
Diverse Ensembles for Ative LearningPrem Melville melville�s.utexas.eduRaymond J. Mooney mooney�s.utexas.eduDepartment of Computer Sienes, University of Texas, 1 University Station C0500, Austin, TX 78712-0233AbstratQuery by Committee is an e�etive approahto seletive sampling in whih disagreementamongst an ensemble of hypotheses is usedto selet data for labeling. Query by Bag-ging and Query by Boosting are two pra-tial implementations of this approah thatuse Bagging and Boosting, respetively, tobuild the ommittees. For e�etive ativelearning, it is ritial that the ommittee bemade up of onsistent hypotheses that arevery di�erent from eah other. Deorateis a reently developed method that diretlyonstruts suh diverse ommittees using ar-ti�ial training data. This paper introduesAtive-Deorate, whih uses Deorateommittees to selet good training examples.Extensive experimental results demonstratethat, in general, Ative-Deorate outper-forms both Query by Bagging and Query byBoosting.1. IntrodutionThe ability to atively selet the most useful trainingexamples is an important approah to reduing theamount of supervision required for e�etive learning.In partiular, pool-based sample seletion, in whih thelearner hooses the best instanes for labeling from agiven set of unlabeled examples, is the most prati-al approah for problems in whih unlabeled data isrelatively easily available (Cohn et al., 1994). A theo-retially well-motivated approah to sample seletionis Query by Committee (Seung et al., 1992), in whihan ensemble of hypotheses is learned and examplesthat ause maximum disagreement amongst this om-mittee (with respet to the predited ategorization)are seleted as the most informative. Popular ensem-Appearing in Proeedings of the 21 st International Confer-ene on Mahine Learning, Ban�, Canada, 2004. Copyright2004 by the authors.

ble learning algorithms, suh as Bagging and Boost-ing, have been used to eÆiently learn e�etive om-mittees for ative learning (Abe & Mamitsuka, 1998).Meta-learning ensemble algorithms, suh as Baggingand Boosting, that employ an arbitrary base lassi�erare partiularly useful sine they are general purposeand an be applied to improve any learner that is ef-fetive for a given domain.An important property of a good ensemble forommittee-based ative learning is diversity. Only aommittee of hypotheses that e�etively samples theversion spae of all onsistent hypotheses is produtivefor sample seletion (Cohn et al., 1994). Deorate(Melville & Mooney, 2003) is a reently introduedensemble meta-learner that diretly onstruts diverseommittees by employing speially-onstruted arti�-ial training examples. Extensive experiments havedemonstrated that Deorate onstruts more au-rate ensembles than both Bagging and AdaBoostwhen training data is limited. Deorate has alsobeen suessfully used for the task of ative featureaquisition (i.e., given a feature aquisition budget,identify the instanes with missing values for whihaquiring omplete feature information will result inthe most aurate model) (Melville et al., 2004).This paper presents a new approah to ative learn-ing, Ative-Deorate, whih uses ommittees pro-dued by Deorate to selet examples for labeling.Extensive experimental results on several real-worlddatasets show that using this approah produes sub-stantial improvement over using Deorate with ran-dom sampling. Ative-Deorate requires far fewerexamples than Deorate, and on average also pro-dues onsiderable redutions in error. In general, ourapproah also outperforms both Query by Bagging andQuery by Boosting.2. Query by CommitteeQuery by Committee (QBC) is a very e�etive ativelearning approah that has been suessfully applied to



di�erent lassi�ation problems (MCallum & Nigam,1998; Dagan & Engelson, 1995; Liere & Tadepalli,1997). A generalized outline of the QBC approahis presented in Algorithm 1. Given a pool of unla-beled examples, QBC iteratively selets examples tobe labeled for training. In eah iteration, it generatesa ommittee of lassi�ers based on the urrent train-ing set. Then it evaluates the potential utility of eahexample in the unlabeled set, and selets a subset ofexamples with the highest expeted utility. The labelsfor these examples are aquired and they are transferedto the training set. Typially, the utility of an exam-ple is determined by some measure of disagreement inthe ommittee about its predited label. This proessis repeated until the number of available requests forlabels is exhausted.Freund et al. (1997) showed that under ertain as-sumptions, Query by Committee an ahieve an expo-nential derease