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ien
es, University of Texas, 1 University Station C0500, Austin, TX 78712-0233Abstra
tQuery by Committee is an e�e
tive approa
hto sele
tive sampling in whi
h disagreementamongst an ensemble of hypotheses is usedto sele
t data for labeling. Query by Bag-ging and Query by Boosting are two pra
-ti
al implementations of this approa
h thatuse Bagging and Boosting, respe
tively, tobuild the 
ommittees. For e�e
tive a
tivelearning, it is 
riti
al that the 
ommittee bemade up of 
onsistent hypotheses that arevery di�erent from ea
h other. De
orateis a re
ently developed method that dire
tly
onstru
ts su
h diverse 
ommittees using ar-ti�
ial training data. This paper introdu
esA
tive-De
orate, whi
h uses De
orate
ommittees to sele
t good training examples.Extensive experimental results demonstratethat, in general, A
tive-De
orate outper-forms both Query by Bagging and Query byBoosting.1. Introdu
tionThe ability to a
tively sele
t the most useful trainingexamples is an important approa
h to redu
ing theamount of supervision required for e�e
tive learning.In parti
ular, pool-based sample sele
tion, in whi
h thelearner 
hooses the best instan
es for labeling from agiven set of unlabeled examples, is the most pra
ti-
al approa
h for problems in whi
h unlabeled data isrelatively easily available (Cohn et al., 1994). A theo-reti
ally well-motivated approa
h to sample sele
tionis Query by Committee (Seung et al., 1992), in whi
han ensemble of hypotheses is learned and examplesthat 
ause maximum disagreement amongst this 
om-mittee (with respe
t to the predi
ted 
ategorization)are sele
ted as the most informative. Popular ensem-Appearing in Pro
eedings of the 21 st International Confer-en
e on Ma
hine Learning, Ban�, Canada, 2004. Copyright2004 by the authors.

ble learning algorithms, su
h as Bagging and Boost-ing, have been used to eÆ
iently learn e�e
tive 
om-mittees for a
tive learning (Abe & Mamitsuka, 1998).Meta-learning ensemble algorithms, su
h as Baggingand Boosting, that employ an arbitrary base 
lassi�erare parti
ularly useful sin
e they are general purposeand 
an be applied to improve any learner that is ef-fe
tive for a given domain.An important property of a good ensemble for
ommittee-based a
tive learning is diversity. Only a
ommittee of hypotheses that e�e
tively samples theversion spa
e of all 
onsistent hypotheses is produ
tivefor sample sele
tion (Cohn et al., 1994). De
orate(Melville & Mooney, 2003) is a re
ently introdu
edensemble meta-learner that dire
tly 
onstru
ts diverse
ommittees by employing spe
ially-
onstru
ted arti�-
ial training examples. Extensive experiments havedemonstrated that De
orate 
onstru
ts more a

u-rate ensembles than both Bagging and AdaBoostwhen training data is limited. De
orate has alsobeen su

essfully used for the task of a
tive featurea
quisition (i.e., given a feature a
quisition budget,identify the instan
es with missing values for whi
ha
quiring 
omplete feature information will result inthe most a

urate model) (Melville et al., 2004).This paper presents a new approa
h to a
tive learn-ing, A
tive-De
orate, whi
h uses 
ommittees pro-du
ed by De
orate to sele
t examples for labeling.Extensive experimental results on several real-worlddatasets show that using this approa
h produ
es sub-stantial improvement over using De
orate with ran-dom sampling. A
tive-De
orate requires far fewerexamples than De
orate, and on average also pro-du
es 
onsiderable redu
tions in error. In general, ourapproa
h also outperforms both Query by Bagging andQuery by Boosting.2. Query by CommitteeQuery by Committee (QBC) is a very e�e
tive a
tivelearning approa
h that has been su

