A Tool for Writing and Debugging Algebraic Specifications

Johannes Henkel * and Amer Diwan *
{henkel,diwan} @cs.colorado.edu

Abstract

Despite their benefits, programmers rarely use formal
specifications, because they are difficult to write and they
require an up front investment in time. To address these is-
sues, we present a tool that helps programmers write and
debug algebraic specifications. Given an algebraic specifi-
cation, our tool instantiates a prototype that can be used
just like any regular Java class. The tool can also mod-
ify an existing application to use the prototype generated
by the interpreter instead of a hand-coded implementation.
The tool improves the usability of algebraic specifications
in the following ways: (i) A programmer can “run” an al-
gebraic specification to study its behavior. The tool reports
in which way a specification is incomplete for a client appli-
cation. (ii) The tool can check whether a specification and
a hand-coded implementation behave the same for a par-
ticular run of a client application. (iii) A prototype can be
used when a hand-coded implementation is not yet avail-
able. Two case studies demonstrate how to use the tool.

1. Introduction

Formal specifications have many software engineering
benefits. Perhaps the most important advantage of formal
specifications is that they can provide an unambiguous and
possibly machine checkable documentation of an interface.
Clients of the specified interfaces know exactly what the in-
terface provides and can therefore use it correctly. Program-
mers implementing the interface know exactly how an im-
plementation of the interface should behave and therefore
have a gold standard with which to test their implementa-
tion. Unfortunately, most programmers do not write formal
specifications because they are difficult to write and require
significant mathematical maturity on the part of program-
mers. This paper describes and evaluates a tool for develop-
ing algebraic specifications.

+ This work is supported by NSF grants CCR-0085792, CCR-0133457,
and CCR-0086255. Any opinions, findings and conclusions or recom-
mendations expressed in this material are the authors’ and do not nec-
essarily reflect those of the sponsors.

There are many kinds of formal specifications, each
with their own strengths and weaknesses. For example, ax-
iomatic specifications (e.g., [12]) are well suited for describ-
ing how methods manipulate the state of an object. They
are thus valuable for programmers who try to understand
and extend an existing implementation [9]. On the other
hand, for programmers who are interested in using a partic-
ular class without worrying about the implementation de-
tails, understanding axiomatic specifications can be cum-
bersome. In contrast, for certain classes, in particular many
container classes, algebraic specifications (e.g., [13]) can
be short and elegant; they often provide the advantage of
capturing the observable behavior without exposing the im-
plementation details of objects. Since container classes are
among the most frequently reused classes, and thus partic-
ularly benefit from machine checkable documentation, we
focus only on algebraic specifications in this paper.

Given an algebraic specification for a class and a client
for the class, our tool runs the client using interpreta-
tion to simulate the behavior of the specified class. In this
way, when a programmer writes an algebraic specification,
the system automatically provides an implementation. Our
tool interprets algebraic specifications using term rewriting,
which is a well studied area [6, 20]. However, to our knowl-
edge our system is the first to seamlessly integrate fully au-
tomatic algebraic rewriting techniques with Java classes.

Our system provides three main benefits. First, it gives
programmers more for their effort: they not only get the
benefit of a formal specification but they also get a prototype
of their class, which they can immediately use. This feature
may be particularly useful in multi-programmer projects
since it allows the developers of some components to test
against specifications of other components before those are
even implemented. Second, by providing a feature for ex-
perimentally validating a specification against an imple-
mentation, our tool helps prevent divergence of implemen-
tation and its specification as the software system evolves.
Third, our system is invaluable for debugging algebraic
specifications since it allows programmers to “run” a spec-
ification and observe its behavior. When running a specifi-
cation, there are three possible outcomes: (i) the run pro-
duces correct answers, which suggests that the specification
may be sound and complete; (ii) the run produces incor-

Implementation

Prototype
e.g., ArrayList.java :

Speci

Specification
Discovery Tool

Specification Interpreter

uses

uses
Client
e.g., BibtexParser.java

Figure 1. Integrating specification discovery
tools and our interpreter

rect answers which indicates a bug in our specification; and
(iii) the run fails because the interpreter is unable to pro-
duce an answer for a method, which indicates that the spec-
ification is incomplete. Notice that debugging specifications
is a non-trivial task, especially with realistic classes that re-
quire a large number of axioms (e.g., java.util.LinkedList
requires more than 100 axioms to completely specify its 39
methods).

Figure 1 shows how our specification interpreter com-
plements our own previous work on algebraic specification
discovery [14]. We use our algebraic specification discovery
tool to discover a specification (ArrayList.spec) from an im-
plementation (ArrayListjava). While specification discovery
tools are effective in discovering specifications [9, 1, 14],
the specifications they produce may be both unsound and
incomplete. This is because the most effective specification
discovery tools (to our knowledge) are based on analyz-
ing program runs rather than statically analyzing the code.
Our specification interpreter can be used by a programmer
to debug a discovered specification, which means that a
programmer iteratively refines the specification to make it
sound and complete within a given context, e.g., within a
client that uses the specified class (BibtexParser.java). This
approach for addressing unsoundness and incompleteness
is complementary to Nimmer and Ernst [18], who address
unsoundness for a subset of discovered invariants by using
the static checker ESC/Java for validation. We demonstrate
the applicability of our tools for the scenario shown in Fig-
ure 1 in a case study (Section 5.2).

