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Abstract. We present the agent programming language GTGolog, which integrates explicit agent
programming in Golog with game-theoretic multi-agent planning in Markov games. It is a gener-
alization of DTGolog to a multi-agent setting, where we have two competing single agents or two
competing teams of agents. The language allows for specifying a control program for a single agent
or a team of agents in a high-level logical language. The control program is then completed by an
interpreter in an optimal way against another single agent or another team of agents, by viewing it
as a generalization of a Markov game, and computing a Nash strategy. We illustrate the usefulness
of this approach along a robotic soccer example. We also report on a first prototype implementa-
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1 Introduction

During the recent decades, the development of controllers for autonomous agents has become increasingly
important in AI. One way of designing such controllers is the programming approach, where a control
program is specified through a language based on high-level actions as primitives. Another way is the
planning approach, where goals or reward functions are specified and the agent is given a planning ability
to achieve a goal or to maximize a reward function.

Recently, an integration of the programming and the planning approach has been suggested through the
language DTGolog [2], which integrates explicit agent programming in Golog [11] with decision-theoretic
planning in Markov decision processes (MDPs) [9]. DTGolog allows for partially specifying a control
program in a high-level language as well as for optimally filling in missing details through decision-theoretic
planning. It can thus be seen as a decision-theoretic extension to Golog, where choices left to the agent
are made by maximizing expected utility. From a different perspective, DTGolog can also be seen as a
formalism that gives advice to a decision-theoretic planner, since it naturally constrains the search.

The agent programming language DTGolog, however, is designed only for the single-agent framework.
That is, the model of the world essentially consists of a single agent that we control by a DTGolog pro-
gram and the environment that is summarized in “nature”. But in realistic applications, we often encounter
multiple agents, which may compete against each other, or which may also cooperate with each other. For
example, in robotic soccer, we have two competing teams of agents, where each team consists of cooperat-
ing agents. Here, the optimal actions of one agent generally depend on the actions of all the other (“enemy”
and “friend”) agents. In particular, there is a bidirected dependence between the actions of two different
agents, which generally makes it inappropriate to model enemies and friends of the agent that we control
simply as a part of “nature”.

Game theory [13] deals with optimal decision making in the multi-agent framework with competing and
cooperating agents. In particular, Markov games [12, 5], also called stochastic games [7], generalize matrix
games from game theory, and are multi-agent generalizations of MDPs with competing agents.

In this paper, we present a combination of explicit agent programming in Golog with game-theoretic
multi-agent planning in Markov games. The main contributions of this paper are as follows:

• We define the language GTGolog, which integrates explicit agent programming in Golog with game-
theoretic multi-agent planning in Markov games. GTGolog is a generalization of DTGolog [2] to a
multi-agent setting, which allows for modeling two competing agents as well as two competing teams
of cooperative agents.

• The language GTGolog allows for specifying a control program for a single agent or a team of agents,
which is then completed by an interpreter in an optimal way against another single agent or another
team of agents, by viewing it as a generalization of a Markov game, and computing a Nash equilib-
rium.

• We show that GTGolog generalizes Markov games. That is, GTGolog programs can represent Markov
games, and a GTGolog interpreter can be used to compute their Nash equilibria. We also show that
the GTGolog interpreter is optimal in the sense that it computes a Nash equilibrium of GTGolog
programs.

• A robotic soccer example gives evidence of the usefulness of our approach in realistic applications.
We also report on a first prototype implementation of a simple GTGolog interpreter.
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The work closest in spirit to this paper is perhaps Poole’s one [8], which shows that the independent
choice logic can be used as a formalism for logically encoding games in extensive and normal form. Our
view in this paper, however, is much different, as we aim at using game theory for optimal agent control in
multi-agent systems.

2 Preliminaries

In this section, we recall the basic concepts of the situation calculus and Golog, of matrix games, and of
Markov games.

2.1 Situation Calculus and Golog

The situation calculus [6, 11] is a first-order language for representing dynamic domains. Its main ingredi-
ents areactions, situations, andfluents. A situation is a first-order term encoding a sequence of actions. It
is either a constant symbol or of the formdo(a, s), wherea is an action ands is a situation. The constant
symbolS0 is theinitial situation, and represents the empty sequence, whiledo(a, s) encodes the sequence
obtained from executinga after the sequence encoded ins. A fluentrepresents a world or agent property
that may change when executing an action. It is a predicate symbol whose last argument is a situation. E.g.,
at(pos, s) may express that an agent is at positionpos in situations.

In the situation calculus, a dynamic domain is expressed by abasic action theoryBAT =(Σ,DS0 ,Dssa,
Duna,Dap), where

• Σ is the set of foundational axioms for situations;

• Duna is the set of unique name axioms for actions, which express that different action terms stand for
different actions;

• DS0 is a set of first-order formulas describing the initial state of the domain (represented byS0).
For example,at(a , 1, 2, S0) ∧ at(o, 3, 4, S0) may express that the agentsa ando are initially at the
positions(1, 2) and(3, 4), respectively;

• Dssa specifies thesuccessor state axioms[10, 11]: for each fluentF (~x, s), one has an axiom of the
form F (~x, do(c, s)) ≡ ΦF (~x, c, s) providing both action effects and a solution to the frame problem
(assuming deterministic actions). For example,

at(o, x, y, do(a, s)) ≡ a = moveTo(o, x, y)∨
at(o, x, y, s) ∧ ¬(∃x′, y′)a = moveTo(o, x′, y′) ; (1)

• Dap represents the action precondition axioms: for each simple actiona, one has an axiomPoss(a(~x),
s) ≡ Π(~x, s). For example,Poss(moveTo(o, x, y), s) ≡ ¬(∃x′, y′, o′)at(o′, x′, y′, s).

Golog is an agent programming language that is based on the situation calculus. It allows for constructing
complex actions from the primitive actions defined in a basic action theoryBAT , where standard (and
not so-standard) Algol-like control constructs can be used, in particular, (i) action sequences:p1; p2, (ii)
tests: φ?, (iii) nondeterministic action choices:p1|p2, (iv) nondeterministic choices of action argument:
(πx).p(x), and (v) conditionals, while loops, and procedure calls. An example of a Golog program is

while ¬at(a , 1, 2) do (πx, y)moveTo(a , x, y).
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Intuitively, the nondeterministic choice(πx, y)moveTo(a , x, y) is iterated until the agenta is at the posi-
tion (1, 2).

The semantics of a Golog programσ is specified by a situation-calculus formulaDo(σ, s, s′), which en-
codes thats′ is a situation which can be reached froms by executingσ. Thus,Do represents a macro expan-
sion to a situation calculus formula. For example, the action sequence is defined throughDo(p1; p2, s, s

′) =
∃s′′(Do(p1, s, s

′′)∧Do(p2, s
′′, s′)). For more details on the core situation calculus and Golog, we refer the

reader to [11].

