypothalamic halves of male rats Shimatsu et al. (1982)

Leptin Fetal rat neurons in monolayer culture Quintela et al. (1997a)
Somatostatin Rat hypothalamic periventricular nucleus

fragments
Aguila (1998)

Opioids Rat hypothalamic fragments Lengyel et al. (1985)
Glucose Rat hypothalamic segments Berelowitz et al. (1982)
Cytokines: TGFb Primary monolayer cultures of

hypothalamic cells
Quintela et al. (1997b)

Dual Glucocorticoids In vivo injection induced while in vitro hypo-
thalamic segment perfusion decreased SRIF
secretion

Estupina et al. (1997)

aAll experiments were carrried out in male rats.
bSome report decreased somatostatin level following sex steroid treatment (Fernandez et al. 1992, Hassan et al. 2001). This discrepance may be due to the
experimental approach including whether treatment was conducted in vivo or in vitro, treatment duration and dose, sex of the animal model and species.
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function have focused on sst2 and sst5; however, the

adult pituitary gland expresses sst1 and sst3 that are yet

to be explored in this context. Although SRIF signaling

pathways in non-pituitary cells have been extensively

investigated, with more than 20 such intracellular

pathways described (Cervia & Bagnoli 2007), pituitary

SRIF-mediated molecular signaling pathways has been

mostly limited to ion channel regulation, adenylate

cyclase/cAMP/PKA regulated pathways, and protein phos-

phatase activation (Ben-Shlomo & Melmed 2010).
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-14-0034 Printed in Great Britain
SRIF-dependent pituitary molecular
signaling pathways

SRIF-14 signaling in the anterior pituitary gland primarily

mediates the regulation of hormone secretion, yet also

plays a role in regulation of cell growth (Fig. 1).
Ion channel regulation

The dominant function of SRIF-dependent pituitary signal-

ing is the inhibition of stimulated hormone secretion.
Published by Bioscientifica Ltd.
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Table 2 Factors regulating pituitary cell SRIF receptor expressiona. Table adapted and updated from Trends in Endocrinology &

Metabolism, 21, A Ben-Shlomo & S Melmed, Pituitary somatostatin receptor signaling, 123–133, copyright (2010), with permission

from Elsevier

Treatment sstr-1 sstr-2 sstr-3 sstr-4 sstr-5 References

SRIF 14 (O24 h) C C C C C Berelowitz et al. (1995) and Luque et al. (2004)
High dose SRIF (4 h) C C 0 0 C Cordoba-Chacon et al. (2012)
Low dose SRIF (4 h) C 0 0 0 K Cordoba-Chacon et al. (2012)
Forskolin C C NA NA 0/K Patel et al. (1993), Luque et al. (2004) and

Cordoba-Chacon et al. (2012)
PKC activator (TPA) C 0 0 0 0 Cordoba-Chacon et al. (2012)
GHRH 0/C 0/C NA NA 0/K Luque et al. (2004), Park et al. (2004) and

Cordoba-Chacon et al. (2012)
Ghrelin 0/C 0/K NA NA 0/K Luque et al. (2004), Yan et al. (2004) and

Cordoba-Chacon et al. (2012)
17b-estradiol K/C C C NA C/K Xu et al. (1995), Djordjijevic et al. (1998),

Kimura et al. (1998), Canosa et al. (2003) and
Cardenas et al. (2003)

Testosterone 0/C 0/C C NA 0 Xu et al. (1995)
Thyroxine C NA NA NA C James et al. (1997)
Glucocorticoids (2 h) C C 0 NA NA Xu et al. (1995)
Glucocorticoids (24–48 h) K K K then C NA 0 Xu et al. (1995), Petersenn et al. (1999) and

van der Hoek et al. (2005)
Progesterone C 0 K NA NA Xu et al. (1995)
Food deprivation K K K 0 0 Berelowitz et al. (1995)
Diabetes mellitus K K K 0 K Berelowitz et al. (1995)
TGFb NA C NA NA NA Puente et al. (2001)

C, Upregulation of receptor expression; K, downregulation of receptor expression; 0, no change in receptor expression; NA, not assessed.
aThis table incorporates results from different species (pig, rat, and fish, baboon), genders, and assay techniques (in vitro and in vivo, primary cultures and
cell-lines, mRNA transcripts, and promoter activation measurements); therefore an integrated interpretation is difficult.
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Hypothalamic hormones (Bjoro et al. 1987, Spada et al.

1990, Bonnefont et al. 2000, Liu et al. 2006, Tsaneva-

Atanasova et al. 2007) signal to release anterior pituitary

hormone secretion by increasing intracellular Ca2C levels,

resulting in the exocytosis of hormone-containing vesicles.

Most information related to SRIF-mediated ion channel

regulation was accrued through the investigation of

mechanisms for SRIF-dependent inhibition of GH

secretion. Although the definitive role of individual ion

channels in regulation of hormone secretion are not fully

understood, advances have been made through the use of

electro-physical methods in addition to molecular bio-

logical approaches. NaC, Ca2C, and KC channels have

been isolated in somatotroph cell membranes and

described to contribute to hormone secretion.

GH secretion is activated upon GH-releasing hormone

(GHRH) binding and activation of somatotroph cell

surface receptors. GHRH signaling causes membrane

depolarization and an action potential burst in response

to the opening of tetrodotoxin-insensitive NaC channels.

