Infrastructural support for data dependencies
In data-centered software systems

Lieven Desmet, Frank Piessens, Wouter Joosen
DistriNet, Dept. of Computer Science, Katholieke Universiteit Leuven

Lieven.Desmet@cs.kuleuven.ac.be

1 Introduction

The identification of key concerns is crucial for a good
application of the separation-of-concerns principle [5, 3].
However, an exhaustive list of all important non-functional
concerns and the correct decomposition of software into
those concerns is still an open question. Moreover, we be-
lieve that some of the important key concerns are applica-
tion domain or software architecture specific.

Therefore, we argue that in order to provide better infras-
tructural support, the infrastructure must take into account
this architectural correlation. The infrastructure must pro-
vide explicit support for describing and enforcing implicit
application information, that is specific to the software ar-
chitecture.

In this paper, we illustrate this idea for the concern of
data dependencies in data-centered software systems.

2 Data flow dependencies

In the data-centered architectural style [6], a system con-
sists of a central data structure (representing the state of the
system) and a set of separate components interacting with
the central data store. The components of a data-centered
software system describe a required and provided dataset,
specifying the set of data that a component fetches from or
puts onto the shared repository. A correct composed data-
centered application is a collection of separate components
and a shared repository, with respect to functional data de-
pendencies: every required data item of a component is pro-
vided by another component by means of the shared repos-
itory.

Figure 1 illustrates a simple, servlet-based [4, 2] e-
commerce web application. Three different services are
identified within the application: adding a product item to
the personal shopping basket, the payment of the shopping
order and searching through the website. Each box repre-
sents a functional task implemented as a servlet, and the ser-
vices are pipe-and-filter compositions of several indepen-
dent tasks. The functional data dependencies are depicted
by dotted lines. For each website user, for example, a per-
sonal shopping basket is saved at server-side, in the session

display
new
basket

retrieve
item
information,

process
add to
basket

add-to-basket
command

display
error
page

basket

order
process
order
ayment

display
payment
result

prepare
basket
order

process
basket
order

pay
command

results
retrieve display
search scarch que search
command for pattern result

Figure 1: A small e-commerce web application

scope of the shared repository. The personal basket is cre-
ated at a user’s first visit and it is used by three different
servlets, entitled in the figure as ’process add to basket’,
"display new basket” and ’prepare basket order’.

Besides functional data dependencies, also non-
functional requirements on the dataflows may exist. In other
words extra constraints on the dataflows through the shared
repository may be expressed. These constraints can address
for instance the authenticity of the dataflow, confidentiality
or synchronization. For instance, in order to prevent race
conditions, the composed application needs also extra syn-
chronization support for the shopping basket (figure 2(a)).

Also more general constraints, such as splitting up the
shared repository in several disjunct logical repositories, or
protecting the repository against name clashes between sev-
eral dataflows are possible extra composition requirements
in data-centered applications. For example, within the pay-
ment service, two dataflow dependencies are present. Since
the servlets of this service are developed separately (e.g. the
payment component is typically a third-party component),
a conflict exists in the naming of the shared data. There-
fore, extra support is needed to prevent the name clash (fig-
ure 2(b)).

From our point of view, data dependencies should be ex-
plicitly modelled by the software composer in data-centered
application to enforce correctness. Furthermore, data de-
pendencies should be clearly separated from the core func-
tionality in order to improve reusability, adaptability and



synchronization name clash

= -

(a) synchronization (b) name clash

Figure 2: Data dependency constraints

manageability. In the following section, appropriate infras-
tructural support for data dependencies is outlined.

3 Infrastructural support

We believe that an infrastructure must provide explicit sup-
port for describing and enforcing implicit constraints and
dependencies. Therefore, in order to introduce specific sup-
port for implicit data dependencies, we have identified the
following approach in which three requirements can be de-
fined. Firstly, functional components within the application
need an explicit specification extension of the required and
provided data items for each component. Secondly, com-
posing an application requires a declarative policy of the
functional and non-functional data dependencies between
the components. Finally, the enforcement of this declarative
policy is needed, either at deployment time or at run-time.

Extended specification Traditionally, an operation is
syntactically and semantically specified based on the op-
eration’s name and its input and output. In order to express
data dependencies, this specification must be extended with
extra information about the data items that are provided or
required from the shared repository by the component’s op-
eration. Extending the specification with repository interac-
tions can be either done manually by the component’s de-
signer or implementor, or can be generated by tools based
on the component’s implementation.

Declarative policy The composition of an application
with a shared repository requires more than defining the
functional components within the application and the cor-
responding control flow. The application composer also
needs to define the dataflow by means of functional data
dependencies and non-functional constraints on the depen-
dencies. Moreover, to enhance adaptivity and manageabil-
ity, the dataflow should be described in a separate, declara-
tive policy.

Policy enforcement To enforce the dataflow policy at the
infrastructure, additional support is needed for controlling
the access to the shared repository. As such, the shared
repository can be extended with an enforcement engine. Al-
ternatively, a wrapper with a built-in enforcement engine

can encapsulate all access to the shared repository. The en-
forcement engine decides whether a component is allowed
or denied access to a data item on the shared repository
(functional data dependency). In addition, the enforcement
engine ensures the non-functional constraints on the consid-
ered dataflow.

In the presented approach, both functional and non-
functional data dependencies are clearly separated from
core functionality and existing specification of the different
components. Furthermore, the data dependency concern is
easily adaptable through the use of the declarative policy,
and together with the enforcement engine a high cohesion
and low coupling is achieved.

4 Current status

Currently, the approach for describing and enforcing data
dependencies has been validated in simple servlet-based ap-
plications such as the one in Figure 1. Hereby, the data
dependencies are identified as an important non-functional,
cross-cutting concern and are cleanly separated from the
core functionality. The specification and policy language
used however, is still in development.

Next to the presented case study, the approach of mak-
ing dataflow dependencies explicit has also been validated
in the component-based protocol stack framework DiPS. In
DiPS [1] functional components are chained into a pipe-
and-filter structure and components can share data anony-
mously along the pipe by means of a shared repository.
Similar results were achieved within this case study.

Future work will expand the current approach to other
implicit constraints and dependencies. Target tracks are the
study of dataflow dependencies in Message Driven Beans,
and implicit invocations in event-based systems.

References

[1] K.U.Leuven DistriNet Research Group. DiPS home
page. http://www.cs.kuleuven.ac.be/cwis/research/-
distrinet/projects/DIPS/.

[2] J. Hunter and W. Crawford. Java Serviet Programming.
O’Reilly, second edition, April 2001.

[3] Walter L. Hirsch and Cristina Videira Lopes. Separation of
concerns. Technical Report NU-CCS-95-03, College of Com-
puter Science, Northeastern University, Boston, MA, Febru-
ary 1995.

[4] Java servlet technology. http://java.sun.com/products/serviet/.

[5] D. L. Parnas. On the criteria to be used in decompos-
ing systems into modules. Communications of the ACM,
15(12):1053-1058, 1972.

[6] M. Shaw and D. Garlan. Software Architecture - Perspectives
on an emerging discipline. Prentice-Hall, 1996.



