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Abstract Inflammasomes are cytoplasmic multiprotein
complexes that mediate the maturation of the proinflamma-
tory cytokines interleukin-1β (IL-1β), IL-18, and possibly
IL-33 by controlling the activation of the inflammatory
caspases-1 and -5. Assembly of inflammasomes depends on
NOD-like receptor (NLR) family members such as NALPs,
NAIP, and IPAF. Various microbial and endogenous stimuli
activate different types of inflammasomes. This article
focuses on the Pyrin domain containing NLRs, known as
NALP proteins. Recent findings provide exciting insights
into how these proteins might be activated and also provide
evidence of the critical role of the NALP inflammasomes in
innate immunity and inflammatory diseases.
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Abbreviations
ASC Apoptosis-associated speck-like protein con-

taining a CARD
CARD Caspase recruitment domain
DNFB 2,4-dinitrofluorobenzene
ICE interleukin-1β -converting enzyme
IL-1 interleukin-1
IPAF ICE protease-activating factor
LRR leucine rich repeat
MDP Muramyl dipeptide
MSU Monosodium urate crystals
MyD88 Myeloid differentiation protein 88
NALP NACHT, LRR and PYD containing proteins
NACHT Domain present NAIP, the major histocompati-

bility complex (MHC) class II transactivator
(CIITA), HET-E and TP1

NAIP Neuronal apoptosis inhibitory protein
NB-
ARC

nucleotide-binding adaptor shared by APAF-1,
R gene products and CED-4

NBS-
LRR

nucleotide binding site-leucine-rich repeat

NLR NOD-like receptors
PAMP Pathogen-associated molecular patterns
PYD Pyrin domain
TNP-
CL

Trinitrophenylchloride

TNCB Trinitrochlorobenzene

Introduction

Five years have passed since the first biochemical descrip-
tion of a molecular complex named the inflammasome.
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This complex, containing the protein NALP1 as a scaffold-
ing protein, was shown to activate caspase-1 and promote
interleukin-1β (IL-1β) maturation [94]. IL-1β, also known
as the endogenous pyrogen, is a well-known player in the
process of inflammation and fever [32]. Concomitantly,
various studies in humans revealed that mutations in the
NALP1-related gene NALP3 (also known as cryopyrin,
Table 1) were the cause of periodic fever syndromes such

as the Muckle-Wells (MWS), familial cold autoinflamma-
tory syndrome (FCAS), and chronic infantile neurological
cutaneous and articular (CINCA) syndrome, also known as
neonatal-onset multisystem inflammatory disease [22, 52].
These hereditary autoinflammatory syndromes are charac-
terized by an increased IL-1β production that directly
triggers the inflammatory cascade in these patients [2, 101].
The central role of IL-1β in this pathology was highlighted

Table 1 The human and mouse NALP family

Common nomenclature Chromosome
localization

Other names and aliases Structure

Human NALP1 17p13 DEFCAP; NAC; CARD7; CLR17.1;
NLRP1

PYD-NACHT-NAD-LRR-FIIND-
CARD

Mouse NALP1a 11B4 Nlrp1a NACHT-NAD-LRR-FIIND-CARD
NALP1b 11B4 Nlrp1b NACHT-NAD-LRR-FIIND-CARD
NALP1c 11B4 Nlrp1c NACHT-NAD-LRR-FIIND-CARD

Human NALP2 19q13.42 Pypaf2; NBS1;PAN1; CLR19.9;NLRP2 PYD-NACHT-NAD-LRR
Mouse NALP2 7A1 Nlrp2 PYD-NACHT-NAD-LRR
Human NALP3 1q44 Pypaf1;CIAS1;Cryopyrin; CLR1.1;

NLRP3
PYD-NACHT-NAD-LRR

Mouse NALP3 11B1.3 Cias1, Pypaf1, Mmig1, Nlrp3 PYD-NACHT-NAD-LRR
Human NALP4 19q13.43 Pypaf4;PAN2; RNH2; CLR19.5; NLRP4 PYD-NACHT-NAD-LRR
Mouse NALP4a 7A1 Nalp-eta, NALP9D, Nlrp4a PYD-NACHT-NAD-LRR

NALP4b 7A1 Nalp-gamma, NALP9E; Nlrp4b PYD-NACHT-NAD-LRR
NALP4c 7A1 Nalp-alpha, Rnh2; Nlrp4c PYD-NACHT-NAD-LRR
NALP4d 7A1 Nalp-beta; Nlrp4d PYD-NACHT-NAD-LRR
NALP4e 7A2 Nalp-epsilon; Nlrp4e PYD-NACHT-NAD-LRR
NALP4f 13B3 Nalp-kappa, NALP9F; Nlrp4f PYD-NACHT-NAD-LRR
NALP4g 9 Nlrp4g PYD-NACHT-NAD-LRR

Human NALP5 19q13.42 Pypaf8; Mater, PAN11; CLR19.8;
NLRP5

PYD-NACHT-NAD-LRR

Mouse NALP5 7A2 mater; Op1; Nlrp5 NACHT-NAD-LRR
Human NALP6 11p15.5 Pypaf5; PAN3; CLR11.4; NLRP6 PYD-NACHT-NAD-LRR
Mouse NALP6 7F4 Nlrp6 PYD-NACHT-NAD-LRR
Human NALP7 19q13.42 Pypaf3; NOD12; CLR19.4; NLRP7 PYD-NACHT-NAD-LRR

NALP8 19q13.42 PAN4; NOD16; CLR19.2; NLRP8 PYD-NACHT-NAD-LRR
NALP9 19q13.42 NOD6; CLR19.1; NLRP9 PYD-NACHT-NAD-LRR

Mouse NALP9a 7A3 Nalp-theta; Nlrp9a PYD-NACHT-NAD-LRR
NALP9b 7A2 Nalp-delta; Nlrp9b PYD-NACHT-NAD-LRR
NALP9c 7A3 Nalp-zeta; Nlrp9c PYD-NACHT-NAD-LRR