In turn, increased Ca2C transient frequency and intra-

cellular Ca2C concentration lead to amplified exocytosis

of GH-containing granules (Tsaneva-Atanasova et al.

2007). In contrast, SRIF antagonizes the effect of GHRH

through membrane hyperpolarization by opening KC
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-14-0034 Printed in Great Britain
channels leading to depletion of intracellular Ca2C

concentration, effectively inhibiting GH exocytosis

(Kraicer & Spence 1981, Draznin et al. 1988, White

et al. 1991, Tsaneva-Atanasova et al. 2007). SRIF signaling

through sst2 and sst4 activates KC influx through both

inwardly rectifying channel conductance and delayed

rectifying KC channels in GH3 cells (Yang et al. 2005,

2007, Yang & Chen 2007). SRIF targets the large-

conductance, calcium- and voltage-activated KC channels

(BK channel) in GH4C1 cells (White et al. 1993).

Ultimately, these effects result in membrane hyperpola-

rization and closure of L- and N-type voltage sensitive

calcium channels (Petrucci et al. 2000, Cervia et al. 2002a,

Tsaneva-Atanasova et al. 2007, Yang et al. 2007). SRIF-

reduced T-type current occurs primarily in rat somato-

troph cultures (Chen et al. 1990, Yang et al. 2007).

In somatotroph cells, SRIF regulation of KC currents are

mediated by Gai3 (Chen 1997), while Ca2C currents are

mediated by Gao2 (Chen 1997, Degtiar et al. 1997), b1, b3

(Kleuss et al. 1992), and g3 (Kleuss et al. 1993). In human

GH-secreting tumor cultures, sst5-specific signaling is

dependent on Gao1 (Peverelli et al. 2013).

SRIF-mediated inhibition of corticotropin-

releasing hormone (CRH)-stimulated Ca2C levels in

human corticotropin-secreting pituitary adenomas is
Published by Bioscientifica Ltd.
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effectively blocked by pretreatment with pertussis toxin

(PTX), indicating that the effect is Gai/o dependent (Spada

et al. 1990). SRIF-induced KC influx is regulated by Gai3 in

AtT-20 corticotroph cells (Takano et al. 1997). Although it

remains to be determined whether SRIF regulates pituitary

Ca2C levels independently of KC channels, GH release

correlates with both frequency and amplitude of calcium

oscillations, while calcium channel blockers and SRIF

acutely suppress Ca2C extrusion (Holl et al. 1988). SRIF

treatment resulted in Ca2C-dependent redistribution of

cytoplasmic microfilaments, without affecting intra-

cellular somatotroph GH content (Shimada et al. 1990),

in addition to reduced association of exocytosis-associated

RAB3B and SNARE proteins (Matsuno et al. 2003).

Finally, it has been recently shown that SRIF inhibited

CaMKiib expression and protein levels, and knockdown of

CaMKiib decreases Ca2C levels in GC cells and suppressed

secretion, suggesting that CaMKiib may mediate SRIF

regulation of Ca2C (Cervia 2011). In summary, although

the role of SRIF-dependent regulation of ion channels in

pituitary cell growth is unknown, SRIF-dependent

regulation KC-derived membrane hyperpolarization and

the reduction of Ca2C influx and concentration mediate

the acute regulation of the exocytosis of hormone-

containing vesicles.
Adenylate cyclase/cAMP/PKA signalling

SRIF inhibits pituitary adenylate cyclase/cAMP/PKA sig-

naling, thereby inhibiting pituitary hormone synthesis

and cell growth. SRIF inhibits cAMP production and ACTH

secretion induced by CRH, forskolin, isoproterenol,

vasoactive intestinal polypeptide (VIP), and cholera

toxin in AtT-20 cells (Heisler et al. 1982). Similarly, SRIF

inhibits cAMP and GH production induced by GHRH

stimulation in primary pituitary cells (Bilezikjian & Vale

1983). SRIF inhibits forskolin-induced cAMP/PKA signal-

ing pathway in rat somatotropic cells (Tentler et al. 1997).

sst1, sst2, sst3, and sst5 all mediate SRIF inhibition of

adenylate cyclase in pituitary cells (Tentler et al. 1997,

Cervia et al. 2003, Ben-Shlomo et al. 2005). SRIF inhibited

forskolin-induced cAMP production, PKA activation,

CREB phosphorylation, and transcription potency, while

overexpression of the PKA catalytic subunit suppressed

SRIF action in sst2 stable transfectant GH4 cells (Tentler

et al. 1997).

