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ABSTRACT
In this paper we studydistributed job scheduling in grid
environments when each job is aDL application. The
scheduling goal is to minimize the average steady-state job
turnaround time. In this context, we identify in which regimes
classes of scheduling strategies are efficient, namely for
which platforms and which communication to computation
ratios. We also quantify what level of global information
about the platform is required for efficient scheduling. All
our findings are obtained via simulation of wide ranges of
application and platform scenarios. Our most significant
findings are that the use of grid information is only necessary
at high workload, and that at high workload using dynamic
information improves performance by around 10% when
compared to using static information.

I. I NTRODUCTION

Improvements in wide-area networking infrastructure and
middleware technology have enabled the aggregation of re-
sources from multiple administrative domains into grid plat-
forms. These platforms provide unprecedented capabilities to
applications, but only if resources can be used effectively. As
a result, a popular research question is: How to assign com-
ponents of asingle distributed application to grid resources
in order to optimize some metric (e.g., turnaround time)?
Another important question is that of scheduling multiple
independent applications, orjobs, so that some aggregate
metric is optimized (e.g., average turnaround time). In this
paper we focus on the latter question. Job scheduling has been
addressed from a practical standpoint in the context of single
parallel resources withbatch schedulers [12]. While batch
schedulers have been used for several decades, they typically
take a resource-oriented view of scheduling and do not attempt
to optimize user-centric metrics, such as average turnaround
time. From the theoretical standpoint, several researchers have
studied the question of job scheduling with a user-centric

metric in mind [3]. All these works focus on homogeneous
systems and on centralized scheduling.

By contrast with the aforementioned works, we focus on
the problem of distributed job scheduling in heterogeneous
grid environments consisting on multiple sites where each site
has a homogeneous parallel compute platform managed by its
own job scheduler, and with a focus on an aggregate user-
centric metric (in our case the average turnaround time across
all jobs). Job scheduling over a multi-site grid has often been
refereed to asmeta-scheduling, and has been studied by many
researchers [15], [27], [31], [14], [17], [26], [29], [7], [8].
The works in [15] and [27] distinguish between centralized
and decentralized meta-scheduling schemes. In the centralized
scheme [31], [14], [17] a single scheduler is used to make all
scheduling decisions, which limits scalability and is a single
point of failure. Our work focuses on decentralized meta-
scheduling and is thus most related to [26], [29], [7], [8].
Our system model is inspired by the one in [26]. Subramani
et al. [29] describe distributed scheduling algorithms that use
multiple simultaneous requests. Our approach does not use
multiple simultaneous requests and differs from both [26]
and [29] in that we allow for jobs to be split among multiple
sites, or “co-scheduled”. Thisco-scheduling approach is also
taken in [7], [8]. However, our work employs a different
application model, which has major implication on meta-
scheduling and which we introduce below.

The work in [7], [8] and other works that consider co-
scheduling target data-parallel applications, generally requir-
ing a resource reservation infrastructure as application pro-
cesses must run concurrently, typically leading to frequent
communications over the wide-area. This is certainly feasible
in grid platforms that use proprietary networks, but more
difficult to justify on grids that use the Internet for commu-
nications and thus can be largely impacted by (variations in)
network delays. However, there is an entire class of relevant
scientific applications that are amenable to wide deployments
over such networks:divisible load (DL) applications [5].
These applications consist of an amount of work that can be
arbitrarily divided intochunks. These chunks can then be sent
to remote resources and can be computed independently with
no necessary synchronization. In spite of its simplicity, the DL
model arises in many fields of science and engineering [10],



[24], [16], [13], [1], and the issue of DL scheduling has
been addressed by many authors (see [2] for a summary of
current results). These applications are ideal candidates for
co-scheduling on grids that consist of multiple sites over the
wide-area [6].

We study the problem ofjob scheduling in grid environ-
ments when each job is aDL application. The scheduling
goal is to minimize the average steady-state job turnaround
time. In this context, we identify in which regimes classes of
scheduling strategies are efficient, namely for which platforms
and which communication to computation ratios. We also
quantify what level of global information about the entire
platform is required for efficient scheduling. This is a critical
point for determining what type of information and monitoring
infrastructure is needed for effective meta-scheduling in grid
environments. All our findings are obtained via simulation.