in the number of examples requiredto attain a partiular level of auray, as omparedto random sampling. However, these theoretial re-sults assume that Gibbs algorithm is used to generatethe ommittee of hypotheses used for sample seletion.The Gibbs algorithm for most interesting problems isomputationally intratable. To takle this issue, Abeand Mamitsuka (1998) proposed two variants of QBC,Query by Bagging and Query by Boosting, where Bag-ging and AdaBoost are used to onstrut the om-mittees for sample seletion. In their approah, theyevaluate the utility of andidate examples based on themargin of the example; where the margin is de�ned asthe di�erene between the number of votes in the ur-rent ommittee for the most popular lass label, andthat for the seond most popular label. Examples withsmaller margins are onsidered to have higher utility.3. Ative-DeorateIt is bene�ial in QBC to use an ensemble method thatbuilds a diverse ommittee, in whih eah hypothe-sis is as di�erent as possible, while still maintainingonsisteny with the training data. Deorate is anensemble method that expliitly fouses on reatingensembles that are diverse (Melville & Mooney, 2003;Melville & Mooney, 2004). A summary of the De-orate algorithm is provided in the following subse-tion. We propose a variant of Query by Committee,Ative-Deorate, that uses Deorate (in Algo-rithm 1) to onstrut ommittees for sample seletion.To evaluate the expeted utility of unlabeled exam-ples, we also used the margins on the examples, asin Abe and Mamitsuka (1998). We generalized theirde�nition, to allow the base lassi�ers in the ensem-

Algorithm 1 Generalized Query by CommitteeGiven:T - set of training examplesU - set of unlabeled training examplesBaseLearn - base learning algorithmk - number of seletive sampling iterationsm - size of eah sample1. Repeat k times2. Generate a ommittee of lassi�ers,C� = EnsembleMethod(BaseLearn; T )3. 8xj 2 U , ompute Utility(C�; xj), basedon the urrent ommittee4. Selet a subset S of m examples thatmaximizes utility5. Label examples in S6. Remove examples in S from U and addto T7. Return EnsembleMethod(BaseLearn; T )ble to provide lass probabilities, instead of just themost likely lass label. Given the lass membershipprobabilities predited by the ommittee, the marginis then de�ned as the di�erene between the highestand seond highest predited probabilities.3.1. DeorateThis setion summarizes theDeorate algorithm; forfurther details see (Melville & Mooney, 2003; Melville& Mooney, 2004). The approah is motivated by thefat that ombining the outputs of multiple lassi�ersis only useful if they disagree on some inputs (Krogh& Vedelsby, 1995). We refer to the amount of dis-agreement as the diversity of the ensemble, whih wemeasure as the probability that a random ensemblemember's predition on a random example will dis-agree with the predition of the omplete ensemble.Deorate was designed to use additional arti�ially-generated training data in order to generate highly di-verse ensembles. An ensemble is generated iteratively,learning one new lassi�er at eah iteration and addingit to the urrent ensemble. The ensemble is initializedwith the lassi�er trained on the given data. The las-si�ers in eah suessive iteration are trained on theoriginal data and also on some arti�ial data. In eahiteration, a spei�ed number of arti�ial training ex-amples are generated based on a simple model of thedata distribution. The ategory labels for these arti-�ially generated training examples are hosen so asto di�er maximally from the urrent ensemble's pre-



ditions. We refer to this arti�ial training set as thediversity data. We train a new lassi�er on the unionof the original training data and the diversity data. Ifadding this new lassi�er to the urrent ensemble in-reases the ensemble training error, then this lassi�eris rejeted, else it is added to the urrent ensemble.This proess it repeated until the desired ommitteesize is reahed or a maximum number of iterations isexeeded. For this study the desired ommittee sizeand maximum number of iteration were set to 15 and50 respetively.The arti�ial data is onstruted by randomly gener-ating examples using an approximation of the train-ing data distribution. For numeri attributes, a Gaus-sian distribution is determined by estimating the meanand standard deviation of the training set. For nom-inal attributes, the probability of ourrene of eahdistint value is determined using Laplae estimatesfrom the training data. Examples are then generatedby randomly piking values for eah feature based onthese distributions, assuming