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KEYWORDS metric in mind [3]. All these works focus on homogeneous
Distributed Job Scheduling, Divisible Load Applicationssystems and on centralized scheduling.
Grid Platforms, Scheduling Simulation By contrast with the aforementioned works, we focus on

the problem of distributed job scheduling in heterogeneous

ABSTRACT grid environments consistingnanultiple sites where each site

In this paper we studydistributed job scheduling in grid has a homogeneous parallel compute platform managed by its
environments when each job is BL application. The own job scheduler, and with a focus on an aggregate user-
scheduling goal is to minimize the average steady-state jobntric metric (in our case the average turnaround time across
turnaround time. In this context, we identify in which regimeall jobs). Job scheduling over a multi-site grid has often been
classes of scheduling strategies are efficient, namely fafereed to asneta-scheduling, and has been studied by many
which platforms and which communication to computatioresearchers [15], [27], [31], [14], [17], [26], [29], [7], [8].
ratios. We also quantify what level of global informationThe works in [15] and [27] distinguish between centralized
about the platform is required for efficient scheduling. Aland decentralized meta-schéidg schemes. In the centralized
our findings are obtained via simulation of wide ranges aicheme [31], [14], [17] a single scheduler is used to make all
application and platform scanios. Our most significant scheduling decisions, which limits scalability and is a single
findings are that the use of grid information is only necessappint of failure. Our work focuses on decentralized meta-
at high workload, and that at high workload using dynamischeduling and is thus most related to [26], [29], [7], [8].
information improves performance by around 10% whe@ur system model is inspired by the one in [26]. Subramani
compared to using static information. et al. [29] describe distributed scheduling algorithms that use
multiple simultaneous requests. Our approach does not use
multiple simultaneous requests and differs from both [26]
and [29] in that we allow for jobs to be split among multiple
sites, or “co-scheduled”. Thiso-scheduling approach is also
Improvements in wide-area networking infrastructure artdken in [7], [8]. However, our work employs a different
middleware technology have enabled the aggregation of application model, which has major implication on meta-
sources from multiple administrative domains into grid plascheduling and which we introduce below.
forms. These platforms provedunprecedented capabilities to The work in [7], [8] and other works that consider co-
applications, but only if resoues can be used effectively. Asscheduling target data-parallel applications, generally requir-
a result, a popular research question is: How to assign coimg a resource reservation inftaucture as application pro-
ponents of asingle distributed application to grid resourcesesses must run concurrently, typically leading to frequent
in order to optimize some metric (e.g., turnaround time)®mmunications over the wide-area. This is certainly feasible
Another important question is that of scheduling multiplen grid platforms that use proprietary networks, but more
independent applications, gobs, so that some aggregatedifficult to justify on grids that use the Internet for commu-
metric is optimized (e.g., average turnaround time). In thigcations and thus can be largempacted by (variations in)
paper we focus on the latter question. Job scheduling has beetwork delays. However, there is an entire class of relevant
addressed from a practical standpoint in the context of singleientific applications that are amenable to wide deployments
parallel resources wittbatch schedulers [12]. While batch over such networksdivisible load (DL) applications [5].
schedulers have been used for several decades, they typic@ligse applications consist of an amount of work that can be
take a resource-oriented view of scheduling and do not attenapbitrarily divided intochunks. These chunks can then be sent
to optimize user-centric metrics, such as average turnaroundemote resources and can be computed independently with
time. From the theoretical standpoint, several researchers haeenecessary synchronization. In spite of its simplicity, the DL
studied the question of job scheduling with a user-centrinodel arises in many fields of science and engineering [10],
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[24], [16], [13], [1], and the issue of DL scheduling haslone in many previous meta-scheduling work [15], [27], [14],
been addressed by many authors (see [2] for a summary[26], [29], [7], [8] because it makes it easier to understand
current results). These applications are ideal candidates &d analyze the behavior of the meta-scheduling algorithms.
co-scheduling on grids that consist of multiple sites over tHeurthermore, we will see below that we simulation DL job that
wide-area [6]. run on all resources at a site, making backfilling unnecessary
We study the problem ofob scheduling in grid environ- and FIFO scheduling a reasonable approach.

ments when each job is BL application. The scheduling
goal is to minimize the average steady-state job turnaround

time. In this context, we identify in which regimes classes of %%. %%
scheduling strategies are efficient, namely for which platforms cosTSon ol
and which communication tooenputation ratios. We also — a
quantify what level of global information about the entire st .