The ability of SRIF to inhibit adenylate cyclase is Gai/o-

dependent (Koch et al. 1985, Tallent & Reisine 1992,

Liu et al. 1994, Morishita et al. 2003). In GH4C1 cells,

SRIF-action is mediated specifically via Gai2 (Liu et al. 1994),
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-14-0034 Printed in Great Britain
as PTX suppresses SRIF-mediated inhibition of VIP-

induced cAMP (Koch et al. 1985). PTX treatment similarly

attenuated SRIF action in GH4 cells overexpressing sst2

(Tentler et al. 1997). In addition, PTX attenuated SRIF-

dependent inhibition of GHRH-induced GH in MtT/SGL

somatotroph cells (Morishita et al. 2003). sst5-specific

inhibition of forskolin-stimulated cAMP accumulation

was dependent on Gao1 in human GH-secreting tumor

primary cultures (Peverelli et al. 2013). In AtT-20 cells, SRIF

inhibition of adenylate cyclase and ACTH secretion is

Gai1-dependent (Tallent & Reisine 1992). sst2, sst3, and

sst5 mediate SRIF-dependent inhibition of cAMP in AtT-20

cells (Ben-Shlomo et al. 2005), as does sst1 in GC cells

(Cervia et al. 2003). In chicken pituitary cells, SRIF

inhibited GHRH-induced GH release by inhibiting

cAMP/PKA signaling independent of calcium or protein

kinase C (Donoghue & Scanes 1991). Although SRIF is

classically an inhibitor of adenylate cyclase activity, there

are reports using primary porcine somatotroph cultures in

which both low and high doses of SRIF increased cAMP

levels, suggesting a possible dual dose-dependent effect

(Ramirez et al. 2002). As the mechanism by which this

phenomenon occurs remains elusive, perhaps SSTRs, such

as other GPCRs, might interact with not only Gai/o

proteins but also Gas depending on the ligand context

and receptor conformation. Therefore, SRIF-mediated

inhibition of pituitary hormone secretion is both Ca2C

and cAMP dependent; as both Ca2C concentration and

cAMP levels are Gai dependent, it is difficult to determine

the relative contribution of each to hormone secretion

and whether these mechanisms occur independently of

each other.
Protein phosphatase pathways

SRIF-mediated regulation of pituitary protein phosphatase

pathways is primarily associated with mechanisms con-

trolling cell growth. SRIF is associated with increased

protein phosphatase activity in both human GH-secreting

pituitary adenoma cells and rat cell lines as well as human

non-functioning pituitary tumors (Cervia & Bagnoli

2007). SRIF increases tyrosine phosphatase activity and

was associated with the inhibition of cell growth in

human GH-secreting pituitary tumor cells in vitro

(Florio et al. 2003), while serine/threonine phosphatase

activity participates in SRIF-mediated regulation of Ca2C

influx through dephosphorylation of Ca2C and KC

voltage-activated (BK) channels (White et al. 1991).

Octreotide exhibited antiproliferative effects in GH3

cells, mediated by both PTX-dependent and SHP1
Published by Bioscientifica Ltd.
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(but not SHP2)-dependent mechanism (Theodoropoulou

et al. 2006, Cerovac et al. 2010). Octreotide induced SHP1-

dependent inhibition of the PI3K activity leading to the

inhibition of PDK1 and Akt activity, ultimately leading to

enhanced glycogen synthase kinase 3b (GSK3b) activity

and upregulation of the tumor suppressor ZAC1 (ZACN;

Theodoropoulou et al. 2006). Octreotide also increased the

levels of rapamycin-suppressed phosphorylated insulin

receptor substrate 1, subsequently decreasing phosphoryl-

ation of Akt through SHP1 (Cerovac et al. 2010).

Interestingly, in acromegaly patients treated with octreo-

tide, ZAC1 immunoreactivity correlated with insulin-like

growth factor 1 (IGF1) normalization and tumor shrinkage

(Theodoropoulou et al. 2009). Both octreotide and an

sst2-specific agonist (BIM23120) induced apoptosis,

and apoptosis-associated gene expression in human

GH-secreting tumors is blocked by vanadate, indicating

the involvement of protein phosphatases (Ferrante et al.

2006). Vanadate similarly inhibited SRIF and lanreotide-

induced growth arrest in primary cultures of non-

functioning pituitary adenomas (Florio et al. 1999). The

role of SRIF-mediated regulation of protein phosphatase

activity and growth arrest in non-pituitary cells has been

described (Florio 2008). As, clinically, SRIF analog therapy

induces pituitary tumor shrinkage, the mechanisms

involved in SRIF-mediated protein phosphatase activation

require further investigation. Moreover, the contribution

of individual SSTR subtypes to phosphatase activation is

still unclear.
Other SRIF-dependent pituitary pathways

Several other signaling pathways have been described to

mediate SRIF action (Cervia & Bagnoli 2007, Otsuka et al.

2012), including MAPK, guanylyl cyclase, PKC, nitric

oxide (NO), PI3K/Akt, and bone morphogenetic proteins

(BMPs). The physiological relevance of these pathways to

pituitary cell growth and hormone secretion remains

unclear. Both octreotide and pasireotide decreased MAP-

K/ERK phosphorylation in both GH3 cells and in GH-se-

creting tumor cultures, and upregulated p27Kip expression

(Hubina et al. 2006), while knockdown of sst5 increased

ERK phosphorylation in AtT-20 cells (Ben-Shlomo et al.

2007). In human GH-secreting tumor cultures, sst5-

dependent inhibition of ERK phosphorylation was depen-

dent on Gao1 (Peverelli et al. 2013). Octreotide activated

PI3K/Akt and MAPK pathways through sst2 and sst5 in

GH-secreting cells, inducing histone methyltransferases

associated with menin, resulting in the upregulation of

p27Kip and cell cycle arrest (Horiguchi et al. 2009). These
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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discrepancies may suggest cell-type specificity or perhaps a

similar dual role for SRIF action as that for adenlylate

cyclase regulation. SRIF was also shown to exhibit a dual

dose-dependent effect on pituitary guanylyl cyclase

regulation and cGMP accumulation (Vesely 1980).

