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This paper considers variable reordering forquantum multiple-
valued decision diagrams(QMDDs) used to represent the matri-
ces describing reversible/quantum gates and circuits. An efficient
method for adjacent variable interchange is presented and this
method is employed to implement a vertex reduction procedure
for QMDDs using sifting. Experimental results are presented
showing the effectiveness of the proposed technique.
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1 INTRODUCTION

A reversible/quantum circuit is a cascade of reversible/quantum gates. The
behaviour of each gate can be described as a matrix and the function per-
formed by the circuit is described by the product of the individual gate ma-
trices. However, the matrix for ann-line reversible/quantum gate/circuit in
r-valued logic has dimensionrn × rn so the computation using standard ma-
trix techniques quickly becomes impractical.
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The quantum multiple-valued decision diagram(QMDD) data structure
presented in [10, 11] was specifically designed to address this problem. A
QMDD represents the matrix corresponding to a gate or circuit as a directed
acyclic graph. Efficient methods for constructing QMDDs for individual
gates and for performing matrix multiplication directly with QMDDs are pre-
sented in [10].

As is the case for other decision diagram representations such as the or-
dered binary decision diagram [2], the number of vertices in a QMDD de-
pends on the variable ordering selected. This paper addresses variable order-
ing for QMDDs [9]. We present a method for adjacent variable interchange
and describe a modification to the QMDD structure required to make this a
local operation for all QMDDs. We then present a heuristic vertex reduction
algorithm for QMDDs based on Rudell’s binary decision diagram “sifting”
technique [13].

Section 2 presents the basic concepts of binary and MVL reversible and
quantum gates and circuits with particular emphasis on the matrix representa-
tion. Section 3 addresses adjacent variable interchange for QMDDs. Section
4 shows how sifting can be applied to QMDDs. Experimental results are pre-
sented in section 5 and the paper concludes with observations and suggestions
for further research in Section 6.

2 PRELIMINARIES

2.1 Reversible Logic and Quantum Circuits
We present the basic concepts of reversible and quantum circuits necessary
for this paper. More extensive background is available in the literature (e.g.
[5, 12]).
Definition 1: A gate/circuit is logicallyreversibleif it maps each input pattern
to a unique output pattern. 2

Binary reversible gates and circuits have garnered considerable interest
due to Landauer’s principle which states that the erasure of information dis-
sipates energy. Bennett [1] showed that for a binary circuit to not consume
energy, it must be composed of reversible gates. The concept of reversibil-
ity has been extended to MVL circuits [8]. Quantum logic gates and circuits
are inherently both logically and physically reversible [12]. In general, the
behaviour of reversible and quantum gates and circuits can be described by
complex-valued matrices and are modeled as bijective functions.

Fig. 1 shows a binary reversible circuit with 3 lines and 5 gates. The
symbol⊕ denotes theNOT operation. For each gate, theNOT operates on
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FIGURE 1
A binary reversible circuit

the target line if everycontrol line (lines with a black circle) has the value 1.
Otherwise the target line is unchanged. Control and unconnected lines pass
through the gate unchanged. A gate with no controls is aNOTgate. One with
a single control is termed acontrolled-NOTand those with more than one
control areToffoli gates [12].

Multiple-valued reversible circuits have been considered in [8]. The struc-
ture illustrated in Fig. 1 is generalized so that the target line is operated on by
a negation or cycle operation depending on the values of the control lines. The
non-zero values indicated in the control line connections specify the nonzero
value required in order to trigger the operation. Fig. 2 shows a reversible
circuit from [8] that operates as described and realizes a ternary full adder.

Quantum logic gates [12] operate in a similar fashion with the values on
designated control lines determining if a particular quantum logic transfor-
mation is to be applied to the target line.

2.2 Matrix Representation of Reversible / Quantum Gates and Circuits

The operations performed on the target line for the gates considered in this
paper are given by ther×r matrices in Table 1.NOTis the normal binary com-
plement shown as⊕ in Fig. 1.V andV + are quantum operations sometimes
referred to as “square root of NOT” gates sinceV ×V = V +×V + = NOT .
Note thatV is unitary, as are all operation matrices for quantum gates, and
V + is the conjugate transpose ofV , henceV + = V −1. NEG is ternary
negation, andC1 andC2 are the two ternary unary cycle operations [8].