Human NALP10 11p15.4 PAN5; NOD8; Pynod; CLR11.1;
NLRP10

PYD-NACHT-NAD

Mouse NALP10 7E3 Pynod; Nlrp10 PYD-NACHT-NAD
Human NALP11 19q13.42 Pypaf6; NOD17; CLR19.6; CLR19.3;

NLRP11
PYD-NACHT-NAD-LRR

NALP12 19q13.42 Pypaf7; Monarch1; RNO2; PAN6;
NLRP12

PYD-NACHT-NAD-LRR

Mouse NALP12 7A1 Nlrp12 PYD-NACHT-NAD-LRR
Human NALP13 19q13.42 NOD14; CLR19.7; NLRP13 PYD-NACHT-NAD-LRR

NALP14 11p15.4 NOD5; CLR11.2; NLRP14 PYD-NACHT-NAD-LRR
Mouse NALP14 7 E3 Nalp-iota, GC-LRR, Nlrp14 PYD-NACHT-NAD-LRR

LRR Leucine-rich repeat; NACHT domain present in NAIP, CIITA, HET-E, TP-1; BIR baculovirus; PYD pyrin domain; FIIND function to find;
CARD caspase recruitment domain
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by clinical trials and case studies demonstrating the efficacy
of therapeutic strategies targeting the IL-1β cytokine [50].
These studies were complemented in mice, where a
decisive role for NALP1 and NALP3 in various pathologies
related to inflammation could be demonstrated [92, 100].
The human genome contains 14 members of the NALP
family, and it is likely that other NALPs can form
inflammasomes and play a role in immunity [155]. NALPs
are members of a large superfamily of proteins involved in
innate immunity known as NOD-like receptors (NLRs;
previously also called caterpillers) [97]. Besides the
NALPs, three other NLRs, IPAF, NAIP and NOD2 can
form inflammasomes (see accompanying review by Ed
Miao and Alan Aderem). In this review, however, we will
focus on NALP inflammasomes. The structural character-
istic of NALPs that distinguishes them from other NLRs is
the presence at the protein N terminus of the Pyrin domain
(PYD; Table 1).

Pyrin domain-containing proteins

The Pyrin domain is a member of the death fold domain
superfamily, which was initially identified in proapoptotic
mediators and includes the death domain (DD), the caspase
recruitment domain (CARD) and the death effector domain
(DED) [54, 119]. The death fold is characterized by six
α-helices that are tightly packed in a Greek key fold [38].
The interactions that characterize death fold domains are
highly specific, with in general two or three partners
capable of interacting with each other. In every known
case, the interaction is homotypic: a DD interacts with a
DD; a CARD with a CARD; and a DED with a DED; there
is no cross interaction across families. In proapoptotic
signaling pathways, such as the one triggered by the death
receptor Fas, the interactions between different initiator
units, various adaptor proteins, and caspases are primarily
mediated by DD, DED, and CARD [119]. The rule that
every death fold-containing family member is able to bind
another partner with the same domain was of great help in
the identification of molecular signaling pathways involved
in apoptosis and more recently in immunity.

A few years ago, while searching additional CARD
domain-containing proteins, a new protein called ASC (also
known as PYCARD or TMS1) was identified [11, 93, 120].
In addition to the CARD domain, a sequence similarity was
recognized in the N terminus of ASC and other proteins
that delineated a new domain named PYD (also known as
PAAD or DAPIN). Moreover, the PYD turned out to be a
new member of the death fold family. The name PYD stems
from the PYD-containing protein Pyrin that was found
10 years ago to be mutated in patients with the hereditary
periodic fever syndrome known as familial Mediterranean

fever [39, 61]. This was the first clue linking this new family
of PYD-containing proteins with inflammation and auto-
inflammatory syndromes (see also accompanying review by
Dan Kastner). The largest family of PYD-containing
proteins are the NALPs. Others include members of the
IFI200 family and a protein synthesized by Poxviruses [35,
120, 147]. Interestingly, this viral PYD-containing protein
was shown to block NALP inflammasomes [65] (reviewed
in an accompanying article by Grant McFadden). The
IFI200 (HIN-200) are hematopoietic interferon-inducible
proteins with a typical 200-amino acid domain [66]. All
members of the family have a N-terminal PYD followed by
one or two IFI200 domains, except for the mouse p202 that
is lacking the PYD. Comparative analysis of the mouse and
human cluster shows no significant sequence conservation
in noncoding regions, suggesting that this family emerged
before human and mouse speciation and subsequently
diverged by gene duplication [27]. The function of the
IFI200 genes is poorly characterized, but their pattern of
expression is reminiscent of the NALPs suggests a function
in immunity [77].

NALP repertoire

Genomic analysis of NALPs suggests that these genes
have a strong tendency to evolve through gene-duplication
events. Some NALPs, such as NALP2 and NALP7 in
humans, are apparently paralogues, whereas others, such
as NALP4 and NALP9, have expanded in mice (Table 1).
A similar evolutionary trend has been followed by NAIPs
(an NLR member) in mice where the locus expanded to
seven NAIP paralogues. Interestingly, recent genetic studies
of the NAIP locus in human, rat, and mouse suggested that
multiple domesticated long terminal repeats (LTRs) of
endogenous retroviral elements control NAIP promoter
functions [129]. The tissue-specific activities of these
promoters differ from species to species further suggesting
a host–pathogen evolution of the NAIP locus [129].
Retroviruses that infect gametes (egg or sperm) have the
capacity to transmit their viral DNA, including the LTRs,
from parents to offspring [8, 9]. Some genes such as
APOBEC3G or the Pyrin-like protein TRIM5α are
involved in cellular antiretroviral defenses [10, 116];
however, little is known about specific innate immune
mechanisms that protect gametes from being infected by
such viruses. Many NALPs and NAIPs are specifically
expressed in gametes [100] (see below). The function of
these innate immune sensors in gametes is unknown. The
genetic interaction between viral LTRs and NAIP genes
may hint that some NAIPs and NALPs could be
involved in immunity against retroviruses in gametes
[129]. This speculative hypothesis could also explain the
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high degree of evolution among the NALPs expressed in
gametes.