2.2 Matrix Games

We briefly recall two-player matrix games from classical game theory [13]. Intuitively, they describe the
possible actions of two agents and the rewards that they receive when they simultaneously execute one
action each. Formally, atwo-player matrix gameG=(A,O,Ra , Ro) consists of two nonempty finite sets
of actionsA andO for two agentsa ando, respectively, and tworeward functionsRa , Ro : A×O→R
for a ando, respectively. The gameG is zero-sumiff Ra = −Ro ; we then often omitRo .

A pure (resp., mixed) strategy specifies which action an agent should execute (resp., which actions an
agent should execute with which probability). Formally, apure strategyfor agenta (resp.,o) is any action
fromA (resp.,O). If agentsa ando play the pure strategiesa∈A ando∈O, respectively, then they receive
the rewardsRa(a, o) andRo(a, o), respectively. Amixed strategyfor agenta (resp.,o) is any probability
distribution overA (resp.,O). If agentsa ando play the mixed strategiesπa andπo , respectively, then
theexpected rewardto agentk∈{a ,o} isRk(πa , πo) = E[Rk(a, o)|πa , πo ] =

∑
a∈A, o∈O πa(a) · πo(o) ·

Rk(a, o).
We are especially interested in pairs of mixed strategies(πa , πo), which are called Nash equilibria,

where no agent has the incentive to deviate from its half of the pair, once the other agent plays the other
half. Formally,(πa , πo) is a Nash equilibrium(or Nash pair) for G iff (i) for any mixed strategyπ′a , it
holdsRa(π′a , πo) 6Ra(πa , πo), and (ii) for any mixed strategyπ′o , it holdsRo(πa , π

′
o) 6Ro(πa , πo).

Every two-player matrix gameG has at least one Nash pair among its mixed (but not necessarily pure)
strategy pairs, and many two-player matrix games have multiple Nash pairs, which can be computed by
linear complementary programming and linear programming in the general and the zero-sum case, respec-
tively. A Nash selection functionf associates with every two-player matrix gameG a unique Nash pair
f(G) = (fa(G), fo(G)). The expected reward to agentk∈{a ,o} underf(G) is denoted byvk

f (G).
In the zero-sum case, if(πa , πo) and(π′a , π

′
o) are Nash pairs, thenRa(πa , πo) =Ra(π′a , π

′
o), and also

(πa , π
′
o) and (π′a , πo) are Nash pairs. That is, the expected reward to the agents is the same under any

Nash pair, and Nash pairs can be freely “mixed” to form new Nash pairs. Here, agenta ’s strategies in Nash
pairs are given by the optimal solutions of following linear program:max v subject to (i)v6

∑
a∈A π(a) ·

Ra(a, o) for all o∈O, (ii)
∑

a∈A π(a) = 1, and (iii) π(a) > 0 for all a∈A. Moreover, agenta ’s expected
reward under a Nash pair is the optimal value of the above linear program.

2.3 Markov Games

Markov games [12, 5], or also called stochastic games [7], generalize both matrix games and MDPs.
Roughly, a Markov game consists of a set of statesS, a matrix game for every states∈S, and a transition

function that associates with every states∈S and combination of actions of the agents a probability distribu-
tion on future statess′ ∈S. We only consider the two-player case here. Formally, atwo-player Markov game
G=(S,A,O, P,Ra , Ro) consists of a finite nonempty set of statesS, two finite nonempty sets of actionsA
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andO for two agentsa ando, respectively, a transition functionP : S×A×O→PD(S), wherePD(S)
denotes the set of all probability functions overS, and tworeward functionsRa , Ro : S×A×O→R for
a ando, respectively. The gameG is zero-sumiff Ra=−Ro ; we then often omitRo .

Assuming a finite horizonH > 0, a pure (resp., mixed) time-dependent policy associates with every
states∈S and number of steps to goh∈{0, . . . ,H} a pure (resp., mixed) matrix-game strategy. Formally,
a pure policyα (resp.,ω) for agenta (resp.,o) assigns to each states∈S and number of steps to go
h∈{0, . . . ,H} an action fromA (resp.,O). TheH-step rewardto agentk∈{a ,o} under a start state
s∈S and the pure policiesα andω, denotedGk(H, s, α, ω), is defined asRk(s, α(s, 0), ω(s, 0)), if H =0,
andRk(s, α(s,H), ω(s,H)) +

∑
s′∈S P (s′|s, α(s,H), ω(s,H)) ·Gk(H−1, s′, α, ω), otherwise. Amixed

policyπa (resp.,πo ) for a (resp.,o) assigns to every states∈S and number of steps to goh∈{0, . . . ,H}
a probability distribution overA (resp.,O). TheexpectedH-step rewardto agentk under a start states and
the mixed policiesπa andπo , denotedGk(H, s, πa , πo), isE[Rk(s, a, o) | πa(s, 0), πo(s, 0)], if H =0, and
E[Rk(s, a, o) +

∑
s′∈S P (s′ | s, a, o) ·Gk(H−1, s′, πa , πo) |πa(s,H), πo(s,H)], otherwise.

The notion of a finite-horizon Nash equilibrium for a Markov game is then defined as follows. A
pair of mixed policies(πa , πo) is a Nash equilibrium(or Nash pair) for G iff (i) for any start states and
anyπ′a , it holdsGa(H, s, π′a , πo) 6 Ga(H, s, πa , πo), and (ii) for any start states and anyπ′o , it holds
Go(H, s, πa , π

′
o) 6 Go(H, s, πa , πo). Every two-player Markov gameG has at least one Nash pair among

its mixed (but not necessarily pure) policy pairs, and it may have exponentially many Nash pairs.
Nash pairs forG can be computed by finite value iteration from local Nash pairs of two-player ma-

trix games as follows [4]. We assume an arbitrary Nash selection functionf for two-player matrix games
with the action setsA andO. For every states∈S and number of steps to goh∈{0, . . . ,H}, the two-
player matrix gameG[s, h] = (A,O,Qa [s, h], Qo [s, h]) is defined byQk[s, 0](a, o) = Rk(s, a, o) and
Qk[s, h](a, o) =Rk(s, a, o) +

∑
s′∈S P (s′|s, a, o) · vk

f (G[s′, h−1]) for all a∈A, o∈O, andk∈{a ,o}.
Let the mixed policyπk be defined byπk(s, h) = fk(G[s, h]) for all s∈S, h ∈ {0, . . . ,H}, andk∈{a ,o}.
Then,(πa , πo) is a Nash pair ofG, andGk(H, s, πa , πo) = vk

f (G(s,H)) for all k∈{a ,o} ands∈S.
In the case of zero-sumG, by induction onh∈{0, . . . ,H}, it is easy to see that everyG[s, h], s∈S

andh∈{0, . . . ,H}, is also zero-sum. Moreover, all Nash pairs that are computed by the above finite value
iteration produce the same expectedH-step reward, and they can be freely “mixed” to form new Nash pairs.