The matrices in Table 1 define the operation on the target line. The matrix
definition for anr-valued gate in ann-line reversible or quantum circuit has
dimensionrn×rn taking into account the operation on the target line and the
control and unconnected lines. For example, the leftmost gate in Fig. 1 has
the truth table and matrix specifications shown in Table 2.
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FIGURE 2
A ternary reversible full adder

Binary (r=2)Matrices Ternary (r=3)Matrices

NOT

(
0 1
1 0

)
NEG

 0 0 1
0 1 0
1 0 0


V

(
1+i
2

1−i
2

1−i
2

1+i
2

)
C1

 0 1 0
0 0 1
1 0 0


V +

(
1−i
2

1+i
2

1+i
2

1−i
2

)
C2

 0 0 1
1 0 0
0 1 0


TABLE 1

Gate Operation Matrices
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c b a c+ b+ a+

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



TABLE 2
Representation of the Toffoli GateT (a; b, c) in a 3-line Circuit

Table 3 shows the matrix specification for aV type quantum gate with
target linea and control linec. Line b is not connected for this gate.

A reversible/quantum circuit is a cascade (from input to output) of gates
g0, g1, g2, ... Each gategi has a matrix representationMi where the dimen-
sion depends on the radix and the number of lines in the circuit. The matrix
defining the transformation performed by the overall circuit comprised ofk

gates in a cascade is given byMk−1× ...×M2×M1×M0. The challenge is
that the size of these matrices and the computation required for matrix multi-
plication by traditional techniques is prohibitive for all but a small number of
circuit lines. For example, for a ternary circuit with 10 lines each matrix has
dimension 59,049 by 59,049.

2.3 Quantum Multiple-valued Decision Diagrams

The use of binary decision diagrams for the representation and manipulation
of matrices was discussed in [3, 4]. Quantum multiple-valued decision dia-
grams (QMDD) were introduced in [10, 11] as a means to represent and ma-
nipulate the matrices required for reversible/quantum gates and circuits. Here
we present a brief description of QMDDs and assume the reader is familiar
with fundamental decision diagram techniques [16].

As noted above, a reversible/quantum circuit withn lines has a transfor-
mation matrix of dimensionrn×rn wherer is the radix. Such transformation
matrices quickly explode in size. However, they do exhibit a great degree of
regularity.
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

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1+i

2
1−i
2 0 0

0 0 0 0 1−i
2

1+i
2 0 0

0 0 0 0 0 0 1+i
2

1−i
2

0 0 0 0 0 0 1−i
2

1+i
2



TABLE 3
Representation of the Quantum GateV (a; c) in a Circuit with Linesa, b, c

A matrix of dimensionrn × rn can be partitioned as:

M =


M0 M1 · · · Mr−1

Mr Mr+1 · · · M2r−1

...
...

...
...

Mr2−r Mr2−r+1 · · · Mr2−1

 (1)

where eachMi is a submatrix of dimensionrn−1×rn−1. Each of theMi can
be similarly partitioned and the process repeated until scalars are reached.
This repeated partitioning leads to the fundamental QMDD structure.
Definition 2: We shall refer to a matrix partition of the type shown in eqn.(1)
as anr2-partitioning. 2

Definition 3: A quantum multiple-valued decision diagram(QMDD) [10] is
a directed acyclic graph with the following properties:

• There is a singleterminalvertex annotated with value 1. The terminal
vertex has no outgoing edges.

• There are some number ofnon-terminalvertices each labeled by an
r2-valued selection variable. Each non-terminal vertex hasr2 outgoing
edges designatede0, e1, ..., er2−1.

• One vertex is thestart vertex and has a single incoming edge that itself
has no source vertex.
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• Every edge in the QMDD, including the one leading to the start vertex,
has an associated complex-valuedweight. An edge with weight of 0
must point to the terminal vertex. This is required to ensure uniqueness
of the representation of each matrix.