attribute independene.In eah iteration, the arti�ially generated examplesare labeled based on the urrent ensemble. Given anexample, we ompute the lass membership probabili-ties predited by the urrent ensemble, replaing zeroprobabilities with a small � for smoothing. Labelsare then sampled from this distribution, suh that theprobability of seleting a label is inversely proportionalto the urrent ensemble's preditions.4. Experimental Evaluation4.1. MethodologyTo evaluate the performane of Ative-Deorate,we ran experiments on 15 representative data sets fromthe UCI repository (Blake & Merz, 1998). We om-pared the performane of Ative-Deorate withthat of Query by Bagging (QBag), Query by Boost-ing (QBoost) and Deorate, all using an ensemblesize of 15. J48 deision-tree indution, whih is theWeka (Witten & Frank, 1999) implementation of C4.5(Quinlan, 1993), was used as the base learner for allmethods.The performane of eah algorithm was averaged overtwo runs of 10-fold ross-validation. In eah fold ofross-validation, we generated learning urves in thefollowing fashion. The set of available training exam-ples was treated as an unlabeled pool of examples, andat eah iteration the ative learner seleted a sampleof points to be labeled and added to the training set.For Deorate, the examples in eah iteration wereseleted randomly. The resulting urves evaluate how

well an ative learner orders the set of available ex-amples in terms of utility. At the end of the learningurve, all algorithms see exatly the same training ex-amples.To maximize the gains of ative learning, it is bestto aquire a single example in eah iteration. How-ever to make our experiments omputationally feasi-ble, we hoose larger sample sizes for the bigger datasets. In partiular, we used a sample size of two forthe primary dataset, and three for breast-w, soybean,diabetes, vowel and redit-g.The primary aim of ative learning is to redue theamount of training data needed to indue an auratemodel. To evaluate this, we �rst de�ne the target er-ror rate as the error that Deorate an ahieve on agiven dataset, as determined by its error rate averagedover the points on the learning urve orresponding tothe last 50 training examples. We then reord thesmallest number of examples required by a learner toahieve the same or lower error. We de�ne the datautilization ratio, as the number of examples an ativelearner requires to reah the target error rate dividedby the number Deorate requires. This metri re-ets how eÆiently the ative learner is using the dataand is similar to a measure used by Abe and Mamit-suka (1998).Another metri for evaluating an ative learner ishow muh it improves auray over random samplinggiven a �xed amount of labeled data. Therefore, wealso ompute the perentage redution in error overDeorate averaged over points on the learning urve.As mentioned above, towards the end of the learningurve, all methods will have seen almost all the sameexamples. Hene, the main impat of ative learning islower on the learning urve. To apture this, we reportthe perentage error redution averaged over only the20% of points on the learning urve, where the largestimprovements are produed. This is similar to a mea-sure reported by Saar-Tsehansky and Provost (2001).When omputing the error redution of one systemover another, the redution is onsidered signi�ant ifthe di�erene in the errors of the two systems aver-aged aross the seleted points on the learning urveis determined to be statistially signi�ant aordingto paired t-tests (p < 0:05).4.2. ResultsThe data utilization of the di�erent ative learnerswith respet to Deorate is summarized in Table 1.We present the number of examples required for eahsystem to ahieve the target error rate and, in paren-theses, the data utilization ratio. The smallest num-



Table 1. Data utilization with respet to DeorateDataset Total Size Deorate QBag QBoost AtiveDeorate Target Error (%)Soybean 615 492(1.00) 267(0.54) 219(0.45) 144(0.29) 6.59Vowel 891 840(1.00) - - 477(0.57) 3.81Statlog 243 81(1.00) 84(1.04) 89(1.10) 46(0.57) 19.21Hepatitis 140 39(1.00) 30(0.77) 43(1.10) 23(0.59) 16.96Primary 305 238(1.00) 202(0.85) - 164(0.69) 56.23Heart- 273 50(1.00) 57(1.14) 41(0.82) 36(0.72) 20.97Sonar 187 125(1.00) 186(1.49) 131(1.05) 99(0.79) 18.39Heart-h 265 49(1.00) 31(0.63) 47(0.96) 39(0.80) 19.93Glass 193 118(1.00) 97(0.82) 101(0.86) 100(0.85) 27.00Diabetes 691 234(1.00) 114(0.49) 393(1.68) 201(0.86) 25.09Lymph 133 27(1.00) 40(1.48) 40(1.48) 24(0.89) 22.21Labor 51 13(1.00) 26(2.00) 19(1.46) 12(0.92) 15.14Iris 135 32(1.00) 33(1.03) 125(3.91) 30(0.94) 