3 Game-Theoretic Golog

In this section, we present the language GTGolog for the case of two competing agents. We first describe the
domain theory and the syntax of GTGolog programs. We then define the semantics of GTGolog programs
and provide representation and optimality results.

3.1 Domain Theory

GTGolog programs are interpreted w.r.t. a background action theoryAT and a background optimization
theoryOT .

The background action theoryAT is an extension of the basic action theoryBAT of Section 2.1, where
we also allow for stochastic actions. We assume two (zero-sum) competing agentsa ando (calledagentand
opponent, respectively, where the former is under our control, while the latter is not). Atwo-player action
is either an actiona for agenta , or an actionb for agento, or two parallel actionsa‖b, one for each agent.
For example,move(a ,M),move(o, O), andmove(a ,M)‖move(o, O) are two-player actions. Note that
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we introduce parallel actions as primitives to simplify the presentation, more complex parallel actions can
be easily treated as well, deploying the concurrent version of the situation calculus [11].

Analogously to [2], we represent stochastic actions by means of a finite set of deterministic actions.
When a stochastic action is executed, then “nature” chooses and executes with a certain probability ex-
actly one of its deterministic actions. We use the predicatestochastic(a, s, n) to associate the stochastic
actiona with the deterministic actionn in situations, and we use the functionprob(a, n, s) = p to encode
that “nature” choosesn in situations with probability p. A stochastic actions is indirectly represented
by providing asuccessor state axiomfor each associated nature choicen. Thus,BAT is extended to
a probabilistic setting in a minimal way. For example, consider the stochastic actionmoveS(a, x, y) such
thatstochastic(moveS(a, x, y), s,moveTo(a, x, y′)) ≡ 0 6 y′−y6 1, that is,moveS(a, x, y) can slide to
y+1. We specifymoveS by defining the precondition ofmoveTo(a, x, y′) and assuming the successor state
axiom (1). Furthermore, in order to specify the probability distribution over the deterministic components,
we defineprob(moveS(a, x, y),moveTo(a, x, y), s) = 0.9 and prob(moveS(a, x, y),moveTo(a, x, y +
1), s) = 0.1.

Like [2], we assume that the domain isfully observable. To this end, we introduceobservability axioms,
which disambiguate the state of the world after executing a stochastic action. For example, after executing
moveS(a, x, y), we test the predicatesat(a, x, y, s) andat(a, x, y + 1, s) to check which of the determin-
istic components was executed (that is,n=moveTo(a, x, y) or n=moveTo(a, x, y+1)). This condition
is denoted by the predicatecondSta(a, n, s), e.g., condSta(moveS(a, x, y),moveTo(a, x, y+1), s) ≡
at(a, x, y + 1, s). Analogous observability axioms are needed to observe which actions the opponent and
the agent have chosen. For this purpose, we introduce the predicatecond(a, s), e.g.,cond(moveTo(o, x, y),
s) ≡ at(o, x, y, s).

The optimization theoryOT specifies a reward and a utility function. The former associates with every
situations and two-player actionα, a reward to agenta , denotedreward(α, s), e.g.,reward(moveTo(a, x,
y), s) = y. As we assume that the rewards toa ando are zero-sum, we need not explicitly specify the reward
to o. The utility function maps every reward and success probability to a real-valued utilityutility(v, pr).
We assume thatutility(v, 1) = v for all v. An example isutility(v, pr) = v · pr . The utility function suitably
mediates between the agent reward and the failure of actions due to unsatisfied preconditions.

3.2 Syntax

Given the two-player actions represented by the domain theory,programsp in GTGolog are inductively
built using the following constructs (φ is a condition, andp1 andp2 are programs):

1. Deterministic or stochastic action:α (a two-player action).

2. Nondeterministic action choice:α|...|β. Executeα or ... orβ, whereα,...,β are two-player actions.

3. Test action: φ?. Test the truth value ofφ in the current situation.

4. Nondeterministic choice of an argument.

5. Action sequence: p1; p2. Do programp1 followed by programp2.

6. Conditionals: if φ then p1 else p2.

7. While loops: while φ do p1.
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8. Nondeterministic iteration: p1
∗. Executep1 zero or more times.

9. Procedures, including recursion.

To clearly distinguish between the choices of the agenta and the opponento, we usechoice(a : a1| · · · |
an) ‖ choice(o : o1| . . . |om) to denote(a :a1‖o:o1)|(a :a2‖o:o1)| · · · |(a :an‖o:om).

3.3 Semantics

The semantics of a GTGolog programp w.r.t. AT andOT is defined through the predicateDoG(p, s, h, π,
v, pr). Here, we have given as input the programp, a situations, and a finite horizonh> 0. The predicate
DoG then determines a strategyπ for both agentsa ando, the reward to agenta under this strategyπ, and
the success probabilitypr ∈ [0, 1] of π. Note that due to the finite horizon, if the programp fails to terminate
before the horizonh is reached, then it is stopped, and the best partial strategy is returned. Intuitively, our
aim is to control agenta , which is given the strategyπ thatDoG computes for programp, and which then
executes its part ofπ. We defineDoG(p, s, h, π, v, pr) by induction as follows:

1. Zero horizon and null program:

DoG(p, s, 0, π, v, pr) =def π=Nil ∧ v=0 ∧ pr =1
DoG(Nil , s, h, π, v, pr) =def π=Nil ∧ v=0 ∧ pr =1

Intuitively, p ends when it is null or the horizon end is reached.

2. Deterministic first program action:

DoG(a; p, s, h, π, v, pr) =def

¬Poss(a, s) ∧ π=Stop ∧ v=0 ∧ pr =0 ∨ ∃π′, v′ :
Poss(a, s) ∧DoG(p, do(a, s), h−1, π′, v′, pr) ∧
π= a;π′ ∧ v= v′+reward(s, a)

Informally, if a is not executable, thenp stops with success probability0. As in [2],Stop is a fictitious
action of zero-cost, which stops the program execution. Ifa is executable, then the optimal execution
of a; p in s depends on that one ofp in do(a, s).