• The selection variables areordered(assume with no loss of generality
the orderingx0 ≺ x1 ≺ ... ≺ xn−1) and the QMDD satisfies the
following two rules:

– Each selection variable appears at most once on each path from
the start vertex to the terminal vertex.

– An edge from a non-terminal vertex labeledxi points to a non-
terminal vertex labeledxj , j < i or to the terminal vertex.
Hencex0 is closest to the terminal andxn−1labels the start vertex.

• No non-terminal vertex isredundant, i.e. no non-terminal vertex has its
r2 outgoing edges all with the same weights and pointing to a common
vertex.

• Each non-terminal vertex is normalized (see details of the normaliza-
tion process in the next subsection).

• Non-terminal vertices areunique, i.e. no two non-terminal vertices
labeled by the samexi can have the same set of outgoing edges (desti-
nations and weights).

2

2.4 Vertex Normalization

The initial definition of QMDDs [10, 11] used the following normalization
rule:
Definition 4: A QMDD vertex isnormalizedif its outgoing edges are such
that there is aj such that the edgeej , 0 ≤ j ≤ r2 − 1, has weight 1 and
ei,∀i, 0 ≤ i < j has weight 0. 2

When this normalization rule is used, each vertex is normalized when it
is constructed by finding the nonzero weight on the lowest index edge (one
must exist or the vertex is redundant), dividing all edge weights by the weight
identified, and attaching the identified weight to the edge leading to the vertex.

Given this definition of normalization, it is possible to show that the QMDD
representation for any given matrix is unique.
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Theorem 1: An rn × rn complex valued matrixM has a unique (up to
variable reordering or relabeling) QMDD representation.
Proof: The proof is by induction onn.
n = 0: In this case,M is a single element. The QMDD representation con-
sists of the terminal vertex which is also the start vertex and no nonterminal
vertices. The weight on the edge leading to the terminal (start) vertex is the
value inM . This is clearly a unique representation.
n > 0: Assume the result holds for allrn−1 × rn−1 matrices. Consider thee
r2-partitioning of a matrixM of dimensionrn × rn. Since each submatrix
Mi has dimensionrn−1 × rn−1, by the inductive hypotheses the QMDD for
eachMi is unique. Letsv, which is labeledxn−1, denote the start vertex
for the QMDD representingM . Initially, equate each outgoing edgeek, 0 ≤
k ≤ rn − 1 from sv to the edge pointing to the start vertex in the QMDD
representation ofMi, and give the edge leading tosv weight 1.

Normalizingsv as defined above, begins by finding the smallestk such
that the weightwk on edgeek from sv is nonzero. Ifwk = 1, sv is already
normalized. Ifwk 6= 0, divide all the nonzero weights on outgoing edges
from sv by wk and set the weight on the edge leading tosv to wk.

Since the QMDD for eachMi is unique up to variable reordering or re-
labelling and the normalization process ensuressv and its associated edge
weights are unique, the QMDD forM is unique up to variable reordering or
relabelling. 2

We have found that vertex normalization as given in Definition 4 does al-
low for adjacent variable interchange to be performed as an operation local to
the variables being interchanged for QMDDs representing 0-1 matrices such
as those representing reversible binary and multiple-valued circuits. However,
it does not for QMDDs representing some matrices encountered for quantum
circuits. The problem arises since variable reordering changes the order in
which the elements of the matrix are considered and normalization as defined
in Definition 4 can identify different normalization divisors depending on the
variable order.

The solution is to use the following alternative normalization definition:
Definition 5: A QMDD vertex isnormalizedif its outgoing edges are such
that the largest weight on any edge out of the vertex is 1. 2

Note there is no natural ordering for complex numbers. In this work we
consider the complex numberraeiθa to be greater thanrbe

iθb if ra > rb or in
the case whenra = rb, θa < θb.

When Definition 5 is used, the process for normalizing a vertex is as de-
scribed above except the maximum weight on the edges from the vertex is
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used as the divisor and incoming edge weight. This approach is independent
of variable order, and allows for adjacent variable interchange as a local op-
eration since the maximum value in a matrix is independent of the order in
which the matrix elements are considered. The result of Theorem 1 is still
applicable with this modified normalization rule and QMDDs formed with
the modified normalization rule thus provide a canonical representation for
all matrices encountered for reversible and quantum circuits.