platform is required for efficient scheduling. This is a critical
point for determining what type of information and monitoring
infrastructure is needed for efftive meta-scheduling in grid
environments. All our findings are obtained via simulation.
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Il. MODELS Hoss
HHH Siten
A. Platform Model Ste3 e
We consider a platform that conS|sts_M sites, indexed Fig. 1. Grid Model
by : = 1,..., N, connected over the wide-area. We model

the wide-area network as a fulbpnnected network. Each site By contrast with [26], our model allows the ES divide
reaches the WAN through a LAN link (we assume that allach application intahunks and assign these chunks to the
such LAN links have the same bandwidth). The bandwidis at the local site as well as to the LS at one or more remote
on e.ach LAN link is shared among e.ach flow going througflies. This is because we cider DL applications, which
the link. The bandwidth on WAN link is not shared and eachyjow asynchronous parallel egutions. Another consequence
flow going through the link gets the full bandwidth. In othep; considering DL applicatins is that we assume that each
terms, we do not model any contention between the flows @fynk can utilize all resources at the site to which it is
our applications on the wide-area. This model is justified byassigned: each chunk is itself a DL application and if a
the bandwidth-sharing properties observed on wide-area link§e consists ofk resources. a chunk is divided ini@ sub-
when such a link is a bottleneck for an end-to-end TCP floy nks. This is a strong assumption as there is always overhead
several extra flows can generally be opened on the same Paffy|ved for using increasing numbers of processors, even
and they each receive the same amount of bandwidth as e p| applications. Therefore, it may be more efficient to
original flow. This behavior can be due to TCP itself (e.9yse fewer sub-chunks. However, our goal in this paper is to
congestion windows), or to the fact that the number of ﬂOV\(:sOmpare and evaluate the effgeness of meta-scheduling
belonging to a single application is typically insignificant whepyjicies, which are orthogonal to the application scheduling
compared to the total number of flows going through theggjicies implemented at the LS level. Consequently, we leave
links. This property is often exploited by explicitly openingpnjs issue aside for now but discuss possible evolutions of
parallel TCP connections and we have observed it in Oy[r model in Section Ill. Also, we ignore the cost of local
own measurements [9]. Some recent work [18], [9] providggy for application data. Thigost could be easily integrated
the foundation for refining our network model, both basegiqy our model (i.e., as a proportional overhead), but once
on empirical measurements caron theoretical modeling of 544in this issue is orthogonal to that of meta-scheduling.
network traffic, and we leave such developments for a futu@na"y, we assume that the L8an accommodate for possible
paper. . . . heterogeneity among the compute resources at a site for each
Figure 1 depicts our platform model. Each site comprisesynk execution via load balancing. Such load balancing is
number ofcompute resources, np;, as well as storage, which gyajghtforward because eachunk can be divided into sub-
we assume to be unlimited. As in [26] compute resourcegynks of arbitrary size to account for different processor
are managed by docal Scheduler (LS) and requests for speeds (since the load is divisible) and because we ignore the
computations are managed by &sternal Scheduler (ES). cost of local I/0. In effect, load balancing can negate the effect
Local users submit requests to the ES directly. Then, for eaghpeterogeneity. A consequenof the above consideration is
request, the ES decides whether to send the request to a remjole\ve can restrict our experiments to homogeneous compute

LS or to send it to the local LS. The LS assigns applicationgsoyrces, but with differemumbers of resources at each site.
to local compute resources in dHO fashion. Note that real-

world systems use batch schedulers that typically employ sofeAPplication and Workload Model
backfilling scheduling algorithm [12], which is quite different We consider applications that consist of a continuous load
from FIFO. However assuming FIFO local scheduling ithat can be arbitrarily divided among compute resources. Each



application is described by the size of the input application I1l. SCHEDULING DIVISIBLE LOAD JOBS
data in bytes}V;...;. The amount of processing power needefl Scheduling Scenario
per byte of load is denoted kymp_factor. The computation

time required to process the entire loadyp_cost, is then: The problem we address is that of minimizing the average

turnaround time over all jobs in the system, when the system
Wiosat * comp_factor is in steady-state. Our schdihg scenario is as follows. At

comp-cost = essor_speed each site users submit jobs (j.eequests to compute a DL) to

the ES throughout time. For each job, the ES determines the

whereprocessor_speed is the speed of therpcessor process- i values, that is which sites will participate in the application

ing the load. execution and how the load will be divided into chunks among
The time to transfer the load from one site to another [8€se sites. The chunks are then sent to the LSs at the chosen
defined as: sites over the network. The LSs divide each chunk by the
number of resources, intsub-chunks. The turnaround time
Wiotal is defined as the time between the instant at which the job

transfer_cost =

bandwidth’ submission arrives to the ES and the instant at which all
chunks have been processed by all selected sites.

