
An evaluation of structural parameters for probabilistic reasoning:Results on benchmark circuitsYousri El Fattah�Information & Computer Science Dept.University of CaliforniaIrvine, CA 92717 Rina DechterInformation & Computer Science Dept.University of CaliforniaIrvine, CA 92717AbstractMany algorithms for processing probabilisticnetworks are dependent on the topologicalproperties of the problem's structure. Suchalgorithms (e.g., clustering, conditioning) aree�ective only if the problem has a sparsegraph captured by parameters such as treewidth and cycle-cutset size. In this paper weinitiate a study to determine the potential ofstructure-based algorithms in real-life appli-cations. We analyze empirically the struc-tural properties of problems coming from thecircuit diagnosis domain. Speci�cally, we lo-cate those properties that capture the e�ec-tiveness of clustering and conditioning as wellas of a family of conditioning+clustering al-gorithms designed to gradually trade spacefor time. We perform our analysis on 11benchmark circuits widely used in the test-ing community. We also report on the ef-fect of ordering heuristics on tree-clusteringand show that, on our benchmarks, the well-known max-cardinality ordering is substan-tially inferior to an ordering called min-degree.1 INTRODUCTIONTopology-based algorithms for probabilistic and de-terministic reasoning fall into two distinct classes.One class is centered on clustering and elimination[Lauritzen and Spiegelhalter, 1988; Shachter, 1986;Dechter and Pearl, 1989], the other on cutset condi-tioning [Pearl, 1988; Dechter, 1990]. Clustering in-volves transforming the original network into a treethat can then be processed by a linear-time algo-rithm designed for trees [Pearl, 1986; Mackworth andFreuder, 1985]. Conditioning eliminates cycles by �x-ing the assignment of certain variables until the net-work is singly-connected [Pearl, 1988] and can be�Currently at Rockwell Science Center, 1049 CaminoDos Rios, Thousand Oaks, CA 91360

solved by a tree algorithm. This is repeated for eachvalue combination of the cutset variables.The performance of clustering and conditioning meth-ods is tied to the underlying structure of the problem.Parameters such as tree width and separator widthbound the performance of clustering, while the cycle-cutset size bounds the performance of conditioning.When the network has a dense graph these methodsmay not be practical because they frequently requirenot only exponential time but also exponential space.Clustering is time exponential in the tree width andspace exponential in the separator width. Condition-ing requires linear space only and its time complexityis exponentially bounded by the cycle-cutset size ofthe network's graph. It is known that the tree widthis always less than or equal to the minimum cycle-cutset size plus one [Bertele and Brioschi, 1972]. Re-cently, we introduced a collection of algorithms incor-porating conditioning into clustering which alleviatethe space needs of clustering and we identi�ed the re-�ned topological parameters that control their e�ec-tiveness [Dechter, 1996].In this paper we initiate a study for determining theapplicability of such structure-based methods (e.g.,pure clustering, pure conditioning, and their hybrids),to real-life applications. To that end we investigateempirically their potential in the domain of process-ing combinatorial circuits. This domain is frequentlyused as an application area in both probabilisticand deterministic reasoning [Ge�ner and Pearl, 1987;Srinivas, 1994; El Fattah and Dechter, 1995]. The ex-periments are conducted on 11 benchmark combina-torial circuits widely used in the fault diagnosis andtesting community [Brglez and Fujiwara, 1985].(SeeTable 1.) These experiments allow us to assess in ad-vance by graph manipulation only the complexity ofdiagnosis and abduction tasks on the benchmark cir-cuits and to determine the best combination of tree-clustering and conditioning for the memory resourcesavailable to carry out the computation.Our study is applicable to reasoning in constraint net-works and probabilistic networks, and to optimizationtasks on deterministic and probabilistic databases. We



