| NF SY S
RESEARCH
R EPORT

Institut fur Informationssysteme
Abtg. Wissensbasierte Systeme
Technische Universitat Wien
Favoritenstrafle 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493
sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

PeooEctacocig o o]

INSTITUT FUR INFORMATIONSSYSTEME

ABTEILUNG WISSENSBASIERTESYSTEME

GAME-THEORETICAGENT
PROGRAMMING IN GOLOG

ALBERTO FINZI THOMAS LUKASIEWICZ

INFSYS RESEARCHREPORT1843-04-02
MAY 2004

TECHNISCHE UNIVERSITAT WIEN

INFSYS RESEARCHREPORT
INFSYS RESEARCHREPORT1843-04-02, My 2004

GAME-THEORETICAGENT PROGRAMMING IN GOLOG

(PRELIMINARY VERSION, JULY 26, 2004)

Alberto Finzt Thomas Lukasiewidz

Abstract. We present the agent programming language GTGolog, which integrates explicit agent
programming in Golog with game-theoretic multi-agent planning in Markov games. It is a gener-
alization of DTGolog to a multi-agent setting, where we have two competing single agents or two
competing teams of agents. The language allows for specifying a control program for a single agent
or a team of agents in a high-level logical language. The control program is then completed by an
interpreter in an optimal way against another single agent or another team of agents, by viewing it
as a generalization of a Markov game, and computing a Nash strategy. We illustrate the usefulness
of this approach along a robotic soccer example. We also report on a first prototype implementa-
tion of a simple GTGolog interpreter.

IDipartimento di Informatica e Sistemistica, Univeasiti Roma “La Sapienza”, Via Salaria 113, 1-00198 Rome,
Italy; e-mail: {finzi, lukasiewicZ @dis.uniromal.it.

2Institut fur Informationssysteme, Technische Univérsivien, Favoritenstrae 9-11, A-1040 Vienna, Austria;
e-mail: lukasiewicz@kr.tuwien.ac.at.

Acknowledgements This work was partially supported by the Austrian Science Fund under project Z29-
NO4 and by a Marie Curie Individual Fellowship of the European Union programme “Human Potential” under
contract number HPMF-CT-2001-001286 (disclaimer: The authors are solely responsible for information
communicated and the European Commission is not responsible for any views or results expressed).

Copyright(© 2004 by the authors

INFSYS RR 1843-04-02

Contents
1 Introduction 1
2 Preliminaries 2
2.1 Situation Calculusand Golog 2
2.2 MatrixGames e e e 3
2.3 MarkovGames e 3
3 Game-Theoretic Golog 4
3.1 DomainTheory 4
3.2 SyntaxXo e e e e 5
3.3 SemantiCs e e e 6
3.4 Representation and Optimality Results 8.
4 Soccer Example 9
5 Teams 10
6 Implementation 11
6.1 GTGolog Interpreter e e e e e 11
6.2 Soccer Example 15
7 Summary and Outlook 18

INFSYS RR 1843-04-02 1

1 Introduction

During the recent decades, the development of controllers for autonomous agents has become increasingly
important in Al. One way of designing such controllers is the programming approach, where a control
program is specified through a language based on high-level actions as primitives. Another way is the
planning approach, where goals or reward functions are specified and the agent is given a planning ability
to achieve a goal or to maximize a reward function.

Recently, an integration of the programming and the planning approach has been suggested through the
language DTGolog [2], which integrates explicit agent programming in Golog [11] with decision-theoretic
planning in Markov decision processes (MDPs) [9]. DTGolog allows for partially specifying a control
program in a high-level language as well as for optimally filling in missing details through decision-theoretic
planning. It can thus be seen as a decision-theoretic extension to Golog, where choices left to the agent
are made by maximizing expected utility. From a different perspective, DTGolog can also be seen as a
formalism that gives advice to a decision-theoretic planner, since it naturally constrains the search.

The agent programming language DTGolog, however, is designed only for the single-agent framework.
That is, the model of the world essentially consists of a single agent that we control by a DTGolog pro-
gram and the environment that is summarized in “nature”. But in realistic applications, we often encounter
multiple agents, which may compete against each other, or which may also cooperate with each other. For
example, in robotic soccer, we have two competing teams of agents, where each team consists of cooperat-
ing agents. Here, the optimal actions of one agent generally depend on the actions of all the other (“enemy”
and “friend”) agents. In particular, there is a bidirected dependence between the actions of two different
agents, which generally makes it inappropriate to model enemies and friends of the agent that we control
simply as a part of “nature”.

Game theory [13] deals with optimal decision making in the multi-agent framework with competing and
cooperating agents. In particular, Markov games [12, 5], also called stochastic games [7], generalize matrix
games from game theory, and are multi-agent generalizations of MDPs with competing agents.

In this paper, we present a combination of explicit agent programming in Golog with game-theoretic
multi-agent planning in Markov games. The main contributions of this paper are as follows:

¢ We define the language GTGolog, which integrates explicit agent programming in Golog with game-
theoretic multi-agent planning in Markov games. GTGolog is a generalization of DTGolog [2] to a
multi-agent setting, which allows for modeling two competing agents as well as two competing teams
of cooperative agents.

e The language GTGolog allows for specifying a control program for a single agent or a team of agents,
which is then completed by an interpreter in an optimal way against another single agent or another
team of agents, by viewing it as a generalization of a Markov game, and computing a Nash equilib-
rium.

e We show that GTGolog generalizes Markov games. That is, GTGolog programs can represent Markov
games, and a GTGolog interpreter can be used to compute their Nash equilibria. We also show that
the GTGolog interpreter is optimal in the sense that it computes a Nash equilibrium of GTGolog
programs.

e A robotic soccer example gives evidence of the usefulness of our approach in realistic applications.
We also report on a first prototype implementation of a simple GTGolog interpreter.

2 INFSYS RR 1843-04-02

The work closest in spirit to this paper is perhaps Poole’s one [8], which shows that the independent
choice logic can be used as a formalism for logically encoding games in extensive and normal form. Our
view in this paper, however, is much different, as we aim at using game theory for optimal agent control in
multi-agent systems.

2 Preliminaries

In this section, we recall the basic concepts of the situation calculus and Golog, of matrix games, and of
Markov games.

2.1 Situation Calculus and Golog

The situation calculus [6, 11] is a first-order language for representing dynamic domains. Its main ingredi-
ents areactions situations andfluents A situation is a first-order term encoding a sequence of actions. It
is either a constant symbol or of the fown(a, s), wherea is an action and is a situation. The constant
symbol Sy is theinitial situation, and represents the empty sequence, while, s) encodes the sequence
obtained from executing after the sequence encodedsinA fluentrepresents a world or agent property
that may change when executing an action. Itis a predicate symbol whose last argument is a situation. E.g.,
at(pos, s) may express that an agent is at positjon in situations.