2.5 Skipped Variables

In implementing a sifting procedure for QMDDs, it is necessary to formu-
late an efficient adjacent variable interchange procedure. Such a procedure
is more complex, as are QMDD-based matrix addition and multiplication,
if intermediate variables are “skipped”. This section provides a proof that
intermediate variables in a QMDD representing a binary or multiple-valued
reversible circuit are never skipped unless the outgoing edge points directly
to the terminal vertex and has weight 0. We conjecture that this is also the
case for quantum circuits.
Definition 6: Given the orderingx0 ≺ x1 ≺ ... ≺ xn−1, an edge from a
vertex labeledxi, i > 0,skipsa variable if it points to the terminal vertex or it
points to a vertex labeledxj , j < i− 1. 2

Theorem 2: A QMDD for a matrix representing a binary or multiple-valued
reversible circuit has no edges that skip variables except for edges that point
to the terminal vertex and have weight 0.
Proof: It is clear from the definition of QMDD, that an edge with nonzero
weight that skips a variable means the corresponding matrix has a sub-matrix
of equal non-zero entries of dimensionrk × rkfor somek > 0. However,
the matrix representing a binary or multiple-valued reversible function is a
permutation matrix since reversible functions are bijections and thus has only
0 and 1 entries with a single 1 in each row and column. It follows that the
QMDD for such a circuit can have no edges with nonzero weight that skip
variables. 2

Conjecture 2.1: Theorem 2 also holds for a QMDD corresponding to a circuit
composed of quantum gates.

The proof of Theorem 2 is based on the fact that reversible binary or
multiple-valued logic gates/circuits are represented by permutation matrices.
In the quantum case, the matrix describing a gate/circuit is anrn × rn uni-
tary matrix with complex-valued elements [5, 12]. The matrix is constructed
from anr×r unitary gate operation matrixU (see examples in Table 1) using
the Kronecker product and a similar complexity matrix composition operator.
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Detail of the construction procedure for the matrix describing a gate can be
found in [10].

The following lemmas are a basis for approaching a proof of Conjecture
2.1.
Lemma 1: Given the orderingx0 ≺ x1 ≺ ... ≺ xn−1, an edge from a QMDD
nonterminal vertex labeledxi+1 representing the matrixM skips variablexi

if, and only if, at least oneMj in its r2-partitioning itself partitions intor2

identical sub-matrices.
Proof: Suppose there is anMj that partitions intor2 identical sub-matrices.
Consider the QMDD representation ofMj . It does not have a start vertex
labeled byxi since that vertex would have all its outgoing edges identical
which makes it redundant. The correct representation forMj , is an edge
pointing to the common submatrix andxi is therefore skipped.

Conversely, consider the representation ofM with start vertexsv labelled
xi+1. Assume edgeej from sv skips variablexi which means it leads to a
vertex representing a matrixMj whose value is independent of the value of
xi the highest candidate selection variable. Clearly, this only happens ifMj

is itself composed ofr2 identical submatrices. 2

Lemma 2: Thern × rn unitary matrix for a quantum gate constructed from
anr × r unitary operation matrixU has the property that every row/column
consists of either (a) a single 1 with all other entries 0, or (b) a distribution of
the elements of a row/column ofU with the other elements 0.
Proof: The proof follows directly from the procedure for constructing the
matrix describing the gate (see [10]). 2

The actual distribution of values described in Lemma 2 depends on which
are the target, the control lines and the unconnected lines for the gate in ques-
tion.

Empirical evidence shows Conjecture 2.1 is very likely true and we are
currently working on a formal proof. The challenge lies in characterizing the
complete situation to cover arbitrary quantum gates for binary and multiple-
valued logic. It is important to note that QMDD are fully applicable, includ-
ing the variable reordering procedure discussed below, even if Conjecture 2.1
is found to be false. The advantage of proving it to be true will be an even
further improvement to the QMDD implementation.

