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Optimal Broadcast Scheduling in Packet Radio
Networks Using Mean Field Annealing

Gangsheng Wang and Nirwan Ansagenior Member, IEEE

Abstract—Packet radio (PR) is a technology that applies the time is divided into frames which consists of fixed-length time
packet switching technique to the broadcast radio environment. sjots. When certain stations transmit simultaneously, collision
L@iﬁﬁg?&ggﬁf \S/\'I?lgéﬁ 2‘%rr;Zf’;\eI?s;’g:}dﬂ’ijjagggggirﬁ jé‘;rﬁsd or interference will occur. Therefore, any two stations that may
used, the access to the channel by stations’ transmissions mustresu'lt in coII|.5|on or mterfgrence .must be schgduled to transmit
be properly scheduled in both time and space domains in order at different time slots, while stations some distance away may
to avoid collisions or interferences. It is proven in this paper be arranged to transmit at the same time slot without causing
that such a scheduling problem is NP-complete. Therefore, an interference. Since the primary objective of the PR network is
efficient polynomial algorithm rarely exists, and a mean field g provide high throughput with low delay, a scheme must

annealing-based algorithm is proposed to schedule the stations’ . : : .
transmissions in a frame consisting of certain number of time provide a schedule which can achieve maximum channel

slots. Numerical examples and comparisons with some existing Utilization as well as lower delay. For a fixed-topology PR
scheduling algorithms have shown that the proposed scheme network in which locations of stations are fixed, the problem
can find near-optimal solutions with reasonable computational is to schedule a frame in which each station transmits at
complexity. Both time delay and channel utilization are calculated |egst once. Additional transmissions can be added into the
based on the found schedules. frame if the addition does not cause any collision. The optimal
schedule is the one that has the minimum length (the number
) of time slots in a frame) and provides the maximum number
PACKET RADIO (PR) [1], which can handle bursty-typeof interference-free transmissions. Such a scheduling problem
trafﬂ_c ef_f|C|entIy, is an option for high-speed erelt_ass da_t% proved NP-complete in the Appendix, implying that a good
communications, especially over a broad geographic regigflyorithm rarely exists in finding the global optima among a
In a PR network, each station is equipped with a transmjkrge number of local optima. In this paper, an approximation
ter/receiver and a control unit. Stations communicate with eagfysrithm based on mean field annealing (MFA) is presented
other via a shared high-speed broadcast radio channel. §§&g|ve the scheduling problem. In Section II, the scheduling
control unit performs the packet switching functions. When &gplem is stated. The MFA theory is reviewed in Section
station broadcasts through its antenna, each neighboring staﬁ;{)'nm Section IV, MFA is applied to solving the optimal
receives the transmission. The neighboring station will absoé?heduling problem. Numerical examples are given, and the

the packets to which the transmission designates. Otherwiggiting performance is evaluated in Section V. Conclusions
the station will store the packets in its buffer and send thefje made in the last section.

out later. Therefore, for any two distant stations where direct

connectivity does not exist, the intermediate stations act as re- [I. PROBLEM FORMULATION

peaters and perform store-and-forward functions. Fig. 1 showsy pr network can be represented by a graph= (V, E)

a packet radio network in the Internet. The communicatiGQnere the vertices iV are network stations, an# is a set

between geogrgphically separated hosts is established throgglgdges_ The total traffic passing through statioconsists

the packet radio network. _ of packets received from other stations which will be routed
In a multihop PR network, since a single channel (usualigrough statior and the packets from the terminals attached to

wideband) is shared by all users, the transmission for each §faTime is divided into unit-length slots. Each frame consists

tion must be scheduled to avoid any collision or interferencgs 5 fixed number of time slots. Packets can be transmitted in

Based on the characteristics of a multihop network, the singlgccessive frames. The transmission time of stations in a frame

radio channel can be shared by all stations in both time ajdscheduled to avoid any collision. We are concerned with

space domains. A multiaccess protocol, namely spatial timgg fixed assignment of transmission for stations in a frame.