essfully applied to



di�erent 
lassi�
ation problems (M
Callum & Nigam,1998; Dagan & Engelson, 1995; Liere & Tadepalli,1997). A generalized outline of the QBC approa
his presented in Algorithm 1. Given a pool of unla-beled examples, QBC iteratively sele
ts examples tobe labeled for training. In ea
h iteration, it generatesa 
ommittee of 
lassi�ers based on the 
urrent train-ing set. Then it evaluates the potential utility of ea
hexample in the unlabeled set, and sele
ts a subset ofexamples with the highest expe
ted utility. The labelsfor these examples are a
quired and they are transferedto the training set. Typi
ally, the utility of an exam-ple is determined by some measure of disagreement inthe 
ommittee about its predi
ted label. This pro
essis repeated until the number of available requests forlabels is exhausted.Freund et al. (1997) showed that under 
ertain as-sumptions, Query by Committee 
an a
hieve an expo-nential de
rease in the number of examples requiredto attain a parti
ular level of a

ura
y, as 
omparedto random sampling. However, these theoreti
al re-sults assume that Gibbs algorithm is used to generatethe 
ommittee of hypotheses used for sample sele
tion.The Gibbs algorithm for most interesting problems is
omputationally intra
table. To ta
kle this issue, Abeand Mamitsuka (1998) proposed two variants of QBC,Query by Bagging and Query by Boosting, where Bag-ging and AdaBoost are used to 
onstru
t the 
om-mittees for sample sele
tion. In their approa
h, theyevaluate the utility of 
andidate examples based on themargin of the example; where the margin is de�ned asthe di�eren
e between the number of votes in the 
ur-rent 
ommittee for the most popular 
lass label, andthat for the se
ond most popular label. Examples withsmaller margins are 
onsidered to have higher utility.3. A
tive-De
orateIt is bene�
ial in QBC to use an ensemble method thatbuilds a diverse 
ommittee, in whi
h ea
h hypothe-sis is as di�erent as possible, while still maintaining
onsisten
y with the training data. De
orate is anensemble method that expli
itly fo
uses on 
reatingensembles that are diverse (Melville & Mooney, 2003;Melville & Mooney, 2004). A summary of the De
-orate algorithm is provided in the following subse
-tion. We propose a variant of Query by Committee,A
tive-De
orate, that uses De
orate (in Algo-rithm 1) to 
onstru
t 
ommittees for sample sele
tion.To evaluate the expe
ted utility of unlabeled exam-ples, we also used the margins on the examples, asin Abe and Mamitsuka (1998). We generalized theirde�nition, to allow the base 
lassi�ers in the ensem-

Algorithm 1 Generalized Query by CommitteeGiven:T - set of training examplesU - set of unlabeled training examplesBaseLearn - base learning algorithmk - number of sele
tive sampling iterationsm - size of ea
h sample1. Repeat k times2. Generate a 
ommittee of 
lassi�ers,C� = EnsembleMethod(BaseLearn; T )3. 8xj 2 U , 
ompute Utility(C�; xj), basedon the 
urrent 
ommittee4. Sele
t a subset S of m examples thatmaximizes utility5. Label examples in S6. Remove examples in S from U and addto T7. Return EnsembleMethod(BaseLearn; T )ble to provide 
lass probabilities, instead of just themost likely 
lass label. Given the 
lass membershipprobabilities predi
ted by the 
ommittee, the marginis then de�ned as the di�eren
e between the highestand se
ond highest predi
ted probabilities.3.1. De
orateThis se
tion summarizes theDe
orate algorithm; forfurther details see (Melville & Mooney, 2003; Melville& Mooney, 2004). The approa
h is motivated by thefa
t that 
ombining the outputs of multiple 
lassi�ersis only useful if they disagree on some inputs (Krogh& Vedelsby, 1995). We refer to the amount of dis-agreement as the diversity of the ensemble, whi
h wemeasure as the probability that a random ensemblemember's predi
tion on a random example will dis-agree with the predi
tion of the 
omplete ensemble.De
orate was designed to use additional arti�
ially-generated training data in order to generate highly di-verse ensembles. An ensemble is generated iteratively,learning one new 
lassi�er at ea
h iteration and addingit to the 
urrent ensemble. The ensemble is initializedwith the 
lassi�er trained on the given data. The 
las-si�ers in ea
h su

essive iteration are trained on theoriginal data and also on some arti�
ial data. In ea
hiteration, a spe
i�ed number of arti�
ial training ex-amples are generated based on a simple model of thedata distribution. The 
ategory labels for these arti-�
ially generated training examples are 
hosen so asto di�er maximally from the 
urrent ensemble's pre-