SRIF inhibited both PKC-induced stimulation of

GH secretion (Ikuyama et al. 1987) and NO-induced

cGMP and GH levels (Bocca et al. 2000, Luque et al.

2005). SRIF blocked phospholipase A2-mediated GHRH-

and thyrotropin-releasing hormone (TRH)-induced

pituitary arachidonate release (Judd et al. 1986) and

decreased arachidonate levels in GC cells (Cervia et al.

2002b). SRIF was also shown to induce apoptosis through

NFkB/JNK/caspase pathway (Ferrante et al. 2006,

Guillermet-Guibert et al. 2007), and inhibited vascular

endothelial growth factor production levels in pituitary

tumor cells (Lohrer et al. 2001, Zatelli et al. 2007). SRIF

antagonized CRH-dependent inhibition of GSK3b activity

in AtT-20 cells, inhibiting Wnt/b-catenin-mediated tran-

scription and cell growth in a cAMP-dependent manner

(Khattak et al. 2010). SRIF action in AtT-20 cells is

dependent on BMP signaling. Inhibitory effects of octreo-

tide and pasireotide on CRH-induced secretion in AtT-20

cells were attenuated by noggin, an inhibitory BMP-

binding protein, suggesting that the endogenous BMP

system is functionally linked to the mechanism of SRIF-

mediated inhibition of secretion (Tsukamoto et al. 2010).

SRIF-signaling in GH3 cells was similarly shown to be

dependent on BMPs (Tsukamoto et al. 2011). Although it is

evident that kinases and BMP growth factors are involved

in pituitary SRIF signaling, our understanding of their

regulation and functional consequences remain unclear.
Receptor phosphorylation, internalization, and

desensitisation

Following activation of SSTRs by ligand, a feedback

mechanism is activated leading to the receptor phos-

phorylation and internalization, ultimately initiating

receptor desensitization and attenuated receptor-related

signaling. As of yet, the only SSTR subtype described to

follow this process in pituitary cells is sst2. sst2 was

phosphorylated and internalized after treatment with SRIF

and sst2-specific agonists in stable sst2 transfectant

GH4C1 cells (Hipkin et al. 1997). sst2 is phosphorylated

at five serine and threonine residues within the

C-terminus following SRIF treatment (Liu et al. 2009).

Moreover, in transiently transfected GH3 cells, both SRIF

and octreotide, but not pasireotide, induced robust sst2

phosphorylation. Pasireotide stimulated selective residue
Published by Bioscientifica Ltd.
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phosphorylation only upon GRK2 and GRK3 overexpres-

sion, yet resulted in only weak b-arrestin–sst2 complexes

that easily dissociated (Poll et al. 2010). Prolonged SRIF

stimulation leads to sst2 desensitization in both GH4C1

and AtT-20 cells (Hipkin et al. 1997), leading to attenuated

responses to SRIF inhibition of cAMP production, and

enhanced forskolin and CRH induction of adenylate

cyclase and cAMP levels (Reisine & Axelrod 1983, Presky

& Schonbrunn 1988, Ben-Shlomo et al. 2009).

While sst1 does not internalize (Sarret et al. 1999),

there are conflicting reports regarding sst5 internalization.

One study using transient sst5 transfectant GH3 cells

found that the third intracellular loop of sst5 was involved

in receptor phosphorylation and internalization following

b-arrestin 2 binding (Peverelli et al. 2008). Yet, sst5 did not

internalize following treatment with either SRIF or sst5-

specific agonists in stable AtT-20 transfectants (Sarret et al.

1999, Ben-Shlomo et al. 2005). SRIF desensitization in

stable receptor transfectant AtT-20 cells was dependent on

sst2 and not sst5, as sst5 did not internalize in these cells

(Ben-Shlomo et al. 2009). sst5 expression is unaffected

by sst5 agonists or pasireotide in AtT-20 cells (van der

Hoek et al. 2005, Ben-Shlomo et al. 2009), suggesting that

sst5 remains biologically active in the membrane longer

than sst2. In vitro studies may not accurately represent

patterns of SRIF-dependent SSTR subtype-specific internal-

ization and desensitization in vivo and therefore requires

further study.

Any pituitary cell may express multiple sst receptor

subtypes on the cell surface (Ben-Shlomo & Melmed

2010), suggesting that in addition to receptor subtype-

specific signaling, receptor subtypes may form hetero-

dimers, which may govern pituitary cell response to SRIF

and SRIF analogs. Although sst receptor dimerization has

yet to be demonstrated in pituitary cells lines, there is

evidence of sst receptor hetero-dimerization when

receptors are stably overexpressed in non-pituitary cell

lines, and that dimerization does effect sst receptor

function (Pfeiffer et al. 2002, Grant et al. 2008, War &

Kumar 2012). While sst receptor subtypes are structurally

and sequentially conserved throughout the body, it is

likely that variation in receptor subtype expression

contributes to the tissue specificity of SRIF-mediated

molecular signaling, and should be further evaluated.
SRIF-dependent pituitary hormone secretion

SRIF exerts a primary effect on pituitary cells through

acute inhibition of hormone secretion, specifically by

suppressing exocytosis of hormone-containing vesicles.
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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Although, it remains unclear whether SRIF-dependent

inhibition of secretion is partially contingent on inhi-

bition of cell growth arrest, as they usually occur

concurrently following SRIF analog treatment of somato-

troph tumors, there are reports of asynchronous hormone

secretion and tumor shrinkage (Colao et al. 2009). In one

such tumor, expression of sst5 was higher than sst2 levels,

suggesting the potential of subtype-specific regulation of

hormone secretion vs antiproliferative effects (Resmini

et al. 2007).