division multiple-access (TDMA), can be used to schedulg, s once the optimal transmission patterns (the arrangement

conflict-free transmission [2]. In the spatial TDMA networkof transmissions) are determined, the frame is repeated in the
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Fig. 1. A PRNET in the Internet.

two stationg;, ' € V, if the distance between them is less thathat each frame consists @ff time slots. In a frame, each
R, they can receive the packets transmitted from each othstation must be scheduled to transmit at least once (one time
Therefore, there exists an undirected edge- (¢, ) € E slot). Additional transmissions can be arranged provided that
incident to stationi and i/, and the two stations arene- the addition does not cause interference. We us@larx N)
hop apart. If (4, /') ¢ E, but there is such an intermediateébinary matrix.S = (s;,;) to express a transmission schedule,
stationj as (i, j) € E and (¢, j) € E, then station; and where
¢’ aretwo-hopapart. The topology of a PR network can be 1, if station j transmits at
described by af/NV x N) symmetric binary matri>xC, where sij = { the sth slot in a frame (3)

= |V| is the number of stations in the network. The matrix, 0, otherwise.
C = (¢j) (i, 5 =1,---N), also known as the connectivity

matrix, is defined by Let p;, be the channel utilization for statidk then

number of transmission slots assigned to station

w9 {(1): gtrggrjw)isee.E andi 7 (1) e frame length
To ensure that a packet is correctly received in a station, the i Sik
following constraints must be satisfied.
1) A station cannot have transmission and reception status  — A7 ()

simultaneously, i.e., if¢, ¢) € F, station: andi’ must The channel utilization for the whole network, is given by
be scheduled to transmit in different time slots.
2) A station is not allowed to receive two or more trans- p=— ij
missions simultaneously, i.e., {f, j) € E, (j, k) € E,
but (4, k) ¢ £, stationi andk must transmit in different

tme_ slots in orQer_to a_xvmd CO||ISIO-I’1 in st.athp NM Z Z Sij. (5)
If the first constraint is violated, thprimary interference i=1 j=1
(collision-type) is said to have occurred. Thecondary inter- DenoteS’ as a set of interference-free schedules wifre-
ferenceoccurs if the second constraint is violated. In short, 51, 5% ... }, and each feasible schedufé is an M x N
station and its one-hop or two-hop neighboring stations musihary matrix defined by (3). Definggs: as the channel
be scheduled to transmit in different time slots. utilization achieved by schedul§’. Therefore, the optimal
We can form a newN x N) matrix called the compatibility scheduling problem is described as follows. Find the optimal
matrix F' = (f;;) from matrix C, where schedule S°?* ¢ S’ so that it adheres to the following
1, if stationsi andj are one-hop constraints.
fij = { or two-hop apart 2 1) It has the shortest frame lengif.
0, otherwise. 2) It satisfies the constraints
Note thatf;; = 0 V¢, and F' is symmetric, i.e..f;; = fj:.
Therefore, for any two stationsandy, if f;; = 0, both stations Z s"pt >1 (j=1,2,--+, N) (6)

can transmit in the same slot with no interference. We assume
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and such a scheduling problem is NP-complete, which means that
M N N an efficient polynomial algorithm rarely exists. In Section 1V,
DN fsEsE =0 (7) we will discuss how to use neural networks to solve such an
k=1 i=1 j=1 optimal scheduling problem.

3) It yields the maximum channel utilization, i.e.,
IIl. MEAN FIELD ANNEALING

psert = MAX pgi. (8)
. Ses . A. Statistical Mechanics
Equation (6) reflects the constraint that each station must

be able to transmit at least once in a frame. Equation (7)!n statistical mechanics, a physical process cadiedealing

eliminates simultaneous interference transmissions betwderPften performed in order to relax the system to the state

one station and all of its one-hop or two-hop neighborin\gith the minimum energy. In the annealing process, a solid in
stations. a heat bathis heated up by increasing the temperature of the