di
tions. We refer to this arti�
ial training set as thediversity data. We train a new 
lassi�er on the unionof the original training data and the diversity data. Ifadding this new 
lassi�er to the 
urrent ensemble in-
reases the ensemble training error, then this 
lassi�eris reje
ted, else it is added to the 
urrent ensemble.This pro
ess it repeated until the desired 
ommitteesize is rea
hed or a maximum number of iterations isex
eeded. For this study the desired 
ommittee sizeand maximum number of iteration were set to 15 and50 respe
tively.The arti�
ial data is 
onstru
ted by randomly gener-ating examples using an approximation of the train-ing data distribution. For numeri
 attributes, a Gaus-sian distribution is determined by estimating the meanand standard deviation of the training set. For nom-inal attributes, the probability of o

urren
e of ea
hdistin
t value is determined using Lapla
e estimatesfrom the training data. Examples are then generatedby randomly pi
king values for ea
h feature based onthese distributions, assuming attribute independen
e.In ea
h iteration, the arti�
ially generated examplesare labeled based on the 
urrent ensemble. Given anexample, we 
ompute the 
lass membership probabili-ties predi
ted by the 
urrent ensemble, repla
ing zeroprobabilities with a small � for smoothing. Labelsare then sampled from this distribution, su
h that theprobability of sele
ting a label is inversely proportionalto the 
urrent ensemble's predi
tions.4. Experimental Evaluation4.1. MethodologyTo evaluate the performan
e of A
tive-De
orate,we ran experiments on 15 representative data sets fromthe UCI repository (Blake & Merz, 1998). We 
om-pared the performan
e of A
tive-De
orate withthat of Query by Bagging (QBag), Query by Boost-ing (QBoost) and De
orate, all using an ensemblesize of 15. J48 de
ision-tree indu
tion, whi
h is theWeka (Witten & Frank, 1999) implementation of C4.5(Quinlan, 1993), was used as the base learner for allmethods.The performan
e of ea
h algorithm was averaged overtwo runs of 10-fold 
ross-validation. In ea
h fold of
ross-validation, we generated learning 
urves in thefollowing fashion. The set of available training exam-ples was treated as an unlabeled pool of examples, andat ea
h iteration the a
tive learner sele
ted a sampleof points to be labeled and added to the training set.For De
orate, the examples in ea
h iteration weresele
ted randomly. The resulting 
urves evaluate how

well an a
tive learner orders the set of available ex-amples in terms of utility. At the end of the learning
urve, all algorithms see exa
tly the same training ex-amples.To maximize the gains of a
tive learning, it is bestto a
quire a single example in ea
h iteration. How-ever to make our experiments 
omputationally feasi-ble, we 
hoose larger sample sizes for the bigger datasets. In parti
ular, we used a sample size of two forthe primary dataset, and three for breast-w, soybean,diabetes, vowel and 
redit-g.The primary aim of a
tive learning is to redu
e theamount of training data needed to indu
e an a

uratemodel. To evaluate this, we �rst de�ne the target er-ror rate as the error that De
orate 
an a
hieve on agiven dataset, as determined by its error rate averagedover the points on the learning 
urve 
orresponding tothe last 50 training examples. We then re
ord thesmallest number of examples required by a learner toa
hieve the same or lower error. We de�ne the datautilization ratio, as the number of examples an a
tivelearner requires to rea
h the target error rate dividedby the number De
orate requires. This metri
 re-
e
ts how eÆ
iently the a
tive learner is using the dataand is similar to a measure used by Abe and Mamit-suka (1998).Another metri
 for evaluating an a
tive learner ishow mu
h it improves a

ura
y over random samplinggiven a �xed amount of labeled data. Therefore, wealso 
ompute the per
entage redu
tion in error overDe
orate averaged over points on the learning 
urve.As mentioned above, towards the end of the learning
urve, all methods will have seen almost all the sameexamples. Hen
e, the main impa
t of a
tive learning islower on the learning 
urve. To 
apture this, we reportthe per
entage error redu
tion averaged over only the20% of points on the learning 
urve, where the largestimprovements are produ
ed. This is similar to a mea-sure reported by Saar-Tse
hansky and Provost (2001).When 
omputing the error redu
tion of one systemover another, the redu
tion is 
onsidered signi�
ant ifthe di�eren
e in the errors of the two systems aver-aged a
ross the sele
ted points on the learning 
urveis determined to be statisti
ally signi�
ant a

ordingto paired t-tests (p < 0:05).4.2. ResultsThe data utilization of the di�erent a
tive learnerswith respe
t to De
orate is summarized in Table 1.We present the number of examples required for ea
hsystem to a
hieve the target error rate and, in paren-theses, the data utilization ratio. The smallest num-