The overall structure of NALPs consists of an N-terminal
PYD domain followed by a NACHT domain and a variable
number of leucine rich repeats (LRRs). LRRs are short
motifs (22–28 residues in length) found in a variety of
cytoplasmic, membrane and extracellular proteins [70],
including the Toll-like receptors (TLRs) and the plant
resistance proteins, two important families of innate
immune receptors that sense pathogens via the LRRs.
Although these modules are associated with a wide range of
functions, they are generally involved in protein–protein
interactions. NALP genes have a striking relationship
between their intron–exon structure and their modular
organization, particularly in the LRR region [100]. In all
NALPs, the LRR region is encoded by repeats of exons that
have exactly 171 nucleotides in length. Remarkably, for all
NALP-LRRs, the size, the reading frame phase, and the
intron–exon junction sites are conserved. The phasing and
position of the introns are consistent with rapid and
efficient exon amplification during evolution. Moreover,
we can anticipate that this modular organization contributes
to extensive alternative splicing of the LRR region that can
occur without disturbing the three-dimensional fold of the
region, providing maximal plasticity to the ligand-sensing
area [100]. All these observations indicate that the NALP
repertoire within a species and across vertebrates is large
and made up of different genes and splice variants that
mainly differ in their LRR region, which is defined
completely by its intron–exon structure.

Assembly of the inflammasome leads to activation
of inflammatory caspases

Caspases are produced in cells as catalytically inactive
zymogens and generally undergo proteolytic processing upon
activation [166]. The subset of caspases that directly ini-
tiates signaling cascades are known as “initiator caspases”.
These initiator caspases (for example caspase-8, -10, -2, or
caspase-9) are characterized by the presence of an N-terminal
death fold domain (CARD or DED). The mechanism of their
activation depends on the assembly of recruitment platforms,
such as the death-inducing signaling complex for caspase-
8 and 10, the PIDDosome for caspase-2, and the apoptosome
for caspase-9 [63, 124, 151]. These platforms integrate
cellular signals, promote dimerization of initiator caspases,
and lead to the generation of an active enzyme that initiates
specific signaling cascades [13, 126]. They consist of
various molecules assembled around a central scaffold
protein that prototypically possesses three main domains: a
region involved in ligand sensing, a domain promoting
oligomerization, and a domain involved in caspase recruit-

ment. The best described example is the apoptosome scaffold
protein Apaf-1, which possesses a CARD for caspase-9
recruitment, an NB-ARC domain for oligomerization, and a
WD repeat that senses the release of cytochrome c from the
mitochondria, a pivotal signal that triggers apoptosis by
activating the apoptosome (Fig. 1a).

NLRs, which are structurally related to Apaf-1, are
intracellular sensors of pathogens and endogenous stresses
[36, 97, 163]. In humans, there are 22 NLRs including a
subfamily of proteins (NOD1 and NOD2) that senses
bacterial peptidoglycan (PGN) and activates the kinase
RIP2 and NF-κB [59] and three subfamilies involved in the
formation of caspase-1-activating inflammasome com-
plexes: NALPs, IPAF, and NAIPs [100].

For several of the 14 NALPs, there is ample evidence for
their role as scaffolding proteins of inflammasomes [2, 94,
96]. The PYD of the NALPs binds the adaptor ASC via
PYD–PYD interaction. The CARD domain within ASC
then recruits caspase-1 to the inflammasome [94, 144]
(Fig. 1b). The inflammasome may also recruit caspase-5 via
the C-terminal CARD of NALP1, or, alternatively, a second
caspase-1 can be recruited via the C-terminal CARD of
CARDINAL, another potential component of the inflam-
masome that shares similarity with the C-terminal extension
found in NALP1 [2, 94].

IPAF (also known as CARD12 or CLAN) is a well-
conserved protein that contains an N-terminal CARD, a
central NACHT domain, and a C-terminal LRR region. The
CARD domain associates directly with the CARD domain
of caspase-1 [127]. The NACHT domain promotes oligo-
merizations, whereas the C-terminal LRR is involved in
ligand sensing [127] (Fig. 1c). The bacterial ligand
activating the IPAF-inflammasome was recently identified
as flagellin, and the activity of the IPAF-inflammasome is
implicated in phagosome–lysosome fusion [3]. The neuro-
nal apoptosis inhibitor protein (NAIP) shares with IPAF the
highest sequence similarity of the NACHT and LRR
domains, suggesting that these molecules are evolutionary
and functionally related [155]. Instead of a CARD, the
NAIP molecule harbors three N-terminal baculovirus
inhibitor-of-apoptosis repeats (BIR) [28, 131]. Mouse
NAIPs are encoded by seven paralogous genes, naip1 to
naip7, mainly expressed in macrophages [34]. NAIP was
proposed to interact with IPAF indicating that it may be part
of the same caspase-1-activating complex [40, 167].

NALP recognition of “danger signals”: similarity
with plant R genes

Plants do not have an adaptive immune system, but like
animals, plants also have the potential to recognize patho-
gens and mount efficient innate immunity to pathogens
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[67]. Two types of immunity are present. The first, known
as pathogen-associated molecular pattern (PAMP)-triggered
immunity or nonhost resistance, recognizes common
PAMPs. These PAMPs are conserved structures present in
microbes that trigger a “nonspecific” type of immunity and
are similar to the mammalian TLR agonists predicted by
Janeway [107]. The second branch of the innate immune
system in plants responds to virulence factors specific to
certain pathogens. This branch, also called effector-
triggered immunity, is more specific and is the result of
an exclusive evolutionary adaptation between a precise
pathogen and its host. This effector-triggered immunity
may detect some pathogen genes directly, or may
indirectly detect pathogen-driven modifications, stress or
“danger signals” in the host. This model, also known as
the “guard hypothesis” [135, 156], resembles some of the
models of mammalian immunity proposed by Matzinger
[103], who predicted that “danger signals” help the immune
system to discriminate pathogens from nonpathogenic

microbes. Similarly to animals, it is likely that plant
PAMP-induced immunity and “danger signal”-triggered
immunity form a continuum in innate immune recognition
that synergizes and collaborates to sense dangerous
microbes efficiently. Both systems may use similar recep-
tors to detect or sense microbes and pathogens. Neverthe-
less, the majority of PAMP sensors in plants use
transmembrane pathogen recognition receptors that resem-
ble mammalian TLRs [168]. Whereas “danger signal”
sensors in plants are mainly formed by a large family of
hundreds of NALP-like or more generally NLR-like
proteins [29], it is interesting to note that NALPs are also
proposed to be “danger signal” sensors. The first inflam-
masome described is activated upon loss of integrity of
plasma membrane without any additional PAMP or ligand
[94]. Other “danger signals”, such as extracellular adeno-
sine triphosphate (ATP) or uric acid crystals, have been
identified more recently as NALP activators [91, 99],
further suggesting that convergent evolution has resulted