In the situation calculus, a dynamic domain is expresseddase action theoryBAT = (3, Dg,, Dssq,
Duna, Dap), Where

e Y is the set of foundational axioms for situations;

Duna is the set of unique name axioms for actions, which express that different action terms stand for
different actions;

Dg, is a set of first-order formulas describing the initial state of the domain (representégl).by
For exampleat(a,1,2,S0) A at(0,3,4,Sy) may express that the agentsand o are initially at the
positions(1,2) and(3,4), respectively;

Dssq Specifies thesuccessor state axionis0, 11]: for each fluent¥'(Z, s), one has an axiom of the
form F(Z,do(c, s)) = ®r(Z, ¢, s) providing both action effects and a solution to the frame problem
(assuming deterministic actions). For example,

at(o,z,y,do(a, s)) = a = moveTo(o,z,y)V
at(o,z,y,s) A =(32',y")a = moveTo(o,2',y’) ;

@)

D,, represents the action precondition axioms: for each simple agtimme has an axiom?oss(a(%),
s) = II(Z, s). For examplePoss(moveTo(o,x,y),s) = =(32', v/, o')at(d', 2/, v/, s).

Golog is an agent programming language that is based on the situation calculus. It allows for constructing
complex actions from the primitive actions defined in a basic action th8ety’, where standard (and

not so-standard) Algol-like control constructs can be used, in particular, (i) action sequenges:(ii)

tests: ¢?, (iii) nondeterministic action choices |p2, (iv) nondeterministic choices of action argument:
(rz).p(z), and (v) conditionals, while loops, and procedure calls. An example of a Golog program is

while —at(a, 1,2) do (rz, y)moveTo(a, x,y).

INFSYS RR 1843-04-02 3

Intuitively, the nondeterministic choiderz, y)moveT o(a, z,y) is iterated until the agerd is at the posi-
tion (1,2).

The semantics of a Golog progranis specified by a situation-calculus formula(o, s, s'), which en-
codes that' is a situation which can be reached frerhy executings. Thus,Do represents a macro expan-
sion to a situation calculus formula. For example, the action sequence is defined thraughp,, s, s') =
3s"(Do(p1, s, ") A Do(ps, s”, s')). For more details on the core situation calculus and Golog, we refer the
reader to [11].

2.2 Matrix Games

We briefly recall two-player matrix games from classical game theory [13]. Intuitively, they describe the
possible actions of two agents and the rewards that they receive when they simultaneously execute one
action each. Formally, wo-player matrix gamé& = (A, O, R,, R,) consists of two nonempty finite sets

of actions A andO for two agentsa and o, respectively, and tweeward functionsR,, R,: A x O —R

for a ando, respectively. The gam@ is zero-suniff R, = —R,; we then often omiz,,.

A pure (resp., mixed) strategy specifies which action an agent should execute (resp., which actions an
agent should execute with which probability). Formallyuae strategyfor agenta (resp.,o0) is any action
from A (resp.,0). If agentsa ando play the pure strategies< A ando € O, respectively, then they receive
therewardsR,(a,0) andR,(a, 0), respectively. Amixed strategyor agenta (resp.,o) is any probability
distribution overA (resp.,0). If agentsa ando play the mixed strategies, andr,, respectively, then
theexpected rewartb agentk € {a, 0} is Ri(7a, mo) = E[Rk(a,0)|Ta, To] = 344 0c0 Tal@) - o (0) -

Ry (a,o0).

We are especially interested in pairs of mixed strategies ,), which are called Nash equilibria,
where no agent has the incentive to deviate from its half of the pair, once the other agent plays the other
half. Formally, (7,) is aNash equilibrium(or Nash pai) for G iff (i) for any mixed strategyr,,, it
holds R, (7, 7o) < Ra(Ta, 7o), @nd (ii) for any mixed strategy’, it holds R, (mq, 7,) < Ro(7a, To)-

Every two-player matrix gamé& has at least one Nash pair among its mixed (but not necessarily pure)
strategy pairs, and many two-player matrix games have multiple Nash pairs, which can be computed by
linear complementary programming and linear programming in the general and the zero-sum case, respec-
tively. A Nash selection functiofi associates with every two-player matrix gafdea unique Nash pair
f(G)=(fa(G), fo(G)). The expected reward to agent {a, o} underf(G) is denoted by;’;(G).

In the zero-sum case, (frq, 7o) and(x,,, 7)) are Nash pairs, theR, (74, 7o) = R (7, 7,,), and also

(mq,m,) and (7}, m,) are Nash pairs. That is, the expected reward to the agents is the same under any
Nash pair, and Nash pairs can be freely “mixed” to form new Nash pairs. Here, @gestitategies in Nash

pairs are given by the optimal solutions of following linear programax v subject to (i < > . 4 m(a) -

Rq(a,o) foralloc O, (ii) >°,.47(a) =1, and (i) 7(a) > 0 for all a € A. Moreover, agent’s expected

reward under a Nash pair is the optimal value of the above linear program.

2.3 Markov Games

Markov games [12, 5], or also called stochastic games [7], generalize both matrix games and MDPs.
Roughly, a Markov game consists of a set of st&tes matrix game for every statec S, and a transition
function that associates with every state S and combination of actions of the agents a probability distribu-
tion on future states € S. We only consider the two-player case here. Formalfyaplayer Markov game

G=(S,A,0,P, R,, R,) consists of a finite nonempty set of statggwo finite nonempty sets of actions

4 INFSYS RR 1843-04-02

andO for two agentsa and o, respectively, a transition functioR: S x A x O — PD(S), wherePD(S)
denotes the set of all probability functions overand tworeward functionsR,, R,: S x A x O — R for
a ando, respectively. The gam@ is zero-suniff R,= — R,; we then often omiR,,.

Assuming a finite horizor{ >0, a pure (resp., mixed) time-dependent policy associates with every
states € .S and number of steps to doc {0, ..., H} a pure (resp., mixed) matrix-game strategy. Formally,
a pure policy« (resp.,w) for agenta (resp.,o0) assigns to each state= .S and number of steps to go
he{0,...,H} an action fromA (resp.,0). The H-step rewardto agentk € {a, o} under a start state
s € S and the pure policies andw, denoted>(H, s, a,w), is defined afy (s, a(s,0),w(s,0)), if H=0,
andRy(s,a(s, H),w(s, H)) + > cq P(s'|s,a(s, H),w(s, H)) - Gx(H—-1, s, a,w), otherwise. Amixed
policy 7, (resp.,m,) for a (resp.,0) assigns to every statec S and number of steps to goc {0, ..., H}

a probability distribution over (resp.,0). Theexpectedd -step rewardo agentk under a start stateand
the mixed policiesr, andr,, denotedy(H, s, 7q, o), ISE[Rk(s, a,0) | ma(s,0),m(s,0)], if H=0, and
E[Ry(s,a,0) + > cg P(s'] 5,a,0) - Gp(H—1,5",74,70) | ma(s, H), 7o (s, H)], otherwise.

The notion of a finite-horizon Nash equilibrium for a Markov game is then defined as follows. A
pair of mixed policiesw,,7,) is aNash equilibrium(or Nash pai) for G iff (i) for any start states and
anyr,, itholdsG,(H, s, 7}, m) < Go(H,s,mq, o), and (ii) for any start state and anyr/, it holds
Go(H,s,mq,m) < Go(H, s, mq,T,). Every two-player Markov gamé has at least one Nash pair among
its mixed (but not necessarily pure) policy pairs, and it may have exponentially many Nash pairs.