II. M ODELS

A. Platform Model

We consider a platform that consists ofN sites, indexed
by i = 1, . . . , N , connected over the wide-area. We model
the wide-area network as a fullyconnected network. Each site
reaches the WAN through a LAN link (we assume that all
such LAN links have the same bandwidth). The bandwidth
on each LAN link is shared among each flow going through
the link. The bandwidth on WAN link is not shared and each
flow going through the link gets the full bandwidth. In other
terms, we do not model any contention between the flows of
our applications on the wide-area. This model is justified by
the bandwidth-sharing properties observed on wide-area links:
when such a link is a bottleneck for an end-to-end TCP flow,
several extra flows can generally be opened on the same path
and they each receive the same amount of bandwidth as the
original flow. This behavior can be due to TCP itself (e.g.,
congestion windows), or to the fact that the number of flows
belonging to a single application is typically insignificant when
compared to the total number of flows going through these
links. This property is often exploited by explicitly opening
parallel TCP connections and we have observed it in our
own measurements [9]. Some recent work [18], [9] provides
the foundation for refining our network model, both based
on empirical measurements and on theoretical modeling of
network traffic, and we leave such developments for a future
paper.

Figure 1 depicts our platform model. Each site comprises a
number ofcompute resources, npi, as well as storage, which
we assume to be unlimited. As in [26] compute resources
are managed by aLocal Scheduler (LS) and requests for
computations are managed by anExternal Scheduler (ES).
Local users submit requests to the ES directly. Then, for each
request, the ES decides whether to send the request to a remote
LS or to send it to the local LS. The LS assigns applications
to local compute resources in a FIFO fashion. Note that real-
world systems use batch schedulers that typically employ some
backfilling scheduling algorithm [12], which is quite different
from FIFO. However assuming FIFO local scheduling is

done in many previous meta-scheduling work [15], [27], [14],
[26], [29], [7], [8] because it makes it easier to understand
and analyze the behavior of the meta-scheduling algorithms.
Furthermore, we will see below that we simulation DL job that
run on all resources at a site, making backfilling unnecessary
and FIFO scheduling a reasonable approach.
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Fig. 1. Grid Model

By contrast with [26], our model allows the ES todivide
each application intochunks and assign these chunks to the
LS at the local site as well as to the LS at one or more remote
sites. This is because we consider DL applications, which
allow asynchronous parallel executions. Another consequence
of considering DL applications is that we assume that each
chunk can utilize all resources at the site to which it is
assigned: each chunk is itself a DL application and if a
site consists ofR resources, a chunk is divided intoR sub-
chunks. This is a strong assumption as there is always overhead
involved for using increasing numbers of processors, even
for DL applications. Therefore, it may be more efficient to
use fewer sub-chunks. However, our goal in this paper is to
compare and evaluate the effectiveness of meta-scheduling
policies, which are orthogonal to the application scheduling
policies implemented at the LS level. Consequently, we leave
this issue aside for now but discuss possible evolutions of
our model in Section III. Also, we ignore the cost of local
I/O for application data. Thiscost could be easily integrated
into our model (i.e., as a proportional overhead), but once
again this issue is orthogonal to that of meta-scheduling.
Finally, we assume that the LSscan accommodate for possible
heterogeneity among the compute resources at a site for each
chunk execution via load balancing. Such load balancing is
straightforward because eachchunk can be divided into sub-
chunks of arbitrary size to account for different processor
speeds (since the load is divisible) and because we ignore the
cost of local I/O. In effect, load balancing can negate the effect
of heterogeneity. A consequence of the above consideration is
that we can restrict our experiments to homogeneous compute
resources, but with differentnumbers of resources at each site.

B. Application and Workload Model

We consider applications that consist of a continuous load
that can be arbitrarily divided among compute resources. Each



application is described by the size of the input application
data in bytes,Wtotal. The amount of processing power needed
per byte of load is denoted bycomp factor. The computation
time required to process the entire load,comp cost, is then:

comp cost =
Wtotal ∗ comp factor

processor speed
,

whereprocessor speed is the speed of the processor process-
ing the load.