where bandwidth is the data transfer rate on the networkB

Note that, like many other authors [26], [22], [29], we ignore .

output data transfers: since we are interested irstzely-state !N order to make decisions, the ESs can make use of

behavior of the system, transfers of output data can easily Bgormation about the grid platform. We consider two types
modeled by increasing the size of the input data. of resource information: the (nearly) static characteristics of

fhe sites (number of processors and their speed); and dynamic
characteristics (the length of the FIFO queues).

Scheduling Techniques

The communication to computation ratio of an applicatio

is defined as: ; )
The allocation process of the ESs consists of two parts, the
_ transfer_cost selection of the sites and thdivision of the load among those
coan_comp_ratw = . . . . .
comp_cost sites. The selection decides which values will be non-zero,

whereas the division assigns actual values to the nonezéso
Note that this ratio is for a given application running on a giveRased on these considerations we instantiate three classes of
platform: the application execution on this platform spend®eta-scheduling strategies.
comm._comp_ratio times more seconds communicating than 1) Basic Strategies (B): These strategies make no use of
computing. Typically, this ratio is much lower than 1 so as t@rid information and operate with three flavors of the selection
justify the use of distributedesources in the first place. Forstrategy.
high such ratios it is typically more advantageous to have th&cal site (B-LS): The ES does not divide the load and only
application execute solely on its local site. Our experimengses the local site.
explore ranges oformm_comp_ratio values. All sites (B-AS): The ES divides the load equally among all
Since the 10adW,,¢a1, is divisible, the scheduler can decideSites.
how big a chunk of the load to give out to each site. For lgocal site and k random sites (B-LkR): Additional to the
platform with NV sites, a portion of the load; x Wyoa iS local site, the ES selectt random and divides the load
assigned to each site with the obvious constraints: randomly among thé& + 1 sites.
il 2) Strategies using static information (Load Balancing
Vi 0faisd and Z‘” =t 1 - LB1): Load is divided based on static grid information,
=t proportionally to the number of processors at each selected
We model the workload of the entire system as streams sife.
jobs arriving at each site accang to a Poisson process withAll sites (LB1-AS): All sites participate in each execution.
rate \. While this model does not correspond to a particularocal site and k random remote sites (LB1-LkR): The ES
workload in the real-world, it is convenient to obtain a firstelectsk + 1 sites, the local one arid random remote sites.
order evaluation of our meta-scheduling heuristics and is easily3) Strategies using dynamic information (Load Balanc-
parameterized by. The alternative would have been to uséng 2 - LB2): Each ES keeps track of the length of FIFO
logs from HPC systems such as the ones available at [2§lieues at all sites, and load is divided based in queue length
but these logs are for specific systems and user communitigseach selected site.
Workload characterization isotably arduous [11], but recently All sites (LB2-AS): All sites patrticipate in each execution.
the work in [21] has proposed a new model for job arrivdlocal site and k random remote sites (LB2-LkR): The ES
times. We plan to use this model in future work to see if themelectsk + 1 sites, the local one arid random remote sites.
is any impact on our simulations. However, these logs amhddcal site and k best remote sites (LB2-LkB): The ES
models are for rigid parallel jobs and it is not clear whetharses the local site arid best remote sites. The best sites sites
their arrival times would be representative of a workloadre defined as the ones having the highester_ratio value
consisting of DL jobs. defined as:



BLAST® [13] — A set of search programs designed to identify
power ratio; = — P i 4y similarities between biological sequences. Typical data sizes
T queue-sizey are between 400MB and 2GB and thenm _comp_ratio is
high (1.0 for a 1GHz P4 and bandwidth 100Mbps).
wherequeue _size; is the size of the FIFO queue (i.e., numbeHMMER [16] — A suite of programs that compare biological
of pending jobs) in the LS’s queue at site sequences using Hidden Markov Models. Typical data sizes
A. Bucur et al. [8] propose placement policies based on tlage between 400MB and 2GB and thenm_comp_ratio is
knowledge of the number of idle processors in each site afflv (0.35 for a 1GHz P4 and bandwidth 100Mbps).
distribute the tasks in such a way as to keep the load balancRéndering [25] — A generic rendering program that constructs
Our LB2 strategies are related to the policies in [8] but th& sequence of frames based on a scene’s geometry. The speed
dynamic resource information we consider here is the size @fthe computation is dependent on the complexity of the scene
the queues at each LS. Also, the selection strategy usedaifd on hardware technology. Furthermore, there are many
LB1-LkR, LB2-LkR, andLB2-LkB is loosely related to the different rendering techniques. We consider here an image-
K-Distributed Model proposed in [29], which chooses a lim-based algorithm (mosaicking) with a highmm _comp_ratio
ited number of sites for replicating requests for computation®.5 for a 1GHz P4 and bandwidth 100Mbps) and we consider
Our work differs in that we take into account data transfeata sizes between 4MB and 10MB.
and we perform co-scheduling. The load distribution strategiBay Tracing [28] — A popular technigue to generate photo-
proposed in [22] are based on static and dynamic informatiaealistic images. Because ofaursion in the algorithm and
Each site receives@hunk that is proportional to its computing the possibly large number of rays that may be cast, this
speed if it has enough free buffer capacity; otherwise that siieogram has lowetomm _comp_ratio than Rendering (0.15
will be no considered in the current selection. for a 1GHz P4 and bandwidth 100Mbps) with data sizes
Other strategies are possible and in total we have evaluatestween 4MB and 12MB.
twenty strategies. Since these strategies all rely on heuristigslume Rendering [19] — A program to visualize large quan-
it is difficult to compare them analytically. However, outities of volume data. It has a very lowwmm_comp_ratio
simulations showed that several of the twenty strategies exhiffit2 for a 1GHz P4 and bandwidth 100Mbps) with data sizes
in practice virtually identical performance. In these cases vietween 400MB and 1GB.
have included the simpler strategies in this paper. Synthetic Applications — We also simulated several synthetic
applications with different¥;,:,; and comm_comp_ratio in
order to cover a wide range of applications.
Our experiments investigate the following three questlorE Platforms

pertaining to thedivision and selection concepts that were ) )
highlighted in Section III: We simulate the following platforms (see Table Il for full

details):

' i i ?
(i) When are t.h? !oasc strategllas gooql f_enough. Recall that GrADStestbed [4] — composed of 3 clusters at the University
the basiadivision and selection policies do not make use . . . L

of Tennessee, Knoxville (UTK), the University of lllinois,

of any information about the system state (the ESs Oper%}ﬁ)ana—Champaign (UIUC), and the University of California,

in isolation). : . San Diego (UCSD); we assume 10Mb/s bandwidth.

(i) Vr\]Ma(tj_ls_Fhe uself_uln&'s\lof gl?]bal Wstem mforrréatlon florb ITeraGriég [SEO] - vzle consider 4 of the TeraGrid clusters
itnfeorr'n\/;i’:gz r%oalcﬁe c(())tsetlt ::1 du?]r;g :i;;o;oat?oﬁigits/ located at the San Diego Supeneputing Center (SDSC), the
overhead y y y P National Center for Supercomputing Applications (NCSA), the

' . . . California Institute of Technology (Caltech), and the Argonne

(iiiy How marny and _vvh|ch_remote S'.t% should t_)e p|9ked by National Laboratory (ANL). We assume 10Gb/s bandwidth.
the selection policy? Site selection has a direct impact o nthetic Grids — with 2 4. 6. 8. 10. 12. 14. 16. 18. and 20
fappli_c ation data transfetosts and sites must be selecte&{es, with clock rates of 250 500 an,d 1600,’WA,N ba’mdwidths
Judiciously to avoid network bottlenecks. of 10, 100, or 500 Mbps and LAN bandwidth of 100, 500,

Experiments on a real-world testbed would be prohibitivg, 1000 Mbps. We simulate platforms with low, medium, and
both in terms of time, because they would be limited tRjgh heterogeneity, in which the number of processors per site

a specific configuration, and because they would hardly hesglected randomly betweenand b according to uniform

repeatable. Instead, we have implemented a simulator USingé*i’é%ributions, which is denoted as 4&J§] in Table II. We also

SIMGRID [18] toolkit, which provides the needed abstractiongerformed experiments for a fixed total number of processors

and realistic models for the simulation of processes interactipg tne system and just varying the heterogeneity (measured

over a network. by the standard deviation of the number of processors at each
site).