Nash pairs forG can be computed by finite value iteration from local Nash pairs of two-player ma-
trix games as follows [4]. We assume an arbitrary Nash selection fungtfontwo-player matrix games
with the action setsd andO. For every state € S and number of steps to doc {0,..., H}, the two-
player matrix game=|[s, h] = (A, O, Qals, h], Qo[s, h]) is defined byQy[s,0](a,0) = Ry(s,a,o0) and
Qkls, h)(a,0) = Ri(s,a,0) + 3 ,cq P(s]s,a,0) - v’;(G[s’, h—1]) for all a€ A, 0€ O, andk € {a, o}.

Let the mixed policyr; be defined byry (s, h) = fi.(G[s, h]) foralls€ S,h € {0,...,H}, andk € {a, o}.
Then,(7q, o) is a Nash pair of7, andG(H, s, mq, 7o) = v’;(G(s, H))forallke{a,o}andseS.

In the case of zero-sui@, by induction onh € {0,..., H}, it is easy to see that evefy[s, h], s€ S
andh €{0,..., H}, is also zero-sum. Moreover, all Nash pairs that are computed by the above finite value
iteration produce the same expecféestep reward, and they can be freely “mixed” to form new Nash pairs.

3 Game-Theoretic Golog

In this section, we present the language GTGolog for the case of two competing agents. We first describe the
domain theory and the syntax of GTGolog programs. We then define the semantics of GTGolog programs
and provide representation and optimality results.

3.1 Domain Theory

GTGolog programs are interpreted w.r.t. a background action thé@hand a background optimization
theoryOT.

The background action theod/T is an extension of the basic action the@y T' of Section 2.1, where
we also allow for stochastic actions. We assume two (zero-sum) competing agends (calledagentand
opponentrespectively, where the former is under our control, while the latter is notyvoAplayer action
is either an actiom for agenta, or an actiorb for agento, or two parallel actiong||b, one for each agent.
For examplemove(a, M), move(o,O), andmove(a, M)||move(o, O) are two-player actions. Note that

INFSYS RR 1843-04-02 5

we introduce parallel actions as primitives to simplify the presentation, more complex parallel actions can
be easily treated as well, deploying the concurrent version of the situation calculus [11].

Analogously to [2], we represent stochastic actions by means of a finite set of deterministic actions.
When a stochastic action is executed, then “nature” chooses and executes with a certain probability ex-
actly one of its deterministic actions. We use the predieatehastic(a, s,n) to associate the stochastic
actiona with the deterministic action in situations, and we use the functiomrob(a, n, s) = p to encode
that “nature” chooses in situations with probability p. A stochastic actiors is indirectly represented
by providing asuccessor state axiofor each associated nature choiece Thus, BAT is extended to
a probabilistic setting in a minimal way. For example, consider the stochastic actionS(a, =, y) such
thatstochastic(moveS(a, z,y), s, moveTo(a,z,y")) = 0<y —y < 1, thatis,moveS(a, z,y) can slide to
y+1. We specifymoveS by defining the precondition efioveTo(a, 2, y') and assuming the successor state
axiom (1). Furthermore, in order to specify the probability distribution over the deterministic components,
we defineprob(moveS(a,z,y), moveTo(a,z,y),s)=0.9 and prob(moveS(a, z,y), moveTo(a,z,y +
1),s)=0.1.

Like [2], we assume that the domainfigly observable To this end, we introducebservability axioms
which disambiguate the state of the world after executing a stochastic action. For example, after executing
moveS(a,z,y), we test the predicateg(a, z, y, s) andat(a, z,y + 1, s) to check which of the determin-
istic components was executed (thatrssmoveTo(a,x,y) or n=moveTo(a,z,y+1)). This condition
is denoted by the predicatendSta(a,n, s), €.9.,condSta(moveS(a,x,y), moveTo(a,xz,y+1),s) =
at(a,xz,y + 1,s). Analogous observability axioms are needed to observe which actions the opponent and
the agent have chosen. For this purpose, we introduce the prediedie, s), €.9.,cond(moveTo(o, x,y),

s) = at(o,x,y, s).

The optimization theory) T specifies a reward and a utility function. The former associates with every
situations and two-player action, a reward to agend, denotedeward(«, s), €.9.,reward(moveTo(a, x,

y), s) =y. As we assume that the rewardsitando are zero-sum, we need not explicitly specify the reward
to o. The utility function maps every reward and success probability to a real-valued utilityy (v, pr).

We assume thattility (v, 1) = v for all v. An example isutility (v, pr) = v - pr. The utility function suitably
mediates between the agent reward and the failure of actions due to unsatisfied preconditions.

3.2 Syntax

Given the two-player actions represented by the domain th@oogramsp in GTGolog are inductively
built using the following constructsj(is a condition, ang; andp, are programs):

1. Deterministic or stochastic actioni (a two-player action).

2. Nondeterministic action choicei|...| 3. Executex or ... or 3, wherea,..., 3 are two-player actions.
3. Test action ¢?. Test the truth value ap in the current situation.

4. Nondeterministic choice of an argument

5. Action sequencep;; ps. Do progranmy; followed by progranps.

6. Conditionals if ¢ then p; else ps.

7. While loops while ¢ do p; .

6 INFSYS RR 1843-04-02

8. Nondeterministic iterationp; *. Executep; zero or more times.
9. Procedures, including recursion

To clearly distinguish between the choices of the ageahd the opponent, we usechoice(a: a1 --- |
an) || choice(o: 01]...|oy) to denotg a:aq||0:01)|(a:az||0:01)| - - - |(a:an || 0:0n).

3.3 Semantics

The semantics of a GTGolog programv.r.t. AT and OT is defined through the predicat®G(p, s, h, T,

v, pr). Here, we have given as input the progranma situations, and a finite horizork > 0. The predicate

DoG then determines a strategyfor both agents: ando, the reward to agent under this strategy, and

the success probability- € [0, 1] of 7. Note that due to the finite horizon, if the prograrfails to terminate
before the horizom is reached, then it is stopped, and the best partial strategy is returned. Intuitively, our
aim is to control agend, which is given the strategy that DoG computes for program, and which then
executes its part af. We defineDoG(p, s, h, w, v, pr) by induction as follows:

1. Zero horizon and null program:

DoG(p,s,0,m,v,pr) =4 T=Nil N\v=0Apr=1
DoG(Nil, s, h,m,v,pr) =g T=Nil N\v=0Apr=1

Intuitively, p ends when it is null or the horizon end is reached.
2. Deterministic first program action:

DOG(CL;p,S,h,T(,U,p’F) —def
—Poss(a,s) Nm=Stop A\v=0Apr=0V Iz’ v
Poss(a,s) A DoG(p,do(a, s), h—1,7", 0", pr) A
T=a;7 Av=v'+reward(s,a)

Informally, if a is not executable, themstops with success probability As in [2], Stop is a fictitious
action of zero-cost, which stops the program execution.idfexecutable, then the optimal execution
of a; p in s depends on that one pfin do(a, s).