The rest of the paper is organized as follows. Section 2
describes our algebraic specification language. Section 3
describes the design of our algebraic interpreter. Section 4
presents our algebraic rewriting engine. Section 5 reports on
our experience with our approach and our tools. In particu-
lar, we report on scenarios in which we used our approach
to develop algebraic specifications. Section 6 discusses re-
lated work and Section 7 concludes.

2. Our Algebraic Specification Language

Invoking a Java method has seven possible conse-
quences: The method may (i) return a value, (ii) throw
an exception, (iii) modify the receiver (“this”), (iv) ter-
minate the program, (v) modify objects reachable from
arguments, (vi) modify other objects, reachable from in-
stance variables or static variables, or (vii) modify re-
sources external to the program. (i)-(v) are easy to express
in algebraic specifications, while (vi) and (vii) are awk-
ward at best. Since (i)-(iii) are the most common, and
from a software engineering viewpoint are the most de-
sirable, our language supports only these. (iv) is trivial.
Elsewhere we describe how to extend our language to sup-
port (v) [14]. We do not yet know of a good way to address
(vi) or (vii).

Algebraic specifications have two parts: an algebraic
signature and a set of axioms [17]. The algebraic signa-
ture itself has two parts: sorts and function types. Intuitively,
sorts give the types of interest to the algebra. Function types
are the operations from which terms of the algebra are con-
structed. Equational axioms equate terms in the algebra.
Specifications written in our specification language mirror
this structure by having the three parts (sorts, function types,
and axioms) as follows.

First, the specification file enumerates the sorts. For ex-
ample, in Java terms, the sorts are the classes that are used
by the axioms. For each class, the user may optionally
specify a concrete existing implementation for that type.
This feature is useful if a programmer wants to experimen-
tally check if a specification matches a real implementation.
Primitive types in Java are implicitly sorts of the algebra.
For example, the sorts for our linked list specification are as
follows:
class LinkedList isjava.util.LinkedList
class NoSuchElementException is

javautil. NoSuchElementException
class Object is javalang.Object

In other words, there are three sorts (LinkedList,
NoSuchElementException, and Object). This specifica-
tion fragment also references real existing implementa-
tions (e.g., javautil.LinkedList) of the sorts which can be
checked against the specification.

Second, the specification file enumerates the function
types. For example, one of the function types for our linked
list specification is as follows:
method add is

<java.util.LinkedList: boolean add(java.lang.Object)>

This function type says that the add function is defined on a
LinkedList and takes an Object as its argument. Its return type
is boolean (to indicate whether or not the add was success-
ful). Note that rather than inventing new syntax, we have
tried to use Java syntax as much as possible. We borrow the

Soot syntax for fully qualified names of Java classes and
methods [22].

Third, the specification file gives the equational axioms.
For example, consider the following two axioms from our
linked list specification. The first argument to each opera-
tion is the receiver object.

forall I:LinkedList forall o:Object (Axiom 1)
removelast(add(l,0).state).retval ==
forall I:LinkedList forall o:Object (Axiom 2)

removelast(add(l,0).state).state == |

Note the .retva and .state qualifications. These corre-
spond to the return value of an operation and the (possi-
bly modified) state of this after an operation, respectively.
Both axioms are universally quantified over all linked lists
and all objects. Axiom 1 states that invoking removeL ast af-
ter an add returns the value that was last added. Axiom 2
states that if after adding an element to a linked list, /, one
invokes a removel ast, the this is modified to be / (i.e., what
it was before the add).

Axioms may be conditional. For example, consider:
axiom forall I:LinkedList forall x:Object fordl i:zint ~ (Axiom 3)
if i>=0 then get(addFirst(l,x).state,intAdd(i,1).retval).retval

==get(l,i).retval
This axiom defines the semantics of the get operation in
terms of addFirst. get returns the ith element in the linked
list. The basic idea is to traverse down the list while decre-
menting ¢ as long as ¢ > 0. intAdd performs integer addi-
tion. Our system is preinitialized with axioms pertaining to
intAdd.

3. Approach

Our approach provides a seamless integration between
an interpreter for algebraic specifications and Java appli-
cations. From the perspective of the developer, there is no
difference (except for performance) between calling a Java
method and interpreting an algebraic specification that de-
scribes the method. This property of our approach means
that application developers get a prototype implementation
of their classes for free when they develop algebraic speci-
fications for their classes. Once developers get some expe-
rience with the prototype, they can replace it with a hand-
coded (and probably faster) implementation. Our approach
also helps in the testing and development of the hand-coded
implementation by providing an option for continuously
validating the hand-coded implementation against the al-
gebraic specification for the implementation. Thus, our ap-
proach can immediately detect when an implementation de-
viates from its formal specification.

Figure 2 illustrates the architecture of our system. From
the user supplied parts we see that the user provides two

kinds of input to our system: Specification Components,
which are the algebraic specification parts of the input, and
Java Applications, which are the Java parts of the input.
The Algebraic Specifications are specifications in the lan-
guage described in Section 2. The Simulation Set is the set
of classes that are to be simulated by our specification inter-
preter. For example, if a programmer wants to use a spec-
ification for a LinkedList, the simulation set would contain
only LinkedList, and the algebraic specification would spec-
ify the behavior of LinkedList.

In addition to the algebraic specifications and the sim-
ulation set, users of our system also provide a client that
uses the classes in the simulation set (simulation client). Op-
tionally, users may also provide simulation subjects which
are real existing implementations of the classes to be sim-
ulated. These classes are actually specified as part of the
specification (Section 2). If a user provides these classes,
our interpreter continuously checks the result of the inter-
pretation against these classes (i.e., it runs them in paral-
lel). Thus, this optional component provides a mechanism
for dynamically validating a real implementation against an
algebraic specification. Furthermore, when algebraic inter-
pretation fails due to an incomplete specification, the inter-
preter can issue warnings and continue to execute by using
results from the simulation subjects.