5.25Credit-g 900 498(1.00) 213(0.43) 243(0.49) 495(0.99) 26.36Breast-w 629 30(1.00) 45(1.50) 75(2.50) 39(1.30) 3.94No. of Wins 1 4 0 10ber of examples needed for eah dataset is presented inbold font. On all but one dataset, Ative-Deorateprodues improvements over Deorate in terms ofdata utilization. Furthermore, Ative-Deorateoutperforms both the other ative learners on 10 of thedatasets. QBag and QBoost were unable to ahievethe target error rate on vowel ; and QBoost also failedto ahieve the target error on primary. Further-more, on several datasets QBag and QBoost requiredmore training examples than Deorate. On aver-age, Ative-Deorate required 78% of the numberof examples that Deorate used to reah the targeterror. It is important to note that Deorate itselfahieves the target error with far fewer examples thanavailable in the full training set, as seen by omparingto the total dataset sizes. Hene, improving on thedata utilization of Deorate is a fairly diÆult task.Figure 1 presents learning urves that learly demon-strate the advantage of Ative-Deorate. On onedataset, breast-w, Ative-Deorate requires a fewmore examples thanDeorate. This dataset exhibitsa eiling e�et in learning, where Deorate managesto reah the target error rate using only 30 of the 629available examples, making it diÆult to improve on(Figure 2).Our results on error redutions are summarized in Ta-ble 2. The signi�ant values are presented in bold font.We observed that on almost all datasets, Ative-Deorate produes substantial redutions in errorover Deorate. Furthermore, on 8 of the datasets,Ative-Deorate produes higher redutions in er-ror than the other ative-learning methods. Depend-ing on the dataset, Ative-Deorate produes awide range of improvements, from moderate (4.16%on redit-g) to high (70.68% on vowel). On average,
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QBagFigure 2. Ceiling e�et in learning on Breast-W.Table 2. Top 20% perent error redution over DeorateDataset QBag QBoost AtiveDeorateSoybean 30.50 34.17 45.84Vowel 22.65 42.09 70.68Statlog 11.31 10.34 11.43Hepatitis 12.13 16.68 19.31Primary 3.23 0.43 5.74Heart- 15.40 19.40 12.56Sonar 1.88 8.09 16.47Heart-h 16.22 14.68 12.14Glass 10.58 16.88 15.83Diabetes 8.68 4.01 5.94Lymph 19.65 28.51 18.84Labor -2.61 12.55 36.33Iris 22.78 1.22 22.53Credit-g 9.43 6.71 4.16Breast-w 15.12 18.89 19.51Mean 13.13 15.64 21.15No. of Wins 4 3 8reti measure suh as Jensen-Shannon (JS) divergeneto evaluate the potential utility of examples (Cover &Thomas, 1991). JS-divergene is a measure of similar-ity between probability distributions (Gomez-Loperaet al., 2000). We an utilize this measure if the in-dividual lassi�ers in the ommittee provide us withlass membership probabilities, rather than just themost likely lass. If Pi(x) is the lass probability dis-tribution given by the i-th lassi�er for the example x(whih we will abbreviate as Pi) we an then omputethe JS-divergene of an ensemble of size n as:JS(P1; P2; : : : ; Pn) = H( nXi=1 wiPi)� nXi=1 wiH(Pi)where wi is the vote weight of the i-th lassi�er in theensemble;1 and H(P ) is the Shannon entropy of the1Deorate uses uniform vote weights, whih are nor-

distribution P = fpj ; j = 1; : : : ;Kg de�ned as:H(P ) = � KXj=1 pj log pjHigher values for JS-divergene indiate a greaterspread in the predited lass probability distributions,and it is zero if and only if the distributions are identi-al. We implemented a version of Ative-Deoratethat selets the unlabeled examples with the highestJS-divergene. A similar measure was used for a-tive learning for text ategorization by MCallum andNigam (1998). This measure inorporates more in-formation about the predited lass distribution thanusing margins, and hene ould result in the seletionof more informative examples.To test the e�etiveness of using JS-divergene, we ranexperiments omparing it to using the margin mea-sure. The experiments were onduted as desribedin Setion 4.1. Table 3 summarizes the results of theomparison of the two measures. All the error redu-tions are signi�ant (p < 0:05), so we only presentthe better of the two olumns in bold font. In termsof data utilization, the methods seem equally mathed;JS-divergene performs better than margins on 8 of the15 datasets. However, on the error redution metri,using margins outperforms JS-divergene on 11 of thedatasets. The results also show, that there are datasetson whih JS-divergene and margins ahieve the tar-get error rate with omparable number of examples,but the error redution produed by margins is higher.Figure 3 learly demonstrates this phenomenon.