3. Stochastic first program action (nature choice):

DoG(a;p, s, h,m,v,pr) =qef
—Poss(a,s) Nm=Stop Nv=0Apr=0V Iy, vy, pry:
Poss(a, s)A /\];:1 DoG(ng;p, s, hyng; mq, vg, pry) A
m=a;if ¢ then 7 else if ¢5 then my ...
else if ¢; then 7 A
v= Z];:l Vg - prob(a,ng, s) A\ pr= 25:1 pry - prob(a,ng, s)

where{n,|1 < ¢ <k} are the nature choices associated t@vhich have the same reward function

asa), andgq, ..., ¢ are the relative conditions (represented bydbservability axioms The gen-

erated strategy is a conditional plan, that is, a cascade of if-then-else statements, where each possible
stochastic action execution is considered.

INFSYS RR 1843-04-02 7

4. Nondeterministic first program action (choice of ageitt

DoG(choice(a: ai|...|ay);p, s, h,m,v,pr) =g
3mi, vi, pri: Ny DoG(azaqi; p, s, h, w3, vi, pry) A
utility (v, pry,) = max {utility (v;, pr;) | 1 €{1,...,n}} A
T=7E ANV=0 N\ pr=Dpry

Given several possible actions for agentthe best action is the one where the action execution has
the best utility.

5. Nondeterministic first program action (choice of opponent

DoG/(choice(o: o1|...|om);p, s, h, 7,0, pr) =gef
3y, vj, pr: /\;n:1 DoG(0:05;p, 8, h, mj,v5, prj) A
7w =1if 11 then 7 else if 15 then 75 ...
else if ¢, then 7, A
utility(vy, pry) = min {utility(vj, pr;) | j€{1,...,m}} A
V=v N\ pr=pry

Informally, agenta assumes a rational behavior @f which is connected to its minimal reward (we
consider a zero-sum setting). Thigs are the conditions (defined by tlobservability axiomsthat
agenta has to test to observe the choice of opponent

6. Nondeterministic first program action (choice of batland o):

DoG(choice(a: ay|...|ay)||choice(o: o1]...|on);
Py 8, by 0, pT) =ger 3§, Vigy DTy s Tas To':
Niz1 NiZy DoG(a:ai|| 0:bji p, s, h, azail|0:bj; i, vi g, prs ;) A
(Ta, o) = selectNash({r; j = utility(v; j, pr; ;) | 1,5}) A
T ="7q||To;if $1A1 then 7 1 else if poA); then oy ...
else if ¢, Ay, then 7, ., A
U= 3000 20 Vi s malai) - To(05) A
pr= Z?:l Z;n:l prig - ma(a;) - 7"-O(Oj)

Intuitively, we compute a Nash strategy by finite horizon value iteration for Markov games [4]. For
each possible pair of action choices, the optimal strategy is calculated. Then, a Nash strategy is locally
extracted from a matrix game by using the functiefect Nash. Here,r, andr, are probability dis-
tributions over{ay, ..., a,} and{o,..., 0y}, respectively. Moreover); and¢; are the conditions
defined by thebservability axiomso observe what and o, respectively, have actually executed.

7. Test action:
DoG(¢?;p, s, h,m,v,pr) =get ¢[s] AN DoG(p,s,h,m,v,pr)V
—pls| A\m=Stop N\v=0Apr=0

8. The semantics of nondeterministic iterations, conditionals, while loops, procedures, argument selec-
tion, and associate sequential composition is defined in the standard way.

8 INFSYS RR 1843-04-02

3.4 Representation and Optimality Results

The following result shows that every zero-sum two-player Markov game can be represented in GTGolog,
and thatDo G computes one of its finite-horizon Nash equilibria and its expected finite-step reward.

Theorem 3.1 LetG = (S, A, O, P, R,) be a zero-sum two-player Markov game, anddet 0 be a horizon.
Then, there exists an action thea#yl’, an optimization theory)T', and a GTGolog program relative to
them such thaff = (7,4, 7o) is @ Nash equilibrium foiGG, where7y (s, h) =7, k€ {a, o}, is given by
DoG(p, s, h+1,74||m0; ©,v, pr) for everys € S andh € {0, ..., H}. Furthermore, for everyd >0 and
s€ S, itholds thatG(H, s, Ta, 7o) = v is given byDoG(p, s, H+1, 74 ||70; 7', v, pr).

Proof. The background action theoyT' comprises a fluenttate(s, sit), which associates with every
situation sit a states € S (such that the set of all statés partitions the set of all situations into equiv-
alence classes), and one deterministic actigrior every states € S, which performs a transition into a
situation associated with. Every pair of actionga,0) € A x O then yields a probabilistic two-player
action, andP is encoded using, stochastic, and prob, while R, is encoded usingeward as follows.
The relationshipP(s, a, 0) = p is encoded astochastic(allo, sits, ns) and prob(allo, ns, sits) = p, while
R4 (s,a,0)=ris encoded aseward(allo, sits) =, for all situationssits associated witk. The progranp

is a sequence dff +1 constructshoice(a: a1 - - - |a,) || choice(o: o1]- - |oy,), whereA={ay,...,a,}
andO ={oy,...,0n}. Itis then easy to verify thapr =1 for every success probabilityr computed
in DoG for suchp. By induction onH > 0, it follows that DoG encodes the finite value iteration in [4].

We next show thaDoG produces optimal results. Given a finite horiz&in> 0, a strategy= for a
GTGolog progranp is obtained from the7-horizon part ofp by replacing agent and opponent choices by
single actions, and choices of both by probability distributions over their actions. The notionexgfesrted
H-step reward=(p, s, H, w), with a situations, and of a finite-horizoMNash equilibriuntan then be defined
in a straightforward way as for Markov games. The next theorem show®i@Etis optimal in the sense
that it computes a Nash equilibrium and its expected finite-step reward.

Theorem 3.2 Let AT be an action theoryD T be an optimization theory, andbe a GTGolog program
relative to them. LeDoG(p, s, h+1, 7, v, pr) for a situations andh > 0. Then,r is a Nash equilibrium,
andutility(v, pr) is its expected-step reward.

Proof. Recall that syntactically the strategiesn the output of DoG have the form of programs, except

that choices of single agents are replaced by one-player actions, and choices of both agents are replaced by
two probability distributions over the possible one-player actions of each agent. The notion of an expected
H-step reward~ for such strategies is then defined in a similar wayDag-, except that (i) we now have
strategies rather than programs in the input, (ii) no strategy is in the output, (iii) items (4) and (5) are removed
(since single-agent choices in a program have been transformed into one-player actions in a strategy), and
(iv) item (6) is adapted such that the two probability distributions are already given in a strategy and not
computed as Nash equilibria from the choices of both agents in a program. Since the expstepd
rewardG is similar to DoG as far as the computation of the outputand pr are concerned, it follows
thatutility(v, pr) is the expected-step reward of the strategycomputed byDoG. Unilaterally changing

the strategyr for one of the two agents yields a possibly lower expeétatiep reward for that agent, since

the computations in items (4), (5), and (6) are optimal (in the sense of maximum, minimum, and Nash
equilibrium, respectively). This shows thais also a Nash equilibriunia

INFSYS RR 1843-04-02 9

In general, there may be exponentially many Nash equilibria. We assume that the opponent is rational,
and thus follows a Nash equilibrium. But we do not know which one it actually uses. The following theorem
shows that this is not necessary, as far as the opponent computes its Nash half in the same way as we do.
That s, different Nash equilibria computed By G can be freely “mixed”. The result follows from a similar
result for matrix games [13] and Theorem 3.2.