We use a custom Java class loader to load the simula-
tion client. The class loader uses the bytecode engineering
library [3] to redirect references to classes belonging to the
simulation set to simulation stubs. In other words, once we
load the simulation client, it references simulation stubs in-
stead of classes that are in the simulation set. The simu-
lation stubs contain methods with the same signatures as
the classes they simulate; however, their bodies delegate all
calls to the interpreter. We generate simulation stubs on the
fly. For example, consider the following code fragment:
LinkedList 11 = new LinkedL ist();

LinkedList 12 = new LinkedL ist();

Integer fi ve = new Integer(5);

12.add(fi ve); 11.addAll(12);

Since LinkedList is a member of the simulation set, the class
loader replaces all references to LinkedList with references
to the simulation stub SIMSTUB_LinkedList by manipulat-
ing the constant pool of the Java bytecode for the class. We
generate the simulation stub, SIMSTUB_L inkedL ist, automat-
ically when we encounter the first reference to LinkedList.
SIMSTUB_LinkedList 11 = new SIMSTUB_LinkedList();
SIMSTUB_LinkedList 12 = new SIMSTUB_LinkedList();

Integer fi ve = new Integer(5);

12.add(fi ve); 11.addAll(12);

Following is an example of the add method in the simula-
tion stub for LinkedList. This stub wraps all arguments into
an object array and passes a serialized signature, the argu-
ments, and the receiver object to the interpreter. Finally, it

Specification Components

[algebraic specifications]

[simulation set ={D, E}

S ST S S S S S S S S SSSSSS
Java Application

(o O -7 72Y_ 7
N ooy L sty ?
classes » s'_Cl_aS_SP,'J %

simulation simulation

client subjects

/// runtime client stubs
J % L

simulation simulation

stub algebraic | subject
Interpreter . 8 Subj

instance term instance

. .
licat

Running Java App ?/
class A B class SIMSTUB_D

simulation simulation

Figure 2. Architecture of our system

unboxes the result of the interpretation into a boolean.
public boolean add(Object 0){
return UnboxU'til.unboxBool ean(
Interpreter.interpret("< LinkedList: boolean add(Object)>",
new Object[]{ o},this); }

For each simulation stub instance (e.g., an object of type
SIMSTUB_LinkedList), the interpreter maintains both an al-
gebraic term modeling the state of the object and option-
ally, a simulation subject instance (e.g., an object of type
LinkedList) (see the Interpreter box in Figure 2). When the
simulation client invokes a method on a simulation stub in-
stance, the interpreter extends (and possibly rewrites) the al-
gebraic term associated with that instance. If the program-
mer has provided simulation subjects, the interpreter also
invokes the corresponding method on the simulation sub-
ject instance. After executing the code above, the simula-
tion stub instance referred to by /2 maps to the following al-
gebraic term:

addAll(NewL inkedList().state, (Term 1)
add(NewL inkedL ist().state, | nteger @3982).state). state

The subterm Integer@3982 denotes the Integer object con-
taining the integer value 5. By applying term rewriting (dis-
cussed in detail in Section 4), the interpreter (i) reduces the
size of the terms that model the state of an object (ii) com-
putes the return value of the simulated Java methods. As an
example for (i), the interpreter uses the axiom

forall o:Object add(NewL inkedL ist().state,0).state (Axiom 4)
== addFirst(LinkedList().state,0).state

to transform the algebraic term Term 1 into

addAll(NewLinkedL ist().state, addFirst((Term 2)

NewL inkedList().state Integer @3982).state). state

Next, the axiom

forall 11:LinkedList forall 12:LinkedList
addAll(11,addFirst(12,0).state).state
==addAll(add(I1,0).state,12).state

transforms Term 2 into

(Axiom 5)

addAll(add(NewLinkedList().state, (Term 3)
Integer@3982).state, NewL inkedL ist().state).state

Next, the axiom
forall I:LinkedList addAll(l,newL inkedList().state).state==I

transforms Term 3 into
add(NewlinkedList().state, Integer@3982).state (Term 4)

As an example for (ii), the interpreter rewrites the term

addAll(NewL inkedL ist().state, (Term 5)
add(NewL inkedL ist().state,Integer@3982).retval

using the axiom

forall 11:LinkedList forall 12:LinkedList forall o:Object
addAll(11,add(12,0).state).retval==true (Axiom 6)

into true. Since true is a constant, the interpreter can return
the constant back to the interpretation stub and the simula-
tion was successful.

Sometimes the algebraic specification may be incom-
plete, which means that we cannot compute a return value
for a particular method application. For example, if Ax-
iom 6 is missing, the interpreter will not be able to pro-
duce the return value (true) for the term given above. At this
point the interpreter reports an irreducible term to the user.
If the user has supplied simulation subjects, the interpreter
can use the result produced by the simulation subject in-
stance and continue with the interpretation.

4. Algebraic Term Rewriting

Section 3 illustrated how we use rewriting to interpret al-
gebraic specifications. We now discuss rewriting in greater
detail, focusing on the challenges that we encountered.

Any given specification language presents a particu-
lar tradeoff between analyzability and expressiveness. Lan-
guages that are easy to analyze are usually not as expres-
sive or convenient for the programmer or the specifier, yet

expressive languages can quickly become too costly to ana-
lyze. Our specification language (Section 2) is very expres-
sive, which means that it presents a number of challenges
for our interpreter. We start by giving a high-level overview
of our use of rewriting and then discuss the challenges that
we encountered.