will use probabilistic networks terminology here.The paper is structured as follows. Section 2 gives def-initions and preliminaries. Section 3 describes the ex-perimental framework for the experiments. Sections 4and 5 present the empirical results. Section 6 providesresults on the e�ect of ordering on tree-clustering, andsection 7 is the conclusion.Table 1: ISCAS '85 benchmark circuit characteristicsCircuit Circuit Total Input OutputName Function Gates Lines LinesC17 6 5 2C432 Priority Decoder 160 36 7C499 ECAT 202 41 32C880 ALU and Control 383 60 26C1355 ECAT 546 41 32C1908 ECAT 880 33 25C2670 ALU and Control 1193 233 140C3540 ALU and Control 1669 50 22C5315 ALU and Selector 2307 178 123C6288 16-bit Multiplier 2406 32 32C7552 ALU and Control 3512 207 1082 DEFINITIONS ANDPRELIMINARIES2.1 DEFINITIONSA belief Network (BN) is a concise description of acomplete probability distribution. It is de�ned by adirected acyclic graph (DAG) over nodes representingrandom variables, and each of the variables is anno-tated with the conditional probability matrices spec-ifying its probability given each value combination ofits parent variables in the DAG. The moral graph ofa belief network is the undirected graph generated byconnecting all the parents of each node and removingthe arrows.A common query over belief networks is to �nd pos-terior beliefs or to �nd the most probable explanation(MPE) given a set of observations. When augmentedwith decision and utility information, the network iscalled an in
uence diagram [Shachter, 1986]. The taskde�ned over in
uence diagrams is to �nd a collectionof decisions that maximizes the expected utility.An ordered graph is a pair (G; d), where G is an undi-rected graph and d = X1; :::; Xn is an ordering of thenodes. The width of a node in an ordered graph isthe number of its neighbors that precede it in the or-dering. The width of an ordering d, denoted w(d), isthe maximum width over all nodes, and the width ofthe graph, w, is the minimumwidth over all its order-ings. The induced width of an ordered graph, w�(d),is the width of the induced ordered graph obtained asfollows: process the nodes from last to �rst along or-dering d; when nodeX is processed, all of its preceding

neighbors are connected. The induced width (or tree-width) of a graph, w�, is the minimal induced widthover all its orderings. We will use the terms tree widthand induced width interchangeably. A cycle-cutset isa subset of nodes in the graph whose removal makesthe graph cycle-free.
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0 21Figure 1: (a) A belief network, (b) its moral graph,(c) an ordered graph, (d) a primary clique-tree, and(e,f) secondary clique-treesFigure 1a shows a belief network's acyclic graph, itsmoral graph (Figure 1b), and the induced moral graphalong ordering d = H;F;E;G;D;B;C;A (Figure 1c).In this case, no edges were added to the induced graph.The induced width of ordering d is 3.Although �nding the optimal induced width of a graphis NP-hard [Arnborg, 1985; Arnborg et al., 1987], thereare many greedy ordering algorithms that provide rea-sonable upper bounds. We experimented with the or-derings min-width, causal ordering, min-degree, andmax-cardinality on our benchmarks. In the last sectionwe brie
y report the results of these experiments. Be-cause we found the min-degree ordering superior (seesection 6), most of our experiments were conductedwith that ordering.In min-degree ordering, nodes are ordered from last to�rst. A node with minimum degree (i.e., a minimumnumber of neighbors) is selected and placed last inthe ordering, its neighbors are connected, and it isremoved from the graph. This process is continuedrecursively with the new graph. A min-degree orderingof the moral graph in Figure 1b is d = H, F , E, G, D,B, C, A.For any ordering of the graph, the induced graph ischordal. The maximal cliques of a chordal graph forma tree structure called a clique-tree or a join-tree;1 each1For reasons that will become clear later, we also call