Table 1. Data utilization with respe
t to De
orateDataset Total Size De
orate QBag QBoost A
tiveDe
orate Target Error (%)Soybean 615 492(1.00) 267(0.54) 219(0.45) 144(0.29) 6.59Vowel 891 840(1.00) - - 477(0.57) 3.81Statlog 243 81(1.00) 84(1.04) 89(1.10) 46(0.57) 19.21Hepatitis 140 39(1.00) 30(0.77) 43(1.10) 23(0.59) 16.96Primary 305 238(1.00) 202(0.85) - 164(0.69) 56.23Heart-
 273 50(1.00) 57(1.14) 41(0.82) 36(0.72) 20.97Sonar 187 125(1.00) 186(1.49) 131(1.05) 99(0.79) 18.39Heart-h 265 49(1.00) 31(0.63) 47(0.96) 39(0.80) 19.93Glass 193 118(1.00) 97(0.82) 101(0.86) 100(0.85) 27.00Diabetes 691 234(1.00) 114(0.49) 393(1.68) 201(0.86) 25.09Lymph 133 27(1.00) 40(1.48) 40(1.48) 24(0.89) 22.21Labor 51 13(1.00) 26(2.00) 19(1.46) 12(0.92) 15.14Iris 135 32(1.00) 33(1.03) 125(3.91) 30(0.94) 5.25Credit-g 900 498(1.00) 213(0.43) 243(0.49) 495(0.99) 26.36Breast-w 629 30(1.00) 45(1.50) 75(2.50) 39(1.30) 3.94No. of Wins 1 4 0 10ber of examples needed for ea
h dataset is presented inbold font. On all but one dataset, A
tive-De
orateprodu
es improvements over De
orate in terms ofdata utilization. Furthermore, A
tive-De
orateoutperforms both the other a
tive learners on 10 of thedatasets. QBag and QBoost were unable to a
hievethe target error rate on vowel ; and QBoost also failedto a
hieve the target error on primary. Further-more, on several datasets QBag and QBoost requiredmore training examples than De
orate. On aver-age, A
tive-De
orate required 78% of the numberof examples that De
orate used to rea
h the targeterror. It is important to note that De
orate itselfa
hieves the target error with far fewer examples thanavailable in the full training set, as seen by 
omparingto the total dataset sizes. Hen
e, improving on thedata utilization of De
orate is a fairly diÆ
ult task.Figure 1 presents learning 
urves that 
learly demon-strate the advantage of A
tive-De
orate. On onedataset, breast-w, A
tive-De
orate requires a fewmore examples thanDe
orate. This dataset exhibitsa 
eiling e�e
t in learning, where De
orate managesto rea
h the target error rate using only 30 of the 629available examples, making it diÆ
ult to improve on(Figure 2).Our results on error redu
tions are summarized in Ta-ble 2. The signi�
ant values are presented in bold font.We observed that on almost all datasets, A
tive-De
orate produ
es substantial redu
tions in errorover De
orate. Furthermore, on 8 of the datasets,A
tive-De
orate produ
es higher redu
tions in er-ror than the other a
tive-learning methods. Depend-ing on the dataset, A
tive-De
orate produ
es awide range of improvements, from moderate (4.16%on 
redit-g) to high (70.68% on vowel). On average,
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QBagFigure 1. Comparing di�erent a
tive learners on Soybean.A
tive-De
orate produ
es a 21.15% redu
tion inerror.5. Additional Experiments5.1. Measures of UtilityThere are two main aspe
ts to any Query by Com-mittee approa
h. The �rst is the method employed to
onstru
t the 
ommittee, and the se
ond is the mea-sure used to rank the utility of unlabeled examplesgiven this 
ommittee. Thus far, we have only 
om-pared di�erent methods for 
onstru
ting the 
ommit-tees. Following Abe and Mamitsuka (1998), we rankedunlabeled examples based on the margin of the 
om-mittee's predi
tion for the example.An alternate approa
h is to use an information theo-
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t in learning on Breast-W.Table 2. Top 20% per
ent error redu
tion over De
orateDataset QBag QBoost A
tiveDe
orateSoybean 30.50 34.17 45.84Vowel 22.65 42.09 70.68Statlog 11.31 10.34 11.43Hepatitis 12.13 16.68 19.31Primary 3.23 0.43 5.74Heart-
 15.40 19.40 12.56Sonar 1.88 8.09 16.47Heart-h 16.22 14.68 12.14Glass 10.58 16.88 15.83Diabetes 8.68 4.01 5.94Lymph 19.65 28.51 18.84Labor -2.61 12.55 36.33Iris 22.78 1.22 22.53Credit-g 9.43 6.71 4.16Breast-w 15.12 18.89 19.51Mean 13.13 15.64 21.15No. of Wins 4 3 8reti
 measure su
h as Jensen-Shannon (JS) divergen
eto evaluate the potential utility of examples (Cover &Thomas, 1991). JS-divergen
e is a measure of similar-ity between probability distributions (Gomez-Loperaet al., 2000). We 
an utilize this measure if the in-dividual 
lassi�ers in the 
ommittee provide us with
lass membership probabilities, rather than just themost likely 
lass. If Pi(x) is the 
lass probability dis-tribution given by the i-th 
lassi�er for the example x(whi
h we will abbreviate as Pi) we 
an then 
omputethe JS-divergen
e of an ensemble of size n as:JS(P1; P2; : : : ; Pn) = H( nXi=1 wiPi)� nXi=1 wiH(Pi)where wi is the vote weight of the i-th 
lassi�er in theensemble;1 and H(P ) is the Shannon entropy of the1De
orate uses uniform vote weights, whi
h are nor-