For a givenM and N, there are2MN schedule config- path until the solid is melted into liquid, then the temperature

urations. An exhaustive search for the optimal schedules/$slowered down slowly. At each temperature, all particles
prohibitive whenM and N get larger. For a given PR network,randomly arrange them_selves until thermal equilibrium is
the minimum frame length depends on the topology of tfgached. If the coolln'g is slow enough to allow the solid
network and is generally unknown. However, a tight lowdP reach thermal equilibrium at each temperature, the low
bound for a frame length can be found, thus allowing one B€T9Y crystalline solid would be formed when the system
estimate the minimum required frame length. By defining tH& frozen C — 0). However, if the annealing is too fast, the

degree of a vertex as the number of edges incident to it angolid may become glass with noncrystalline structure or the

denoting the degree as ded), fwe have the following lemma. defected crystal with meta-stable amorphous structures. If a
Lemma 1: The frame Ien(:]th satisfies state is defined by the set of particle positions, then, at thermal

equilibrium, the probability of the system being in states

M2 X(G)+1 (9) represented by theibbs distribution[3], [4]
where mi=Pris=1i)
X(G) = max deg (). (10) E()
=[]
Proof: It is obvious that deg:} equals the number of _ kyT (12)
one-hop neighbors of statianDenoteB(¢) as the set of one- Z
hop neighbors of station For any two stationg, ;' € B(i), WhereZ = . ¢ exp[—E(i)/k/T] is called thepartition
sincec;; = 1 and¢;;» = 1, stationj and j' are one-hop function %, is the Boltzmann constant’” is the temperature,
neighbors ifc;;; = 1 and two-hop neighbors it;;; = 0. and E(i) is the energy of state, S is the state space, and

According to the constraints mentioned above, statiand all s, 7 E(1) € R*, whereR™ is the positive real space. It
its deg ¢) one-hop neighbors must be arranged to transmit i& easy to find that [3]

different distinct time slots in order to obtain interference-free E(i) — Emin
transmissions. Any two statiorys j € B(:) cannot transmit _ _ exp T kT
in the same slot. Therefore, the required number of time slots lim 7; = lim N

s ; i ) > 750 750 E(j) = Enin
for transmission for station and its one-hop neighbors is Z €xp T T
deg (i) + 1, and the least required number of time slots of jeS b
a frame for the networkA(G), is given by 1 o

A(G) = X(G) + 1 = max deg(i)+ 1 (11) = (S € Smin (13)
- Tviey 8 ' , otherwise

Equation (11) only provides a lower bound for the framahereS,,i, = {i: E(4) = Ewin} and Eyin = minjes E(j).
length. For a given network, the frame length for any of thErom this equation, we can see that as the temperature ap-
interference-free schedules is always greater than or equaptoaches zero, the system will converge to the states with the
A(G), i.e., the inequality > A(G) holds. The real frame minimum energy, i.e., the states with the minimum energy are
length for an optimal schedule depends on the topology ofr@ached at lower temperatures.
network. For certain networks, a feasible schedule with exact )
frame lengthA(G) may not exist. Therefore, a longer framd3: Simulated Annealing
length is required. Equation (9) provides useful information Based on the annealing process in statistical mechanics,
when interference-free transmissions are scheduled. We @&arkpatrick et al. [5] proposed an algorithm, namelgimu-
start to search for the optimal schedules with a frame lendtted annealing(SA), for solving complicated combinatorial
equal to the lower bouna(G). If no feasible schedules with optimization problems. In the SA algorithm, a simulation
this length can be found, we will increase the frame lengtbf the annealing process is performed. The cost function
and then search further for the feasible solutions. In this waand configuration in optimization correspond to the energy
the scheduled frame length would be minimized. Once tifienction and state in statistical physics, respectively. The
frame length is determined, the optimal scheduling procedummperature is introduced as a control parameter.
will continue until a interference-free schedule with maximum A cost functionf: S — R*, s € &, to be minimized is
channel utilization, defined in (5), is found. It is shown thatsually defined on some finite s&t For each configuration
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s € &, there is a neighboring se¥’(s) C &, which is where weightsy; > 0,7« =1, 2, 3. The first term in (17) is the