clique is connected to a preceding clique (relative tothe ordering) with whom the intersection of variablesis maximal. The separator width of a clique-tree isthe maximal size of the intersections between any twocliques. The ordering in Figure 1c leads to the join-treein Figure 1d.We next summarize brie
y each of the algorithms wediscuss in this paper and provide the necessary de�ni-tions.2.2 CLUSTERING AND CONDITIONINGAlgorithm tree-clustering �rst generates a clique-treeembedding of the moral graph and then, treatingeach clique as a metavariable, associates marginal andconditional probability matrices between neighboringcliques [Lauritzen and Spiegelhalter, 1988; Pearl, 1988;Dechter and Pearl, 1989]. The time and space complex-ity of tree-clustering is governed by the time and spacerequired to generate the probability matrices over thecliques, and it is, therefore, exponential in the clique-size or, in the induced width. A tighter bound on spacecomplexity is obtained using the separator width (see[Dechter, 1996] for details). The separator sets (or,simply sepsets) are the variables in the intersections ofadjacent cliques.Algorithm cycle-cutset is based on the idea that anassignment of values frequently cuts the dependenciesassociated with the assigned variable. A typical cycle-cutset method enumerates the possible assignmentsto a set of cutset variables and, for each assignment,solves a tree-like problem in polynomial time. Fortu-nately, enumerating all the cutset's assignments canbe accomplished in linear space. Therefore, condition-ing methods have time complexity that is worst-caseexponential in the cycle-cutset size of the moral graphand are space linear.2 In summary,Theorem 1: [time-space of clustering and condition-ing] [Pearl, 1988; Lauritzen and Spiegelhalter, 1988;Dechter, 1996] Given a belief network whose moralgraph can be embedded in clique-tree having inducedwidth r, separator width s, and cycle-cutset c, for de-termining both the beliefs and the MPE by clusteringthe time complexity is is O(n�exp(r+1)) and the spacecomplexity is O(n � exp(s)), while by conditioning thetime complexity for both tasks is O(n � exp(c+ 2)) andthe required space is linear. 22.3 ALGORITHMS TRADING TIME ANDSPACEBecause the space complexity of tree-clustering canseverely limit its usefulness, it is desirable to have al-gorithms that both are as time e�ective as possible andit the primary tree. Additional names are hyper-tree or, ifthe induced width is k, partial k-tree.2Better cutset bounds can be obtained by cutting cyclesuntil the resulting graph is a poly-tree.

adhere to predetermined space constraints. In a com-panion paper [Dechter, 1996], we present a method ofincorporating conditioning into clustering that tradesspace for time. We summarize this work next.Since the separator width of a join-tree controls thespace required by clustering, it controls the tradeo�.The idea is to combine adjacent clusters (e.g., cliques)joined by large separators into bigger clusters untilthe remaining separators are small enough. The re-sulting trees are called secondary clique-trees (or sec-ondary join-trees). Once a secondary join-tree withsmaller separators is generated, its potentially largerclusters can be solved by any brute-force linear spacealgorithm and, in particular, by the linear-space cycle-cutset method.Consider our moral graph in Figure 1b. The primaryjoin-tree T0 is given in Figure 1d. Pure clustering onthis problem may require time exponential in 4 andspace exponential in 3. Pure conditioning is exponen-tial in 5 (since the cutset size is 3). By combiningcliques having separators of size 3, we get the sec-ondary tree T1 (Figure 1e), and by combining cliquesjoined by separators of size 2, we get T2 (Figure 1f).In summary:Theorem 2 : [Dechter, 1996] Given a belief net-work whose moral graph can be embedded in a primaryclique-tree having separator sizes s0; s1; :::; sn = 0listed in strictly decreasing order, with correspondingmaximal cluster sizes of r0; r1; :::; rn, and maximumcycle-cutset sizes in a cluster for each Ti, c0; c1; :::; cn,then �nding the beliefs and the MPE can be ac-complished using any one of the following time andspace combinations: bi = (O(n � exp(ci)) time; O(n �exp(si)) space), assuming si � ci � ri8i. 2Applying Theorem 2 to the belief network in Figure 1shows that answering queries can be accomplished bytwo dominating tradeo�s: by an algorithm requiringO(k4) time and quadratic space (using T1), or by onerequiring O(k5) time and linear space (using T2).3 EXPERIMENTAL FRAMEWORKThe motivation for the experiments is twofold: to de-termine the structural parameters of clustering andthe cutset method on real-life problems, and to gainfurther understanding of how space-time tradeo�s canbe exploited to alleviate space bottlenecks. With thesemotivations in mind, we conducted experiments on 11benchmark combinatorial circuits widely used in thefault diagnosis and testing community [Brglez and Fu-jiwara, 1985] (see Table 1.). The experiments allow usto assess in advance the complexity of diagnosis andabduction tasks on those circuits, and to determine thebest combination of tree-clustering and cycle-cutsetmethods for performing those tasks. None of the cir-cuits are trees and all have a fair number of fanoutnodes.
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Figure 2: Circuit c432 histograms of the sizes of cliques, sepsets, and cutsets of the primary join-tree
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Figure 3: Circuit c3540 histograms of the sizes (in 0.9th quantile range) of cliques, sepsets, and cutsets of theprimary join-treeA causal graph, namely, a DAG, is computed for eachcircuit. The graph includes a node for each variablein the circuit. For every gate in the circuit, the graphhas an edge directed from each gate's input to thegate's output. The nodes with no parents (children)in the DAG are the primary inputs (outputs) of thecircuit. The moral graph for each circuit's DAG isthen computed. Table 2 gives the number of nodesand edges in the moral graph for each circuit.Tree-clustering is performed on the moral graphs by�rst selecting an ordering for the nodes, then triangu-lating the graph (making it chordal) and identifying itsmaximum cliques. For more details, see [Dechter andPearl, 1989]. There are many possible heuristics for or-dering the nodes with the aim of obtaining a join-treewith small clusters. We used the ordering min-degreewhich was proposed in the context of non-serial dy-namic programming [Bertele and Brioschi, 1972], de-�ned earlier.
4 STRUCTURAL PARAMETERSOF THE PRIMARY JOIN-TREEFor each primary join-tree generated, three parame-ters are computed: (1) the size of the cliques, (2) thesize of the cutsets in each of the subgraphs de�ned bythe cliques, and (3) the size of the separator sets. Thenodes of the join-tree are labeled by the clique sizes.In this section we present the results on circuits c432and c3540, which have 196 and 1719 variables, respec-tively. Results on other circuits are available in thefull report [El Fattah and Dechter, 1996].Figures 2 and 3 show the frequencies of clique sizes,sepset sizes, and cutset sizes for the circuits. Those �g-ures (and all those for the other benchmarks in [El Fat-tah and Dechter, 1996]) show that the structural pa-rameters are skewed, with the majority having valuesmuch below the midpoint (the point dividing the rangeof values from smallest to largest).We see that the majority of the cliques have sepsetsand subproblem cutsets (as de�ned by the cliques) of