Theorem 3.3 Let AT be an action theoryD T be an optimization theory, andbe a GTGolog program
relative to them. Letr and 7’ be strategies computed lyoG using different Nash selection functions.
Then,r and 7’ have the same expected finite-step reward, and the strategy obtained by mamagr’ is
also a Nash equilibrium.

Proof. Immediate by Theorem 3.2 and the result that in zero-sum matrix games, the expected reward is the
same under any Nash pair, and Nash pairs can be freely “mixed” to form new Nash pairs [13].

4 Soccer Example

We consider a slightly modified version of the soccer example by Littman [5] (see Fig. 1): The soccer field

is a4 x 5 grid. There are two players} and B, each occupying a square, and each able to do one of the
following actions on each turn: N, S, E, W, and stand (move up, move down, move left, move right, and no
move, respectively). The ball is represented by a circle and also occupies a square. A plégdirasvaer

iff it occupies the same square as the ball. The ball follows the moves of the ball owner, and we have a goal
when the ball owner steps into the adversary goal. When the ball owner goes into the square occupied by the
other player, if the other player stands, possession of ball changes. Therefore, a good defensive maneuver is
to stand where the other agent wants to go. To axiomatize this domain, we introduce theaetign, m)

®

Figure 1. Soccer Example

(agenta executesn € {N, S, E, W, stand}) and the fluentat(a, x, y, s) andhaveBall(a, s) defined by
the following successor state axioms:

at(ay, x,y,do(a, s)) = at(a, z,y,s) A a = move(a, stand)V
at(a, ',y s) A (Im).a = move(a, m) A ¢(x,y, 2,y , m);
haveBall(a, do(a, s)) = (3a’).haveBall(a/, s)A
(o =/ AN =engBall(d/a,s) Va#d AcengBall(a,a, s)).

Here,¢(z,y,2’,y’, m) represents the coordinate change dusit@ndcngBall(a, a, s) is true iff the ball
possession changes after an actioof agenta in situations. We can now defingoal(a, s) = (3z,vy)
haveBall(a, s) A at(a, z,y,s) A goalpos(a, z,y). Here, goalpos(a, z,y) represents the coordinates for

10 INFSYS RR 1843-04-02

thea adversary goal. We next define a zero-sum reward function as follows:

reward(a, s)=r =

(Fa')goal(, s) A (&'=a Ar=MV o'#aANr=— M)V
(3a’)~goal(a/, s) A haveBall(d!, s) A at(a, x,y,s) A
(Freval Pos(x,y, ") A (a=a’ Ar=r'V o/ #a Ar= —17).

Here, the reward is high\{ stands for a “big” integer), if a player scores a goal, and the reward depends
on eval Pos(z,y,r), that is, the ball-owner position (roughly,is high if the ball-owner is close to the
adversary goal), otherwise. A game session can then be described by the following Golog procedure:

proc(game, while—(3x)goal(z) do (
choice(a: move(a, E)|move(a, S)|
move(a, N)|move(a,O)|move(a, stand))||
choice(o: move(o, E)|move(o, S)|
move(o, N)|move(o, O)|move(o, stand))) : nil).

Intuitively, while a goal is not reached, the two players (agersnd opponenb) can choose a possible

move. Consider the situation in Fig. 1 whetés the agents and B the opponend. The initial situation can

be described byit(a, 3,2, .50) A at(o,2,3,50) A haveBall(a, Sp). Assuming the horizoh = 3, a strategy

m can be calculated by searching for a constructive proof Bf= (v, 7, pr) DoG(game, Sp, 3, m, v, pr).

Here, the maximal reward is achieved by following the pure stratetipat leads the ageitto score a goal

after executing three timesove(a, O). Note that if we considett(o, 1, 3, Sp) as the initial position ob,

then any pure strategy af can be blocked by and the only solution is a randomized strategy. Fliee
procedure introduced above represents a generic soccer game. However, more specialized game playing
behavior can also be written. For instance, the agenbuld discriminate game situatiods where the

game can be simplified (that is, possible agent and/or opponent behaviors are restricted):

proc(game’, while—(3x)goal(z) do
(if ?7®;: schema; else (if 7®q: schemas else game)): nil).

For example, consider an attacking ball owner, which is closer to the opponent’s goal than the opponent
(thatis,®(s) = (3z,y, 2", y) at(a,z,y, s) Nat(o,2’,y’, s) Az’ > x). In this situation, since the opponent is
behind, the best agent strategy is to move quickly towards the goal. This strategy can be encoded as a Golog
programschema’. Note thatgame’ lies between a specification of the game rules and a sketchy denotation

of the agent strategy. This is in the same spirit of a standard Golog program, which can balance the tradeoff
between a planner and a deterministic program: GTGolog allows for the specification of a partial agent
strategy, which can be optimally completed once interpreted.

5 Teams

We now generalize to the case where we have two competing teams, rather than only two competing agents.
Every team consists of a set of cooperating agents. Hence, all the members of every team have the same
reward, while the rewards of two members of different teams are zero-sum. Formally, we assume two teams
a ando, wherea = (aq, .. ., a,) consists of > 1 agentsa, . . ., a,, while 6 = (o1, ..., 0,,) consists of

m > 1 opponent agentsq, ..., 0,,. A one-team actions the parallel combination of at most one action

for each member of one of the two teamstwo-team actions either a one-team acti@nfor teama, or a
one-team actioh for teama, or two parallel one-team actioad b, one for each team.

INFSYS RR 1843-04-02 11

We then easily extend the presented GTGolog for two competing agents to the case of two competing
teams of agents, by using two-team actions, rather than two-player actions. Then, a one-agent choice of the
form choice(a: a1|...|ax) turns into a team choicéhoice(a;: a;1|...|a;x,) forie{1,...,n}, which
is written aschoice(a: di|...|dx). Thus, in the one-agent choice, rather than a basic actiome choose
a combined actio@;, which consists of at most one basic action for each member of thedearhile in
the two-agent choice, rather than one probability distribution over the possible actions of each agent, we
choose at most one distribution over the possible actions of each member of the two teams.

In general, every team has several options for how to act optimally, and two such options cannot be
“freely” mixed for different team members. It is thus necessary that there is some form of coordination to
agree on one common optimal strategy inside a team (see e.g. [1] for coordination in multi-agent systems).
We assume that the coordination is done by centrally controlling a team. Alternatives are either allowing for
local communication between team members, or having a total order on optimal strategies, which allows the
team members to independently select a common preferred optimal strategy.