Fig. 1 Structural organization
of the apoptosome and typical
NALP and IPAF inflamma-
somes. a The apoptosome scaf-
fold protein APAF1 recognizes
cytosolic cytochrome c via its
WD repeat, oligomerizes via its
NB-ARC domain, and recruits
caspase-9 via its CARD domain.
b The core structure of the
NALP-inflammasome is formed
by a NALP, the adaptor ASC,
and caspase-1. The LRR repeats
of the NALP sense the activat-
ing signals. The NACHT-NAD
region initiates the formation of
NALP-oligomers. PYD-PYD
and CARD–CARD homotypic
interactions are crucial for the
recruitment and activation of
either the adaptor ASC or the
inflammatory caspases. c IPAF
recruits caspase-1 directly via
CARD–CARD interactions
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in analogous mechanisms in both plant and mammalian
innate immunity.

SGT1 a conserved regulator of plant R genes
and NALPs activation

The resemblance between human and plant innate immune
activation is also obvious at the structural level. Both plant
genes involved in the effector-tiggered immunity (also
known as NBS-LRRs) and mammalian NLRs have the
same modular organization [5, 6, 155] (that consists, as
described above, of a recognition domain made of LRRs,
an oligomerization domain and an effector domain).
Furthermore, the LRRs of various mammalian NLRs bind
SGT1 and HSP90 [24, 104], two proteins whose plant
orthologues were previously shown to interact with the
LRR of plant NBS-LRRs [111]. Plant SGT1 controls the
accumulation and stability of some NBS-LRRs [7, 56, 108].
In other NBS-LRRs, SGT1 appears to be directly involved
in the activation of the scaffold protein by promoting
intramolecular interactions and by contributing to the
formation of a precomplex that is competent for activation
without playing a major role in the stability of the NBS-
LRRs [12, 14, 80]. The combined action of HSP90 and
SGT1 is required to modulate plant NBS-LRRs accumula-
tion and signaling competence [12, 58, 85]. In mammals,
the activity of SGT1 is essential for NALP3 and NOD1
activation [24, 104]. SGT1 depletion affects HSP90 binding
to the LRR of NALP3. Low doses and short incubations
with HSP90 inhibitors reduce SGT1 interactions with the
LRR of NALP3, thus blocking its activation. This suggests
that an HSP90-SGT1 complex keeps the inflammasome
inactive but competent for activation. HSP90 binds to the
NACHT domain of NLRs, and the stability of NALP3 and
NOD1 is consequently affected by sustained inhibitions
with HSP90 [24, 104]. In contrast, SGT1 is not crucial for
the activation of another NLR, NOD2 [24], whereas low
doses of HSP90 inhibitors blocked NOD2 activation [104],
suggesting that similar to plant NBS-LRRs the role and the
dependence on SGT1 for activation varies between NLRs.

NALP-inflammasome assembly results in IL-1β
and IL-18 maturation

Inflammasomes are machines involved in caspase-1 activa-
tion that results in the activation of IL-1β, IL-18, and
possibly IL-33. The biological relevance of the inflamma-
some is therefore intimately linked to the biology of
inflammatory caspases and their substrates. Ample support
for the requirement of caspase-1 for IL-1β and IL-18
activities comes from studies of mice deficient in caspase-1

[45, 48, 75, 82]. They have a defect in the maturation of
proIL-1β and proIL-18 and are more resistant to the lethal
effect of endotoxins than wild type mice. IL-18 was first
described as an endotoxin-induced factor that stimulates the
production of interferon-γ by splenocytes. However, IL-18
has many other functions including induction of proin-
flammatory cytokines, up-regulation of adhesion molecules,
and activation of natural killer cell activity [31]. IL-1β
affects virtually every tissue including the central nervous
system where it can promote induction of slow-wave sleep,
anorexia, and inflammatory pain hypersensitivity [73, 132].
Importantly, IL-1β controls tumor angiogenesis and inva-
siveness of different tumor cells in mice [113, 159]. IL-1β
also plays a role in destructive joint and bone diseases and
displays toxicity for insulin-producing β-cells in islets of
Langerhans [88, 140] and neurons, where it is involved in
acute neurodegeneration and stroke [86]. Recombinant
IL-1β induces fever in experimental animals, an activity
shared with other cytokines, including TNF [30]. In
general, IL-1β initiates and/or amplifies an astonishingly
wide variety of effects associated with innate immunity and
host responses to microbial invasion and tissue injury [32].
A better understanding of the biology of the inflamma-
somes is therefore crucial to fully understand the mecha-
nisms of IL-1β regulation.