generated by a small perturbation ef negatively weighed channel utilization. The second term is a
In [3], it shows that the SA algorithm asymptotically conpenalty function for constraint violations. When the constraint

verges to the configurations with the minimum cost, i.e., i§ satisfied, it becomes zero. The third term is used to force

the temperature is slowly lowered and at each temperatureurons to converge to either O or 1 (if all, = 0 or 1, the

the system performs a sufficient number of transitions, thieird term equals zero). The mean field of neuigris

configurations (solutions) with the global minimum cost can SE

be found with probability one. hij = —

(%ij
C. Mean Field Annealing

Even though SA is proved to be able to reach the global W Vig T w2 Z Ti
optima asymptotically, it is time consuming to reach thermal
equilibrium at each temperature. Finite number of transitions at
each temperature cannot guarantee convergence to the glghathe MFA Scheduling Algorithm
optima. In statistical physicsnean fieldapproximation is often
used. Mean field annealing (MFA) uses a set of deterministic
equations to replace the stochastic process in SA. It uses 1
saddle point approximation in the calculation of the stationaryv;;(t + At) = 5 {1 + tanh
probability distribution at equilibrium, and reaches equilibrium

c Uik — w;),(]. - 21}”), Wherevij = Sij. (18)

The updating of the neuron average is given by

Lfw
or\ Nm 0T 7

at each temperature much faster than SA. Even though this N
approximation method may not guarantee convergence to . Z Fik - vik —w3(1—2vij)>]} (19)
global minima, it does provide a good approximation in finding k=1
near-optimal solutions with much less computing effort. The MFA iteration proceeds until freezing occurs. Since the
The MFA theory and the related derivations can be found gxact frame length is unknown, we can start to schedule the
[7]. For a binary system, a configuratier= [sy, sz, -- ?n]T frame with lengthA(G), the lower bound of the frame length
is represented by a sequence of binary values, $€&  shown in (11). The proposed scheduling algorithm includes
{0, 1}™. We have the following MFA equations: three steps.
v =3, = }[1 4 tanh <ﬂ)} (14) Step 1) Presettin_g NeuronsFind the stationp Which_ h_a_13
the maximum degreeX (&), then set the initial
b af(v) (15) frame lengthM = A(G) as defined in (11),
T oy and assign statiop and its one-hop neighboring

stationsk € B(p) = {k: ¢, = 1} to the different
distinct time slots. For example, set, = 1 and
v; =1 VjeB(p [i =2, -, A(G)]. For the
ith slot, sincev;; = 1, the kth neuron withf;;,, =1
must be set ta;;;, = 0 to resolve interference [see

Whereﬁ is the average operatoh; in (15) is called the
mean field In MFA, the iterative procedure to reach thermal
equilibrium at each temperature is calledlaxation in which
the mean field is updated by

afh( )

hi(t+ At) = hi(t) + At|— —hi()]. (16) (7)]. The preassigned neurons no longer need to be
dv; updated, and their values will be used to update
IV. THE OPTIMAL SCHEDULING ALGORITHM BASED ON MFA the other neurons.
. Step 2) Performing the MFA Iterations Based on (19)he
A. Energy Function iteration continues until freezing occurs and the
To solve the optimal scheduling problem by using MFA, we freezing state should provide the maximum channel
first need to map the channel utilization to be maximized and utilization within the frame length\/.
the constraints into an energy function. We assume that theStep 3) Applying the Heuristic Algorithm for Unassigned
frame length isM and there areV stations in a PR network. Stations: After completing the above two steps,
M x N neurons are required to represent a schedule. Each some stations might remain unassigned for trans-
neurons;; (it =1,---, M; j=1,---, N) is defined in (3). mission due to the interference-free constraint. The
The following energy function is derived: number of unassigned stations depends on the
topology of the network. Usually, after the first
N two steps, only a few stations are unassigned.
E=_-% Z Z s Extra time slots are needed to arrange the remain-
2 M ij . o . o
i=1 j=1 ing transmissions. We use the following heuristic
N N algorithm to schedule the transmissions of the
w2 Z Z Z fis Ski Skj unassigned stations. Denote the unassigned stations
k=1 i=1 j=1 aSU:{Ulv"'vU(I}'
N a) Sort the stations iV in a descending or-
+ ws Z Z 5i(1 = 545) (17) der of station degree such thdeg (U;) >