6 Implementation

We have implemented a GTGolog interpreter for two competing agents, where we make use of linear pro-
gramming to calculate the Nash equilibrium at each choice step. The interpreter is implemented as a con-
straint logic program in Eclipse 5.7 and uses the eplex library to define and solve the linear programs for the
Nash equilibria. Similarly as for standard Golog, the interpreter has been obtained by translating the rules
of Section 3 into Prolog clauses.

6.1 GTGolog Interpreter
The interpreter code is as follows.

%% A game-theoretic Golog interpreter.

lib(eplex).
- eplex_instance(ep).

- set_flag(print_depth,100).

- nodbgcomp.

- dynamic(proc/2). % Compiler directives.
- set_flag(all_dynamic, on).

- op(800, xfy, [&]). % Conjunction

- op(850, xfy, [v]). % Disjunction

- op(870, xfy, [=>]). % Implication

- op(880,xfy, [<=>]). % Equivalence

- op(950, xfy, []. % Action sequence.

- op(960, xfy, [#]). % Nondeterministic action choice.

%%%%%%%%%% %% %% Matrix game: computing Nash equilibria in eplex.

selectNash(StrA, StrO, UtMatrix,Cost) :-
nash_ag(UtMatrix,StrA,V,Cost),
traspMatrix(UtMatrix, TUtMatrix),
nash_ag(TUtMatrix,StrO,V1,Costl).

12

nash_ag(MatrixRew,ListVar,V,Cost) :-
ep: (sum(Listvar) $= 1),
gtzeroCnst(ListVar),
systemRew(MatrixRew,ListVar,V),
ep: eplex_solver_setup(max(V)),
ep: eplex_solve(Cost), get_solution(ListVar), ep: eplex_cleanup.

nash_opp(ListRew,ListVarO,V,Cost) :-
ep: (sum(ListvarO) $= 1),
gtzeroCnst(ListVarO),
ep: eplex_solver_setup(min(V)),
ep: (ListRew * ListVarO $=< V),
ep: eplex_solve(Cost), get_solution(ListVarO), ep: eplex_cleanup.

systemRew([ListRew|MatrixRew],ListVar,V) :-
ep: (ListRew * ListVar $>= V),
systemRew(MatrixRew,ListVar,V).
systemRew([], ListVar, V).

gtzeroCnst([]).
gtzeroCnst([X|L]) :- ep: (X $>=0), gtzeroCnst(L).

prodM([],DistA,[]).

prodM([L|MatrixRew],DistA,[E|VectorRew]) :-
prodV(L,DistAE), prodM(MatrixRew,DistA,VectorRew).

prodV((],[],0).

prodV([X|L],[Y|M],P) :- prodV(L,M,P1), P is P1 + X * Y.

get_solution(ListVar) :-
ListVar
Listvar

%% Matrix transposition.

selectLine([],[.[D)-

selectLine([X|LL,[[X|L1]|M1],[L1] M2]) :-
selectLine(L,M1,M2).

traspMatrix([[]|L],[])-
traspMatrix(M,[L|MT]) :- selectLine(L,M,M1), traspMatrix(M1,MT).

%%%%%%%%%%%%%% doG

doG(P, S, 0, Pi, V, Pr) :- Pi

=nqil V=0, Pr = 1.
doG(nil, S, H,nilLlV,Pr) :- V = 0, Pr =

1.
%% Sequence
doG((A : B) : C,S,H,Pi,V,Pr) :- doG(A : (B : C),S,H,PiV,Pr).

doG(A : C, S, H, Pi, V, Pr) :- concurrentAction(A),

(poss(A,S), H1 is H - 1, doG(C, do(A,S), H1,Pi1,V1,Prl), agent(Aqg),

reward(Ag,R,A,S),
seq(A, Pil,Pi), V is V1 + R, Pr = Prl;

[AIL], ep: eplex_var_get(A,typed_solution,A), get_solution(L).

INFSYS RR 1843-04-02

INFSYS RR 1843-04-02

not poss(A,S), Pi = stop, V = 0, Pr = 0).
doG(A : B, S, H, Pi, V,Pr) :- stochastic(A),
(not poss(A,S), Pi = stop, V = 0, Pr = 0;
poss(A,S), nChoice(A,C), doGAux(A,C,B,S, H,Pi1,V,Pr), seq(A, Pil,Pi)).
doG(A : B,S, H,Pi,R,Pr) :- proc(A,C), doG(C : B, S, H, Pi,R,Pr).
%% Nondeterministic choice of argument.
doG(pi(V,E) : B, S, H, Pi,R,Pr) :- sub(Vv,_,E,E1l), doG(E1l : B, S, H, Pi, R,Pr).

%% Test

doG(?(T) : A, S, H, Pi, R, Pr) :- holds(T,S), !, doG(A, S, H, Pi, R, Pr) ;

Pi = stop, V = 0, Pr = 0. % Program can’t continue.

% Create a leaf.
%% Conditional

doG(if(T,A,B) : C,S, H, Pi, R, Pr) :- holds(T,S), !, doG(A : C, S, H, Pi,R,Pr) ;
doG(B : C, S, H, Pi, R, Pr).

%% Loop

doG(while(T,A) : B, S, H, Pi, R, Pr) :- holds(T,S), !,
doG(A : while(T,A) : B, S, H, Pi,R,Pr) ;
doG(B, S, H, Pi, R, Pr).

%% Agent choice

doG([choice(Ag,C1)] : E, S, H, Pi,R, Pr) :-
agent(Ag), doMax(C1,E, S, H, Pi,R, Pr);
opponent(Ag), doMin(C1,E, S, H, Pi,R, Pr).

doG([choice(Agl,C1), choice(Ag2,C2)] : E, S, H, Pi,R, Pr) :-
agent(Agl), opponent(Ag2), doMinMax(C1,C2, E, S, H, Pi,R, Pr);
agent(Ag2), opponent(Agl), doMinMax(C2,C1, E, S, H, Pi,R, Pr).

doMinMax(C1,C2,E, S, H, Pi,R, Pr) :-
doMatrix(C2,C1, E, S, H, PiMatrix,RMatrix,UtMatrix, PrMatrix),
genListvar(C1,C2,StrA,StrO),
selectNash(StrA, StrO, UtMatrix, R),
probNash(StrA,StrO,PrMatrix,Pr), strNash(C1,C2,StrA, StrO, PiMatrix, Pi).

doMatrix([], B, E, S, H, [LIL0.D)-
doMatrix([A|L], B, E, S, H, [PiLine| PiSubMatrix],[RLine | RSubMatrix],
[UtLine| UtSubMatrix], [PrLine |[PrSubMatrix]) :-
doLine(A, B, E, S, H, PiLine,RLine,UtLine,PrLine),
doMatrix(L,B, E, S, H, PiSubMatrix, RSubMatrix, UtSubMatrix, PrSubMatrix).

doLine(All, E, S, H, [.0.0.0)-

doLine(A,[BIL], E, S, H, [Pi|PiM],[R|RM],[Ut|UtM], [Pr|PrM]) :-
doG([AB] : E, S, H, Pi1,R,Pr), seq([A,B],Pi,Pil),
doLine(A,L,E, S, H, PiM,RM,UtM,PrMm),
utility(Ut, R, Pr).