4.1. Overview of Rewriting

Recall that Java clients of our interpretation invoke oper-
ations on simulation stub instances. These simulation stub
instances take the place of regular objects (e.g., instances of
a LinkedList) in a traditional Java program. As the client in-
vokes more methods on simulation stub instances, the terms
modeling the state of the objects increase in their size. The
rewriting engine is responsible for reducing these terms.
Rewriting interprets the axioms in the algebraic specifica-
tion as rewriting rules that transform one term into another.
Each axiom in the user-provided specification gives rise to
up to two rewriting rules. For example,
forall o: Object addFirst(NewL inkedList().state, 0).state

==add(NewLinkedList().state, o0).state

gives rise to two potential rewriting rules, namely

forall o: Object addFirst(NewL inkedList().state, 0).state

— add(NewL inkedList().state, 0).state and
forall o: Object add(NewL inkedList().state, 0).state

— addFirst(NewLinkedList().state, o).state

However, the axiom
forall I:LinkedList forall o: Object add(l,0).retval==true

gives rise to only
forall I:LinkedList forall o: Object add(l,0).retval — true

since we would not have a binding for / and o if we had a
rewriting rule from trueto add(l,o).retval.

Given a term that needs to be reduced, our interpreter
works by applying a sequence of rewriting rules. If the rea-
son for reducing a term is to produce an answer to return to
the client, our interpreter applies rewriting rules until it ends
up with a constant (e.g., a number of a reference to an ob-
ject). If the reason for reducing a term is to reduce its size,
the interpreter can stop whenever it feels that the term is
small enough.

Especially in the first case (i.e., reducing a term to pro-
duce a value for the client), our interpreter may fail in two
ways. First, the interpreter may be unable to find a sequence
of rewritings that produce a constant. This case exposes po-
tential incompleteness in the user-provided axioms. Second,
the interpreter may be able to reduce the term to an incor-
rect constant (e.g., it finds 5instead of 9). This case exposes
an error in one or more of the axioms. In both of the above
cases, our system produces a detailed message describing
what failed. As we show in Section 5, these diagnostics are

invaluable for producing a correct specification or debug-
ging an existing specification.

4.2. Strategies for Algebraic Term Rewriting

To manage the vast search space for term rewritings, we
use two strategies.

Our primary strategy is a greedy one that uses only
rewriting steps that reduce the size of the term. It does not
use backtracking. If the term to be reduced is a .retval term,
and this strategy is unable to reduce it to a constant, it resorts
to the secondary strategy. We do not use the secondary strat-
egy for .stateterms because reducing .stateterms is a perfor-
mance optimization and not strictly necessary. Thus, we use
the secondary strategy only when we absolutely need it.

Our secondary strategy tries all rewriting steps that do
not grow the term. If any of these rewriting steps lead to a
term that can be reduced in size via a rewriting step, we re-
vert back to the primary strategy. Note that this strategy uses
backtracking and is thus much more expensive than the pri-
mary strategy.

Even our secondary strategy may be unable to reduce a
term if, for example, it is necessary to increase the size of
the term before it can be ultimately reduce. Our current im-
plementation does not check the set of rewriting rules for
confluence [6] or for consistency, which means: (i) it may
allow a term to be reduced to two distinct constants; and
(ii) it may not find the desirable rewriting sequence, even
though it only consists of steps that make the term smaller.

The set of strategies that we have chosen affects the capa-
bilities and the efficiency of our system. While we believe
that the strategies we have added to our interpreter make
sense in practice, there is still a lot of room for experimen-
tation.

4.3. Conditional Axioms

Conditional axioms lead to additional complexity
in the algebraic specification interpreter. Consider Ax-
iom 3, which we explained at the end of Section 2:
forall I:LinkedList forall x:Object forall i:int

if i>=0then get(addFirst(l,x).stateintAdd(i,1).retval).retval

==get(l,i).retval

For this kind of algebraic axiom (or the corresponding
rewriting rule from left to right) we simply make sure that
the constraints between if and then are fulfilled whenever
we unify the left side of the axiom with a term. Sets of ax-
ioms allowing this kind of constraints, i.e. a set of simple re-
lations between variables and constants, are called a semi-
equational system in the literature [20].

Our system also allows the more complex join systems
[20]. A join system allows conditional axioms with arbi-
trary terms in the condition. For such axioms we need to

use the rewriting system to also determine the value of
the condition (true or falsg). While this all seems straight-
forward, it can lead to infinite recursion. Furthermore, we
find that the debugging trace for a join system can become
hard to digest since deeply nested sequences of constraints,
checks, and rewriting attempts are common. We feel that
join systems, despite their increased complexity over semi-
equational systems, are worth it: they often allow more el-
egant expression of behavior than semi-equational systems.
For example, the following axiom uses the contains opera-
tion in a constraint to say that, if the hash set halready con-
tains o, the size of hwill not change if we add o again. This
same axiom is much harder to write in a semi-equational
system.
forall h:HashSet forall 0:0Object

if contains(h,0).retval==true then

size(add(h,o0).state).retval == size(h).retval
To see how this axiom can be used as a rewriting rule, con-
sider rewriting the term
size(add(add(NewHashSet(). state, Object@1234

).state, Object@1234).state).retval

First, we note that without considering the condi-
tion in the axiom, the left side of the axiom uni-
fies with the term with the unification mapping m
= { h +— add(NewHashSet().state Object@1234).state,
0 — Object@1234}. However, before we can ap-
ply the rewriting, we need to determine if the condi-
tion is true. We apply m to the condition to get: contains(
add(NewHashSet().state, Object@1234).state, Object@1234).retval
==true. Using the axioms for the contains operation (omit-
ted for brevity), the algebraic interpreter will reduce this re-
lation by rewriting it to true==true. Thus, the check succeeds
and the original rewriting rule can now be applied, yield-
ing size(add(NewHashSet().state, Object@1234).state).retval.