distribution P = fpj ; j = 1; : : : ;Kg de�ned as:H(P ) = � KXj=1 pj log pjHigher values for JS-divergen
e indi
ate a greaterspread in the predi
ted 
lass probability distributions,and it is zero if and only if the distributions are identi-
al. We implemented a version of A
tive-De
oratethat sele
ts the unlabeled examples with the highestJS-divergen
e. A similar measure was used for a
-tive learning for text 
ategorization by M
Callum andNigam (1998). This measure in
orporates more in-formation about the predi
ted 
lass distribution thanusing margins, and hen
e 
ould result in the sele
tionof more informative examples.To test the e�e
tiveness of using JS-divergen
e, we ranexperiments 
omparing it to using the margin mea-sure. The experiments were 
ondu
ted as des
ribedin Se
tion 4.1. Table 3 summarizes the results of the
omparison of the two measures. All the error redu
-tions are signi�
ant (p < 0:05), so we only presentthe better of the two 
olumns in bold font. In termsof data utilization, the methods seem equally mat
hed;JS-divergen
e performs better than margins on 8 of the15 datasets. However, on the error redu
tion metri
,using margins outperforms JS-divergen
e on 11 of thedatasets. The results also show, that there are datasetson whi
h JS-divergen
e and margins a
hieve the tar-get error rate with 
omparable number of examples,but the error redu
tion produ
ed by margins is higher.Figure 3 
learly demonstrates this phenomenon.
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Table 3. Comparing measures of utility: Data utilizationand top 20% error redu
tion with respe
t to De
orate.Data Utilization %Error Redu
tionDataset Margin JS Div. Margin JS Div.Soybean 144(0.29) 369(0.75) 45.84 18.67Vowel 477(0.57) 525(0.62) 70.68 63.26Statlog 46(0.57) 76(0.94) 11.43 11.52Hepatitis 23(0.59) 19(0.49) 19.31 15.90Primary 164(0.69) 212(0.89) 5.74 3.84Heart-
 36(0.72) 28(0.56) 12.56 13.97Sonar 99(0.79) 94(0.75) 16.47 16.71Heart-h 39(0.80) 38(0.78) 12.14 10.81Glass 100(0.85) 118(1.00) 15.83 10.46Diabetes 201(0.86) 150(0.64) 5.94 5.03Lymph 24(0.89) 20(0.74) 18.84 12.18Labor 12(0.92) 10(0.77) 36.33 29.77Iris 30(0.94) 41(1.28) 22.53 23.01Credit-g 495(0.99) 330(0.66) 4.16 3.91Breast-w 39(1.30) 45(1.50) 19.51 19.20Mean 0.78 0.83 21.15 17.22# Wins 7 8 11 4sure of utility produ
es substantial error redu
tions, ingeneral using margins produ
es greater improvements.Using the JS-divergen
e measure tends to sele
t ex-amples that would redu
e the un
ertainty of the pre-di
ted 
lass membership probabilities, whi
h helps toimprove 
lassi�
ation a