IV. EXPERIMENTAL METHODOLOGY

A. Application Scenarios

We chose the following representative applications to irf=- Job Arrivals
stantiate the job mix used in our simulations (see Table | for Jobs arrive in the system accorg to a Poissonidtribution
details): with parametei\. The same Poisson distribution was assigned



[ Application | BLAST [ HMMER [ Rendering[ Ray Tracing | Volume Rendering]  Synthetic App |

Wiotal (MB) 700 700 10 12 800 10,40,50,100,200
comp_factor 5 15 10 35 25 100,50,7.5,17.5,2(

TABLE |
APPLICATIONCHARACTERISTICS

[ Platform [ # of sites | # of processors per site | Processor speed | Bandwidth
(UTK) 8 550MHz
GrADS 3 (UCSD) 4 and 2 400MHz and 450MHz 100Mbps (LAN)
(UIUC) 6 and 4 266MHz and 450MHz 10Mbps (WAN)
(SDSC) 128, (NSSA) 256 1GHz
TeraGrid 4 (Caltech) 64 1GHz 10GbE (LAN)
(ANL) 96 and 16 2.4GHz and 1GHz 30GbE (WAN)
Synthetic | 2, 4, 6, 8, U[2,5] (low heterog.) 250MHz, 100, 500 or 1000 Mbps (LAN)
Grids 1 | 10, 12, 14,| U[2,10](medium heterog.) 500MHz, 10, 100 or 500 Mbps (WAN)
16, 18, 20 U[2,24] (high heterog.) or 1GHz
Synthetic 4,8 randomly selected, keeping 250MHz 500 or 1000 Mbps (LAN)
Grids 2 64 total proc. in system 100 or 500 Mbps (WAN)
TABLE Il

SUMMARY OF TESTBED CHARACTERISTICS

to each site in all experiments. Indeed, we choose to keep tred A decrease. This is when the job have high computational

workload homogeneous among sites but to make the codemands but the total workload in the system is low.

pute power heterogeneous (in terms of number of processoihat is the usefulness of global information for the division

at each site). The\ values used in our experiments wergolicy? The LB2 strategies become equivalent or slightly

0.3,0.6,0.9,1.2,1.8,4,3.0,3.6,4.2,4.8. better thanLB1 strategies as:omm_comp_ratio decreases

and as)\ increases. This result shows that dynamic information

could marginally improve the total performance in the GrADS
We used the simulator for 3 sets of experiments: (i) eXP&htatform only when the system has high total load.

iments on GrADS and TeraGrid platforms, (i) experiments How many and which remote sites should be picked by

on synthetic platforms, using uniform distributions to seleghe sglection policy? Strategies using all sites become worse

the number of processors on each site, and (iii) experimeftan using 2 sites asmm_comp_ratio decreases and as

on synthetic platforms with a fixed number of processors g thus the overall workload, increases. Regardimich

the system. We evaluate the job scheduling strategies usifgs, picking random sites achieves best or close to best
average job turnaround times. Each simulation experiment Wasrformance.

repeated 10 times and we present averages.

V. EXPERIMENTAL RESULTS

A. Real platforms: GrADS and TeraGrid o Sy ap av comm_comp_rao = 0.04) on GrADS plorn =P
sk % [l B L2 LR

Figure 2 shows the average turnaround time for the three i S HI[ W %%ﬂi

applications with the lowesbmm_comp_ratio on the GrADS gl ]IHM i e

platform. TheB-LS strategy yields the best performance in v * kS * Bk

almost all cases with an improvement between 8% and 79% 3

over the nearest strategy. For with the synthetic application Bl M M M W

with comm_comp_ratio = 0.044 and\ = 4.8, L B2 strategies s ,CalHIL [l H Il LI

using 2 sitesl{B2-L1R and LB2-L1B) are better thaB-L S < i e (o o e 0.3 o S o

by approximately 5%. Another fact to be noted in this last case — I

is that strategies using 2 sites are better than strategies using ol ﬁ M W H M ]H[

all sites. This is because whening all sites the network is ° o % W

overloaded. From these observations, we can conclude that in '"

the GrADS platform it is useful to use a (single) remote site Fig. 2. Average turnaround time on GrADS platform

only when the total system workload is high. Nevertheless, it is

still interesting to look at other strategies in order to compare Figures 3, 4, 5, and 6 show the average turnaround time
them, based on the three proposed questions: and the percent of improvement of the best strategy over its
- When are the basic strategies good enough? The basic nearest, for all applications on the TeraGrid platform with three
strategies using more than 1 sig-[( 1R andB-L2R) become different A values. The results show that as the network is
better than thé.B1 andL B2 strategies asomm_comp_ratio faster, using only local resources is rarely judicioBsL S