13

14

doMax([Al.E, S, H, Pi,R, Pr) :- doG([A] : E, S, H, Pi, R, Pr),.
doMax([AILLLE, S, H, Pi,R, Pr) :-
doG([A] : E, S, H, Pi1,R1, Prl),
doMax(L,E, S, H, Pi2,R2, Pr2), utility(Utl, R1, Prl),
utility(Ut2, R2, Pr2),
(Utl >= Ut2, Pi = PIil,

= R1, Pr
Utl < Ut2, Pi = Pi2,

R2, Pr

R = = Pr1;
R = = Pr2).
doMin([A],E, S, H, Pi,R, Pr) :- doG(A : E, S, H, Pi,R, Pr).
doMin([A|L,E, S, H, Pi,R, Pr) :- not L = [],
doG(A : E, S, H, Pi1,R1, Prl),
doMax([A|LL,E, S, H, Pi2,R2, Pr2), utility(Utl, R1, Prl),
utility(Ut2, R2, Pr2),
(Ut2 >= Utl, Pi =

= R1, Pr
ut2 < Utl, Pi =

Pil, R = ,
Pi2, R = R2, Pr
%%%%%%%%%% %% %%

doGAux(A,[],B,S, H,[],0,0).

doGAux(A,[C1|LC],B, S, H, Pi,V,Pr) :-
doG(C1 :B, S, H, Pi1,V1,Prl),
doGAux(LC,B, S, H, Pi2,v2,Pr2),
prob(C1,A,S,Pr3),Pi = if(obsNature(A,C1),Pil1,Pi2),
Pr is Pr1 * Pr3 + Pr2,
Vis V1l * Prl * Pr3 + V2 * Pr2.

prob(C,A,S,P) :- choice(A,C), poss(C,S), !, probO(C,A,S,P) ; P = 0.0.

utility(Ut,R,Pr) :- Ut is R * Pr.
stochastic(A) :- nChoice(A,N),
%%%09%6%%%% %% %% %%

probNash(StrA,StrO,PrMatrix,Pr) :-
prodM(PrMatrix, StrA,PrLine), prodV(PrLine, StrO, Pr).

strNash(C1,C2,StrA, StrO, PiMatrix, Pi) :-
genNashStrategy(C1,C2,PiMatrix,Pil),
Pi = alea([[C1,StrA] ,[C2, StrO]], Pil).

genNashStrategy(LA,[O], [PiL],Pi) :- genNashStrategyl(O, LA, PiL, Pi),.

genNashStrategy(LA,[O|CO], [PiL | PiMatrix],Pi) :-
genNashStrategy1(O, LA, PiL, Pi2),
genNashStrategy(LA, CO, PiMatrix,Pi3),
Pi = if(obsChoice(0),Pi2,Pi3).

genNashStrategy1(O,[A],[Pi],Pi):-!.
genNashStrategy1(O,[A|LA],[Pi1|PiL], Pi) :-

genNashStrategy1(O, LA, PiL, Pi2), Pi = if(obsChoice(A),Pil,Pi2).

genListVar([],[1,0.0)-

genListVar([],[X2|LC2],[],[01|StrO]) :- genListVar([],LC2,[],StrO).
genListVar([X1|LC1],[,[AL|StrAL[l) :- genListVar(LC1,[],StrA,[).
genListVar([X1|LC1],[X2|LC2], [Al|StrA], [O1]|StrO]) :-

INFSYS RR 1843-04-02

INFSYS RR 1843-04-02

genListVar(LC1,LC2,StrA,StrO).
%% sub(Name,New,Term1,Term2). Term2 is Terml with Name replaced by New.

sub(X1,X2,T1,T2) :- var(Tl), T2 = T1.

sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.

sub(X1,X2,T1,T2) :- not T1 = X1, T1 =.[F|L1], sub_list(X1,X2,L1,L2),
T2 =.[F|L2].

sub_list(X1,X2,[1.[D).

sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2), sub_list(X1,X2,L1,L2).

%% The holds predicate implements the revised Lloyd-Topor
%% transformations on test conditions.

holds(P & Q,S) :- holds(P,S), holds(Q,S).

holds(P v Q,S) :- holds(P,S); holds(Q,S).

holds(P => Q,S) :- holds(-P v Q,S).

holds(P <=> Q,S) :- holds((P => Q) & (Q => P),S).
holds(-(-P),S) :- holds(P,S).

holds(-(P & Q),S) :- holds(-P v -Q,S).

holds(-(P v Q),S) :- holds(-P & -Q,S).

holds(-(P => Q),S) :- holds(-(-P v Q),S).

holds(-(P <=> Q),S) :- holds(-(P => Q) & (Q => P)),S).
holds(-all(V,P),S) :- holds(some(V,-P),S).

holds(-some(V,P),S) :- not holds(some(V,P),S). % Negation
holds(-P,S) :- isAtom(P), not holds(P,S). % by failure.
holds(all(V,P),S) :- holds(-some(V,-P),S).

holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

%% The following clause treats the holds predicate for non fluents,
%% including Prolog system predicates.

holds(A,S) :- restoreSitArg(A,S,F), F ;
not restoreSitArg(A,S,F), isAtom(A), A.

seq(APil, A : Pil).

isAtom(A) :- not (A = -W ; A = (W1 & W2) ; A = (W1l => W2) ;
A= (W1 <=>W2); A= (Wlv W2 ,; A =someXW); A = all(XW)).

restoreSitArg(poss(A),S,poss(A,S)).

concurrentAction([A | C]) :- not A = choice(_,_).

6.2 Soccer Example

The Soccer Example of Section 4 can be implemented by the following Prolog program
%% Soccer Example

agent(a). opponent(b).

%% Actions

poss(move(Ag,X,Y),S) - X =0 ;Y = 0.

16 INFSYS RR 1843-04-02

poss(C,S) :- allPoss(C,S).
allPoss([],S).
allPoss([A | R],S) :- poss(A,S), allPoss(R,S).

%% Fluents

at(Ag,X,Y,do(C,S)) :-
at(Ag, X, Y, S), not member(move(Ag,X1,Y1),C);
at(Ag, X1, Y1, S), member(move(Ag,Z,T),C), X is Z + X1, Y is T + Y1.

haveBall(Ag,do(C,S)) :- (agent(Ag);opponent(Ag)),
(haveBall(Ag,S), not looseBall(Ag,C,S);
haveBall(Agl1,S), not Agl = Ag, looseBall(Agl,C,S)).

looseBall(Agl,C,S) :-
(agent(Agl), opponent(Ag2); agent(Ag2), opponent(Ag2)),
at(Agl1,X,Y,S),
at(Ag2,X1,Y,S),
at(Ag2,X1,Y,do(C,S)),
at(Ag1,X1,Y,do(C,S)).