Although SRIF is the primary inhibitor of pituitary GH

secretion and is the main focus of this review, it should be

noted that the neuropeptide CST, which shares structural

homology to SRIF, has been reported to exhibit a similar

inhibitory effect as SRIF on GH secretion both in vitro and

in vivo (Broglio et al. 2002), yet the mechanism of action

remains unclear as CST is reported to bind not only to

SSTRs but also to the ghrelin receptor (GHS-R; Broglio et al.

2002). In contrast to the inhibitory role of CST on

GH secretion, CST is reported to increase PRL release

(Baranowska et al. 2009, Cordoba-Chacon et al. 2011).

Unlike SRIF, CST has not been shown to be secreted from

the hypothalamus directly into the pituitary portal

system, and the exact role of CST in endocrine regulation

of pituitary function in vivo is yet to be demonstrated.
GH secretion

The classical outcome of SRIF/sst signaling is the inhi-

bition of hormone secretion, particularly that of GH from

pituitary somatotroph cells (Giustina & Veldhuis 1998).

Multiple factors and feedback loops regulate the release of

SRIF from the hypothalamus and ultimately the control of

GH secretion, including serum GH/IGF1 and glucose, as

well as immobilization and exercise (Giustina & Veldhuis

1998). As SRIF inhibits GHRH-induced GH transcription

and secretion by suppressing exocytosis of hormone-

containing granules (Patel & Srikant 1986, Tentler et al.

1997, Morishita et al. 2003, Farhy & Veldhuis 2004),

SRIF-null mice were expected to exhibit the characteristics

of GH excess. However, despite moderately elevated GH

levels, serum IGF1 levels were slightly elevated; however,

body length and weight and IGF1 levels were unchanged

(Low et al. 2001, Zeyda et al. 2001). Targeted hypothalamic

delivery of lentiviral-shRNA against SRIF in young mice

led to increased GH protein levels without effecting GH

mRNA levels, yet serum levels of SRIF, GH, and IGF1, as

well as body weight, were unchanged (Hao et al. 2010).

These studies suggest that although SRIF may play an

important function as an acute inhibitor of GHRH-induced
Published by Bioscientifica Ltd.
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GH secretion, it may have a less significant role in

regulation of basal GH secretion.

While direct inhibition of pituitary hormone tran-

scription has yet to be definitively associated with SRIF

signaling, as some studies demonstrate a SRIF-dependent

decrease in GH mRNA levels (Sugihara et al. 1993,

Tsukamoto et al. 1994, Acunzo et al. 2008) others describe

no change (Simard et al. 1986, Davis et al. 1989, Namba

et al. 1989, Tanner et al. 1990, Gruszka et al. 2007), and

some even demonstrate upregulation of gene expression

possibly reflecting a GH-rebound effect after termination

of SRIF treatment; the latter exemplifies the importance

of outcome measurement timing. SRIF did not affect

GH mRNA expression, but did suppress intracellular GH

protein levels and decreased GH secretion in primary rat

anterior pituitary cells (Simard et al. 1986). Similarly,

SRIF inhibited GH secretion without affecting GH mRNA

expression in primary human GH-secreting tumors cells

(Davis et al. 1989). In cultured bovine pituitary cells, SRIF

was able to suppress GHRH-induced GH expression, but

had no effect on untreated cells (Tanner et al. 1990).

Moreover, while sst2-specific and sst5-specific agonists

suppressed GH secretion in human GH-secreting tumors,

they did not affect GH transcription (Gruszka et al. 2012).

Nevertheless, transient overexpression of sst2 in primary

human GH secreting tumor cells modestly suppressed

GH expression, in the absence of SRIF ligand (Acunzo

et al. 2008).

Delineation of sst subtype-selective SRIF-mediated

regulation of GH secretion remains unclear; however,

both sst2 and sst5 and to a lesser extent sst1 play

important roles in the inhibition of GH secretion. SRIF

analog therapies targeting sst2 and/or sst5 for treatment of

patients with GH-secreting pituitary tumors are effective

at reducing serum GH and normalizing serum IGF1 levels

(Melmed 2006). Moreover, treatment using compounds

with affinity for sst2 and sst5 was 40% more effective at

suppressing primary GH-secreting tumor GH secretion

than sst2 or sst5-selective agonists individually (Shimon

et al. 1997a). Increased sst2 membrane density in

GH-secreting tumor cells enhances the sensitivity to sst2-

selective agonists (Acunzo et al. 2008, Taboada et al. 2008).

In normal fetal pituitary, both sst2 and sst5-specific

agonists inhibit GHRH-induced GH secretion (Shimon

et al. 1997b, Ren et al. 2003); however, co-treatment with

sst2 and sst5-selective agonists was more effective than

each individually (Ren et al. 2003). sst1-selective agonists

similarly reduced GH secretion in both primary tumor

cultures (Zatelli et al. 2003) as well as GC cells (Cervia et al.