The time to transfer the load from one site to another is
defined as:

transfer cost =
Wtotal

bandwidth
,

where bandwidth is the data transfer rate on the network.
Note that, like many other authors [26], [22], [29], we ignore
output data transfers: since we are interested in thesteady-state
behavior of the system, transfers of output data can easily be
modeled by increasing the size of the input data.

The communication to computation ratio of an application
is defined as:

comm comp ratio =
transfer cost

comp cost

Note that this ratio is for a given application running on a given
platform: the application execution on this platform spends
comm comp ratio times more seconds communicating than
computing. Typically, this ratio is much lower than 1 so as to
justify the use of distributedresources in the first place. For
high such ratios it is typically more advantageous to have the
application execute solely on its local site. Our experiments
explore ranges ofcomm comp ratio values.

Since the load,Wtotal, is divisible, the scheduler can decide
how big a chunk of the load to give out to each site. For a
platform with N sites, a portion of the loadαi × Wtotal is
assigned to each site with the obvious constraints:

∀i 0 ≤ αi ≤ 1 and

N∑

i=1

αi = 1.

We model the workload of the entire system as streams of
jobs arriving at each site according to a Poisson process with
rate λ. While this model does not correspond to a particular
workload in the real-world, it is convenient to obtain a first
order evaluation of our meta-scheduling heuristics and is easily
parameterized byλ. The alternative would have been to use
logs from HPC systems such as the ones available at [20],
but these logs are for specific systems and user communities.
Workload characterization isnotably arduous [11], but recently
the work in [21] has proposed a new model for job arrival
times. We plan to use this model in future work to see if there
is any impact on our simulations. However, these logs and
models are for rigid parallel jobs and it is not clear whether
their arrival times would be representative of a workload
consisting of DL jobs.

III. SCHEDULING DIVISIBLE LOAD JOBS

A. Scheduling Scenario

The problem we address is that of minimizing the average
turnaround time over all jobs in the system, when the system
is in steady-state. Our scheduling scenario is as follows. At
each site users submit jobs (i.e., requests to compute a DL) to
the ES throughout time. For each job, the ES determines the
αi values, that is which sites will participate in the application
execution and how the load will be divided into chunks among
these sites. The chunks are then sent to the LSs at the chosen
sites over the network. The LSs divide each chunk by the
number of resources, intosub-chunks. The turnaround time
is defined as the time between the instant at which the job
submission arrives to the ES and the instant at which all
chunks have been processed by all selected sites.

B. Scheduling Techniques

In order to make decisions, the ESs can make use of
information about the grid platform. We consider two types
of resource information: the (nearly) static characteristics of
the sites (number of processors and their speed); and dynamic
characteristics (the length of the FIFO queues).

The allocation process of the ESs consists of two parts, the
selection of the sites and thedivision of the load among those
sites. The selection decides whichαi values will be non-zero,
whereas the division assigns actual values to the non-zeroαi’s.
Based on these considerations we instantiate three classes of
meta-scheduling strategies.

1) Basic Strategies (B): These strategies make no use of
grid information and operate with three flavors of the selection
strategy.
Local site (B-LS): The ES does not divide the load and only
uses the local site.
All sites (B-AS): The ES divides the load equally among all
sites.
Local site and k random sites (B-LkR): Additional to the
local site, the ES selectsk random and divides the load
randomly among thek + 1 sites.

2) Strategies using static information (Load Balancing
1 - LB1): Load is divided based on static grid information,
proportionally to the number of processors at each selected
site.
All sites (LB1-AS): All sites participate in each execution.
Local site and k random remote sites (LB1-LkR): The ES
selectsk + 1 sites, the local one andk random remote sites.

3) Strategies using dynamic information (Load Balanc-
ing 2 - LB2): Each ES keeps track of the length of FIFO
queues at all sites, and load is divided based in queue length
at each selected site.
All sites (LB2-AS): All sites participate in each execution.
Local site and k random remote sites (LB2-LkR): The ES
selectsk + 1 sites, the local one andk random remote sites.
Local site and k best remote sites (LB2-LkB): The ES
uses the local site andk best remote sites. The best sites sites
are defined as the ones having the highestpower ratio value
defined as:



power ratioj =
npj

queue sizej

, j �= i,

wherequeue sizej is the size of the FIFO queue (i.e., number
of pending jobs) in the LS’s queue at sitej.