3. Stochastic first program action (nature choice):

DoG(a; p, s, h, π, v, pr) =def

¬Poss(a, s) ∧ π=Stop ∧ v=0 ∧ pr =0 ∨ ∃πq, vq, pr q :
Poss(a, s)∧

∧k
q=1DoG(nq; p, s, h, nq;πq, vq, pr q) ∧

π= a; if φ1 then π1 else if φ2 then π2 . . .
else if φk then πk ∧

v=
∑k

q=1 vq · prob(a, nq, s) ∧ pr =
∑k

q=1 pr q · prob(a, nq, s)

where{nq|1 6 q6 k} are the nature choices associated toa (which have the same reward function
asa), andφ1, . . . , φk are the relative conditions (represented by theobservability axioms). The gen-
erated strategy is a conditional plan, that is, a cascade of if-then-else statements, where each possible
stochastic action execution is considered.
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4. Nondeterministic first program action (choice of agenta):

DoG(choice(a : a1| . . . |an); p, s, h, π, v, pr) =def

∃πi, vi, pr i :
∧n

i=1DoG(a :ai; p, s, h, πi, vi, pr i) ∧
utility(vk, prk) = max {utility(vi, pr i) | i∈{1, . . . , n}} ∧
π=πk ∧ v= vk ∧ pr = prk

Given several possible actions for agenta , the best action is the one where the action execution has
the best utility.

5. Nondeterministic first program action (choice of opponento):

DoG(choice(o : o1| . . . |om); p, s, h, π, v, pr) =def

∃πj , vj , pr j :
∧m

j=1DoG(o:oj ; p, s, h, πj , vj , pr j) ∧
π= if ψ1 then π1 else if ψ2 then π2 . . .

else if ψm then πm ∧
utility(vk, prk) = min {utility(vj , pr j) | j ∈{1, . . . ,m}} ∧
v= vk ∧ pr = prk

Informally, agenta assumes a rational behavior ofo, which is connected to its minimal reward (we
consider a zero-sum setting). Theψi’s are the conditions (defined by theobservability axioms) that
agenta has to test to observe the choice of opponento.

6. Nondeterministic first program action (choice of botha ando):

DoG(choice(a : a1| . . . |an)‖choice(o : o1| . . . |om);
p, s, h, π, v, pr) =def ∃πi,j , vi,j , pr i,j , πa , πo :∧n

i=1

∧m
j=1DoG(a :ai‖o:bj ; p, s, h,a :ai‖o:bj ;πi,j , vi,j , pr i,j) ∧

(πa , πo) = selectNash({ri,j = utility(vi,j , pr i,j) | i, j}) ∧
π=πa‖πo ; if φ1∧ψ1 then π1,1 else if φ2∧ψ1 then π2,1 . . .

else if φn∧ψm then πn,m ∧
v=

∑n
i=1

∑m
j=1 vi,j · πa(ai) · πo(oj) ∧

pr =
∑n

i=1

∑m
j=1 pr i,j · πa(ai) · πo(oj)

Intuitively, we compute a Nash strategy by finite horizon value iteration for Markov games [4]. For
each possible pair of action choices, the optimal strategy is calculated. Then, a Nash strategy is locally
extracted from a matrix game by using the functionselectNash. Here,πa andπo are probability dis-
tributions over{a1, . . . , an} and{o1, . . . , om}, respectively. Moreover,ψi andφj are the conditions
defined by theobservability axiomsto observe whata ando, respectively, have actually executed.

7. Test action:

DoG(φ?; p, s, h, π, v, pr) =def φ[s] ∧DoG(p, s, h, π, v, pr) ∨
¬φ[s] ∧ π=Stop ∧ v=0 ∧ pr =0

8. The semantics of nondeterministic iterations, conditionals, while loops, procedures, argument selec-
tion, and associate sequential composition is defined in the standard way.
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3.4 Representation and Optimality Results

The following result shows that every zero-sum two-player Markov game can be represented in GTGolog,
and thatDoG computes one of its finite-horizon Nash equilibria and its expected finite-step reward.

Theorem 3.1 LetG=(S,A,O, P,Ra) be a zero-sum two-player Markov game, and letH > 0 be a horizon.
Then, there exists an action theoryAT , an optimization theoryOT , and a GTGolog programp relative to
them such that~π=(~πa , ~πo) is a Nash equilibrium forG, where~πk(s, h) =πk, k∈{a ,o}, is given by
DoG(p, s, h+1, πa‖πo ; π′, v, pr) for everys∈S andh∈{0, . . . ,H}. Furthermore, for everyH > 0 and
s∈S, it holds thatG(H, s, ~πa , ~πo) = v is given byDoG(p, s,H+1, πa‖πo ;π′, v, pr).

Proof. The background action theoryAT comprises a fluentstate(s, sit), which associates with every
situationsit a states∈S (such that the set of all statesS partitions the set of all situations into equiv-
alence classes), and one deterministic actionns for every states∈S, which performs a transition into a
situation associated withs. Every pair of actions(a, o)∈A × O then yields a probabilistic two-player
action, andP is encoded usingns, stochastic, andprob, while Ra is encoded usingreward as follows.
The relationshipP (s, a, o) = p is encoded asstochastic(a‖o, sits, ns) andprob(a‖o, ns, sits) = p, while
Ra(s, a, o) = r is encoded asreward(a‖o, sits) = r, for all situationssits associated withs. The programp
is a sequence ofH+1 constructschoice(a : a1| · · · |an) ‖ choice(o : o1| · · · |om), whereA= {a1, . . . , an}
andO= {o1, . . . , om}. It is then easy to verify thatpr =1 for every success probabilitypr computed
in DoG for suchp. By induction onH > 0, it follows thatDoG encodes the finite value iteration in [4].2

We next show thatDoG produces optimal results. Given a finite horizonH > 0, a strategyπ for a
GTGolog programp is obtained from theH-horizon part ofp by replacing agent and opponent choices by
single actions, and choices of both by probability distributions over their actions. The notions of anexpected
H-step rewardG(p, s,H, π), with a situations, and of a finite-horizonNash equilibriumcan then be defined
in a straightforward way as for Markov games. The next theorem shows thatDoG is optimal in the sense
that it computes a Nash equilibrium and its expected finite-step reward.

Theorem 3.2 Let AT be an action theory,OT be an optimization theory, andp be a GTGolog program
relative to them. LetDoG(p, s, h+1, π, v, pr) for a situations andh> 0. Then,π is a Nash equilibrium,
andutility(v, pr) is its expectedh-step reward.