ura
y. On the other hand,using margins fo
uses more dire
tly on determiningthe de
ision boundary. This may a

ount for its bet-ter performan
e. For making 
ost-sensitive de
isions,it is very useful to have a

urate 
lass probability es-timates (Saar-Tse
hansky & Provost, 2001). In su
h
ases, we 
onje
ture that using JS-divergen
e 
ould bea more e�e
tive approa
h.5.2. Ensemble DiversityBy exploiting arti�
ial examples, the De
orate al-gorithm for
es the 
onstru
tion of a diverse set of hy-potheses that are 
onsistent with the training data.We believe that this ensemble diversity is the key tothe su

ess of A
tive-De
orate. We ran additionalexperiments to verify thatDe
orate does indeed pro-du
e more diverse 
ommittees than Bagging or Ada-Boost. As in (Melville & Mooney, 2004), we use thedisagreement of ensemble members with the ensem-ble's predi
tion as a measure of diversity. More pre-
isely, if Ci(x) is the predi
tion of the i-th 
lassi�erfor the label of x; C�(x) is the predi
tion of the entireensemble, then the diversity of the i-th 
lassi�er onexample x is given by:di(x) = � 0 : if Ci(x) = C�(x)wi : otherwise

Table 4. Comparing ensemble diversity: Win-loss re
ords.Number of Training Examples10 15 20 25 30De
orate vs Bagging 14-1 14-1 14-1 13-2 13-2De
orate vs AdaBoost 15-0 14-1 14-1 14-1 14-1Where wi is the vote weight of the i-th 
lassi�er. To
ompute the diversity of an ensemble of size n, on aset of examples of size m, we average the above term:1nm nXi=1 mXj=1 di(xj)This measure estimates the probability that a 
lassi�erin an ensemble will disagree with the predi
tion of theensemble as a whole.The diversity of ea
h ensemble method was evaluatedusing 10-fold 
ross-validation on all 15 datasets. Totest performan
e on varying amounts of data, ea
hsystem was evaluated on the testing data, after train-ing on in
reasing subsets of the training data. Wefo
used on points early on the learning 
urve, wherewe expe
t a
tive learning to be most e�e
tive. The re-sults (Table 4) are summarized in terms of signi�
antwin/loss re
ords; where a win or loss is only 
ountedif the di�eren
e in diversity (not a

ura
y) is deter-mined to be signi�
ant at the 0.05 level by a pairedt-test. These results 
on�rm that in most 
ases De
-orate does indeed produ
e signi�
antly more diverseensembles than Bagging or AdaBoost.5.3. Committees for Sample Sele
tion vs.Predi
tionAll the a
tive learning methods that we have des
ribeduse 
ommittees to determine whi
h examples to se-le
t. But in addition to using 
ommittees for samplesele
tion, these methods also use the 
ommittees forpredi
tion. So we are not evaluating whi
h methodsele
ts the best queries for the base learner, but whi
h
ombination of sample sele
tion and ensemble methodworks the best. The fa
t thatA
tive-De
orate per-forms better than QBag may just be testament to thefa
t that De
orate performs better than Bagging.However, we 
laim that not only does De
orate pro-du
e a

urate 
ommittees, but the 
ommittees pro-du
ed are also more e�e
tive in sample sele
tion. Toverify this, we implemented an alternate version ofA
tive-De
orate, where at ea
h iteration a 
om-mittee 
onstru
ted by Bagging is used to sele
t theexamples given to De
orate. In this way, we sep-arate the evaluation of the method used for sample