A. Bucur et al. [8] propose placement policies based on the
knowledge of the number of idle processors in each site and
distribute the tasks in such a way as to keep the load balanced.
Our LB2 strategies are related to the policies in [8] but the
dynamic resource information we consider here is the size of
the queues at each LS. Also, the selection strategy used in
LB1-LkR, LB2-LkR, andLB2-LkB is loosely related to the
K-Distributed Model proposed in [29], which chooses a lim-
ited number of sites for replicating requests for computations.
Our work differs in that we take into account data transfers
and we perform co-scheduling. The load distribution strategies
proposed in [22] are based on static and dynamic information.
Each site receives achunk that is proportional to its computing
speed if it has enough free buffer capacity; otherwise that site
will be no considered in the current selection.

Other strategies are possible and in total we have evaluated
twenty strategies. Since these strategies all rely on heuristics,
it is difficult to compare them analytically. However, our
simulations showed that several of the twenty strategies exhibit
in practice virtually identical performance. In these cases we
have included the simpler strategies in this paper.

IV. EXPERIMENTAL METHODOLOGY

Our experiments investigate the following three questions
pertaining to thedivision and selection concepts that were
highlighted in Section III:

(i) When are the basic strategies good enough? Recall that
the basicdivision andselection policies do not make use
of any information about the system state (the ESs operate
in isolation).

(ii) What is the usefulness of global system information for
the division policy? Note that using up-to-date global
information may be costly and may lead to prohibitive
overhead.

(iii) How many and which remote sites should be picked by
the selection policy? Site selection has a direct impact on
application data transfer costs and sites must be selected
judiciously to avoid network bottlenecks.

Experiments on a real-world testbed would be prohibitive
both in terms of time, because they would be limited to
a specific configuration, and because they would hardly be
repeatable. Instead, we have implemented a simulator using the
SIM GRID [18] toolkit, which provides the needed abstractions
and realistic models for the simulation of processes interacting
over a network.

A. Application Scenarios

We chose the following representative applications to in-
stantiate the job mix used in our simulations (see Table I for
details):

BLAST R© [13] – A set of search programs designed to identify
similarities between biological sequences. Typical data sizes
are between 400MB and 2GB and thecomm comp ratio is
high (1.0 for a 1GHz P4 and bandwidth 100Mbps).
HMMER [16] – A suite of programs that compare biological
sequences using Hidden Markov Models. Typical data sizes
are between 400MB and 2GB and thecomm comp ratio is
low (0.35 for a 1GHz P4 and bandwidth 100Mbps).
Rendering [25] – A generic rendering program that constructs
a sequence of frames based on a scene’s geometry. The speed
of the computation is dependent on the complexity of the scene
and on hardware technology. Furthermore, there are many
different rendering techniques. We consider here an image-
based algorithm (mosaicking) with a highcomm comp ratio

(0.5 for a 1GHz P4 and bandwidth 100Mbps) and we consider
data sizes between 4MB and 10MB.
Ray Tracing [28] – A popular technique to generate photo-
realistic images. Because of recursion in the algorithm and
the possibly large number of rays that may be cast, this
program has lowercomm comp ratio than Rendering (0.15
for a 1GHz P4 and bandwidth 100Mbps) with data sizes
between 4MB and 12MB.
Volume Rendering [19] – A program to visualize large quan-
tities of volume data. It has a very lowcomm comp ratio

(0.2 for a 1GHz P4 and bandwidth 100Mbps) with data sizes
between 400MB and 1GB.
Synthetic Applications – We also simulated several synthetic
applications with differentWtotal and comm comp ratio in
order to cover a wide range of applications.

B. Platforms

We simulate the following platforms (see Table II for full
details):
GrADS testbed [4] – composed of 3 clusters at the University
of Tennessee, Knoxville (UTK), the University of Illinois,
Urbana-Champaign (UIUC), and the University of California,
San Diego (UCSD); we assume 10Mb/s bandwidth.
TeraGrid [30] – we consider 4 of the TeraGrid clusters
located at the San Diego Supercomputing Center (SDSC), the
National Center for Supercomputing Applications (NCSA), the
California Institute of Technology (Caltech), and the Argonne
National Laboratory (ANL). We assume 10Gb/s bandwidth.
Synthetic Grids – with 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20
sites, with clock rates of 250, 500, and 1000, WAN bandwidths
of 10, 100, or 500 Mbps and LAN bandwidth of 100, 500,
or 1000 Mbps. We simulate platforms with low, medium, and
high heterogeneity, in which the number of processors per site
is selected randomly betweena and b according to uniform
distributions, which is denoted as U[a,b] in Table II. We also
performed experiments for a fixed total number of processors
in the system and just varying the heterogeneity (measured
by the standard deviation of the number of processors at each
site).