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Table 3. Comparing measures of utility: Data utilizationand top 20% error redution with respet to Deorate.Data Utilization %Error RedutionDataset Margin JS Div. Margin JS Div.Soybean 144(0.29) 369(0.75) 45.84 18.67Vowel 477(0.57) 525(0.62) 70.68 63.26Statlog 46(0.57) 76(0.94) 11.43 11.52Hepatitis 23(0.59) 19(0.49) 19.31 15.90Primary 164(0.69) 212(0.89) 5.74 3.84Heart- 36(0.72) 28(0.56) 12.56 13.97Sonar 99(0.79) 94(0.75) 16.47 16.71Heart-h 39(0.80) 38(0.78) 12.14 10.81Glass 100(0.85) 118(1.00) 15.83 10.46Diabetes 201(0.86) 150(0.64) 5.94 5.03Lymph 24(0.89) 20(0.74) 18.84 12.18Labor 12(0.92) 10(0.77) 36.33 29.77Iris 30(0.94) 41(1.28) 22.53 23.01Credit-g 495(0.99) 330(0.66) 4.16 3.91Breast-w 39(1.30) 45(1.50) 19.51 19.20Mean 0.78 0.83 21.15 17.22# Wins 7 8 11 4sure of utility produes substantial error redutions, ingeneral using margins produes greater improvements.Using the JS-divergene measure tends to selet ex-amples that would redue the unertainty of the pre-dited lass membership probabilities, whih helps toimprove lassi�ation auray. On the other hand,using margins fouses more diretly on determiningthe deision boundary. This may aount for its bet-ter performane. For making ost-sensitive deisions,it is very useful to have aurate lass probability es-timates (Saar-Tsehansky & Provost, 2001). In suhases, we onjeture that using JS-divergene ould bea more e�etive approah.5.2. Ensemble DiversityBy exploiting arti�ial examples, the Deorate al-gorithm fores the onstrution of a diverse set of hy-potheses that are onsistent with the training data.We believe that this ensemble diversity is the key tothe suess of Ative-Deorate. We ran additionalexperiments to verify thatDeorate does indeed pro-due more diverse ommittees than Bagging or Ada-Boost. As in (Melville & Mooney, 2004), we use thedisagreement of ensemble members with the ensem-ble's predition as a measure of diversity. More pre-isely, if Ci(x) is the predition of the i-th lassi�erfor the label of x; C�(x) is the predition of the entireensemble, then the diversity of the i-th lassi�er onexample x is given by:di(x) = � 0 : if Ci(x) = C�(x)wi : otherwise

Table 4. Comparing ensemble diversity: Win-loss reords.Number of Training Examples10 15 20 25 30Deorate vs Bagging 14-1 14-1 14-1 13-2 13-2Deorate vs AdaBoost 15-0 14-1 14-1 14-1 14-1Where wi is the vote weight of the i-th lassi�er. Toompute the diversity of an ensemble of size n, on aset of examples of size m, we average the above term:1nm nXi=1 mXj=1 di(xj)This measure estimates the probability that a lassi�erin an ensemble will disagree with the predition of theensemble as a whole.The diversity of eah ensemble method was evaluatedusing 10-fold ross-validation on all 15 datasets. Totest performane on varying amounts of data, eahsystem was evaluated on the testing data, after train-ing on inreasing subsets of the training data. Wefoused on points early on the learning urve, wherewe expet ative learning to be most e�etive. The re-sults (Table 4) are summarized in terms of signi�antwin/loss reords; where a win or loss is only ountedif the di�erene in diversity (not auray) is deter-mined to be signi�ant at the 0.05 level by a pairedt-test. These results on�rm that in most ases De-orate does indeed produe signi�antly more diverseensembles than Bagging or AdaBoost.5.3. Committees for Sample Seletion vs.PreditionAll the ative learning methods that we have desribeduse ommittees to determine whih examples to se-let. But in addition to using ommittees for sampleseletion, these methods also use the ommittees forpredition. So we are not evaluating whih methodselets the best queries for the base learner, but whihombination of sample seletion and ensemble methodworks the best. The fat thatAtive-Deorate per-forms better than QBag may just be testament to thefat that Deorate performs better than Bagging.However, we laim that not only does Deorate pro-due aurate ommittees, but the ommittees pro-dued are also more e�etive in sample seletion. Toverify this, we implemented an alternate version ofAtive-Deorate, where at eah iteration a om-mittee onstruted by Bagging is used to selet theexamples given to Deorate. In this way, we sep-arate the evaluation of the method used for sample