4.4. References to External Methods

Sometimes the specification of one class may need to ref-
erence methods from a class outside the simulation set. For
example, when writing the specification for a hash set’s add
method, we would like to write:
forall h:HashSet forall 01:Object forall 02:Object

if equals(ol, o2).retval==true then

contains(add(h,0l).state,02).retval==contains(h,02).retval
However, this axiom uses the equals method of o1 which is
not part of the specification of a hash set. Similar problems
arise when writing specifications for an iterator. There are
two ways of addressing this problem: (i) Include the specifi-
cation of equalsin the specification for hash set; (ii) Extend
the specification language to allow calls to Java methods,
such as equals. The first approach, while seemingly more el-
egant than the second approach, has one disadvantage: it
forces us to specify the behavior of equals for all possible

[RewritingPathViewer oix
bibtex.dom.Bibtexfile.addEntry§:32 SUCCESS. -

[bitrtex. dom. Bitrtexfite. addEntry): 32 SUCCESS,
& [addiaddéaddaddaddiade(addiaddiaddaddiacdidrraytist). state, BibtexToplevel
[true

T gl [»

forall ®1:0bject
forall x0Arradist
addi(x0, x 1) retwal

==1true

L J
Figure 3. User interface for rewriting engine

objects that could be added to a HashSet. Generic contain-
ers in the Java language will make this approach more vi-
able, but even with generics, dynamic class loading can load
new subclasses for which the behavior of equals is differ-
ent than any given specification. Our current prototype sup-
ports both the first and the second solution: One can de-
clare that an operation as external which means that when-
ever the interpreter encounters a term in which all parame-
ters are constants, the Java implementation for the method
is evaluated. For example, suppose that equals has been de-
clared an externa method. When the interpreter encoun-
ters equals(Object@1423,0Object@1111).retval it will execute
the appropriate equals implementation before resuming al-
gebraic interpretation. This mechanism is also useful for ex-
tending the interpreter with arithmetic and helper functions.

4.5. Debugging Support

When the specification is incomplete, the interpreter
prints the irreducible term, which provides a starting point
for manually completing the specification. In some cases, it
is useful to also examine the trace provided by the rewrit-
ing engine. This trace records all rewriting operations that
take place. By searching through this trace, the user can find
out whether or not a particular rewriting rule has been ap-
plied and which intermediate terms have been generated in
the interpretation process. We also use this trace to debug
our interpreter: The rewriting engine prints a counter value
into the trace for each rewriting step. When we find suspi-
cious activity in the rewriting trace, we used a conditional
breakpoint in a Java debugger to jump to the execution of
the rewriting step in question.

As an alternative for examining the rewriting trace, we
developed a user interface for the rewriting engine as shown
in Fig. 3. Using the drop down menu at the top of the win-
dow, the user selects which rewriting computation to view.
Below, a tree view shows how each term is a reduction of
its parent by using one rewriting step. When a user selects
a term in the tree view, the viewer displays the axiom that
generated the selected term from its parent in the text area
at the bottom of the window.

[I B N N I

o g A~ W N R

5. Experience

We describe two scenarios in which we applied our al-
gebraic specification interpreter. Section 5.1 gives an exam-
ple of developing a specification from scratch. Section 5.2
shows how we used axioms generated by our specification
discovery tool [14] and then debugged the specification us-
ing a client application. Section 5.3 provides evidence that
the prototype generated by our tool from the specification
has acceptable performance to be usable for many applica-
tions.

5.1. Extreme Specifying: A Case Study

Programmers can use our system to incrementally de-
velop a specification (and thus a prototype) based on the
needs of the code that they are developing. For example,
when developing a Java class (“client”) the programmer
may not know all the requirements on classes that it uses
(“helpers classes”). Thus it would be premature to develop
the full specification of a helper class before writing the
client. On the other hand, the programmer cannot develop
and test the client before writing a prototype of the helper.
Our tool helps in this dilemma by allowing a programmer
to develop a specification and prototype of the helper class
as needed by the client. This section presents an example
where a programmer develops a specification and prototype
of a hash set hand-in-hand with the client of the hash set.

The programmer starts by writing the client:

“Client” class and the specification to the interpreter, the in-
terpreter responds with:
Client.java, line 5: Algebraic Interpreter failed to compute a value.
term = add(NewHashSet().state, I nteger @1776).retval
Client.java, line 6: Algebraic Interpreter failed to compute a value.
term = contains(add(NewHashSet().state, Integer @1776

).state, Integer@1776).retval

The first error message says that the interpreter could not
determine the return value of the invocation s.add. The sec-
ond error message complains about not being able to pro-
duce a return value for s.contains. To eliminate these error
messages and to compute the expected result, the program-
mer adds the following axioms:

forall o:Object add(NewHashSet().state,0).retval (Axiom 7)
==true
forall o:Object forall h:HashSet (Axiom 8)

contains(add(h,o).state,0).retval==true

The first axiom says that adding any object to a new
hash set returns true. Note that this is inadequate in gen-
eral since it does not say anything about adding to a
non-empty HashSet. The second axiom says that im-
mediately after adding an object to the HashSet, invok-
ing contains(add(h,0).state,0).retval returns true. This axiom
too is limited since contains returns true only if the ele-
ment being checked was the last one added. With these two
axioms, the client runs successfully.