C. Job Arrivals

Jobs arrive in the system according to a Poisson distribution
with parameterλ. The same Poisson distribution was assigned



Application BLAST HMMER Rendering Ray Tracing Volume Rendering Synthetic App

Wtotal (MB) 700 700 10 12 800 10,40,50,100,200
comp factor 5 15 10 35 25 100,50,7.5,17.5,20

TABLE I

APPLICATIONCHARACTERISTICS

Platform # of sites # of processors per site Processor speed Bandwidth

(UTK) 8 550MHz
GrADS 3 (UCSD) 4 and 2 400MHz and 450MHz 100Mbps (LAN)

(UIUC) 6 and 4 266MHz and 450MHz 10Mbps (WAN)
(SDSC) 128, (NSSA) 256 1GHz

TeraGrid 4 (Caltech) 64 1GHz 10GbE (LAN)
(ANL) 96 and 16 2.4GHz and 1GHz 30GbE (WAN)

Synthetic 2, 4, 6, 8, U[2,5] (low heterog.) 250MHz, 100, 500 or 1000 Mbps (LAN)
Grids 1 10, 12, 14, U[2,10](medium heterog.) 500MHz, 10, 100 or 500 Mbps (WAN)

16, 18, 20 U[2,24] (high heterog.) or 1GHz
Synthetic 4, 8 randomly selected, keeping 250MHz 500 or 1000 Mbps (LAN)
Grids 2 64 total proc. in system 100 or 500 Mbps (WAN)

TABLE II

SUMMARY OF TESTBED CHARACTERISTICS.

to each site in all experiments. Indeed, we choose to keep the
workload homogeneous among sites but to make the com-
pute power heterogeneous (in terms of number of processors
at each site). Theλ values used in our experiments were
0.3,0.6,0.9,1.2,1.8,2.4,3.0,3.6,4.2,4.8.

V. EXPERIMENTAL RESULTS

We used the simulator for 3 sets of experiments: (i) exper-
iments on GrADS and TeraGrid platforms, (ii) experiments
on synthetic platforms, using uniform distributions to select
the number of processors on each site, and (iii) experiments
on synthetic platforms with a fixed number of processors in
the system. We evaluate the job scheduling strategies using
average job turnaround times. Each simulation experiment was
repeated 10 times and we present averages.

A. Real platforms: GrADS and TeraGrid

Figure 2 shows the average turnaround time for the three
applications with the lowestcomm comp ratio on the GrADS
platform. TheB-LS strategy yields the best performance in
almost all cases with an improvement between 8% and 79%
over the nearest strategy. For with the synthetic application
with comm comp ratio = 0.044 andλ = 4.8, LB2 strategies
using 2 sites (LB2-L1R and LB2-L1B) are better thanB-LS
by approximately 5%. Another fact to be noted in this last case
is that strategies using 2 sites are better than strategies using
all sites. This is because when using all sites the network is
overloaded. From these observations, we can conclude that in
the GrADS platform it is useful to use a (single) remote site
only when the total system workload is high. Nevertheless, it is
still interesting to look at other strategies in order to compare
them, based on the three proposed questions:
- When are the basic strategies good enough? The basic
strategies using more than 1 site (B-L1R andB-L2R) become
better than theLB1 andLB2 strategies ascomm comp ratio

andλ decrease. This is when the job have high computational
demands but the total workload in the system is low.
- What is the usefulness of global information for the division
policy? The LB2 strategies become equivalent or slightly
better thanLB1 strategies ascomm comp ratio decreases
and asλ increases. This result shows that dynamic information
could marginally improve the total performance in the GrADS
platform only when the system has high total load.
- How many and which remote sites should be picked by
the selection policy? Strategies using all sites become worse
than using 2 sites ascomm comp ratio decreases and asλ,
and thus the overall workload, increases. Regardingwhich
sites, picking random sites achieves best or close to best
performance.
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Fig. 2. Average turnaround time on GrADS platform