3 INTERCHANGING ADJACENT VARIABLES

We consider the case of interchanging variablesα andβ where the former is
immediately above the latter (closer to the start vertex) in the QMDD. Recall
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that each vertex hasr2 outgoing edges. The key is, as mentioned above, to
perform the interchange as a local transformation. The technique presented
is based on the technique developed by Miller and Drechsler [7] for multiple-
valued decision diagrams.

Consider a vertexγ labelled by variableα. We construct a square matrix
T of dimensionr2 × r2.

For i=0,1,. . . ,r2-1,

• if the ith edge fromγ leads to a vertexδ labelled by variableβ, then
for j=0,1,. . . ,r2-1,Tij is set to point to the vertex pointed to by thejth

edge ofδ with the edge weight being the product of the edge weights
on theith edge fromγ and thejth edge fromδ;

• if the ith edge fromγ leads to a vertexδ not labelledβ, thenTij is set
to theith edge fromγ for j=0,1,. . . ,r2-1.

OnceT is constructed as above, the level interchange is made byrela-
belling γ with β, and setting thejth edge fromγ, j=0,1,. . . ,r2 − 1 to point
to a vertex labelledα whosei-th edge,i=0,1,. . . ,r2-1, points to the vertex
pointed to byTij . During this construction the vertices are normalized as
described in Definition 5. It is easily seen that following this construction,
vertexγ, now labelledβ, is the top vertex of a QMDD representing the same
matrix it did when originally labelledα.

The complete level interchange is accomplished by performing the above
for all vertices originally labelledα. These are readily identified as we use
a separate unique table [16] for each variable. The idea of relabelling these
vertices, as opposed to creating new vertices, is critical as it means that edges
leading to them, and the vertices from whence those edges originate, are un-
affected by the interchange. When a vertex is relabelled it must be removed
from one unique table and entered into the unique table corresponding to
its new variable label but this is a relatively simple operation given the data
structures used for QMDD [11].

The vertices originally labeledβ are affected as edges to them are re-
moved. The use of reference count garbage collection [11] accounts for when
a vertex can be deleted (actually reused) or must be retained.

Note that no vertex above or below the two levels being interchanged is
affected except for changing the reference counts of vertices immediately be-
low. The result is that adjacent variable interchange is a local operation.
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4 SIFTING QMDDS

Given the above method for adjacent variable interchange, variable reorder-
ing for QMDDs is readily implemented using an approach based on Rudell’s
sifting approach [13] developed for binary decision diagrams.

In general terms, our sifting method proceeds as follows:

QMDD Sifting Procedure:
i) Select a variableα that labels the most vertices in the QMDD. In the

event of a tie, choose the variable closest to the terminal vertex.
ii) Sift α to the bottom (closest to the terminal vertex) of the QMDD by a

sequence of adjacent variable interchanges.
iii) Sift α to the top of the QMDD by a sequence of adjacent variable

interchanges.
iv) During steps (ii) and (iii) a record is kept of the position ofα that

yields the smallest vertex count in the QMDD, so now siftα back down to
that position.

v) Repeat steps (i) to (iv) until each variable has been sifted into itsbest
position noting that once a variable is selected for sifting, it is not selected a
second time.

Note that the size of the QMDD after each variable interchange required
in step (iv) is determined by checking reference counts for the vertices for
the two variables being interchanged. It is not necessary to traverse the entire
QMDD. There aren! possible orderings ofn variables. The sifting method
examines on the order ofn2 orderings, and determines the ordering among
this subset that results in the smallest QMDD.

5 EXPERIMENTAL RESULTS

The QMDD package is implemented in C. The results reported here were
run on a laptop computer with a 1.73 GHz Intel Pentium M processor and
1GB of RAM running LINUX on a 256MB virtual machine under VMware
5.5. We used LINUX in order to compare our implementation to QuIDDPro
3.0(beta) [15] which is available as an executable only. We used the gcc 4.0.0
C compiler with level 4 optimization to compile the QMDD package.

5.1 Binary Examples
Results for a number of binary functions from Maslov’s [6] benchmark web
site are reported in Table 4. For each circuit, we give the following informa-
tion:
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• type – nct: circuit usesNOT , controlled-NOT and Toffoli gates; qc:
circuit uses controlled-not,V andV + gates.