The programmer now continues implementing the client
and adds System.out.println("test 0 = "+s.contains(one)); imme-
diately before Line 5. Since this statement invokes a contains
on an empty hash set, the programmer also remembers to
add this axiom:

classClient {
public static void main(String args[]){
Integer one = new Integer(1);
HashSet s = new HashSet();
s.add(one);
System.out.printin("test 1 = "+s.contains(one));} }

At this point, the programmer sees that the client needs a
hash set, which must support the methods add and contains.
Thus, the programmer creates the following incomplete
specification:

specifi cation HashSetSpecifi cation

class HashSet

method NewHashSet is <void <init>()>

method add is < boolean add(java.lang.Object)>

method contains is < boolean contains(java.lang.Object)>

defi ne HashSet

Note that the specification also includes a NewHashSet op-
eration for creating a new hash set. Also note that the pro-
grammer starts with an empty set of axioms (i.e., there is
nothing under the defi ne HashSef) directive. In other words,
the interpreter can build up the terms but has no rewrit-
ing rules to reduce them. When the programmer gives the

forall o:Object
contains(NewHashSet().state,0).retval==false

(Axiom 9)

On running the modified client and specification set, our

system gives the following error message:

test 0 = true

Client.java, line 6: Algebraic Interpreter failed to compute a value.

term = add(contains(NewHashSet().state,
Integer@7905).state, I nteger @7905).retval

The problem is that the programmer forgot to specify how
contains affects the state of the object. This mistake is easy
for programmers to overlook since they are primarily think-
ing in terms of what contains does and not what it does
not do. The debugging output of our tool, which prints all
rewriting attempts and intermediate terms (too verbose to
include in this paper), can also come in handy at this point
to find what is missing from the axioms. Since contains does
not modify the state of the set, all we need to add is the fol-
lowing axiom:

forall h:HashSet forall 0:0bject contains(h,0).state==h

After this new axiom, the client executes success-
fully. Needless to say, the specification of a hash set is

still far from complete. As the programmer adds more be-
havior to the client class, our interpreter exposes more
of the limitations of the specification. Ultimately, this it-
erative process may lead to a complete specification
of the hash set. It is worth noting here that the qual-
ity of the test client is key to debugging the algebraic
specification. Thus, once a programmer has finished devel-
oping the client (and thus the specification), it is worthwhile
to generate more clients for the hash set with the inten-
tion of “testing” the specification of the hash set.

5.2. Debugging a Discovered Specification

In this case study, we used the specification discovery
tool [14] to generate a specification for the java.util. ArrayList
class contained in Sun’s Java Development Kit. We then
used the algebraic interpreter to debug the discovered spec-
ification. Our client application is a BibTeX parser.! We
chose this client application because it is not dependent on
libraries other than the Java standard libraries, it uses col-
lection classes, and we were familiar with the code.

Similar to what we describe in Section 5.1, debugging
the discovered specification is an iterative process consist-
ing of three steps: (i) using the specification interpreter to
run the client application, (ii) understanding the debugging
output, (iii) adding new algebraic axioms to the specifica-
tion or modifying the existing axioms.

Out of the 10 algebraic axioms to execute the BibTeX
parser successfully, our discovery tool can produce 3 ax-
ioms exactly as needed. As an example, the following two
axioms specify how the first element of an ArrayList can be
obtained by applying the get operation for index 0:
forall x0:Object (Axiom 10)

get(add(newArrayList().state x0).state,0).retval == x0
foral I:ArrayList forall 01:0bject forall 02:Object (Axiom 11)

get(add(add(l,01).state,02).state,0).retval
==get(add(l,01).state,0).retval

We manually added 7 axioms to the specification. Five
of those axioms describe the behavior of Iterator instances
generated by ArrayList objects. For example, the following
axiom states that an iterator created from an empty list does
not have a next element:

hasNext(iterator(ArrayList().state).retval).retval==false

time
30 + insec

25 +

20 + addFirst

add

sizeOfList
0 : L :

0 160 2(')0 3(')0 4(')0 5[)0 61'D0 7(']0 8('10 9(')0 10'00
Figure 4. Term Rewriting Benchmark

Adding four of the axioms which describe the behavior
of Iterator was straight forward. The following axiom was
more involved:
forall I:ArrayList

next(iterator(l).retval).state

==iterator(remove(l,0).state).retval

This axiom describes how the next operation applied to an
iterator transforms the iterator’s state. Unfortunately, if this
axiom was used as a left to right rewriting rule, it would
increase the size of the term. Thus, our interpreter will not
use it (see Section 4.2). However, our interpreter allows hid-
den operations, which can be used in rewriting rules, but are
externally invisible [21]. We introduced a hidden operation
removeFirst, which eliminates the problem:
foral I:ArrayList

next(iterator(l).retval).state

==ijterator(removeFirst(l).state).retval

(Axiom 12)

The two remaining axioms we had to add describe the be-
havior of the hidden operation removeFirst. The specification
discovery tool can find variations of both axioms which use
remove(_,0) instead of removeFirst(_). For example, it found
forall x0:Object

remove(add(ArrayList().state, x0).state,0). state

== ArrayList().state

The discovery tool currently cannot find these 5 axioms be-
cause the state of the /Iterator object is modeled as the return
value of the operation iterator() of another class (ArrayList).
This scenario is not covered by the currently implemented
equation generators. However, the discovery tool provides
extension points for adding new equation generators. An
appropriate equation generator can be implemented with-
out changing the infrastructure.