Table 2: Number of nodes and edges in the moral graph of each circuitCircuit c17 c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552#nodes 11 196 243 443 587 913 1426 1719 2485 2448 3719#edges 18 660 692 1140 1660 2507 3226 4787 7320 7184 9572small sizes, with only a few of those sets having rela-tively large sizes. Figure 2 shows that for circuit c432the primary join-tree (157 cliques and 156 sepsets) hasonly 23 cliques and only 13 sepsets with sizes greaterthan 9. The �gure shows that 23 cliques have cut-set size 0, meaning that the moral graph restricted toeach of those 23 cliques is already acyclic. The �gurealso shows that only 18 cutsets have sizes greater than3. As to circuit c3540, Figure 3 shows the distribu-tion of clique sizes in the 0.9th quantile range. Themajority of the cliques (1284 out of 1419) have sizesbetween 2 and 14 and relatively few (135 out of 1419)have sizes ranging from 15 to the maximum, 114. Thismeans that roughly 90% of the cliques have sizes be-low 10% of the maximum value. This distribution ofclique sizes suggests that we should apply structure-based algorithms to some subproblems while solvingthe rest of the circuit by non structural algorithms.The 0.9th quantile distributions of the sepset and cut-set sizes for circuit c3540 are like that for its cliquesizes. The results for all the rest of our benchmarkswere similar.
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Figure 4: Maximum clique and maximum cycle-cutsetsizes versus maximum separator width in secondaryjoin-trees for circuits c432, c499, c880

5 SPACE-TIME TRADEOFFSAlthough most cliques and separators are small, somewill require memory space exponential in 23 for circuitc432 and exponential in 89 for circuit c3540. This isclearly not feasible. We will next evaluate the potentialof the trade-o� scheme proposed in [Dechter, 1996] onour benchmarks.Let s0; s1; . . . ; sn be the size of the separators in T0listed from largest to smallest. Each separator size siis associated with a tree decomposition Ti, as describedearlier. We denote by ci the largest cutset size in anycluster of Ti.
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Figure 5: Time-Space tradeo� for circuits: Time isrepresented by the maximum size for (sepset, cutset)pairs; space is represented by the maximumsepset sizeTo illustrate the e�ect of the resulting tree decompo-sitions, we show in Figure 4 the sizes of the maximumclique and maximumcutset versus the separator width(or maximum sepset size) for each tree decompositionof three of the circuits. A tree decomposition is in-dexed by the size of the separator width, and the �g-ures show the gradual e�ect of changing the separatorwidth on the resulting tree decomposition. For exam-ple, for circuit c432, the separator width, initially 23(for the primary join-tree), is gradually reduced to 1