NALP1 inflammasome

Mechanisms controlling proIL-1β maturation were discov-
ered with the help of an in vitro assay that monitors
maturation of proIL-1β after it has been incubated with
partially fractionated extracts from human monocytes or the
monocytic cell line THP-1 [71]. This assay was success-
fully used to purify and sequence the IL-1β-converting
enzyme (ICE), or Caspase-1 [20, 109, 150]. A similar assay
allowed the biochemical identification and characterization
of the first described inflammasome, the NALP1 inflam-
masome [94]. The NALP1 inflammasome undergoes
spontaneous activation upon hypotonic lysis of THP-1 cells
and incubation of cytosolic extracts at 30°C [94]. In a
recent study using purified recombinant proteins, Faustin et
al. [36] were able to reconstitute in vitro the NALP1
inflammasome by combining recombinant NALP1 and
caspase-1. This directly demonstrated that recombinant
NALP1 can activate caspase-1 via its C-terminal CARD.
Activation of caspase-1 is enhanced by the recruitment of
ASC via the N-terminal PYD. NALP1 is an exception
among the NALPs in that it contains a C-terminal extension
adjacent to the LRR that encompasses a CARD; the CARD
of NALP1 was originally shown to recruit caspase-5 in the
complex [94]. Whether the activation of caspase-1 by the C
terminus of recombinant NALP1 is relevant in vivo
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requires further investigation. Using the same in vitro
system, this study suggested that the bacterial product
muramyl dipeptide (MDP) binds and activates NALP1
directly. This finding is quite remarkable as it shows for the
first time that a PAMP can act as a direct ligand for NLRs
[36]. These data are in agreement with results in THP1 cells
where NALP1 was shown to be essential for MDP-
mediated activation of IL-1β [16]. On the other hand, this
finding is at odds with observations demonstrating that
IL-1β activation by MDP is NALP3 dependent and that, at
least in mice, deficiency of NALP3, ASC or NOD2 blocks
the activation of IL-1β by MDP [95, 118] (see below).
Whether NALP1 is part of a mega complex involved in the
activation of IL-1β upon MDP stimulation needs to be
addressed in future studies. Interestingly, the NALP1
inflammasome, which shares similarities in the structure
with Apaf-1-like Caenorhabditis elegans CED-4 protein
and mammalian Apaf-1 apoptosomes, is directly inhibited
by the anti-apoptotic proteins Bcl-2 and Bcl-xl [16]. CED-4
also interacts directly with the Bcl-2 member CED-9 in C.
elegans, thereby interfering with its activity, while in
mammals, Bcl-2 members indirectly block Apaf-1 activa-
tion by inhibiting cytochrome c release from mitochondria.
The direct inhibition of NALP1 by Bcl-2 members shows
that an evolutionary conserved branch of the apoptosis
machinery regulates innate immune responses and further
suggests an evolutionary link between apoptosomes and
inflammasomes [16].

NALP1 and susceptibility to anthrax lethal toxin

The NALP1 locus in mice contains three paralogues;
NALP1a, NALP1b, and NALP1c (Table 1). Recent studies
in mice showed that macrophages from inbred mice are
either susceptible or resistant to cell death by a toxin from
Bacillus anthracis called lethal toxin (LeTx). This trait
difference has been mapped to a locus on chromosome 11
and was recently associated with the nalp1b gene [15]. B.
anthracis is the causative agent of anthrax and depends for
virulence on secretion of factors that form functional toxins.
LeTx is one of the major toxins produced by B. anthracis
and is believed to be responsible for causing death in
systemic anthrax infections. The mechanisms of how LeTx
activates NALP1 and the role of the inflammasome in
anthrax pathology are still ill-defined. Murine NALP1b
does not contain a PYD; hence it is not clear whether it
requires ASC or dimerization with another NALP for
caspase-1 recruitment. On the other hand, NALP1b
possesses a CARD and a region related to CARDINAL. It
is therefore possible that this region per se is able to
activate caspase-1 in an ASC-independent manner, as it was
shown for human NALP1 in vitro [36].

NALP1, vitiligo and autoimmunity

Vitiligo is characterized by an acquired depigmentation of
the skin due to the absence of melanocytes, which are cells
responsible for the production of melanin, the pigment
giving the skin its brown to black color. Although the
etiology of the disease is not fully understood, several lines
of evidence suggest an autoimmune involvement. Anti-
bodies directed against melanocyte-derived proteins can be
readily detected in vitiligo patients [114], as well as in skin
infiltrating T cells [79], suggesting that both the humoral
and the cellular response may be involved. It remains
unclear, however, whether this is the cause or consequence
of melanocyte cell death. Good evidence for an autoim-
mune origin of this disease comes from the fact that familial
vitiligo, which accounts for one third of cases, is associated
with other autoimmune diseases, including autoimmune
thyroid disease, latent autoimmune diabetes, rheumatoid
arthritis (RA), Addison’s disease, and systemic lupus
erythematosous [136]. The locus for familial vitiligo on
chromosome 17 was recently demonstrated to harbor the
gene coding for NALP1 [64]. Specific mutants of NALP1
are possibly associated with vitiligo alone, with an
autoimmune disease phenotype or both. Although the
functional effects of NALP1 variants were not determined,
this study strongly suggests that mutations in NALP1 may
result in a deregulated secretion of IL-1β. This may favor
the priming of T cells that subsequently attack melanocytes,
in a manner reminiscent of the role of NALP3 in contact
hypersensitivity, where T cell priming due to IL-1β release
results in cytotoxicity directed against keratinocytes (see
below). Interestingly, microtraumatisms are known to play
a role in the etiology of vitiligo, although the exact mecha-
nism is still unclear [42]. Whether these microtrauma
trigger NALP1 activation in individuals with predisposing
mutations in this gene is a seductive hypothesis that
remains to be investigated.

NALP3 inflammasome: a danger signal sensor?

The best characterized danger signal that activates IL-1β is
extracellular ATP, which is most likely released by dying or
injured cells. Exposure of cells to extracellular ATP has
been known to activate caspase-1 for years [37, 55], and
numerous studies have shown the requirement of P2X7

receptors for ATP-induced caspase-1 activation and subse-
quent IL-1β release [17, 76, 123, 134, 143]. More recently,
another type of channel, the pannexin-1 channel, activated
by P2X7 activation was shown to be required for ATP-
induced caspase-1 activation [121, 122]. Yet the physiolog-
ical relevance of extracellular ATP-mediated inflammasome
activation, especially in the course of pathogen-induced
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IL-1β maturation and release, remains unclear as the
concentration of ATP (5 mM) required seems unreasonably
high. P2X7 receptor activation mimics a hypotonic stress
situation and requires potassium efflux for caspase-1
activation [68]. Thus, it is possible that the mechanisms
leading to the activation of caspase-1 in the cell-free system
and after ATP stimulation are similar. Likewise, other
models of hypotonic stress and potassium efflux produce
comparable levels of caspase-1 activation [68]. Intriguingly,
the inhibition of pannexin-1 completely blocked nigericin
(an antibiotic and potassium ionophore from Streptomyces
hygoscopus), maitotoxin (another potassium ionophore and
potent marine toxin produced by the dinoflagellate
Gambierdiscus toxicus), and ATP-mediated caspase-1 and
IL-1β maturation without affecting potassium depletion in
the cells [121, 122]. This suggests that potassium depletion
in the cell is not sufficient for inflammasome activation
(Fig. 3).