%% Reward
goal(Ag,S) :- haveBall(Ag,S), at(Ag,X,Y,S), goalPos(Ag,X,Y).

reward(Ag,Rw,A,S) :- goal(Agl,do(A,S)),
(Agl = Ag, Rw is 1000; not Agl = Ag, Rw is -1000),
haveBall(Agl,do(A,S)), at(Agl,X,Y,do(A,S)), evalPos(Agl,X,Y,R),
(Agl = Ag, Rw is R ; not Agl = Ag, Rw is -R).

evalPos(Ag,X,Y,R) :-
Ag = b, (X >0,X<7,!, R is X; R is 0);
Ag = a, (X >0,X<7,!, R is 6-X; R is 0).

3.
3.

goalPos(a,0,Y) :- Y
goalPos(b,6,Y) :- Y

2, Y
2, Y

For example, consider an initial situaticfy, where agent is in position(2, 3) and has the ball, and
agentb is in position(1, 3):

at(a,2,3,s0). at(b,1,3,s0). haveBall(a,s0).

Consider then the following program schema, where first ager@n move by eithe(—1,0) or (0, —1),
while agenth can move by eithef0, —1) or (0, 0), and then agent can move by eithef—1,0) or (0, —1),
while agenth can move by eithef0, 0) or (0, —1), and finally agent moves by(—1, 0):

proc(schema,
[choice(a,[move(a,-1,0),move(a,0,-1)]),choice(b,[move(b,0,-1),move(b,0,0)])]:
[choice(a,[move(a,-1,0),move(a,0,-1)]),choice(b,[move(b,0,0),move(b,0,-1)])]:
[move(a,-1,0)]).

Informally, the agent and the opponent are facing each other. The former has to perform a dribbling in order
to score a goal, while the latter can try to guess the agent’'s move in order to change the ball possession. This
action requires a mixed strategy, which can be generated by the following query:

doG(schema:nil,s0,H,Pi,R,Pr).

INFSYS RR 1843-04-02 17

The computed results are as follows (whelea is a construct representing the probability distribution
on possible choices, arnild encodes a standard if-then-else statement):

Pi = alea([[[move(a,-1,0),move(a,0,-1)],[0.495785391289137,0.504214608710863]],
[[move(b,0,-1),move(b,0,0)],[0.50371686477334,0.49628313522666]]],
if(obsChoice(move(b,0,-1)),
if(obsChoice(move(a,-1,0)),
alea([[[move(a,-1,0),move(a,0,-1)],[0.0,1.0]],
[[move(b,0,0),move(b,0,-1)],[0.0,1.0]]],
if(obsChoice(move(b,0,0)),
if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil),
if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil))),
alea([[[move(a,-1,0),move(a,0,-1)],[0.00592300098716692,0.994076999012833]],
[[move(b,0,0),move(b,0,-1)],[0.989141164856861,0.0108588351431392]]],
if(obsChoice(move(b,0,0)),
if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil),
if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil)))),
if(obsChoice(move(a,-1,0)),
alea([[[move(a,-1,0),move(a,0,-1)],[0.0,1.0]],
[[move(b,0,0),move(b,0,-1)],[0.0,1.01]],
if(obsChoice(move(b,0,0)),
if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil),
if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil))),
alea([[[move(a,-1,0),move(a,0,-1)],[1.0,0.0]],
[[move(b,0,0),move(b,0,-1)],[0.0,1.0]]],
if(obsChoice(move(b,0,0)),
if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil),
if(obsChoice(move(a,-1,0)),
[move(a,-1,0)]:nil,
[move(a,-1,0)]:nil))))))

R = 507.26518401539317

Pr = 1.0
Yes (0.27s cpu, solution 1, maybe more)

The above combined strategy yields the following two single-agent strategies for agas:

%% Extracted strategy for agent a:

[move(a,-1,0),move(a,0,-1)]:[0.495785391289137,0.504214608710863];
if obsChoice(move(a,-1,0)) then move(a,0,-1)
else if obsChoice(move(b,0,-1))

18 INFSYS RR 1843-04-02

then [move(a,-1,0),move(a,0,-1)]:[0.00592300098716692,0.994076999012833]
else move(a,-1,0);
move(a,-1,0).

%% Extracted strategy for agent b:

[move(b,0,-1),move(b,0,0)]:[0.50371686477334,0.49628313522666];

if obsChoice(move(b,0,-1)) and obsChoice(move(a,0,-1))
then [move(b,0,0),move(b,0,-1)]:[0.989141164856861,0.0108588351431392]
else move(b,0,-1);

nil.

7 Summary and Outlook

We have presented the agent programming language GTGolog, which integrates explicit agent programming
in Golog with game-theoretic multi-agent planning in Markov games. It is a generalization of DTGolog to
a multi-agent setting, where we have two competing single agents or two competing teams of agents. The
language allows for specifying a control program for a single agent or a team of agents in a high-level logical
language. The control program is then completed by an interpreter in an optimal way against another single
agent or another team of agents, by viewing it as a generalization of a Markov game, and computing a Nash
strategy. We have illustrated the usefulness of this approach along a robotic soccer example. We have also
described a prototype implementation of a GTGolog interpreter for the case of two competing agents.

An interesting topic of future research is to explore how the presented GTGolog framework can be
generalized to also allow for partial observability.

References

[1] C. Boutilier. Sequential optimality and coordination in multiagent systemsPrdeeedings IJCAI-
1999 pp. 478-485. Morgan Kaufmann, 1999.

[2] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent program-
ming in the situation calculus. roceedings AAAI/IAAI-200@p. 355-362. AAAI Press / MIT Press,
2000.

[3] A. Finzi and F. Pirri. Combining probabilities, failures and safety in robot controPrsceedings
IJCAI-200] pp. 1331-1336. Morgan Kaufmann, 2001.

[4] M. Kearns, Y. Mansour, and S. Singh. Fast planning in stochastic gamé&sodredings UAI-2000
pp. 309-316. Morgan Kaufmann, 2000.

[5] M. L. Littman. Markov games as a framework for multi-agent reinforcement learningrdceedings
ICML-1994 pp. 157-163. Morgan Kaufmann, 1994.

[6] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of Artificial Intelli-
gence. InMachine Intelligencevolume 4, pp. 463-502. Edinburgh University Press, 1969.

[7] G. Owen.Game Theory: Second EditioAcademic Press, 1982.

INFSYS RR 1843-04-02 19

[8] D. Poole. The independent choice logic for modelling multiple agents under unceritityintell.,
94(1-2):7-56, 1997.

[9] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programmitigey,
1994,

[10] R. Reiter. The frame problem in the situation calculus: A simple solution (sometimes) and a complete-
ness result for goal regression. Awtificial Intelligence and Mathematical Theory of Computation:
Papers in Honor of John McCarthpp. 359-380. Academic Press, 1991.

[11] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical
SystemsMIT Press, 2001.

[12] J.van der WalStochastic Dynamic Programmingplume 139 oMathematical Centre Tractdlorgan
Kaufmann, 1981.

[13] J. von Neumann and O. Morgensterithe Theory of Games and Economic Behavidtrinceton
University Press, 1947.