Figures 3, 4, 5, and 6 show the average turnaround time
and the percent of improvement of the best strategy over its
nearest, for all applications on the TeraGrid platform with three
different λ values. The results show that as the network is
faster, using only local resources is rarely judicious.B-LS
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Fig. 3. Average turnaround time for synthetic applications on the TeraGrid
platform.

is only the best only whencomm comp ratio ≥ 0.007 (no
matter whatλ is), with improvements from 10% to 64% (see
Figures 5 and 6). This happen when the job’s computational
demands decrease. Withcomm comp ratio < 0.007 it is
beneficial to use remote resources. Withλ = 0.3 the strategies
LB1-AS and LB2-AS have the best performance with a low
improvement overLB1-L2R (see Figures 3 and 4). With
λ = 3.0 and 4.8 the best strategies are that use 2 sites and
queue size information (LB2-L1R andLB2-L1B).

Let us examine the answers to our three main questions:
- When are the basic strategies good enough? For
comm comp ratio ≥ 0.007, the basic strategy using local
and two random sites (B-L2R) becomes better thanLB1-L2R
and LB2-L2R as the jobs’ computational demands decrease.
This is the only case in which the basic strategies are better
than the other two.
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- What is the usefulness of global system information for
the division policy? The LB2 strategies have the same or
better performance thanLB1 strategies, except when the
comm comp ratio ≥ 0.01. Therefore, dynamic information
could improve total performance at high total workload.
- How many and which remote sites should be picked
by the selection policy? Using all sites, with LB1 and
LB2 strategies, leads to the best performance forλ =
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0.3 and comm comp ratio ≤ 0.003. However, when
comm comp ratio and λ increase their performance de-
grades. In these cases, usingthe local and a single other
site results in better performance than using 3 or all sites.
Regardingwhich sites are the best selection, picking random
sites results in a performance better, equal or very close to
picking the best ones (compareLB2-L1R with LB2-L1B, and
LB2-L2R with LB2-L2B in figures 3, 4, 5, and 6).

B. Synthetic environments

Now, we turn our attention to synthetic platforms. With
these results, we also analyzed the three questions, starting
with: When are the basic strategies good enough?.
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Figure 7 shows the areas where theB-LS strategy is best
(shown in black) in terms ofcomm comp ratio and of total
workload (defined asλ timesWtotal), on average. According
to these results using remote resources is beneficial when when
comm comp ratio < 0.175 andλ ∗ WTotal > 3 ∗ 10

6bytes;
otherwise theB-LS strategy yields the best performance with
improvement between 10% and 90%. TheB-AS strategy
yields good performance when the total workload in the
system is low, but with high workload it performs the worst.

In most cases (68%), the strategies with the best perfor-
mance in the white area of Figure 7 were theLB1-AS and the



LB2-AS strategies (with almost similar performance). In 27%
of cases, best performance wasreached when using 2 sites.
Using 3 sites led to best performance in 5% of cases.

Figure 7 also shows the areas where the real applications
lie. Note that with lowcomm comp ratio, for all of them, is
beneficial to use remote sites.
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C. Impact of λ on the usefulness of global system information
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To answer our second and third questions, we performed
a third set of experiments in which we variedλ and the
heterogeneity in the system while keeping the number of sites
and the number of total processors in the system fixed. Whenλ

increases the overall workloadincreases as well. We find that
the information about FIFO queue sizes becomes beneficial
when λ increase, but not when all sites are used. Figure 8
shows an example of this fact on a grid platform with 8 sites,
64 processors in the system, and middle heterogeneity for an
application withcomm comp ratio = 0.0025. TheLB2-L2R
strategy (using 3 sites) is always better thanLB1-L2R but
the improvement decreases asλ increases.LB1-L1R is better
thanLB2-L1R for low λ, but LB2-L1R becomes better asλ
increases. Indeed, when the arrival rate is high, considering
queue size becomes critical assome sites can become more

overloaded than others. Note that when all sites are used, it
makes no difference whether queue information is used or not.

We also find that whenλ increases, the improvement of
using all sites over strategies that use 2 or 3 sites decreases.
The reason for this is that the network is overloaded with many
transfers of chunks. Figure 9 presents a comparison between
LB2-AS and strategies using 2 or 3 sites.