i=1 j=1 deg(Uit1).
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I T T

b) Add a time slot to the frame, and assign the
stations inU to transmit in the slot. The 09
priority of assigning a station’s transmission o |
is based on the order &f, i.e., the priority of
U, is greater than that of/; ;. The stations
arranged in the slot must be interference-free.’
Repeat the above procedure utfilis empty.  %*

/]

Steady State

04 | / R
c) The actual frame length/ equalsA(G) +the o3| Fast Transition_ /7 | 1
number of added time slots. 02l : _

Steady State

d) Check the stations which have been assigne(%il i Dl
to transmit in the first\(G) time slots. If any %3 2 x —— n 5 3

of the stations can transmit in the added time. ) -
. . . . . Fig. 2. lllustration of state transition.
slots without conflict, assign the transmissions

of the stations in the corresponding time slots. - N
. 1 0.0W1 =
After the three steps are completed, the optimal schedule & 5=~ + Ws ZO-ijk . (22)
represented by;; V4, j is translated into the actual transmis- k=1
sion assignment (i.ev;; = 1 means that statiof can transmit Thus
in slot 7). 1 W N
TCZ4_<_M—]1\7 + W - m.iHijk
C. Critical Temperature . S
Each neuron is updated according to or . - N
1
(n) 1 1 8E[v(" 1)] o Tc S R <——MN + W2 IHELXZ fjk> .
vy = 2+ 5 tanh < 2T78 D) Vi, 5 (20) i
The lower bound for the temperature is taken as
wherewv;; = 3;;, v = (v;;) is the neuron matrix of dimension
M x N, and n s.tands for theﬁh it(_aration. _ _ T, = 1 M + Ws - min Z Fix |- (23)
From (20), it is seen that iterations starting at too high a da MN )

temperature result in trivial solutions. Starting at too low a The derived critical temperature is suitable only for the syn-

temperature, on the other hand, might force the system inte@&onous mode, in which aU ) are updated simultaneously

poor or invalid solution. The critical temperature is defined Ring the previous D For the asynchronous mode, each

the'::ter?rr)eratl;redar which ;?St state transitions begin. neuron is sequentially updated. The critical temperature for
or the scheduling problem asynchronous iteration can be estimated byial-and-error

N 1 1 D) method, i.e., the iteration starts at a very high temperature and
Vi —5 +5 tanh | — 2T MN Vi the temperature is gradually lowered. At each temperature,
each neuron is sequentially updated once. At the end of each
n— iteration, the absolute average value
+w22fjk U +w[ ( 1)]}> i (n) _ ,,(n=1)
n n—1
" 24
1) = MN Z Z| Vij | (24)

It is seen from (21) that the state of each neuron remains rel@-checked. At high temperatures], <« « for some small
tively unchanged at high temperatures. The iteration procedighstanta. Whene; > «, significant state transitions begin.

in (21) should start at a temperature (the critical temperaturgherefore, wher; > «, the trial process ends, at which point
at which fast transition begiﬂs as illustrated in Flg 2 Unti:he Corresponding temperature is critical.

steady state is reached. Thus )
| g D. Annealing Schedule
3T A | T The annealing schedule reflects the way the temperature is

¢ Ovy; reduced, and the following empirical annealing schedule
where 0.1 < «a < 0.2 is chosen, at which state transition _

. . o Toy1 =091, (25)

becomes rapid. Since all neuroms are initialized t00.5461
(61 is a small random number), we chose

is adopted in our simulations.

oF E. Stopping Criterion
T 2a 81/5?) At a very low temperature, all neurons converge to either
11 osw N zero or one. Let
~ 1|95 5o _ 9@ (M = o,
2 MN + W2 ;O'ijk + Wil 21}” ] €2 = MN Z Z (26)
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Thus, the iterative process may stop either when the error @
is approaching zero (in our case; < 0.01) or when the
temperature reaches zero. The final values of neurons represent

the schedule. @

V. NUMERICAL EXAMPLES AND PERFORMANCE ANALYSIS

A. Channel Utilization and Average Time Delay

The performance of the resulting schedules can be evaluated
by two criteria: channel utilization and average time delay.
The channel utilization is defined in (5). Before we derive the
average time delay, the following assumptions are made.

