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king 
ir
les in a square problem 
an be formulated by several equivalent ways. We used thefollowing: "Lo
ate n points in a unit square, su
h that the minimum distan
e mn between any two ofthem is maximal".Use deterministi
 methods is preferable [1℄. Deterministi
 methods ensure that their solutions areoptimal. Optimal solutions for n � 27 are now possible to be known. The main problem of deterministi
methods is that as the number of spread points in
reased, an explosion of the 
omputational burdenarises. For instan
e, for n = 7 the number of times that a program must be run is 8 but for n = 14is 9; 808 and for n = 23 is 288; 873; 270 (see http://saturn.t
s.hut.�/pub/pa
kings/square/). In thesealgorithms it is also ne
essary to know a good lower bound of the solution. So, sto
hasti
 algorithms arevery useful not only to �nd a good pa
kings but also to provide lower bounds of the optimal solutions.In this work a sto
hasti
 global optimization algorithm, 
alled TAMSASS-PECS (Threshold A

eptingModi�ed Single Sto
hasti
 Sear
h for Pa
king Equal Cir
les in a Square), has been designed. TAMSASS-PECS algorithm is based on the Threshold A

epting method [3℄ and on our modi�ed version of SASS[4, 5, 6, 7, 8℄ (MSASS). TAMSASS-PECS is an algorithm whi
h formally is very similar to the SimulatingAnnealing algorithm. TAMSASS-PECS sets up and updates parameters for the MSASS pro
edure whi
his iteratively exe
uted until stopping 
riterion is rea
hed. MSASS is in 
harge of perturbing the 
urrentlo
ation of a point i (si). This perturbation is intended to in
rease the minimum value of the distan
es(di;j) between i and any point j (1 � j 6= i � n). It moves the point i from si to a new lo
ation s0i, and
omputes the value of the minimum distan
e d0i;j . Following the Threshold A

epting strategy, a move isa

epted if d0i;j > di;jTh, where Th is the threshold level. New trial lo
ations of point i, s0i, are restri
tedto the neighborhood of the 
urrent lo
ation of the point i, si. This neighborhood is determined by anormal distribution N(0; �I). While the Threshold A

epting 
ondition is not satis�ed, new lo
ations forthe point i are tested following the 
lassi
al SASS algorithm, although the number of trials are subje
tto a maximum value.As all lo
al sear
h algorithms, the probability to �nd a global solution grows with the number ofexe
utions. Results for n = 2; :::; 100 have been obtained running the algorithm several times. For 
asesn =32, 37, 47, 63 and 72, better results than those shown in the literature were found. The �gure belowshows these pa
kings.In �gure, m is the maximal minimum distan
e between two 
enters of the 
ir
les, r is the radius ofthe 
ir
les in the unit square, d is the density, n is the number of 
ir
les, 
 is the number of 
onta
tsbetween 
ir
les and between 
ir
les and edges (depi
ted as little lines) and f is the number of free 
ir
les(depi
ted in dark grey). Other results of the algorithm 
an be found in the home page of P�eter G�abor�This work was supported by SOCRATES-ERASMUS program (25/ERMOB/1998-99),by the Ministry of Edu
ation ofSpain(CICYT TIC96-1125-C03-03) and by the Consejer��a de Edu
a
i�on de la Junta de Andalu
��a (07/FSC/MDM).1
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