2002a). Pasireotide, which binds all four receptor subtypes
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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(sst5Osst2Osst3Osst1), more effectively reduces serum

GH levels in animal models compared with octreotide

(sst2Osst5\sst3, but not sst1), and was recently demon-

strated to have some advantage over octreotide in patients

with acromegaly (Colao et al. 2014); however, the long-

term efficacy of one drug over the other is yet to be proven

(Petersenn et al. 2014a,b) and is still under current

investigation.

Importantly, recent reports demonstrate a

concentration-dependent, cell-specific effect of SRIF on

GH-secreting cells, in both bovine and primates. While

high-concentrations of SRIF inhibit GH-secretion, low-

concentrations stimulate GH-secretion. sst1 and sst2

were shown to mediate the inhibitory effect of SRIF,

while its stimulatory effect was signaled via sst5, all

through adenylate cyclase–cAMP pathway and intra-

cellular calcium level regulation. SRIF’s dose-dependent

stimulatory/inhibitory effects should be further studied

as they may have an important role in the physiological

regulation of somatotroph cells (Luque et al. 2006a,

Cordoba-Chacon et al. 2012).

Surprisingly, despite the dominant role of sst2 and

sst5 in SRIF-mediated inhibition of GHRH-induced GH

secretion, Sst2 and Sst5-null mice do not exhibit elevated

serum GH levels (Zheng et al. 1997, Norman et al. 2002,

Luque et al. 2006b). These results are, however, consistent

with a potential, yet unproven, compensatory function of

sst1 or sst3 regulating GH secretion in the absence of sst2

and sst5. Conditional knockout mice may provide a model

to further elucidate the subtype-specific role of sst receptor

subtypes in SRIF-dependent inhibition of GH secretion.
PRL secretion

SRIF-dependent control of PRL secretion is modest

compared with that of GH. Treatment of prolactinoma

samples with sst5-selective agonists effectively inhibited

PRL secretion without affecting PRL expression (Shimon

et al. 1997a, Jaquet et al. 1999, Fusco et al. 2008, Gruszka

et al. 2012), while octreotide had no effect, likely due to

the fact that sst5 is the predominantly expressed receptor

subtype in human prolactinoma samples (Jaquet et al.

1999). Similarly, while octreotide exerted only modest

effects, pasireotide strongly suppressed PRL secretion in

prolactinoma tumor cultures (Hofland et al. 2004). PRL

secretion was reduced upon SRIF treatment as well as an

sst1-specific agonist in PRL-secreting pituitary tumors; the

degree of PRL suppression correlated with sst1 expression

levels (Zatelli et al. 2003). BMP4 enhanced the attenua-

ting effect of pasireotide, but not of octreotide, on
Published by Bioscientifica Ltd.
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forskolin-induced PRL in GH3 cells. Interestingly, BMP4

and BMP6 downregulated endogenous sst2 abundance,

while increasing sst5 expression, and treatment with

noggin rescued these effects. Moreover, noggin treatment

increased octreotide sensitivity and decreased pasireotide

sensitivity (Tsukamoto et al. 2011).

Several studies suggest that SRIF-dependent regulation

of PRL secretion is estrogen-dependent. Female rats pre-

treated with 17b-estradiol (E2) exhibited lanreotide-

dependent reduction in lactotroph cell density and

PRL secretion (Schussler et al. 1994). E2 treatment sensi-

tized PRL-secreting tumor cells to SRIF and octreotide-

dependent inhibition of PRL secretion, likely due to the

upregulation of sst2 and sst3 (Visser-Wisselaar et al. 1997,

Djordjijevic et al. 1998). Despite the inability of SRIF to

inhibit PRL secretion in male rat primary lactotroph

cultures, E2 treatment similarly sensitizes these cells to

SRIF (Goth et al. 1996, Lee & Shin 1996). In addition, SRIF

inhibits PRL induction by estrogen in male-to-female

transsexuals, even more so upon co-treatment with

cyproterone acetate, a compound with anti-androgen

characteristics (Gooren et al. 1984). Taken together, the

regulation of PRL secretion through SRIF-dependent

pathways appears to be receptor subtype specific, BMP

dependent, and sensitive to the presence of estrogen.
ACTH secretion

The role of SRIF signaling in the regulation of ACTH

secretion from pituitary corticotroph cells remains

unclear. SRIF did not affect basal or CRH (Stafford et al.

1989), ghrelin (Broglio et al. 2002), or angiotensin II (Volpi

et al. 1996)-stimulated ACTH or cortisol levels in humans.

Nevertheless, studies suggest that SRIF regulates ACTH

secretion and is dependent on cortisol levels and cell

milieu (Hofland 2008). Although SRIF did not affect basal

or CRH-stimulated ACTH secretion in normal rat pituitary

cells (Brown et al. 1984, Kraicer et al. 1985), SRIF inhibited

CRH- and vasopressin-induced ACTH secretion in cultured

pituitary cells derived from adrenalectomized rats and in

serum starved cultures (Hofland 2008). Increasing cortisol

levels in cell medium downregulated sst2 but not sst5

expression in corticotroph tumor cells that express both

receptors (van der Hoek et al. 2007, van der Pas et al. 2013).

Pituitary corticotroph cells were sensitized to octreotide

in a serum-free environment, as well as after inhibition

of the glucocorticoid receptor, which also downregulates

sst2 expression (Lamberts et al. 1989a).