1) Packets have a fixed length, and the length of a time slot
equals the time required to transmit a packet.

2) The interarrival time for each stationis statistically
independent from other stations, and packets arrive
according to aPoissonprocess with a rate of; (pack-
ets/slot). The total traffic in stations consists of the
traffic incoming from other stations and the data from
terminals attached to it. Packets are stored in buffers in
each station and the buffer size is infinite.

3) The probability distribution of the service time of station
1 is deterministic and statically independent from other
stations. The average service rateujs(packets/slot).

4) Packets can be transmitted only at the beginning of each
time slot.

Under the above assumptions, a network can be modeled
as N M/D/1 queues, whereV is the number of stations.
According to thePollaczek—Khinchin formul§f], the average
delay for each queugis given by

Y ¢
Di=X;+ —"—
2(1 = p;)

(27)

where

X;=1/u; average service time for statian

pi = X\i/ps  utilization factor for statiory;

X2 second moment of service time for statiin o
Since the service time is deterministic, the variance equals

zero, and thus

— 1
X‘2 —2
3

M
E Vji

=1 Fig. 3. The radio networks used in the simulation: (a) the 15-station network,
Hi = M (paCketS/S|0t) (29) (b) the 30-station network, and (c) the 40-station network.

The total time delay is given by

and

al is 9, 11, 10, respectively, which are close to the lower bound

> D described by (9).

= ”zjl\, (30) We compare the performance achieved by the MFA schedul-
Z)“ ing algorithm with the other two scheduling algorithms [10],
i ! [11] in which the objective of scheduling is to achieve the

) maximum channel utilization. The time delay and channel

B. Numerical Results utilization are plotted in Fig. 5. From this figure, it is seen

Three PR networks shown in Fig. 3 with 15, 30, and 4that the time delay experienced by the MFA schedule is much

stations are scheduled. The resulting schedules are showitess than that of the other two scheduling algorithms which

Fig. 4, where a black box represents a transmission time sloave the same time delay, but the channel utilization achieved

Note thatA(G) = 9, 10, 9, and the scheduled frame lengttby MFA is a little bit less than the other two.

D
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Fig. 4. The MFA schedules: (a) the 15-station network, (b) the 30-station network, and (c) the 40-station network.

VI. CONCLUSION update other neurons. In the second step, the MFA procedure

In this paper, we presented an efficient broadcast schedul|ﬁ§xec,med to maximize channel utilization. At the end of the
ecution, a solution with near-maximal channel utilization

algorithm based on MFA neural networks. As shown in th%an be found. After the first two steps. some stations might
Appendix, the TDMA broadcast scheduling in a PR network ' PS, 9

. NP let binatorial optimizati bl V\POt be assigned to transmit in any slots. To arrange the
',S an -complete com .|r.1a 9”"" optimiza |o.n -pro em. Snassigned stations, additional time slots are needed. In the last
first map the channel utilization to be maximized and t

ep, a heuristic method is used to arrange the transmissions

interference-free constraints onto an energy function, and thgn o unassigned stations. This step guarantees that the
the MFA procedure is applied to searching for the optimalygitional number of time slots is minimal. Since neural
solutions. To reduce the computational complexity, we dividgatworks provide a parallel computing strategy, the proposed
the algorithm into three steps. In the first step, the solutiggheduling algorithm will obtain the optimal solution faster
space is reduced by presetting some neurons accordingtHgn other heuristic algorithms. Numerical results have shown
the topology of the scheduling network. The preset neurotitat the proposed algorithm can find the shortest interference-
need not be updated further, and their values can be usedré® frame schedule while providing the maximum channel
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Fig. 5. Time delay for different schemes: (a) 15-station, (b) 30-station, (c) 40-station, and (d) channel utilization.