A Synthetic app (comp_comm ratio=0.001) on TeraGrid Platform A Synthetic app (comp_comm ratio=0.006) on TeraGrid Platform
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Fig. 3. Average turnaround time for syetic applications on the TeraGrid Fig. 5. Average turnaround time for a synthetic application and HMMER
platform. on TeraGrid platform

is only the best only wheromm_comp_ratio > 0.007 (no 0.3 and comm_comp_ratio < 0.003. However, when
matter what is), with improvements from 10% to 64% (seecomm_comp_ratio and X\ increase their performance de-
Figures 5 and 6). This happen when the job’s computatiorgidades. In these cases, usitiie local and a single other
demands decrease. Wittbmm_comp_ratio < 0.007 it is site results in better performance than using 3 or all sites.
beneficial to use remote resources. Witk= 0.3 the strategies Regardingwhich sites are the best selection, picking random
LB1-AS andLB2-AS have the best performance with a lowsites results in a performance better, equal or very close to
improvement overLB1-L2R (see Figures 3 and 4). With picking the best ones (compar®2-L 1R with LB2-L 1B, and
A = 3.0 and 4.8 the best strategies are that use 2 sites and2-L 2R with LB2-L2B in figures 3, 4, 5, and 6).
queue size informationLB2-L 1R andLB2-L 1B). . )

Let us examine the answers to our three main questions®: YNthetic environments
- When are the basic strategies good enough? For Now, we turn our attention to synthetic platforms. With
comm_comp_ratio > 0.007, the basic strategy using localthese results, we also analyzed the three questions, starting
and two random sites3(L 2R) becomes better thanB1-L2R  with: When are the basic strategies good enough?.
and LB2-L 2R as the jobs’ computational demands decrease.
This is the only case in which the basic strategies are better
than the other two.

10° Rendering (comp_comm ratio=0.01) on TeraGrid Platform)

Ray Tracing (comp_comm ratio=0.003) on TeraGrid Platform)
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Fig. 6. Average turnaround time for Rendering and BLAST on TeraGrid
platform

°

Fig. 4. Average turnaround time for Raracing and Volume Rendering on ~ Figure 7 shows the areas where €S strategy is best
TeraGrid platform (shown in black) in terms ofomm_comp_ratio and of total
workload (defined as timesW;,:.;), on average. According
- What is the usefulness of global system information for to these results using remote resources is beneficial when when
the division policy? The LB2 strategies have the same ocomm_comp_ratio < 0.175 and A * Wrgtar > 3 * 106bytes;
better performance thah Bl strategies, except when theotherwise theB-L S strategy yields the best performance with
comm_comp_ratio > 0.01. Therefore, dynamic information improvement between 10% and 90%. TBeAS strategy
could improve total performance at high total workload.  yields good performance when the total workload in the
- How many and which remote sites should be picked system is low, but with high workload it performs the worst.
by the selection policy? Using all sites, withLB1 and In most cases (68%), the strategies with the best perfor-
LB2 strategies, leads to the best performance ¥or= mance in the white area of Figure 7 were th81-AS and the



LB2-AS strategies (with almost similar performance). In 27%verloaded than others. Noteathwhen all sites are used, it

of cases, best performance wasached when using 2 sites.makes no difference whether queue information is used or not.

Using 3 sites led to best performance in 5% of cases. We also find that whem\ increases, the improvement of
Figure 7 also shows the areas where the real applicatiarsing all sites over strategies that use 2 or 3 sites decreases.

lie. Note that with lowcomm_comp_ratio, for all of them, is The reason for this is that the network is overloaded with many

beneficial to use remote sites. transfers of chunks. Figure 9 presents a comparison between

LB2-AS and strategies using 2 or 3 sites.