1 Available at ww.cs.colorado.edu/"henkel/stuff/javabib/.

ArrayList has a large number of operations, which means
that many axioms are needed to fully document it. By us-
ing the specification interpreter, we focused on the axioms
needed for a particular run of our client application. In other
words, understanding the 10 executed axioms of our specifi-
cation is enough for understanding the behavior of ArrayList
for the particular run. Thus, the 10 executed axioms can be
considered a dynamic slice of the specification.

We describe the full case study elsewhere [15].

AW N R

5.3. Performance

To evaluate the performance of our rewriting engine, we
use the following benchmark, which is parameterized with
sizeOfList.

Object 0 = new Object();

LinkedList | = new LinkedL ist();

for (inti = 0; i < sizeOfList; i++) l.add(o);

I.get(sizeOfList—1);

This benchmark creates a linked list with sizeOfList ele-
ments (line 3) and then retrieves the last element (line 4). In
Figure 4, we plot the time it takes for the rewriting engine
to compute the result value of the get method call for line 4
in the benchmark (y-axis) for different values of sizeOfList
(x-axis). We measure the execution times on a Dell Pow-
erEdge 600SC Pentium 4 2.4 Ghz with 2 GB of RAM run-
ning Sun’s JDK 1.4.2 on SuSE Linux 8.1.

We present data for two different specifications of the
get method. The get method returns an element at a particu-
lar position in the list (counting from the first element). The
add and addFirst add an entry to the end and beginning of the
list, respectively. Axiom 13 and Axiom 14 make up the first
specification of get and Axiom 15 and Axiom 16 make up
the second specification of get:

forall I:LinkedList forall o:Object (Axiom 13)
get(addFirst(l,0).state,0).retval==o
forall I:LinkedList forall o:Object forall i:int (Axiom 14)

if i>=0 then get(addFirst(l,0).stateintAdd(i,1).retval).retval
== get(l,i).retva
forall I:LinkedList forall o:Object forall i:int (Axiom 15)

if size(l).retval == i then get(add(l,0).statei).retval == o
forall I:LinkedList forall o:Object forall i:int (Axiom 16)

if size(l).retval > i then

get(add(l,0).statei).retval == get(l,i).retval

The main difference between the two specifications is
that the first one expresses get in terms of addFirst while the
second one expresses get in terms of add. Given our simula-
tion client, we would expect the second to be a better match
because the client also builds up the list in terms of add.
More specifically, if we use the first specification of get, our
rewriting engine will first have to rewrite the term that cor-
responds to the entire linked list in terms of addFirst before
it can start to reduce it.

Our results (Figure 4) confirm the intuition above. The
horizontal axis of Figure 4 gives the sizeOfList parameter
and the vertical axis gives the time in seconds to execute line
4 of the benchmark. The addFirst and add curves give the ex-
ecution times for the two specifications for different values
of sizeOfList. We see that the specification that matches the
simulation client is faster than the specification that does not
match the simulation client. In future work we plan to im-
plement memoization techniques. Thus, subsequent invoca-
tions of get will be able to reuse much of the work of rewrit-
ing the list term to use add instead of addFirst.

There are two points to take away from this data. First,
while the prototype implementation produced by our sys-
tem is much slower than a hand-coded implementation (e.g.,
executing the benchmark for sizeOfList=1000 with the offi-
cial JDK implementation takes less than 1 millisecond), it
may still be fast enough to be used for prototyping. Sec-
ond, some specifications may execute much faster than
other (equivalent) specifications, depending on the match
between the specification and the simulation client.

6. Related Work

Previously [14] we described a system that can discover
algebraic specifications automatically from Java classes.
The output of that system can be used as a starting point for
developing a specification of an existing Java class. The cur-
rent paper and our previous paper share the goal of making
formal specification techniques more appealing for practical
use. Both techniques use the same specification language
and are designed to be used together.

There is a vast body of prior work on term rewriting sys-
tems [6, 20]. Prior work has also studied the idea of using
term rewriting to simulate a software component. For exam-
ple, Wang and Parnas proposed the trace rewriting method
to simulate software modules [23]. However, they focus on
the rewriting technique for their system and unlike us, do
not integrate their system into a programming language or
provide details of an implementation. Implementations of
other rewriting engines and rewriting language have been
used to provide prototyping [10, 7, 20], but again, to our
knowledge, they do not interact with a client written in
a modern programming language. Thus, these systems do
not provide the software engineering benefits that our ap-
proach offers. Antoy and Hamlet [2] propose self-checking
ADTSs, which integrate rewriting into C++ and Java classes.
Among other details, our system differs by (i) fully automat-
ing the integration of Java code and the algebraic inter-
preter with a custom class loader, and (ii) a more expressive
algebraic specification language that has been customized
for being embedded into Java (e.g., we allow operations to
both modify the state of an object and return a value). An-
toy and Hamlet manually implement representation map-
pings as C++/Java functions to allow intensional compar-
isons, which might be a useful addition to our current sys-
tem.