Proof. Recall that syntactically the strategiesπ in the output ofDoG have the form of programs, except
that choices of single agents are replaced by one-player actions, and choices of both agents are replaced by
two probability distributions over the possible one-player actions of each agent. The notion of an expected
H-step rewardG for such strategies is then defined in a similar way asDoG, except that (i) we now have
strategies rather than programs in the input, (ii) no strategy is in the output, (iii) items (4) and (5) are removed
(since single-agent choices in a program have been transformed into one-player actions in a strategy), and
(iv) item (6) is adapted such that the two probability distributions are already given in a strategy and not
computed as Nash equilibria from the choices of both agents in a program. Since the expectedh-step
rewardG is similar toDoG as far as the computation of the outputsv andpr are concerned, it follows
thatutility(v, pr) is the expectedh-step reward of the strategyπ computed byDoG. Unilaterally changing
the strategyπ for one of the two agents yields a possibly lower expectedh-step reward for that agent, since
the computations in items (4), (5), and (6) are optimal (in the sense of maximum, minimum, and Nash
equilibrium, respectively). This shows thatπ is also a Nash equilibrium.2



INFSYS RR 1843-04-02 9

In general, there may be exponentially many Nash equilibria. We assume that the opponent is rational,
and thus follows a Nash equilibrium. But we do not know which one it actually uses. The following theorem
shows that this is not necessary, as far as the opponent computes its Nash half in the same way as we do.
That is, different Nash equilibria computed byDoG can be freely “mixed”. The result follows from a similar
result for matrix games [13] and Theorem 3.2.

Theorem 3.3 Let AT be an action theory,OT be an optimization theory, andp be a GTGolog program
relative to them. Letπ and π′ be strategies computed byDoG using different Nash selection functions.
Then,π andπ′ have the same expected finite-step reward, and the strategy obtained by mixingπ andπ′ is
also a Nash equilibrium.

Proof. Immediate by Theorem 3.2 and the result that in zero-sum matrix games, the expected reward is the
same under any Nash pair, and Nash pairs can be freely “mixed” to form new Nash pairs [13].2

4 Soccer Example

We consider a slightly modified version of the soccer example by Littman [5] (see Fig. 1): The soccer field
is a4 × 5 grid. There are two players,A andB, each occupying a square, and each able to do one of the
following actions on each turn: N, S, E, W, and stand (move up, move down, move left, move right, and no
move, respectively). The ball is represented by a circle and also occupies a square. A player is aball owner
iff it occupies the same square as the ball. The ball follows the moves of the ball owner, and we have a goal
when the ball owner steps into the adversary goal. When the ball owner goes into the square occupied by the
other player, if the other player stands, possession of ball changes. Therefore, a good defensive maneuver is
to stand where the other agent wants to go. To axiomatize this domain, we introduce the actionmove(α,m)

A

B

Figure 1: Soccer Example

(agentα executesm ∈ {N,S,E,W, stand}) and the fluentsat(α, x, y, s) andhaveBall(α, s) defined by
the following successor state axioms:

at(α, x, y, do(a, s)) ≡ at(α, x, y, s) ∧ a = move(α, stand)∨
at(α, x′, y′, s) ∧ (∃m).a = move(α,m) ∧ φ(x, y, x′, y′,m);
haveBall(α, do(a, s)) ≡ (∃α′).haveBall(α′, s)∧
(α = α′ ∧ ¬cngBall(α′, a, s) ∨ α 6= α′ ∧ cngBall(α, a, s)).

Here,φ(x, y, x′, y′,m) represents the coordinate change due tom, andcngBall(α, a, s) is true iff the ball
possession changes after an actiona of agentα in situations. We can now definegoal(α, s) ≡ (∃x, y)
haveBall(α, s) ∧ at(α, x, y, s) ∧ goalpos(α, x, y). Here,goalpos(α, x, y) represents the coordinates for



10 INFSYS RR 1843-04-02

theα adversary goal. We next define a zero-sum reward function as follows:

reward(α, s)=r ≡
(∃α′)goal(α′, s)∧ (α′=α∧ r=M ∨α′ 6=α∧ r=−M)∨
(∃α′)¬goal(α′, s) ∧ haveBall(α′, s) ∧ at(α′, x, y, s)∧
(∃r′)evalPos(x, y, r′)∧ (α=α′ ∧ r=r′ ∨α′ 6=α∧ r=− r′).

Here, the reward is high (M stands for a “big” integer), if a player scores a goal, and the reward depends
on evalPos(x, y, r), that is, the ball-owner position (roughly,r is high if the ball-owner is close to the
adversary goal), otherwise. A game session can then be described by the following Golog procedure:

proc(game,while¬(∃x)goal(x) do (
choice(a : move(a , E)|move(a , S)|
move(a , N)|move(a , O)|move(a , stand))‖

choice(o : move(o, E)|move(o, S)|
move(o, N)|move(o, O)|move(o, stand))) : nil).

Intuitively, while a goal is not reached, the two players (agenta and opponento) can choose a possible
move. Consider the situation in Fig. 1 whereA is the agenta andB the opponento. The initial situation can
be described byat(a, 3, 2, S0)∧ at(o, 2, 3, S0) ∧ haveBall(a, S0). Assuming the horizonh=3, a strategy
π can be calculated by searching for a constructive proof ofAT |= (∃v, π, pr)DoG(game, S0, 3, π, v, pr).
Here, the maximal reward is achieved by following the pure strategyπ that leads the agenta to score a goal
after executing three timesmove(a , O). Note that if we considerat(o, 1, 3, S0) as the initial position ofo,
then any pure strategy ofa can be blocked byo and the only solution is a randomized strategy. Thegame
procedure introduced above represents a generic soccer game. However, more specialized game playing
behavior can also be written. For instance, the agenta could discriminate game situationsΦi where the
game can be simplified (that is, possible agent and/or opponent behaviors are restricted):

proc(game′,while¬(∃x)goal(x) do
(if ?Φ1 : schema1 else (if ?Φ2 : schema2 else game)) : nil).

For example, consider an attacking ball owner, which is closer to the opponent’s goal than the opponent
(that is,Φ(s) = (∃x, y, x′, y′) at(a, x, y, s)∧at(o, x′, y′, s)∧x′ > x). In this situation, since the opponent is
behind, the best agent strategy is to move quickly towards the goal. This strategy can be encoded as a Golog
programschema′. Note thatgame′ lies between a specification of the game rules and a sketchy denotation
of the agent strategy. This is in the same spirit of a standard Golog program, which can balance the tradeoff
between a planner and a deterministic program: GTGolog allows for the specification of a partial agent
strategy, which can be optimally completed once interpreted.

5 Teams

We now generalize to the case where we have two competing teams, rather than only two competing agents.
Every team consists of a set of cooperating agents. Hence, all the members of every team have the same
reward, while the rewards of two members of different teams are zero-sum. Formally, we assume two teams
~a and~o, where~a =(a1, . . . ,an) consists ofn> 1 agentsa1, . . . ,an, while ~o =(o1, . . . ,om) consists of
m> 1 opponent agentso1, . . . ,om. A one-team actionis the parallel combination of at most one action
for each member of one of the two teams. Atwo-team actionis either a one-team action~a for team~a , or a
one-team action~b for team~o, or two parallel one-team actions~a ‖~b, one for each team.
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We then easily extend the presented GTGolog for two competing agents to the case of two competing
teams of agents, by using two-team actions, rather than two-player actions. Then, a one-agent choice of the
form choice(a : a1| . . . |ak) turns into a team choicechoice(a i : ai,1| . . . |ai,ki

) for i∈{1, . . . , n}, which
is written aschoice(~a : ~a1| . . . |~ak). Thus, in the one-agent choice, rather than a basic actionai, we choose
a combined action~ai, which consists of at most one basic action for each member of the team~a , while in
the two-agent choice, rather than one probability distribution over the possible actions of each agent, we
choose at most one distribution over the possible actions of each member of the two teams.