D. Impact of heterogeneity in the selection policy

We define heterogeneity as the standard deviation of the
number of processors on each site. So a heterogeneity of 0
represents an homogeneous grid platform, in which all sites
have the same number of processors. We observe that when
heterogeneity increases the improvement of the strategies
using all sites over strategies using 2 or 3 sites increases too.
Figure 10 shows an example of this fact in a system with
8 sites, 64 processors,λ = 3.0, and comm comp ratio =

0.0025. This is because small sites generally benefit from
using as many remote resourcesas possible, and using all
sites leads to good load balancing.
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VI. CONCLUSIONS ANDFUTURE WORKS

We evaluated several scheduling approaches on grid plat-
forms for DL jobs, with the goal of answering the questions
raised in this paper: (i)When are the basic strategies good
enough?, (ii) What is the usefulness of global system informa-
tion for the division policy?, and (iii) How many and which
remote sites should be picked by the selection policy?. In
support of this investigation, we have developed a discrete-
event simulator using the SIM GRID toolkit. We have modeled
real-world and synthetic platform as well as real-world and
synthetic applications.

Our simulation results lead us to the following conclusions
concerning the three questions listed above:

(i) In the presence of applications with high
comm comp ratio and high workload, the simple
B-LS strategy yields good performance. However,
results may be different if the sites have different LS
approaches (e.g., some sites not dividing the chunks into
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sub-chunks). The basic strategy using all sites (B-AS)
reported the worst performance in cases where the total
system workload was high.

(ii) Using dynamic FIFO queue sizes information for making
scheduling decisions is beneficial when the overall work-
load is high, with around 10% improvement over using
only static site information.

(iii) When heterogeneity increases the improvement of the
strategies using all sites over strategies that use 2 or 3 sites
increases, but ifλ increases this improvement decreases.
In systems with few sites and low workload the strategies
using 2 sites are better than using all sites, asλ increases
using the best sites gets better performance.

We have modeled the workload of jobs arriving to a Poisson
process with rateλ. We plan to use other models in future work
to see if there is any impact on our simulations.

While a centralized scheduling approach may not be practi-
cal, it would be informative to know by how much a distributed
approach loses when compared to a centralized one. In future
work we will compare our heuristics to the work in [23],
which proposes centralized algorithms for scheduling multiple
DL applications, in steady state. While their assumptions are
different (e.g., jobs are infinite, there are no LSs), a comparison
could still be made that sheds light on how much is lost by
the decentralized approach.

REFERENCES

[1] D. Altilar and Y. Paker. An Optimal Scheduling Algorithm for Parallel
Video Processing. InProc. of the IEEE International Conference on
Multimedia Computing and Systems, 1998.

[2] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang.
Scheduling Divisible Loads on Star and Tree Networks: Results and
Open Problems.IEEE Transactions on Parallel and Distributed Systems
(TPDS), 16(3):207–218, 2005.

[3] M. A. Bender, S. Chahrabarti, and S. Muthukrishnan. Flow and stretch
metrics for scheduling continuous job streams. InProc. of the 9th Annual
ACM-SIAM Symposium On Discrete Algorithms, 1998.

[4] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon,
L. Johnson, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed,
L. Torezon, and R. Wolski. The GrADS Project: Software Support
for High-Level Grid Application Development.International Journal
of High Performance Applications and Supercomputing, 15(4):327–344,
2001.

[5] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi.Scheduling
Divisible Loads in Parallel and Distributed Systems. IEEE Computer
Society Press, 1996.

[6] V. Bharadwaj, D. Ghose, and T. G. Robertazzi. Divisible load theory:
A new paradigm for load scheduling in distributed systems.Cluster
Computing, 6(1):7–17, 2003.

[7] A. Bucur and D. Epema. The Maximal Utilization of Processor Co-
Allocation in Multicluster Systems. InProc. of the International Parallel
and Distributed Processing Symposium, 2003.

[8] A. Bucur and D. Epema. The Performance of Processor Co-Allocation
in Multicluster Systems. InProc. of the Third IEEE International
Symposium on Cluster Computing and the Grid, 2003.