The generation of ASC-deficient mice demonstrated that
ATP-mediated caspase-1 activation requires ASC and was
therefore probably dependent on the activation of a NALP
protein [89] (Fig. 3). This hypothesis was confirmed in
studies using NALP3-deficient mice [91, 99, 148]. Another
study suggested that NALP3 is required for caspase-1
activation by bacterial RNA or the small antiviral com-
pounds R848 and R837 [69]. Nigericin and maitotoxin
depend on the NALP3-based inflammasome for caspase-1
activation [91]. NALP3 and ASC are also required for
caspase-1 activation by the Gram-positive bacteria Staphy-
lococcus aureus and Listeria monocytogenes [91, 117]. L.
monocytogenes-mediated caspase-1 activation requires the
bacterial toxin listeriolysin O (LLO). Whether this toxin
and the unidentified caspase-1 activating factor from S.
aureus are dependent on potassium efflux requires further
investigation [91]. Finally, other “danger signals” such as
uric acid crystals and some skin irritant allergens also
activate NALP3 (see below).

NALP3 and NOD2 sense MDP

PGN is a molecular complex that is common to all bacteria.
Degradation of PGNs in the phagolysosomes of macro-
phages leads to the release of inflammatory mediators in the
cytosol including; D-Glu-meso-diaminopimelic acid (DAP)
dipeptide and GlcNAc-MurNAc-L-alanine-D-glutamate
(MDP) [51]. DAP and MDP are sensed in the cytosol by
two NLRs, NOD1 and NOD2, respectively. Activation of
NOD1 or NOD2 leads to the recruitment and activation of
the RIP2 kinase that turns on various signaling pathways
ultimately leading to the activation of the transcription
factor NF-κB [74]. MDP also activates caspase-1 and
IL-1β via NALP3 in human monocytes suggesting that

NALP3 is an additional MDP sensor [95, 97]. However,
initial studies using mouse macrophages failed to demon-
strate inflammasome activation by MDP [91, 92, 148].
Meanwhile, it became apparent that the strength of the
immune response to MDP and DAP derivatives varies
greatly and depends on the animal species and genetic
background of the animal strain. It has been known for
decades that mice are much less sensitive than humans,
guinea pigs, or rats to these PGN-derived peptides, and that
C57BL/6 mice are less sensitive than BALB/c mouse
strains [112, 146]. This technical issue was overcome by a
recent study that used cyclohexamide (CHX) to render
mouse macrophages competent for MDP stimulation.
Interestingly, both NF-κB activation and IL-1β were
greatly enhanced by MDP in presence of CHX, signifying
that CHX may affect MDP internalization or its presenta-
tion to the NLRs [118]. However, it is unknown whether
CHX is acting directly or indirectly by affecting the
expression of an inhibitor. Using CHX, Pan et al. [118]
showed that IL-1β activation in mice requires both NOD2
and NALP3 activation, suggesting that they may cooperate
either directly or indirectly for IL-1β activation and
secretion (Fig. 2). This finding is consistent with observa-
tions in monocytes from Crohn’s disease patients that have
lack of function mutations in the NOD2 gene and fail to
activate IL-1β upon MDP stimulation [72, 115, 158] and
findings in Muckle-Wells patients that harbor a gain of
function mutation in the NALP3 gene and overproduce
IL-1β upon stimulation with MDP [95]. Similarly, a
probable gain of function mutation in NOD2 in the mouse
leads to increased IL-1β production upon stimulation of
macrophages with MDP [87].

NALP3 and autoinflammatory hereditary diseases

MWS, FCAS, and CINCA are characterized by periodic
fever, increase in the serum levels of acute phase proteins,
joint inflammation, skin rashes and eventually amyloidosis.
CINCA is the most severe of these diseases with the
eventual development of blindness and mental retardation.
In FCAS patients, attacks are usually triggered by exposure
to cold [101].

In 2001, NALP3 was identified as the gene responsible
for all these syndromes [1, 33, 52, 101]. The identified
mutations are mainly gain of function mutations found in
the NACHT domain of NALP3 [1, 33, 52], which lead to
increased activation of the inflammasome, resulting in
aberrantly high production of IL-1β [2]. Monocytes from
MWS patients secrete more mature IL-1β than healthy
donors even in the absence of NALP3 agonists [2].
Interestingly, the same, or similar, mutations can lead to
the various disorders, suggesting that other genes or
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environmental factors also contribute to the severity of the
phenotype. Treatment of those patients with IL-1 receptor
antagonist (IL-1ra), a natural decoy IL-1 molecule, rapidly
and dramatically decreases disease manifestations [46, 50,
53], further demonstrating that IL-1β is directly responsible
for the disease.

NALP3, a role in gout and pseudogout

Gout and pseudogout are two autoinflammatory diseases
that are characterized by arthropathies generated by the
inflammatory reaction to microcrystals in the joints [98,
106]. Pseudogout is caused by deposition of calcium
pyrophosphate dihydrate (CPPD) crystals, whereas gout is
caused by deposition of monosodium urate (MSU) crystals
in joints and periarticular tissues. MSU crystals were
identified as “danger signals” released by damaged cells
[128, 137]. MSU and CPPD stimulate the caspase-1-
activating NALP3 inflammasome to produce active IL-1β
[99]. Macrophages from mice deficient in various compo-
nents of the inflammasome, including caspase-1, ASC and
NALP3, show a reduced crystal-induced IL-1β activation.
Moreover, in a model of crystal-induced peritonitis in
rodents, impaired inflammation is found in inflamma-

some-deficient mice or mice deficient in the IL-1β
receptor (IL-1R) suggesting that in the above-mentioned
autoinflammatory diseases, inflammation is caused by
overproduction of IL-1β [21, 99]. Interestingly, IL-18
production is also activated by MSU [60, 99]; but despite
this, IL-18 does not seem to play a crucial role in vivo [60].
The importance of IL-1β in the pathology of gout is also
highlighted by promising preliminary studies in humans.
Indeed, a pilot open-labeled study using inhibitors of IL-1β
to treat 10 patients with documented acute gouty attacks
that could not tolerate or had failed standard anti-
inflammatory therapies revealed a very rapid and efficient
response in those patients to IL-1 blockade [142]. These
preliminary data suggest that targeting IL-1 or the inflam-
masome could be an effective therapeutic alternative in
gout.