In general, every team has several options for how to act optimally, and two such options cannot be
“freely” mixed for different team members. It is thus necessary that there is some form of coordination to
agree on one common optimal strategy inside a team (see e.g. [1] for coordination in multi-agent systems).
We assume that the coordination is done by centrally controlling a team. Alternatives are either allowing for
local communication between team members, or having a total order on optimal strategies, which allows the
team members to independently select a common preferred optimal strategy.

6 Implementation

We have implemented a GTGolog interpreter for two competing agents, where we make use of linear pro-
gramming to calculate the Nash equilibrium at each choice step. The interpreter is implemented as a con-
straint logic program in Eclipse 5.7 and uses the eplex library to define and solve the linear programs for the
Nash equilibria. Similarly as for standard Golog, the interpreter has been obtained by translating the rules
of Section 3 into Prolog clauses.

6.1 GTGolog Interpreter

The interpreter code is as follows.

%% A game-theoretic Golog interpreter.

:- lib(eplex).

:- eplex_instance(ep).

:- set_flag(print_depth,100).
:- nodbgcomp.
:- dynamic(proc/2). % Compiler directives.
:- set_flag(all_dynamic, on).

:- op(800, xfy, [&]). % Conjunction
:- op(850, xfy, [v]). % Disjunction
:- op(870, xfy, [=>]). % Implication
:- op(880,xfy, [<=>]). % Equivalence
:- op(950, xfy, [:]). % Action sequence.
:- op(960, xfy, [#]). % Nondeterministic action choice.

%%%%%%%%%%%%%% Matrix game: computing Nash equilibria in eplex.

selectNash(StrA, StrO, UtMatrix,Cost) :-
nash_ag(UtMatrix,StrA,V,Cost),
traspMatrix(UtMatrix, TUtMatrix),
nash_ag(TUtMatrix,StrO,V1,Cost1).
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nash_ag(MatrixRew,ListVar,V,Cost) :-
ep: (sum(ListVar) $= 1),
gtzeroCnst(ListVar),
systemRew(MatrixRew,ListVar,V),
ep: eplex_solver_setup(max(V)),
ep: eplex_solve(Cost), get_solution(ListVar), ep: eplex_cleanup.

nash_opp(ListRew,ListVarO,V,Cost) :-
ep: (sum(ListVarO) $= 1),
gtzeroCnst(ListVarO),
ep: eplex_solver_setup(min(V)),
ep: (ListRew * ListVarO $=< V),
ep: eplex_solve(Cost), get_solution(ListVarO), ep: eplex_cleanup.

systemRew([ListRew|MatrixRew],ListVar,V) :-
ep: (ListRew * ListVar $>= V),
systemRew(MatrixRew,ListVar,V).

systemRew([], ListVar, V).

gtzeroCnst([]).
gtzeroCnst([X|L]) :- ep: (X $>=0), gtzeroCnst(L).

prodM([],DistA,[]).
prodM([L|MatrixRew],DistA,[E|VectorRew]) :-

prodV(L,DistA,E), prodM(MatrixRew,DistA,VectorRew).
prodV([],[],0).
prodV([X|L],[Y|M],P) :- prodV(L,M,P1), P is P1 + X * Y.

get_solution(ListVar) :-
ListVar = [],!;
ListVar = [A|L], ep: eplex_var_get(A,typed_solution,A), get_solution(L).

%% Matrix transposition.

selectLine([],[],[]).
selectLine([X|L],[[X|L1]|M1],[L1| M2]) :-

selectLine(L,M1,M2).

traspMatrix([[]|L],[]).
traspMatrix(M,[L|MT]) :- selectLine(L,M,M1), traspMatrix(M1,MT).

%%%%%%%%%%%%%% doG

doG(P, S, 0, Pi, V, Pr) :- Pi = nil, V = 0, Pr = 1.
doG(nil, S, H,nil,V,Pr) :- V = 0, Pr = 1.

%% Sequence

doG((A : B) : C,S,H,Pi,V,Pr) :- doG(A : (B : C),S,H,Pi,V,Pr).

doG(A : C, S, H, Pi, V, Pr) :- concurrentAction(A),
( poss(A,S), H1 is H - 1, doG(C, do(A,S), H1,Pi1,V1,Pr1), agent(Ag),

reward(Ag,R,A,S),
seq(A, Pi1,Pi), V is V1 + R, Pr = Pr1;
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not poss(A,S), Pi = stop, V = 0, Pr = 0).

doG(A : B, S, H, Pi, V,Pr) :- stochastic(A),
(not poss(A,S), Pi = stop, V = 0, Pr = 0;

poss(A,S), nChoice(A,C), doGAux(A,C,B,S, H,Pi1,V,Pr), seq(A, Pi1,Pi)).

doG(A : B,S, H,Pi,R,Pr) :- proc(A,C), doG(C : B, S, H, Pi,R,Pr).

%% Nondeterministic choice of argument.

doG(pi(V,E) : B, S, H, Pi,R,Pr) :- sub(V,_,E,E1), doG(E1 : B, S, H, Pi, R,Pr).

%% Test

doG(?(T) : A, S, H, Pi, R, Pr) :- holds(T,S), !, doG(A, S, H, Pi, R, Pr) ;
Pi = stop, V = 0, Pr = 0. % Program can’t continue.

% Create a leaf.
%% Conditional

doG(if(T,A,B) : C,S, H, Pi, R, Pr) :- holds(T,S), !, doG(A : C, S, H, Pi,R,Pr) ;
doG(B : C, S, H, Pi, R, Pr).

%% Loop

doG(while(T,A) : B, S, H, Pi, R, Pr) :- holds(T,S), !,
doG(A : while(T,A) : B, S, H, Pi,R,Pr) ;
doG(B, S, H, Pi, R, Pr).