Table 5. Comparing di�erent ensemble methods for sele-tion for Ative-Deorate: Perentage error redution overDeorate.Dataset Maximum Selet w/ Selet w/ Selet w/Train Size Bagging AdaBoost DeorateSoybean 300 18.55 17.27 27.38Glass 100 6.57 4.72 8.85Primary 200 0.2 2.46 3.75Statlog 100 -1.79 -1.18 1.73seletion from the method used for predition. Simi-larly, we implemented a version ofAtive-Deorateusing AdaBoost to perform the sample seletion.We ompared the three methods of sample seletion forDeorate on four of the datasets on whih Ative-Deorate exhibited good performane. We gener-ated learning urves as desribed in Setion 4.1. How-ever, we did not run the learning urve trials until allthe available training data was exhausted, sine the a-tive learning methods need fewer examples to ahievethe target error rates.The error redutions over Deorate averaged arossall the points on the learning urve are presented inTable 5.2 The signi�ant error redutions are shownin bold. The table also inludes the maximum train-ing set size, whih orresponds to the last point onthe learning urve. The results show that, on 3 ofthe 4 datasets, using any of the ensemble sample se-letion methods in onjuntion with Deorate pro-dues better results than Deorate. Furthermore,Deorate ommittees selet more informative exam-ples for training Deorate than the other ommitteesample seletion methods. These trends are learlyseen in Figure 4. A more extensive study needs to bedone to add to these preliminary results. It would alsobe interesting to run similar experiments, usingDeo-rate ensembles to pik examples for training Bagging,AdaBoost, or J48.6. Related WorkIn their QBC approah, Dagan and Engelson (1995)measure the utility of examples by vote entropy, whihis the entropy of the lass distribution, based on themajority votes of eah ommittee member. MCal-lum and Nigam (1998) showed that vote entropy doesnot perform as well as JS-divergene for pool-basedsample seletion. Another reently developed e�etiveommittee-based ative learner is Co-Testing (Musleaet al., 2000); however, it requires two redundant views2These results are not diretly omparable to those inTable 2.
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ActiveDecorateFigure 4. Comparing di�erent ensembles methods for se-leting samples for Deorate on Soybean.of the data. Sine most data sets do not have re-dundant views, Co-Testing has rather limited appli-ability. Another general approah to sample sele-tion is unertainty sampling (Lewis & Catlett, 1994);however, this approah requires a learner that au-rately estimates the unertainty of its deisions, andtends to over-sample the boundaries of its urrentinomplete hypothesis (Cohn et al., 1994). Finally,expeted-error redution methods for ative learning(Cohn et al., 1996; Roy & MCallum, 2001; Zhu et al.,2003) attempt to statistially selet training exam-ples that are expeted to minimize error on the a-tual test distribution. This approah has the advan-tage of avoiding the seletion of outliers whose labelingwill not improve auray on typial examples. How-ever, this method is omputationally intense, and mustbe arefully tailored to a spei� learning algorithm(e.g. naive Bayes); and hene, annot be used to se-let examples for an arbitrary learner. Ative meta-learners like Query by Bagging/Boosting and Ative-Deorate have the advantage of being able to seletqueries to improve any learner appropriate for a givendomain.7. ConlusionAtive-Deorate is a simple, yet e�etive approahto ative learning. Experimental results show that,in general, this approah leads to more e�etive sam-ple seletion than Query by Bagging and Query byBoosting. On average, Ative-Deorate requires78% of the number of training examples required byDeorate with random sampling. Additional exper-iments support the hypothesis that for small trainingsets Deorate produes more diverse ensembles than
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