• lines – number of lines in the circuit,

• gates – number of gates in the circuit,

• number of vertices before sifting,

• time to build the QMDD – CPU msec. using the standard library time.h
routines,

• number of vertices after sifting,

• time to sift QMDD – CPU msec. using the standard library time.h
routines,

• percentage vertex count reduction by sifting,

• maximum number of vertices encountered during sifting – this is an
indicator of how large the QMDD might be but is not necessarily the
maximum since sifting does not consider all variable orderings.

The results show that the effect of sifting varies significantly from example
to example. A low improvement can be a result of having started from what
is already a good ordering, the fact that the sifting heuristic does not visit
all possible variable orderings, or, the function’s QMDD representation is
insensitive to variable ordering.

The results for the “hidden-weight-bit” examples hbw4 – hbw12 are inter-
esting. They show the size of the QMDD can grow exponentially with the
number of lines in the circuit. The benefit gained by sifting also increases
with the number of lines.

Table 4 also shows the results of using QuIDDPro Version 3.0(beta) [15]
on the same computer. On average, for the circuits shown, the number of
vertices for the QuIDDPro representation is 2.06 times the number for the
QMDD representation prior to sifting. This is as expected since a nonterminal
QuIDDPro vertex has two outgoing edges while a nonterminal QMDD vertex
has four outgoing edges for binary functions. What is interesting is how much
the ratio can differ from 2. The largest sized decision diagrams for the circuits
shown is for cyc173 where the ratio is 2.47. QuIDDPro uses the highly
efficient CUDD decision diagram package [14] and also offers considerably
more functionality than the current QMDD implementation. QuIDDPro is
designed for binary reversible and quantum gates and circuits.
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5.2 Ternary Examples

There are as yet no established benchmarks for multiple-valued reversible and
quantum circuits available in the literature. This is largely because CAD tools
for designing and simulating such circuits are not generally well developed.
Indeed it is hoped that QMDD will be helpful in this regard.

Table 5 contains some ternary examples. The first is the reversible ternary
adder from [10] shown in Fig. 2. The initial QMDD is relatively small (23
vertices) but even in this case sifting results in notable reduction of the number
of vertices.

The S circuits are highly regular. An S circuit withn lines hasn−1 gates
where gategi is a C1 gate with targetxi and a single 1-controlxi+1. As
expected, given this regular and quite simple structure, the QMDDs are small
(the number of vertices is twice the number of lines in the circuit) and can
be shown to have a very regular structure. Sifting results in no improvement,
but, and this is a disadvantage of the heuristic, considerable computation is
required.

Each Rn-m circuit hasn lines andm pseudo-randomly generated gates.
Each gate is randomly chosen to be C1 or C2 with a randomly chosen target
and a single randomly chosen control. The control is randomly chosen to be
a 1 or 2-control. The improvement by sifting is as expected quite variable.

These examples indicate that QMDD construction and sifting are reason-
ably practical for quite large binary and ternary problems. It is a concern that
the cost of sifting seems quite high for large ternary examples. We are look-
ing for ways to improve the implementation, but it may well simply be that
we are dealing with representations of very large and very complex matrices
in those cases.

The QMDD package is applicable for higher radix problems as well. To
put this in better context, we note that constructing a QMDD for anr−valued,
n-line circuit withm gates is equivalent to constructingm rn×rn matrices
and performingm−1 matrix multiplications but this approach does so in a
tractable manner.

6 CONCLUSIONS AND FUTURE WORK

This paper has considered variable reordering in QMDDs and has described a
sifting technique for determining good variable orderings. The experimental
results show the method can be quite effective but also that it can be compu-
tationally expensive sometimes with little benefit.
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We are working on criteria that may help in determining when it is likely
to be useful to apply sifting to a QMDD. We are studying the special structure
of QMDDs not evident in general decision diagrams such as the frequency of
edges of weight 0 pointing to the terminal vertex and the regular structure of a
QMDD resulting from the regular structure of the matrices being represented.
We are also exploring how sifting can be used to transform QMDD to variable
orderings that will better illuminate the structure of the matrices for synthesis.
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