%% Agent choice

doG([choice(Ag,C1)] : E, S, H, Pi,R, Pr) :-
agent(Ag), doMax(C1,E, S, H, Pi,R, Pr);
opponent(Ag), doMin(C1,E, S, H, Pi,R, Pr).

doG([choice(Ag1,C1), choice(Ag2,C2)] : E, S, H, Pi,R, Pr) :-
agent(Ag1), opponent(Ag2), doMinMax(C1,C2, E, S, H, Pi,R, Pr);
agent(Ag2), opponent(Ag1), doMinMax(C2,C1, E, S, H, Pi,R, Pr).

doMinMax(C1,C2,E, S, H, Pi,R, Pr) :-
doMatrix(C2,C1, E, S, H, PiMatrix,RMatrix,UtMatrix, PrMatrix),
genListVar(C1,C2,StrA,StrO),
selectNash(StrA, StrO, UtMatrix, R),
probNash(StrA,StrO,PrMatrix,Pr), strNash(C1,C2,StrA, StrO, PiMatrix, Pi).

doMatrix([], B, E, S, H, [],[],[],[]).
doMatrix([A|L], B, E, S, H, [PiLine| PiSubMatrix],[RLine | RSubMatrix],

[UtLine| UtSubMatrix], [PrLine |PrSubMatrix]) :-
doLine(A, B, E, S, H, PiLine,RLine,UtLine,PrLine),
doMatrix(L,B, E, S, H, PiSubMatrix, RSubMatrix, UtSubMatrix, PrSubMatrix).

doLine(A,[], E, S, H, [],[],[],[]).
doLine(A,[B|L], E, S, H, [Pi|PiM],[R|RM],[Ut|UtM], [Pr|PrM]) :-

doG([A,B] : E, S, H, Pi1,R,Pr), seq([A,B],Pi,Pi1),
doLine(A,L,E, S, H, PiM,RM,UtM,PrM),
utility(Ut, R, Pr).
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doMax([A],E, S, H, Pi,R, Pr) :- doG([A] : E, S, H, Pi, R, Pr),!.
doMax([A|L],E, S, H, Pi,R, Pr) :-

doG([A] : E, S, H, Pi1,R1, Pr1),
doMax(L,E, S, H, Pi2,R2, Pr2), utility(Ut1, R1, Pr1),
utility(Ut2, R2, Pr2),
(Ut1 >= Ut2, Pi = Pi1, R = R1, Pr = Pr1;

Ut1 < Ut2, Pi = Pi2, R = R2, Pr = Pr2).

doMin([A],E, S, H, Pi,R, Pr) :- doG(A : E, S, H, Pi,R, Pr).
doMin([A|L],E, S, H, Pi,R, Pr) :- not L = [],

doG(A : E, S, H, Pi1,R1, Pr1),
doMax([A|L],E, S, H, Pi2,R2, Pr2), utility(Ut1, R1, Pr1),
utility(Ut2, R2, Pr2),
(Ut2 >= Ut1, Pi = Pi1, R = R1, Pr = Pr1;

Ut2 < Ut1, Pi = Pi2, R = R2, Pr = Pr2).

%%%%%%%%%%%%%%

doGAux(A,[],B,S, H,[],0,0).
doGAux(A,[C1|LC],B, S, H, Pi,V,Pr) :-

doG(C1 :B, S, H, Pi1,V1,Pr1),
doGAux(LC,B, S, H, Pi2,V2,Pr2),
prob(C1,A,S,Pr3),Pi = if(obsNature(A,C1),Pi1,Pi2),
Pr is Pr1 * Pr3 + Pr2,
V is V1 * Pr1 * Pr3 + V2 * Pr2.

prob(C,A,S,P) :- choice(A,C), poss(C,S), !, prob0(C,A,S,P) ; P = 0.0.
utility(Ut,R,Pr) :- Ut is R * Pr.

stochastic(A) :- nChoice(A,N), !.

%%%%%%%%%%%%%%

probNash(StrA,StrO,PrMatrix,Pr) :-
prodM(PrMatrix, StrA,PrLine), prodV(PrLine, StrO, Pr).

strNash(C1,C2,StrA, StrO, PiMatrix, Pi) :-
genNashStrategy(C1,C2,PiMatrix,Pi1),
Pi = alea([[C1,StrA] ,[C2, StrO]], Pi1).

genNashStrategy(LA,[O], [PiL],Pi) :- genNashStrategy1(O, LA, PiL, Pi),!.
genNashStrategy(LA,[O|CO], [PiL | PiMatrix],Pi) :-

genNashStrategy1(O, LA, PiL, Pi2),
genNashStrategy(LA, CO, PiMatrix,Pi3),
Pi = if(obsChoice(O),Pi2,Pi3).

genNashStrategy1(O,[A],[Pi],Pi):-!.
genNashStrategy1(O,[A|LA],[Pi1|PiL], Pi) :-

genNashStrategy1(O, LA, PiL, Pi2), Pi = if(obsChoice(A),Pi1,Pi2).

genListVar([],[],[],[]).
genListVar([],[X2|LC2],[],[O1|StrO]) :- genListVar([],LC2,[],StrO).
genListVar([X1|LC1],[],[A1|StrA],[]) :- genListVar(LC1,[],StrA,[]).
genListVar([X1|LC1],[X2|LC2], [A1|StrA], [O1|StrO]) :-
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genListVar(LC1,LC2,StrA,StrO).

%% sub(Name,New,Term1,Term2): Term2 is Term1 with Name replaced by New.

sub(X1,X2,T1,T2) :- var(T1), T2 = T1.
sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.
sub(X1,X2,T1,T2) :- not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),

T2 =..[F|L2].
sub_list(X1,X2,[],[]).
sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2), sub_list(X1,X2,L1,L2).

%% The holds predicate implements the revised Lloyd-Topor
%% transformations on test conditions.

holds(P & Q,S) :- holds(P,S), holds(Q,S).
holds(P v Q,S) :- holds(P,S); holds(Q,S).
holds(P => Q,S) :- holds(-P v Q,S).
holds(P <=> Q,S) :- holds((P => Q) & (Q => P),S).
holds(-(-P),S) :- holds(P,S).
holds(-(P & Q),S) :- holds(-P v -Q,S).
holds(-(P v Q),S) :- holds(-P & -Q,S).
holds(-(P => Q),S) :- holds(-(-P v Q),S).
holds(-(P <=> Q),S) :- holds(-((P => Q) & (Q => P)),S).
holds(-all(V,P),S) :- holds(some(V,-P),S).
holds(-some(V,P),S) :- not holds(some(V,P),S). % Negation
holds(-P,S) :- isAtom(P), not holds(P,S). % by failure.
holds(all(V,P),S) :- holds(-some(V,-P),S).
holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

%% The following clause treats the holds predicate for non fluents,
%% including Prolog system predicates.

holds(A,S) :- restoreSitArg(A,S,F), F ;
not restoreSitArg(A,S,F), isAtom(A), A.

seq(A,Pi1, A : Pi1).

isAtom(A) :- not (A = -W ; A = (W1 & W2) ; A = (W1 => W2) ;
A = (W1 <=> W2) ; A = (W1 v W2) ; A = some(X,W) ; A = all(X,W)).

restoreSitArg(poss(A),S,poss(A,S)).

concurrentAction([A | C]) :- not A = choice(_,_).