Octreotide and lanreotide, both clinically used as

sst2 agonists, were ineffective in treating patients with
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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Cushing’s disease (Hofland 2008), but were able to

suppress ACTH levels in patients with hypercortisol-emia

such as those with adrenal insufficiency (Fehm et al. 1976)

and Nelson’s syndrome (Tyrrell et al. 1975, Lamberts et al.

1989b). However, pasireotide, which has preferential

affinity for sst5, inhibits ACTH secretion in patients

harboring ACTH-secreting adenoma despite hyper-

cortisolemia (Colao et al. 2012). The significance of

SRIF-mediated signaling, particularly through sst5, has

been further delineated through investigation of Srif-

null and Sst5-null mice models; Srif-null mice exhibit

elevated levels of Pomc mRNA expression (Luque et al.

2006b), and sst5-null mice have increased basal serum

ACTH and cortisol levels (Strowski et al. 2003).

Importantly, downregulation of sst2 may not be the

sole explanation to octreotide resistance as the drug was

less effective than pasireotide at reducing ACTH secretion

even after normalization of cortisol levels and rescued

sst2 expression in preoperative Cushing’s patients (van

der Pas et al. 2013). Therefore the contribution of other

SSTRs expressed on corticotroph cells including sst3 and

sst1 may play a role as well.

BMP signaling was shown to play a significant role in

sst receptor-mediated inhibition of ACTH secretion in

corticotroph cells. The BMP inhibitor noggin enhances

CRH-induced ACTH secretion in AtT-20 cells and attenu-

ated octreotide and pasireotide-mediated suppression of

CRH-induced ACTH secretion. Octreotide and pasireotide

increased BMP–Smad1/5/8 signaling and upregulated

BMP type I and II receptors while simultaneously down-

regulating inhibitory Smad6/7 (Tsukamoto et al. 2010). In

summary, SRIF-mediated regulation of ACTH secretion

appears to be sst receptor subtype specific and dependent

on serum cortisol levels. The role of sst1, sst3, and BMP

signaling pathways in the regulation of ACTH secretion

require further investigation.
Gonadotropin secretion

Knowledge of SRIF regulation of human LH and FSH

secretion is limited as pituitary tumors arising from

gonadotroph lineages do not usually secrete FSH or LH

and therefore do no result in a phenotype associated

with hormone hypersecretion (Greenman & Stern 2009).

Nevertheless, evidence suggests an inhibitory effect of

SRIF on gonadotropin secretion. SRIF infusion suppressed

gonadotropin-releasing hormone (GNRH)-induced LH

and FSH in normal men (Millar et al. 1982) and inhibited

LH pulse amplitude, but not frequency, without affecting

FSH pulsatility (Samuels et al. 1992). SRIF does not affect
Published by Bioscientifica Ltd.
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basal secretion of LH or FSH in cultured pituitaries from

male rats (Yu et al. 1997), yet suppresses GNRH-induced

LH but not FSH (Yu et al. 1997, Starcevic et al. 2002). In

addition, SRIF suppressed gonadotropin levels in 60% of

FSH-producing pituitary tumors and 30% of LH-secreting

pituitary adenoma cultures (Klibanski et al. 1991).
TSH secretion

Although SRIF inhibits TSH secretion, the effect is less

pronounced than that of GH secretion from somatotrophs

(Patel & Srikant 1986). Both sst2 and sst5 were implicated

in the suppression of TSH secretion (Shimon et al. 1997b);

however, the relative contribution of individual receptor

subtypes remains unknown. SRIF inhibited TRH-induced

TSH secretion in normal adult males (Spoudeas et al. 1992).

Similarly, SRIF suppressed TSH pulse amplitude and

frequency (Samuels et al. 1992) and inhibited TSH levels

in normal volunteers and in patients with primary

hypothyroidism (Reichlin 1983). Octreotide and lanreo-

tide reduced TSH secretion and normalized free thyroxine

and free tri-iodothyronine levels in patients harboring

pituitary TSH-secreting adenomas (Gancel et al. 1994,

Beck-Peccoz & Persani 2002). Similarly, octreotide sup-

pressed serum TSH concentrations in nine patients

harboring TSH-secreting tumors, and similarly suppressed

TSH secretion in cell cultures (Bertherat et al. 1992). TSH-

secreting adenomas are extremely rare, limiting the ability

to comprehensively study sst receptor subtype-specific

regulation of TSH secretion.

In summary, SRIF is a dominant inhibitor of both

basal and induced pituitary hormone secretion. There are

clear indications that sst receptor-signaling pathway

activation is receptor subtype- and density-specific, as

well as cell type and context specific. While GH secretion

is mediated predominantly through sst2, and to a lesser

extent sst5, ACTH and PRL secretion appear to be

coordinated for the most part through sst5 signaling.

Further study is required to delineate SRIF receptor

subtype specificity and to elucidate the role of sst1 and

sst3 in pituitary hormone secretion.
SRIF-independent constitutive sst
receptor activity

Constitutive receptor activity is the ability of a receptor

to adopt an active conformation independently from its

selective agonist (Seifert & Wenzel-Seifert 2002). Multiple

GPCRs exhibit constitutive activity in their WT form and
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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some by acquiring naturally occurring disease-causing

mutations (Seifert & Wenzel-Seifert 2002).