Other previous work uses algebraic specifications as as-
sertions to check whether implementations are consistent
with a given specification [11, 16, 8, 5, 4, 19]. Some of these
systems require test drivers to be written (e.g. [11]), others
generate test cases by themselves from the algebraic spec-
ifications [8, 5, 4]. Sankar [19] uses a theorem prover to
determine which of the algebraic terms generated by a run-
ning program need to be equivalent and then checks whether

the implementation implements the equivalences correctly.
While some of these systems interact with real implemen-
tation languages, our system is different in that it (i) seam-
lessly integrates with a real implementation language by ex-
ploiting reflection and dynamic class loading in Java; and
(i) automatically constructs a prototype from an algebraic
specification.

7. Conclusion

We describe the design, implementation, and usage of an
interpreter for algebraic specifications that is seamlessly in-
tegrated with Java. The goal of the system is to make alge-
braic specifications more cost effective and easier to write
and debug. Our tool creates a prototype implementation of
a class from its algebraic specification. A Java program can
use this prototype implementation just like any hand-coded
implementation of the class.

Our approach helps in writing and debugging algebraic
specifications because programmers can now execute their
specifications and optionally compare the execution of the
specification to a hand-coded implementation. Executing
the specifications exposes both errors and missing axioms
in the specifications. We illustrate the usefulness of this
approach by giving case studies and by presenting perfor-
mance results for the prototype produced by our tool.

Acknowledgments We thank the members of CU Boul-
der’s programming languages group, the members of CU
Boulder’s software engineering research laboratory, mem-
bers of the software technology department at IBM Re-
search, and the anonymous referees for listening to our
ideas and giving great feedback.

References

[1] G. Ammons, R. Bodik, and J. R. Larus. Mining specifica-
tions. In Proceedings of the 29th ACM S GPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
4-16, 2002.

S. Antoy and D. Hamlet. Automatically checking an imple-
mentation against its formal specification. |EEE Transac-
tions on Software Engineering, 26(1), Jan. 2000.

Apache Software Foundation. BCEL—hbyte code engineer-
ing library. http://jakarta.apache.org/bcel/.

H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen. In black
and white: An integrated approach to class-level testing of
object oriented programs. ACM Transactions on Software
Engineering, 7(3), July 1998.

H. Y. Chen, T. H. Tse, and T. Y. Chen. TACCLE: A method-
ology for object-oriented software testing at the class and
cluster levels. ACM Transactions on Software Engineering,
10(4):56-109, Jan. 2001.

N. Dershowitz and D. A. Plaisted. Handbook of Automated
Reasoning, volume 1, chapter Rewriting. Elsevier, 2001.

(2]

(3]
[4]

5]

(6]

10

[7]1 N. Dershowitz and L. Vigneron. Database of rewriting
systems. http://www.loria.fr/ vigneron/RewritingHP/sys-
tems.html, 2003.
R. Doong and P. G. Frankl. The ASTOOT approach to test-
ing object-oriented programs. ACM Transactions on Soft-
ware Engineering, 3(2), Apr. 1994.
M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. ACM Transactions on Software En-
gineering, 27(2):1-25, Feb. 2001.
[10] K. Futatsugi. CafeObj official
http://www.ldl.jaist.ac.jp/cafeobj/, 2003.
J. Gannon, P. McMullin, and R. Hamlet. Data-abstraction
implementation, specification and testing. ACM Transac-
tions on Programming Languages and Systems, 3(3):211-
223, 1981.
D. Gries. The science of programming. Texts and mono-
graphs in computer science. Springer-Verlag, 1981.
[13] J. V. Guttag and J. J. Horning. The algebraic specification of
abstract data types. Acta Informatica, 10:27-52, 1978.
[14] J. Henkel and A. Diwan. Discovering algebraic specifica-
tions from Java classes. In L. Cardelli, editor, ECOOP 2003
- Object-Oriented Programming, 17th European Conference,
Darmstadt, July 2003. Springer.
J. Henkel and A. Diwan. Case study: Debugging a discov-
ered specification for java.util.arraylist by using algebraic in-
terpretation. Technical Report CU-CS-970-04, University of
Colorado at Boulder, 2004.
M. Hughes and D. Stotts. Daistish: Systematic algebraic test-
ing for OO programs in the presence of side-effects. In Pro-
ceedings of the International Symposium on Software Test-
ing and Verifi cation, San Diego, California, 1996.
J. C. Mitchell. Foundations of Programming Languages.
MIT Press, 1996.
J. W. Nimmer and M. D. Ernst. Static verification of dynami-
cally detected program invariants: Integrating daikon and es-
c/java. In Proceedings of RV’ 01, First Workshop on Runtime
Verifi cation, Paris, France, July 2001.
S. Sankar. Run-time consistency checking of algebraic speci-
fications. In Proceedings of the Symposium on Testing, Anal-
ysis, and \erifi cation, Victoria, British Columbia, Canada,
Sept. 1991.
TeReSe. Term Rewriting Systems, volume 55 of Cambridge
Tractsin Theoretical Computer Science. Cambridge Univer-
sity Press, 2003.
J. W. Thatcher, E. G. Wagner, and J. B. Wright. Data type
specification: Parameterization and the power of specifica-
tion techniques. ACM Transactions on Programming Lan-
guages and Systems, 4(4), Oct. 1982.
R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pom-
inville, and V. Sundaresan. Optimizing Java bytecode using
the Soot framework: Is it feasible? In Compiler Construc-
tion, 9th International Conference (CC 2000), pages 18-34,
2000.
Y. Wang and D. L. Parnas. Simulating the behavior of soft-
ware modules by trace rewriting. ACM Transactions on Soft-
ware Engineering, 20(10), Oct. 1994.

(8]

(9]

homepage.

[11]

[12]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