6.2 Soccer Example

The Soccer Example of Section 4 can be implemented by the following Prolog program

%% Soccer Example

agent(a). opponent(b).

%% Actions

poss(move(Ag,X,Y),S) :- X = 0 ; Y = 0.
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poss(C,S) :- allPoss(C,S).
allPoss([],S).
allPoss([A | R],S) :- poss(A,S), allPoss(R,S).

%% Fluents

at(Ag,X,Y,do(C,S)) :-
at(Ag, X, Y, S), not member(move(Ag,X1,Y1),C);
at(Ag, X1, Y1, S), member(move(Ag,Z,T),C), X is Z + X1, Y is T + Y1.

haveBall(Ag,do(C,S)) :- (agent(Ag);opponent(Ag)),
(haveBall(Ag,S), not looseBall(Ag,C,S);

haveBall(Ag1,S), not Ag1 = Ag, looseBall(Ag1,C,S)).

looseBall(Ag1,C,S) :-
(agent(Ag1), opponent(Ag2); agent(Ag2), opponent(Ag2) ),

at(Ag1,X,Y,S),
at(Ag2,X1,Y,S),
at(Ag2,X1,Y,do(C,S)),
at(Ag1,X1,Y,do(C,S)).

%% Reward

goal(Ag,S) :- haveBall(Ag,S), at(Ag,X,Y,S), goalPos(Ag,X,Y).

reward(Ag,Rw,A,S) :- goal(Ag1,do(A,S)),
(Ag1 = Ag, Rw is 1000; not Ag1 = Ag, Rw is -1000 ),!;

haveBall(Ag1,do(A,S)), at(Ag1,X,Y,do(A,S)), evalPos(Ag1,X,Y,R),
(Ag1 = Ag, Rw is R ; not Ag1 = Ag, Rw is -R ).

evalPos(Ag,X,Y,R) :-
Ag = b, (X >0,X<7,!, R is X; R is 0);
Ag = a, (X >0,X<7,!, R is 6-X; R is 0).

goalPos(a,0,Y) :- Y = 2; Y = 3.
goalPos(b,6,Y) :- Y = 2; Y = 3.

For example, consider an initial situationS0, where agenta is in position(2, 3) and has the ball, and
agentb is in position(1, 3):

at(a,2,3,s0). at(b,1,3,s0). haveBall(a,s0).

Consider then the following program schema, where first agenta can move by either(−1, 0) or (0,−1),
while agentb can move by either(0,−1) or (0, 0), and then agenta can move by either(−1, 0) or (0,−1),
while agentb can move by either(0, 0) or (0,−1), and finally agenta moves by(−1, 0):

proc(schema,
[choice(a,[move(a,-1,0),move(a,0,-1)]),choice(b,[move(b,0,-1),move(b,0,0)])]:
[choice(a,[move(a,-1,0),move(a,0,-1)]),choice(b,[move(b,0,0),move(b,0,-1)])]:
[move(a,-1,0)]).

Informally, the agent and the opponent are facing each other. The former has to perform a dribbling in order
to score a goal, while the latter can try to guess the agent’s move in order to change the ball possession. This
action requires a mixed strategy, which can be generated by the following query:

doG(schema:nil,s0,H,Pi,R,Pr).
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The computed results are as follows (wherealea is a construct representing the probability distribution
on possible choices, andif encodes a standard if-then-else statement):

Pi = alea([[[move(a,-1,0),move(a,0,-1)],[0.495785391289137,0.504214608710863]],
[[move(b,0,-1),move(b,0,0)],[0.50371686477334,0.49628313522666]]],

if(obsChoice(move(b,0,-1)),
if(obsChoice(move(a,-1,0)),

alea([[[move(a,-1,0),move(a,0,-1)],[0.0,1.0]],
[[move(b,0,0),move(b,0,-1)],[0.0,1.0]]],

if(obsChoice(move(b,0,0)),
if(obsChoice(move(a,-1,0)),

[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil),

if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil))),

alea([[[move(a,-1,0),move(a,0,-1)],[0.00592300098716692,0.994076999012833]],
[[move(b,0,0),move(b,0,-1)],[0.989141164856861,0.0108588351431392]]],

if(obsChoice(move(b,0,0)),
if(obsChoice(move(a,-1,0)),

[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil),

if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil)))),

if(obsChoice(move(a,-1,0)),
alea([[[move(a,-1,0),move(a,0,-1)],[0.0,1.0]],

[[move(b,0,0),move(b,0,-1)],[0.0,1.0]]],
if(obsChoice(move(b,0,0)),

if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil),

if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil))),

alea([[[move(a,-1,0),move(a,0,-1)],[1.0,0.0]],
[[move(b,0,0),move(b,0,-1)],[0.0,1.0]]],

if(obsChoice(move(b,0,0)),
if(obsChoice(move(a,-1,0)),

[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil),

if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil))))))

R = 507.26518401539317
Pr = 1.0
Yes (0.27s cpu, solution 1, maybe more)

The above combined strategy yields the following two single-agent strategies for agentsa andb:

%% Extracted strategy for agent a:

[move(a,-1,0),move(a,0,-1)]:[0.495785391289137,0.504214608710863];
if obsChoice(move(a,-1,0)) then move(a,0,-1)

else if obsChoice(move(b,0,-1))
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then [move(a,-1,0),move(a,0,-1)]:[0.00592300098716692,0.994076999012833]
else move(a,-1,0);

move(a,-1,0).

%% Extracted strategy for agent b:

[move(b,0,-1),move(b,0,0)]:[0.50371686477334,0.49628313522666];
if obsChoice(move(b,0,-1)) and obsChoice(move(a,0,-1))

then [move(b,0,0),move(b,0,-1)]:[0.989141164856861,0.0108588351431392]
else move(b,0,-1);

nil.

7 Summary and Outlook

We have presented the agent programming language GTGolog, which integrates explicit agent programming
in Golog with game-theoretic multi-agent planning in Markov games. It is a generalization of DTGolog to
a multi-agent setting, where we have two competing single agents or two competing teams of agents. The
language allows for specifying a control program for a single agent or a team of agents in a high-level logical
language. The control program is then completed by an interpreter in an optimal way against another single
agent or another team of agents, by viewing it as a generalization of a Markov game, and computing a Nash
strategy. We have illustrated the usefulness of this approach along a robotic soccer example. We have also
described a prototype implementation of a GTGolog interpreter for the case of two competing agents.

An interesting topic of future research is to explore how the presented GTGolog framework can be
generalized to also allow for partial observability.
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