in a series of secondary trees. The �gure shows thatas the separator width decreases, larger clusters areformed and the size of the cutset for those clusters in-creases although at a much slower rate than the clus-ter sizes. Informally speaking, we may be looking fora \critical value" relative to cliques (respectively, cut-sets) where jumps occur in the rate at which the max-imum clique (respectively, cutset) size increases as theseparator width decreases. At such a critical value,the graph will display a \knee" phenomenon. For ex-ample, for circuit c432 (Figure 4), the rate of increasein the maximum clique size relative to the reductionin separator width is low up to the critical separatorwidth of size 9. Also, the maximum cutset size in-creases slowly up to separator width of size 5. Notethat the di�erence between the maximum clique sizeand the maximum cutset size gets bigger as the size ofthe cliques increases.We next estimate the space-time bounds for each treedecomposition. We evaluate space complexity by theseparator width. Time complexity is evaluated by themaximum between the sepset and cutset size, becausethe time complexity always exceedes the space com-plexity. Since both time and space are exponentialin those parameters, their relative values are mean-ingful. Figure 5 gives a chart of the estimate of timeversus space for various circuits. Each point on the xaxis denotes a separator width in a speci�c secondaryjoin-tree decomposition. The chart can be used to de-termine the tradeo� associated with each selected de-composition.Figure 6 gives the structure of the secondary trees forc432 for separator widths ranging from 20 down to3. Nodes in the join-tree are labeled by the cliquesize. The �gure shows the gradual e�ect of separator-restricted tree decomposition. Like the primary join-tree, each secondary join-tree has a skewed distribu-tion of the clique sizes. Note that the clique size forthe root node is signi�cantly greater than for all othernodes, and that the gap between the size of the rootnode and the sizes of all other nodes increases as theseparator decreases.Finally, we summarize some of our results in Table 3.For each circuit, the table provides the time and spacecomplexity bounds associated with a brute-force al-gorithm, pure conditioning, pure clustering, and onehybrid selected from the intermediate range.We see that the problem's complexity bound reducesdramatically if solved by pure tree-clustering, chang-ing from being exponential in the number of variablesto being exponential (time and space) in the maxi-mal clique size only (see column 2 vs. column 4).Pure conditioning also provides a dramatic reductionin time complexity bounds, although not as large aspure clustering (see column 2 vs. column 3), while re-quiring linear space only. When computing the sizesof a series of secondary join-trees, the space boundof pure clustering can be reduced considerably, while Figure 6: Secondary trees for c432 with separatorwidths gradually decreasing from 20 to 3; nodes arelabeled by the clique sizes.



Table 3: Structural parameters for worst-case complexity of brute-force, pure conditioning, pure clustering, anda hybrid conditioning+clustering algorithms; all parameters correspond to maximum set size. Pure conditioninghas one cluster whose size is the number of variables and separator width is 0.Circuit Brute-force Pure Pure HybridConditioning Clustering (Conditioning+Clustering)#variables Cutset Clique Cutset Separator Clique Cutset Separatorc17 11 3 3 1 2 3 1 2c432 196 83 28 17 23 91 37 6c499 243 91 25 8 18 67 18 6c880 443 161 28 4 21 151 36 5c1355 587 235 25 11 18 163 44 3c1908 913 335 57 18 48 258 62 4c2670 1426 504 39 5 30 264 78 5c3540 1719 697 114 16 89c5315 2485 1021 59 8 46c6288 2448 1013 65 8 53 285 19 16c7552 3719 58 45losing relatively little in time complexity bounds (seecolumns 7, 8, and 9 vs. columns 4, 3, and 6).Table 4: Maximum clique sizes (C) and maximumsepset sizes (S) for the join-trees obtained by tree-clustering with causal ordering (CO), max-cardinalityordering (MCO), min-width ordering (MWO), min-degree ordering (MDO). Circuit CO MCO MWO MDOC S C S C S C Sc17 5 3 4 2 4 3 3 2c432 63 62 45 44 51 45 28 23c499 68 66 43 42 33 32 25 18c880 66 64 51 49 66 64 28 21c1355 74 73 47 46 37 36 25 18c1908 139 138 65 63 141 139 57 48c2670 150 149 82 80 154 152 39 30c3540 270 269 117 115 294 293 114 89c5315 172 169 59 46c6288 277 276 65 53c7552 58 456 ORDERING HEURISTICSAs a side e�ect of our experiments, we observed a dra-matic di�erence between the e�ects of various order-ings on the resulting primary join-tree. In particular,the max-cardinality algorithm was shown to be infe-rior to the min-degree ordering. Four ordering heuris-tics were considered: causal ordering, max-cardinality,min-width, and min-degree. The max-cardinality or-dering is computed from �rst to last by picking the�rst node arbitrarily and then repeatedly selecting theunordered node that is adjacent to the maximumnum-ber of already ordered nodes. The min-width orderingis computed from last to �rst by repeatedly selecting