(@) (b)

---- Augumented link

Fig. 6. The derivation of an augmented graph from a graph G: (a) graph G and (b) Graph

utilization. The average time delay is much smaller than thatQuestion: Is there a schedule which has the frame length

of the other two algorithms. or less and each station transmits at least once in such a frame?
Using graph theory to assist the proof of NP-completeness

of the scheduling problem, we form an augmented graph

APPENDIX .
NP-COMPLETENESS OF THE Ga = (Va, Ea) in such a way that
BROADCAST SCHEDULING PROBLEMS Vo=V, Ee=F U (4, k).
We denote the broadcast scheduling problem described in ((;:))geg

Sectlor? ”.aSHB' Itis def'f‘ed as fm_d!ng an mterference-freja_ig' 6 illustrates the augmented grafh derived from a graph

transmission .schedule W'th_ t-he minimum frame lendih; G. For problemllp, finding an interference-free transmission

can be described as a decision problem. schedule in any time slot within a frame is equivalent to finding
Instance: The scheduling problenils = (G, K), where 3 set of verticey” C V in G, such that, if any, j € V’, then

G = (V, E) represents a packet radio network, akidis a (i, j) ¢ F,. All stations (vertices) in the sdt’ can transmit

positive integer K < |V)). simultaneously with no interference.
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The output of the transformation algorithm is the in-
stance[G*, K] of the problemII;. To show this trans-
formation is valid, we need to prove that the gra@gh
has a clique of sizé( if and only if the graphG¢ has
S M an independent set of sizZg.

Suppose tha€7 has a cliqguel’ C V with |V'| = K,
we claim thatV’ is an independent set if¥°. Based on
the formation ofG¢, if any ¢, j € V' and (¢, j) € E,
we have(i, ) ¢ E°, which implies that vertices, j
are independent iG°. Since(s, j) is chosen arbitrarily
from E and every edg€i, j) € F is not in E°, all
verticesK = |V’| in a cliqueV”’ are independent if°.
Hence, the seV”’ of size K forms an independent set
in G¢. Conversely, suppose th&t® has an independent
setV’ C V of size K = |V’|, then, for allz, j € V’,
we have(i, j) ¢ E£°, and(i, j) € £ in G, which forms
a complete subgraph df’ € V in E. In other words,

(@) (b)

Fig. 7. lllustration of the complement of a graph: (a) graph G and (b) graph

Ge.

In graph theory, a subs&t’ C V is called anindependent
setin a graphG = (V, E) if, for all ¢, j C V’, the edge
(4, j) ¢ E. Vertices are said to bedependentrom each other
in the subseV”’. The problem to find a maximum independent
set in a graph is denoted &k . Since we will usell; in the

NP-completeness proof of problelity, we first need to prove e X R )
that TI; is NP-complete. V' is a clique with sizeK in G.

Theorem A.1: From the above statement, we conclude that a gtaptas

Proof: II; is NP-complete. To provE; is NP-complete, & cliqueV” if and only if the graphG® has an independent
we first need to shoWll; € NP, and then find a polynomial S€t V’. The derivation ofG¢ from G can be completed in
transformation from a known NP-complete problem calle@olynomial time, and therefortlc: o, 11;.
clique denoted byllc. Since we have shown that; € NP andlls , 117, we

In an undirected graply = (V, E), a clique is a subset have proved thafl; is NP-complete.
V’ C V of vertices, each pair of which is connected by an Theorem A.2:
edge inE. Therefore, a clique is a complete subgraphof Proof: Ilp is NP-complete. We first form an augment
The size of a clique is the number of vertices it contains. @aphG. = (V. E,) from graphG described above. Thus,
has been proved thdlc is an NP-complete problem [12].scheduling an interference-free transmission in any time slot