NALP3, eczema, and adjuvanticity

Repeated exposure of the skin to irritant allergens induces a
T cell-mediated immune response called contact hypersen-
sitivity (CHS) [47]. The response can be divided into a
sensitization phase and an elicitation phase. The former is
known to depend on antigen uptake by skin-resident

Fig. 2 Models for the activation of the inflammasome by MDP. a Mega-
inflammasome model: NOD2 and NALP3 form a mega-inflammasome
that contains NOD2, NALP3, ASC, RIP2, and caspase-1. The complex
is activated directly or indirectly by MDP. b Sequential activation model:

NOD2 is activated by MDP and signaling through RIP2 activates the
NALP3 inflammasome. c Regulatory model: MDP activates both NOD2
and NALP3 complexes. NOD2 activation contributes in the production
of IL-1β by influencing NALP3 activation and/or IL-1β secretion
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antigen-presenting cells and their migration to draining lymph
nodes where T cell priming occurs. An irritant effect of the
antigen is essential at this stage, as is the presence of
functional caspase-1, IL-1β and IL-18 [4, 138]. The
elicitation phase occurs upon challenge with a relevant
hapten for the primed T cells and is independent of caspase-1
or an irritant effect of the chemical. Likewise, ASC- and
NALP3-deficient mice demonstrate an impaired contact
hypersensitivity response to trinitrophenylchloride (TNP-Cl)
[148], 2,4,6-trinitrochlorobenzene (TNCB) and 2,4-
dinitrofluorobenzene (DNFB) [161]. In these mice, transfer
of primed T cells results in a normal CHS, suggesting that
only the sensitization phase requires NALP3 and ASC.
Interestingly, DNFB promotes the release of IL-1β in a
caspase-1-dependent manner in primary keratinocytes as
well as in a skin dendritic cell line, suggesting that the
inflammasome may directly detect such compounds, [102,
161]. This suggests that NALPs can bridge the irritant effect
of sensitizing chemicals with the activation of IL-1β and
IL-18, thus allowing an efficient activation of the adaptive
immune system.

Uric acid crystals and bacterial MDP are not only known
as activators of the NALP3 inflammasome [95, 99] but are
also used as adjuvants that are competent in promoting the
adaptive immune response. Similarly, aluminum hydroxide
adjuvant, which is the only approved adjuvant for routine
use in humans, activates caspase-1, IL-1β and IL-18 [81].
Whether IL-1β, which is also an adjuvant per se, or the
NALP3 inflammasome are responsible for the adjuvantic
properties of these factors remains to be determined in vivo.

NALPs, a role in hydatidiform mole and in the biology
of reproduction

The expression profiles of some NALPs, together with
genetic studies, suggest a possible function for these
proteins in the biology of reproduction [100]. Human and
mouse NALP5 (also known as MATER) is expressed only
in the oocyte [153, 154]. NALP5-deficient female mice are
sterile due to an arrest at the two-cell stage in the
development of the embryos [153]. Other NALPs such as
some mouse NALP4 and NALP9 paralogues and bovine
NALP5 appear to be expressed exclusively in the ovary,
whereas other mouse NALP9 paralogues, NALP14, and
bovine NALP9 and NALP8 seem to be essentially
expressed both in the ovary and the testis [25, 26, 49, 57,
125]. Moreover, NALP expression levels in the oocyte
diminish during maternal aging [49]. In addition, knock-
down experiments with RNAi in mouse fertilized mouse
eggs revealed that a decrease in NALP14 expression results
in an arrest in development between the one-cell and eight-
cell stages of the embryo [49]. Allelic variants of NALP5

are also possible candidates involved in susceptibility to a
mouse model of Autoimmune Ovarian Dysgenesis, an
autoimmune disease also characterized by ovary inflamma-
tion and the production of autoantibodies against NALP5
[130]. Furthermore, mutations in NALP7 cause recurrent
hydatidiform mole and reproductive failure in humans [110].
Hydatidiform mole is an abnormal human pregnancy with
no embryo and cystic degeneration of placental villi. While
it is known that inflammation and bacterial infection cause
infertility, ectopic pregnancy, and abortion, the role of
NALP7 in this disease is unknown [141]. It is also unknown
whether the developmental failures associated with NALP5-
or NALP14-deficiency in the mouse are caused by a
deregulated inflammasome activation and consequent over-
production of IL-1β in the ovary. On the other hand IL-1β
is well-known to play a role in both ovulation and oocyte
maturation [44]. In the mare, intrafollicular injection of
IL-1β leads to increased ovulation but also to a very low
rate of embryo development most likely due to an defect in
oocyte maturation [19]. Similarly, IL-1β perfusion in the
rabbit ovary blocks embryo development at the four-cell
stage [149]. It is therefore possible that NALPs may link
some aspects of innate immunity and reproductive
biology.

Unidentified NALPs that may play a role in innate
immunity against Salmonella, Shigella or Francisella

Caspase-1 plays an important role in defense against
several intracellular bacteria. Many studies have shown
that absence of caspase-1 in macrophages and dendritic
cells protects from Salmonella-, Shigella- or Francisella-
induced cell death, whereas absence of caspase-1 in vivo
renders the mice highly sensitive to infections due to
defective clearance [62, 78, 91, 133, 157]. Although IPAF
has been identified as the major NLR responsible for
caspase-1 activation in response to Salmonella or Shigella,
ASC, the crucial adaptor that links NALPs to caspase-1
activation, also plays a role. ASC-deficient macrophages
fail to activate caspase-1 and to produce mature IL-1β;
albeit they are still sensitive to cell death [91, 148, 169].
Despite the requirement for ASC in IL-1β maturation,
NALP3 is not involved in Salmonella sensing, suggesting a
role for other NALPs.