[9] H. Casanova. Modeling Large-Scale Platforms for the Analysis and the
Simulation of Scheduling Strategies. InProc. of the 6th Workshop on
Advances in Parallel and Distributed Computational Models, 2004.

[10] T. Davis, A. Chalmers, and H. WannJensen. Practical parallel processing
for realistic rendering. InACM SIGGRAPH, 2000.

[11] A. Downey and D. Feitelson. The elusive goal of workload characteri-
zation. Performance Evaluation Review, 26(4):14–29, 1999.

[12] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel job
scheduling — a status report. InProceedings of the 10th Workshop
on Job Scheduling Strategies for Parallel Processing, Lecture Notes in
Computer Science, volume 3277, pages 1–16, 2004.

[13] NCBI (National Center for Biotechnology Information. Blast.
http://www.ncbi.nlm.nih.gov/BLAST/.

[14] J. Gehring and T. Preiss. Scheduling a Metacomputer with Un-
cooperative Subschedulers. InProc. of IPPS Workshop on Job Schedul-
ing Strategies for Parallel Processing, volume 1659 ofLNCS, pages
179–201, 1999.

[15] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evalua-
tion of Job-Scheduling Strategies for Grid Computing.LNCS, 1971:191–
202, 2000.

[16] Washington University in St. Louis. Hmmer 2.2.
http://hmmer.wustl.edu/hmmer-html.

[17] D. Jackson. MOAB Grid Scheduler (SILVER).
http://supercluster.org/projects/silver.

[18] A. Legrand, L. Marchal, and H. Casanova. Scheduling Distributed
Applications: The SIM GRID Simulation Framework. InProc. of the
Third IEEE International Symposium on Cluster Computing and the
Grid (CCGrid’03), 2003.

[19] B. Lichtenbelt, R. Crane, and S. Naqvi.Introduction to Volume
Rendering. Prentice Hall PTR, March 1998.

[20] Supercomputer Logs. http://www.cs.huji.ac.il/labs/parallel/workload/.
[21] U. Lublin and D.G. Feitelson. The Workload on Parallel Supercomput-

ers: Modeling the Characteristics of Rigid Jobs.Journal of Parallel and
Distributed Computing, 63(11):1105–1122, 2003.

[22] Wong H. M., Bharadwaj V., Dantong Y., and T. G. Robertazzi. Data
Intensive Grid Scheduling: Multiple Sources with Capacity Constraints.
In Proc. of the International Conference on Parallel and Distributed
Computing Systems, (PDCS), 2003.

[23] L. Marchal, Y. Yang, H. Casanova, and Y. Robert. A Realistic
Network/Application Model for Scheduling Divisible Loads on Large-
Scale Platforms. InProc. of the International Parallel and Distributed
Processing Symposium, 2005.

[24] MCell Web-page. http://www.mcell.cnl.salk.edu.
[25] T. Moller and E. Haines.Real-Time Rendering. A K Peter Ltd, 1st

edition, 1999.
[26] K. Ranganathan and I. Foster.Decoupling Computation and Data

Scheduling in Distributed Data-intensive Applications. InProc. of
11th IEEE International Symposium for High Performance Distributed
Computing, pages 352–358, 2002.

[27] H. Shan, L. Oliker, and R. Biswas. Job Superscheduler Architecture and
Performance in Computational Grid Environments. InProc. of the 2003
ACM/IEEE conference on Supercomputing, page 44, 2003.

[28] P. Shirley. Realistic Ray Tracing. A K Peters Ltd, 1st edition, June
2000.

[29] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan. Dis-
tributed Job Scheduling on Computational Grids using Multiple Simul-
taneous Requests. InProc. of 11th IEEE International Symposium for
High Performance Distributed Computing, pages 359–366, 2002.

[30] TeraGrid Team. TeraGrid Web-page. http://www.teragrid.org.
[31] S. Vadhiyar and J. Dongarra. AMetascheduler for the Grid. InProc. of

the 11th IEEE Symposium on High-Performance Distributed Computing,
pages 343–351, 2002.


	c0: Proceedings 20th European Conference on Modelling and Simulation
Wolfgang Borutzky, Alessandra Orsoni, Richard Zobel © ECMS, 2006
ISBN 0-9553018-0-7  / ISBN 0-9553018-1-5 (CD)