Partial knockdown of sst2, sst3, or sst5 in mouse

ACTH-secreting pituitary AtT-20 cells resulted in increased

baseline intracellular cAMP levels and consequently ACTH

secretion (Ben-Shlomo et al. 2007), while overexpression

of either sst2 or sst5 in these cells resulted in reduced

cellular response CRH via downregulation of CRH receptor

subtype 1 (CRH-R1) expression (Ben-Shlomo et al. 2009).

In addition, moderate sst2 overexpression in rat

GH-secreting pituitary tumor cells (GC cell line) resulted

in significantly decreased GH synthesis partially via GH

promoter de-acetylation, which was not observed when a

sst2 DRY-motif mutant lacking constitutive activity

(Ben-Shlomo et al. 2013) was stably overexpressed.

Inhibition of GH transcription was also observed

when human pituitary cell primary cultures were infected

with a low dose of sst2-containing adenovirus (Acunzo

et al. 2008).

Utilizing a similar approach to study sst3 in

GH-secreting cells, we show that stable sst3 transfectants

exhibited suppressed basal intracellular cAMP levels, PKA

activity, and inhibition of GH transcription, though to

a lesser extent as compared with sst2 overexpression.

sst3-mediated GH inhibition was not regulated epigeneti-

cally but rather via dephosphorylation and thus activation

of GSK3b, a PKA substrate. The cells expressing non-

constitutively active sst3 mutated at its DRY motif were

unaffected (Eigler et al. 2014).

Constitutive sst receptor activity is yet to be proven

in vivo. This is challenging as a naturally occurring,

disease-causing, constitutively active SSTR mutant has

not yet been characterized, and an SSTR inverse agonist is

not available. Moreover, the SRIF system exhibits signi-

ficant redundancy, as CST and SRIF bind all sst receptor

subtypes with similar affinities and the receptors also share

multiple signaling pathways. To rigorously study consti-

tutive sst2 activity in vivo will require an animal

experimental model that expresses neither ligands nor

all other sst receptor subtypes, a difficult task.

Evidence in the literature suggests the possible

presence of constitutive sst2 activity. Intriguing evidence

from mice points to conditions in which SRIF (not sst2)

is dispensable for determining baseline GH control.

First, abolishing SRIF-producing rat hypothalamic

neurons resulted in acutely increased serum GH levels,

which normalized within 10 days, without altered

pituitary GH-content (Soya & Suzuki 1990). Second,

knockout Srif (K/K), Cort (K/K), and double-knockout

Srif (K/K)/Cort (K/K) mice do not exhibit excessive growth
Published by Bioscientifica Ltd.
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(de Lecea and Castano 2006, Zeyda & Hochgeschwender

2008, Cordoba-Chacon et al. 2011). In addition, hyper-

somatostatinemia elaborated by abdominal somato-

statinoma tumors is not associated with GH deficiency

(Oberg & Eriksson 2005, Galli et al. 2006). Observed

negative association between sst2 and GH expression

support the existence of a biological relationship between

the two. For example, Srif (K/K) mice exhibit 1.5- to

threefold increase in GH levels along with 70% decrease

in sst2 levels (Low et al. 2001, Zeyda et al. 2001).

Glucocorticoids, acutely downregulate Sst2 promoter

activity associated with increased pituitary GH synthesis

in SRIF-free conditions (Xu et al. 1995, Zeyda et al. 2001,

Kajimura et al. 2003). In contrast, adrenalectomy (cortisol

deficiency) increased rat somatotroph sst2 levels (Hofland

2008). In addition, E2 lowers sst2 levels and increases

baseline GH in the absence or presence of SRIF (Cardenas

et al. 2003, Borghi et al. 2006, Elango et al. 2006).

Aromatase-null (i.e. E2 deficient) female mice exhibited

high pituitary Sst2 gene expression with concomitant low

GH levels, all reversed with E2 treatment (Yan et al. 2004).

Importantly, female rats exhibit continuous GH secretion

with higher baseline levels and also have lower Sst2

expression as compared with males, while male rats

treated with E2 exhibited increased baseline GH and

downregulation of sst receptors (Baumeister & Meyerhof

2000). In summary, when sst2 is decreased, GH is

increased, with or without SRIF. Although intriguing, the

physiological importance of constitutive sst receptor

activity is yet unclear in vivo. As absolute receptor number

in the cell also determines observed constitutive activity

level, receptor expression level regulation by SRIF and

other factors may control constitutive sst receptor activity.
Conclusion

SRIF system, i.e. hypothalamic SRIF14 and its cognate sst1,

sst2, sst3, and sst5 receptor subtypes, control pituitary

gland function, mostly inhibiting anterior pituitary gland

basal and induced hormone secretion. SRIF–sst receptor

signaling pathway activation is receptor subtype specific

and density specific, as well as cell type and context

specific. SRIF/sst2 is the main mediator of GH secretion

while SRIF/sst5 mainly mediates ACTH and PRL secretion.

Sst receptor activation mediates its effect through multiple

pathways, mainly adenylate cyclase/cAMP/PKA, MAPK,

and ion channel regulation. SRIF-independent constitu-

tive sst receptor activity is present in pituitary cells in vitro,

inhibiting cellular cAMP and ACTH responses to CRH and

GH transcription.
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