In a similar way, cytoplasmic Francisella induces a host
response which is dependant on caspase-1 [90]. Interest-
ingly, activation of caspase-1 by Francisella is dependent
on phagosome escape and cytosolic replication [43, 90,
162]. The requirement for cytosolic Francisella replication
in caspase-1 activation could suggest that the inflamma-
some is sensing a product resulting from this replication.
Intriguingly, the inflammasome seems to cooperate with
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Fig. 3 NALP inflammasomes. Various NALPs and their respective
activators which are discussed in this review are schematized. Note
that biochemical evidence for the formation of some inflammasomes,
such as the NALP7 inflammasome, is missing. Activation is believed
to generally result either from direct binding of the activators or
indirect activation requiring other pathways or molecules. When such

connecting pathways are known, they are indicated within brackets as
intermediate. Mutations in NALPs are directly affecting activation.
Diseases, or unphysiological responses, associated with increased
activation or defects in various NALPs are summarized. See text for
references and discussion. C1 Caspase-1
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another pathway yet to be defined that promotes IFN-β
secretion upon Francisella infection. This step is necessary
for caspase-1 and inflammasome activation by Francisella
[162]. Although ASC is fully required to mediate caspase-
1-dependant cell death and IL-1β maturation, neither IPAF
nor NALP3 are involved, again suggesting that another
NALP, or another ASC activator, is involved in forming the
Francisella responsive inflammasome [91, 148]. Whether
type I interferon directly activates this inflammasome or
promotes the expression of an essential component such as
an hypothetical yet to be found NALP remains to be
studied [162].

Therapeutics to control NALPs and caspase-1 activation

IL-1β was shown to be involved in the pathogenesis of
several inflammatory disorders such as RA, MWS, FCAS,
and CINCA and systemic-onset juvenile idiopathic arthritis
[18, 22]. Different strategies have been designed to block
IL-1β signaling. Targeting the IL-1 receptor with recombi-
nant IL-1ra is the only clinical treatment approved so far,
but new approaches using caspase-1 inhibitors or molecules
trapping IL-1β are under investigation [105].

The finding that periodic fever-associated mutations in
NALP3 cause over-production of IL-1β [2] highlighted the
mechanisms underlining the spectacular response of MWS,
FCAS, and CINCA patients to clinical trials with recom-
binant IL-ra called Anakinra or Kineret (an inhibitor of the
IL-1 receptor complex). By targeting the first step of the
inflammatory cascade (IL-1β signaling) in those patients,
subcutaneous injections of Anakinra led, within hours, to
symptoms cessation and normal serum levels of the acute
phase proteins C-reactive proteins and serum amyloid A.
Moreover, long-term treatment also stopped neurological
complication progression, demonstrating the central role of
IL-1β in these disorders [46, 50, 53]. Based on the
efficiency of Anakinra, IL-1β inhibition is now tested with
encouraging results in other inflammatory diseases that are
caused by an overactivation of the inflammasome such as
gout [99, 142].

New IL-1β signaling antagonists are being developed to
acquire new molecules with different routes of administra-
tion and increased potency. In fact, Anakinra has a very
short half-life and thus requires daily subcutaneous injec-
tion [105]. The oral caspase-1 inhibitor VX-765 has been
shown to be effective in blocking IL-1β production in
monocytes from FCAS patients [145]. It has also been
successfully tested in mouse RA models [23]. Similarly,
caspase-1 inhibitors also block the maturation of IL-18.
IL-18 is highly expressed by keratinocytes and Langerhans
cells. Using the caspase-1 inhibitor in a delayed-type
hypersensitivity mouse system, Wannamaker et al. [160]

showed a decrease in skin inflammation. Thus, blocking
IL-18 production could be a successful approach to treat
skin inflammatory disorders such as psoriasis.

Other strategies aimed at targeting the activation of the
inflammasome may also provide new therapeutics, as
demonstrated by the very significant efficiency of the
HSP90 inhibitor 17-DMAG in blocking inflammation in a
mouse model of gout [104].

Constitutive blocking of cytokine production or activa-
tion might decrease the efficiency of our immune system to
prevent pathogens infections [84]. We could then wonder
whether the inhibition of cytokines is really without
consequences. Anti-TNF-α treatments result for example,
in an increase in Mycobycterium tuberculosis infection in
treated patients. However, only a few opportunistic infec-
tions have been recorded with long-term Anakinra treat-
ment, highlighting the safety of the treatment [84]. Using
specific caspase-1 inhibitors, inflammasome inhibitors, or
IL-1 and IL-18 inhibitors is therefore a very specific and
promising therapy to treat autoinflammatory diseases
associated with overactivation of inflammasomes, but
nevertheless these treatments might increase opportunistic
infections. Large-scale clinical trials are required to address
these questions.

Conclusion

As summarized in Fig. 3, various types of NALP-
inflammasomes have been identified, and several of them
are associated with diseases and pathologies. The reason
why disease-associated mutations in the NALP-inflamma-
somes in man appear to be much more common than other
PAMP receptors collectively remains a mystery.

The mechanism and the role of NALPs in these
pathways are still poorly defined. Overall, studies per-
formed during the last 5 years have revealed that this
danger-sensing system is complex and involves many
members of the NLR family of proteins. Identification of
ligands and the mechanisms involved in NALPs activation
are crucial puzzles that need to be solved. Beyond the
function of NALPs in the activation of inflammatory
cytokines, a few studies also suggest that some NALPs
may have other functions and regulate transcriptional
events or other signaling pathways [83, 164, 165]. Some
studies have also identified NALPs as possible candidate
genes involved in cancer [139], or in some forms of cell
death [41, 152].

Future studies and new mouse models will undoubtedly
shed more light on the respective roles of various NALPs in
human infections and inflammatory diseases and possibly
identify or validate new roles of NALPs in other pathways
and diseases.
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