the node having the least number of neighbors in thegraph, removing the node and its incident edges fromthe graph, and continuing until the graph is empty.The min-degree ordering is exactly like min-width ex-cept that we connect neighbors of selected nodes, andcausal ordering is just a topological sort of the DAG.Ties in the orderings are broken arbitrarily. Trian-gulation is always carried out from last node in theordering to the �rst.Triangulation and structuring of the join-tree is im-plemented using each of the four orderings on each ofthe benchmark circuits of Table 1. Table 4 gives themaximum sepset sizes and clique sizes for each methodon all circuits. We note that among the four methods,the min-degree ordering is best as it yields the small-est clique sizes and separator sizes. The table showsthe maximumsepset sizes to be tightly correlated withthe maximum clique sizes. As an example, for circuitc3540, which has 1719 variables, the separator widthfor the min-degree method is 89, which is the small-est when compared to the other orderings. Unlike thethree other methods, min-degree leads to a separatorwidth that grows only slowly with the size of the cir-cuit. Indeed, min-degree was the only method thatcould scale-up to the largest size circuit. For circuitc6288 (2448 variables), the separator width is only 53for min-degree while it is 276 for max-cardinality.7 SUMMARY AND CONCLUSIONSThe paper describes an empirical study into the struc-tural parameters of 11 benchmark circuits widely usedin the fault diagnosis and testing community [Brglezand Fujiwara, 1985]. The motivation for the study wasevaluation of the e�ectiveness of topology-based algo-rithms, trading space for time on real-world examples.The structural parameters are (1) the graph's inducedwidth, (2) the size of the cycle-cutsets in each of the



subproblems de�ned by a clique-tree embedding, and(3) the size of its separator width. These three pa-rameters are computed for a series of clique-trees hav-ing decreasing separator size and increasing sizes forthe cliques that control a space versus time tradeo�.Such parameters can be used to predict the limits andpotential of (1) pure tree clustering, (2) pure cutset-conditioning, and (3) hybrids of clustering and condi-tioning.We observed dramatic reduction in time complexitywhen using pure clustering and pure conditioning, al-though the reduction associated with conditioning wasnot as large as clustering (see column 2 vs. column 3).However, clustering requires considerable space whileconditioning is space linear only. The hybrids of cut-sets with clustering reduce the space bound of pureclustering considerably while still give up moderatelyin terms of time complexity bounds.We also observed that all the primary join-trees gen-erated share the property that the majority of cliquesizes are relatively small. This calls for processingdi�erent parts of a problem by di�erent methods; por-tions of a problem can be solved e�ciently by tree-clustering or any other structure-exploiting algorithm,while the rest of the problem can be solved by othermeans, means that are not necessarily structure-based.Our analysis should be quali�ed, however. All the re-sults are based on worst-case guarantees for the corre-sponding algorithms, yet it is known that worst-casebounds may not predict average-case performance.Previous experimental work with clustering and con-ditioning shows that while clustering methods haveaverage-case complexity quite close to the worst-casebound, conditioning methods are sometimemuch moree�ective than their worst-case predictions [Dechter andMeiri, 1994]. Thus, the corresponding algorithmsmustbe tested in practice.AcknowledgementsThis work was partially supported by NSF grant IRI-9157636, Rockwell MICRO grant #ACM-20775 and95-043 and Air Force O�ce of Scienti�c Research grantF49620-96-1-0224.References[Arnborg et al., 1987] S.A. Arnborg, D.G. Corneil,and A. Proskurowski. Complexity of �nding embed-dings in a k-tree. SIAM Journal of Discrete Math-ematics., 8:277{284, 1987.[Arnborg, 1985] S.A. Arnborg. E�cient algorithms forcombinatorial problems on graphs with bounded de-composability - a survey. BIT, 25:2{23, 1985.[Bertele and Brioschi, 1972] U. Berteleand F. Brioschi. Nonserial Dynamic Programming.Academic Press, New York, 1972.
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