Table 5. Comparing di�erent ensemble methods for sele
-tion for A
tive-De
orate: Per
entage error redu
tion overDe
orate.Dataset Maximum Sele
t w/ Sele
t w/ Sele
t w/Train Size Bagging AdaBoost De
orateSoybean 300 18.55 17.27 27.38Glass 100 6.57 4.72 8.85Primary 200 0.2 2.46 3.75Statlog 100 -1.79 -1.18 1.73sele
tion from the method used for predi
tion. Simi-larly, we implemented a version ofA
tive-De
orateusing AdaBoost to perform the sample sele
tion.We 
ompared the three methods of sample sele
tion forDe
orate on four of the datasets on whi
h A
tive-De
orate exhibited good performan
e. We gener-ated learning 
urves as des
ribed in Se
tion 4.1. How-ever, we did not run the learning 
urve trials until allthe available training data was exhausted, sin
e the a
-tive learning methods need fewer examples to a
hievethe target error rates.The error redu
tions over De
orate averaged a
rossall the points on the learning 
urve are presented inTable 5.2 The signi�
ant error redu
tions are shownin bold. The table also in
ludes the maximum train-ing set size, whi
h 
orresponds to the last point onthe learning 
urve. The results show that, on 3 ofthe 4 datasets, using any of the ensemble sample se-le
tion methods in 
onjun
tion with De
orate pro-du
es better results than De
orate. Furthermore,De
orate 
ommittees sele
t more informative exam-ples for training De
orate than the other 
ommitteesample sele
tion methods. These trends are 
learlyseen in Figure 4. A more extensive study needs to bedone to add to these preliminary results. It would alsobe interesting to run similar experiments, usingDe
o-rate ensembles to pi
k examples for training Bagging,AdaBoost, or J48.6. Related WorkIn their QBC approa
h, Dagan and Engelson (1995)measure the utility of examples by vote entropy, whi
his the entropy of the 
lass distribution, based on themajority votes of ea
h 
ommittee member. M
Cal-lum and Nigam (1998) showed that vote entropy doesnot perform as well as JS-divergen
e for pool-basedsample sele
tion. Another re
ently developed e�e
tive
ommittee-based a
tive learner is Co-Testing (Musleaet al., 2000); however, it requires two redundant views2These results are not dire
tly 
omparable to those inTable 2.
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ActiveDecorateFigure 4. Comparing di�erent ensembles methods for se-le
ting samples for De
orate on Soybean.of the data. Sin
e most data sets do not have re-dundant views, Co-Testing has rather limited appli-
ability. Another general approa
h to sample sele
-tion is un
ertainty sampling (Lewis & Catlett, 1994);however, this approa
h requires a learner that a

u-rately estimates the un
ertainty of its de
isions, andtends to over-sample the boundaries of its 
urrentin
omplete hypothesis (Cohn et al., 1994). Finally,expe
ted-error redu
tion methods for a
tive learning(Cohn et al., 1996; Roy & M
Callum, 2001; Zhu et al.,2003) attempt to statisti
ally sele
t training exam-ples that are expe
ted to minimize error on the a
-tual test distribution. This approa
h has the advan-tage of avoiding the sele
tion of outliers whose labelingwill not improve a

ura
y on typi
al examples. How-ever, this method is 
omputationally intense, and mustbe 
arefully tailored to a spe
i�
 learning algorithm(e.g. naive Bayes); and hen
e, 
annot be used to se-le
t examples for an arbitrary learner. A
tive meta-learners like Query by Bagging/Boosting and A
tive-De
orate have the advantage of being able to sele
tqueries to improve any learner appropriate for a givendomain.7. Con
lusionA
tive-De
orate is a simple, yet e�e
tive approa
hto a
tive learning. Experimental results show that,in general, this approa
h leads to more e�e
tive sam-ple sele
tion than Query by Bagging and Query byBoosting. On average, A
tive-De
orate requires78% of the number of training examples required byDe
orate with random sampling. Additional exper-iments support the hypothesis that for small trainingsets De
orate produ
es more diverse ensembles than



Bagging or AdaBoost. We believe this in
reaseddiversity is the key to A
tive-De
orate's superiorperforman
e.Our results also show that using JS-divergen
e to eval-uate the utility of examples is less e�e
tive for improv-ing 
lassi�
ation a

ura
y than using margins. JS-divergen
e may be a better measure when the obje
-tive is improving 
lass probability estimates. This isan interesting area for future work.A
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