Here, we simply use the result to prove the NP-completené¥ihin a frame is equivalent to finding such a déet C V
of the II; problem. of vertices that, if any, j € V’, then(i, j) ¢ E,. To prove

1) II; € NP: “NP” stands for nondeterministic polynomialllz i NP-complete, we first need to shadz € NP, and
time. Class NPis defined as the class of languages th&pen find a polynomial transformation from the NP-complete
can be verified by a polynomial-time algorithm. Noticéroblem 1L;.
that polynomial time verifiability does not imply poly- 1he broadcast schedule can be represented by
nomial time solvability.Class P consists of problems
that can be solved in polynomial time, whereas the class
NP consists of problems for which a solution can be
verified rather than solved in polynomial time.

For a given graphG = (V, E), it is easy to see that

~_ [ 1, if stationj transmits at time slot
710, otherwise.

1) Iz € NP: To provellg € NP, we first need to

2)

the decision problem verifying whether a selected subset
of verticesV’ € V is independent and less than a certain
constanti’ < |V| can be completed in polynomial time.
Therefore,ll; € NP.
Polynomial Transformatiodls o, II;: We will show
that there is a polynomial transformation froii-
to II;, denoted bylls , II;. Here, a polynomial
transformation from one probleit; to another problem
II, is defined as: there is a polynomial-time computable
function f such that all instances < II; if and only
if f(z) € II,. The transformatiodl o, I1I; is based
on the notion of thecomplementof a graph. For an
undirected grapl? = (V, E), the complement o7 is
defined as7® = (V, E), whereE® = {(4, j) : (i, j) ¢
E}. Fig. 7 shows a graph and its complement and the
transformation fronlls to II;.

The transformation takes an instance of the clique
problem[&, K] asinput It computes the complement
G¢, which is easily derived in polynomial tim@(|V |?).

2)

guessa frame schedule with an arbitrary frame length
M < N (N is the number of stations in the packet radio
network), then form the augmented gra@h = (V, E,)
from graphG at each time slot. DenoteV) = {i: i €

V, sy = 1}, wheresy; is defined by the above equation.
We need to check whethér, 5) ¢ F, foranyi, 5 € V/.

At the same time, we need to check if the guessed
schedule lengthi/ < K. It is easy to verify that the
checking process can be completed in polynomial time
O(N?). Therefore,Ilg € NP.

II; «, llg: Finding an interference-free schedule with
the minimum frame length is equivalent to coloring
vertices inGG, so that, for any pair of vertices j € V,

if (¢, j)€ E,, theni andj must be assigned to different
colors. The coloring problem is to find the minimum
number of colors that can cover all vertices in a graph.
Here, the color corresponds to a time slot and the frame
length to the total number of colors.. In order to find
the minimumn,., we should assign a color to as many



Fig. 9. The decoding of the coloring graph.
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We notice that the coloring problem is equivalent to
finding the maximum independent set &,. There-
fore, the broadcast scheduling problefhy can be
transformed into the independent set problém by
finding an augmented graph, from G, which is easily
generated in polynomial time. Thus, we hallg
1.

Having shownllz € NP andll; «, ll1g, we can conclude

that Il is NP-complete.

vertices as possible provided that the coloring does not
cause conflict. Therefore, solving the probléhg can [1]
be performed as follows. 2]

a) Form an augmented gragh, based on7, ¢ « 1. 3]

b) Find the maximum independent sgt for G, =
(V, E,) and assign a colot; to the setV}.

O V<V-V,E,<E,—{(¢t,j):i€V/, (i, j) €
EVj}.

(4]
(5]

(6]

If G, is not empty, thert — ¢+ 1 and repeat Step b), [7]
else the coloring procedure ends. The results are encoded

into a frame schedule by [8]
6. =L ifieV/ [o]
700, otherwise.
[10]
Fig. 8 illustrates the formulation of the grapgh, and the [11]

coloring process. We hawg' = {1, 5, 9}, Vj = {2, 6},
Vi = {3}, V{ = {4}, V = {7}, { = {8}. Fig. 9 is the 115
decoding of the graph coloring result.
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