*10° a) High Workload

D. Impact of heterogeneity in the selection policy

We define heterogeneity as the standard deviation of the
number of processors on each site. So a heterogeneity of 0

Workload ( #* W_total)

005 01 015 02 025 03

W_total)
P

Workload ( A+

comm_comp ratio

b) Low Workload

15 02 025 03
‘comm_comp ratio

represents an homogeneous grid platform, in which all sites
have the same number of processors. We observe that when
heterogeneity increases the improvement of the strategies
using all sites over strategies using 2 or 3 sites increases too.
Figure 10 shows an example of this fact in a system with
8 sites, 64 processors, = 3.0, and comm_comp_ratio =
0.0025. This is because small sites generally benefit from
using as many remote resourcas possible, and using all
sites leads to good load balancing.

Fig. 7. When is it benefi cial (shown in black) to use remote resources given

the overall system workload anmm_comp_ratio of applications?
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Fig. 8. Comparison betwedrB1 andL B2 strategies in a grid platform with 8
sites, 64 total processorsycamoderate heterogeneisormm _comp_ratio =

0.0025
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Fig. 9. Comparison betweenB2-AS and strategies using 2 or 3 sites on
a grid platform with 8 sites, 64 total processors, and low heterogeneity (top)
and moderate heterogeneity (bottorm)mm _comp_ratio = 0.0025

VI. CONCLUSIONS ANDFUTURE WORKS

We evaluated several scheduling approaches on grid plat-
forms for DL jobs, with the goal of answering the questions

To answer our second and third questions, we performédised in this paper: (iyvhen are the basic strategies good
a third set of experiments in which we varied and the €nough?, (i) What is the usefulness of global system informa-
heterogeneity in the system while keeping the number of sité@n for the division policy?, and (iii) How many and which
and the number of total processors in the system fixed. Whetiemote sites should be picked by the selection policy?. In
increases the overall workloadcreases as well. We find thatsupport of this investigation, we have developed a discrete-
the information about FIFO queue sizes becomes beneficgent simulator using thel@GRID toolkit. We have modeled
when )\ increase, but not when all sites are used. Figurergal-world and synthetic platform as well as real-world and
shows an example of this fact on a grid platform with 8 site§ynthetic applications.
64 processors in the System’ and middle heterogeneity for arpur simulation results lead us to the fOIIOWing conclusions
application withcomm_comp_ratio = 0.0025. TheLB2-L 2R concerning the three questions listed above:
strategy (using 3 sites) is always better tHaBR1-L2R but (i) In the presence of applications with high
the improvement decreases aicreasesL B1-L 1R is better comm_comp_ratio and high workload, the simple
thanLB2-L 1R for low A, but LB2-L 1R becomes better ak B-LS strategy vyields good performance. However,
increases. Indeed, when the walirate is high, considering results may be different if the sites have different LS
gueue size becomes critical asme sites can become more  approaches (e.g., some sites not dividing the chunks into



Fig. 10.

8 sites, 3.0, and comm_comp_ratio=0.0025
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[10]
Comparison between strategies using all sites and strategies uﬂrlg]

3 sites on a grid platform with 8 sites, 64 total processors, ang 3.0.

comm_comp_ratio = 0.0025

[12]

sub-chunks). The basic strategy using all siteB-AS)
reported the worst performance in cases where the tokal
system workload was high. [14]

(i) Using dynamic FIFO queue sizes information for making

(iii)

scheduling decisions is beneficial when the overall work-
load is high, with around 10% improvement over usings]
only static site information.

When heterogeneity increases the improvement of t )
strategies using all sites over strategies that use 2 or 3 sites
increases, but if\ increases this impvement decreases.[17]
In systems with few sites and low workload the strategi%g]
using 2 sites are better than using all sites) @screases
using the best sites gets better performance.

We have modeled the workload of jobs arriving to a Poissqiy
process with rate. We plan to use other models in future work

to see if there is any impact on our simulations.

[20]

21
While a centralized scheduling approach may not be prac i-]

cal,

it would be informative to know by how much a distributed

approach loses when compared to a centralized one. In futlfd
work we will compare our heuristics to the work in [23],
which proposes centralized algthms for scheduling multiple

DL applications, in steady state. While their assumptions

different (e.g., jobs are infinite, there are no LSs), a comparison

could still be made that sheds light on how much is lost
the decentralized approach.

(1

(2]

(3]
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