
Simulating Agent-Based Systems with HLA:
The Case of SIM AGENT — Part II (03E–SIW–076)

Michael Lees

Brian Logan

School of Computer Science and IT
University of Nottingham

Nottingham NG8 1BB, UK
{mhl|bsl}@cs.nott.ac.uk

Ton Oguara

Georgios Theodoropoulos

School of Computer Science
University of Birmingham
Birmingham, B15 2TT, UK
{txo|gkt}@cs.bham.ac.uk

ABSTRACT In this paper we outline an approach to the distributed simulation of agent-based systems using the SIM AGENT

toolkit and the High Level Architecture (HLA) simulator interoperability framework. Using a simple Tileworld scenario as an
example, we show how the HLA can be used to flexibly distribute a SIM AGENT simulation with different agents being simulated
on different machines. We outline the changes necessary to the SIM AGENT toolkit to allow integration with the HLA, and briefly
describe the simulation cycle of the combined system which we call HLA AGENT. The integration is transparent in the sense that
the existing SIM AGENT code runs unmodified and the agents are unaware that other parts of the simulation are running remotely.
We present some preliminary experimental results which illustrate the performance of HLA AGENT on a Linux cluster running a
distributed version of Tileworld and compare this with the original (non-distributed) SIM AGENT version.

1 Introduction

The adoption of multi-agent systems has been ham-
pered by the limitations of current development tools and
methodologies. Multi-agent systems are often extremely
complex and it can be difficult to formally verify their
properties. As a result, design and implementation re-
mains largely experimental, and experimental approaches
are likely to remain important for the foreseeable future.
In this context, simulation has a key role to play in the
development of agent-based systems, allowing the agent
designer to learn more about the behaviour of a system or
to investigate the implications of alternative agent archi-
tectures, and the agent researcher to probe the relation-
ships between agent architectures, environments and be-
haviour. The use of simulation allows a degree of control
over experimental conditions and facilitates the replica-
tion of results in a way that is difficult or impossible with
a prototype or fielded system, allowing the agent designer
or researcher to focus on key aspects of the system.

Simulation has traditionally played an important role
in agent research and a wide range of simulators and

testbeds have been developed to support the design and
analysis of agent architectures and systems [6, 14, 3, 18,
1, 15]. However no one testbed is, or can be, appropriate
to all agents and environments, and demonstrating that a
particular result holds across a range of agent architec-
tures and environments often requires using a number of
different systems. Moreover, the computational require-
ments of simulations of many multi-agent systems far ex-
ceed the capabilities of conventional sequential von Neu-
mann computer systems. Each agent is typically a com-
plex system in its own right (e.g., with sensing, planning,
inference etc. capabilities), requiring considerable com-
putational resources, and many agents may be required
to investigate the behaviour of the system as a whole or
even the behaviour of a single agent.

In this paper we present an approach to agent simula-
tion which addresses both inter-operability and scalabil-
ity issues. We describe HLA AGENT, a tool for the dis-
tributed simulation of agent-based systems, which inte-
grates the SIM AGENT agent toolkit and the High Level
Architecture (HLA) a simulator interoperability frame-
work developed by the US DMSO [10]. HLA allows the



inter-operation of various simulators and testbeds sup-
porting different agent architectures and environments to
be distributed on different machines to increase the over-
all performance of the global simulation. The remain-
der of this paper is organised as follows. In section 2
we briefly describe the SIM AGENT toolkit and illustrate
its application in a simple Tileworld scenario. In sec-
tion 3 we outline how the HLA can be used to distribute
an existing SIM AGENT simulation with different agents
being simulated on different machines. In section 4 we
sketch the changes necessary to the SIM AGENT toolkit
to allow integration with the HLA and describe the re-
sulting library, which we call HLA AGENT. In section 5
we present some preliminary experimental results to il-
lustrate the performance of HLA AGENT on a Linux clus-
ter running a distributed version of Tileworld and com-
pare this with the original (non-distributed) SIM AGENT

version of Tileworld. We conclude with a brief descrip-
tion of future work.

2 An Overview of SIM AGENT

SIM AGENT is an architecture-neutral toolkit originally
developed to support the exploration of alternative agent
architectures [18, 17]1. It can be used both as a sequen-
tial, centralised, time-driven simulator for multi-agent
systems, e.g., to simulate software agents in an Inter-
net environment or physical agents and their environ-
ment, and as an agent implementation language, e.g., for
software agents or the controller for a physical robot.
SIM AGENT has been used in a variety of research and
applied projects, including studies of affective and de-
liberative control in simple agent systems [16], agents
which report on activities in collaborative virtual envi-
ronments [11] (which involved integrating SIM AGENT

with the MASSIVE-3 VR system), and simulation of tank
commanders in military training simulations [4] (for this
project, SIM AGENT was integrated with an existing real
time military simulation).

In SIM AGENT, an agent consists of a collection of
modules representing the capabilities of the agent, e.g.,
perception, problem-solving, planning, communication
etc. Groups of modules can execute either sequentially
or concurrently and with differing resource limits. Each
module, or ruleset, is implemented as a collection of rules
in a high-level rule-based language called POPRULE-
BASE. The rule format is very flexible: both the condi-
tions and actions of rules can invoke arbitrary low-level
capabilities, allowing the construction of hybrid architec-
tures including, for example, symbolic mechanisms com-
municating with neural nets and modules implemented
in procedural languages. The rulesets which implement
each module, together with any associated procedural
code, constitute the rulesystem of an agent. SIM AGENT

can also be used to simulate the agent’s environment, and

1See http://www.cs.bham.ac.uk/∼axs/cog affect/sim agent.html

the toolkit provides facilities to populate the agent’s envi-
ronment with user-defined active and passive objects (and
other agents).

Simulation proceeds in three logical phases: sensing,
internal processing and action execution, where the inter-
nal processing may include a variety of logically concur-
rent activities, e.g., perceptual processing, motive genera-
tion, planning, decision making, learning etc. (see Figure
1).

run condition 

Phase Two Phase Three

rules and setup

Phase One
Get new sense

data
actions

Perform Actions
and send 
messages

Figure 1: Logical structure of a simulation cycle

In the first phase each agent’s internal database is up-
dated with sensory data and any messages sent at the pre-
vious cycle. Within a SIM AGENT simulation, each object
or agent has both externally visible data and private inter-
nal data. The internal data can be thought of as the agent’s
working memory or database, which is used to hold the
agent’s model of the environment, its current goals, plans
etc. External data is data which is externally visible to
other objects in the environment, e.g., colour, size, shape
etc. The agent’s sensors update the agent’s database with
externally visible data. For example, if an agent’s sensors
are able to see all objects within a pre-defined distance,
the internal database of the agent would be updated to
contain facts which indicate the visible attributes of all
objects which are closer than the sensor range.

The second phase involves decision making and action
selection. The contents of the agent’s database together
with the new facts created in the first phase are matched
against the conditions of the condition-action rules which
constitute the agent’s rulesystem. It may be that multiple
rule conditions are satisfied, or that the same rule is satis-
fied multiple times. SIM AGENT allows the programmer
to choose how these rules should run and in what order.
These rules will typically cause some internal and/or ex-
ternal action(s) to be performed or message(s) to be sent
to other agents. Internal actions simply update the agent’s
database and are performed immediately. External ac-
tions change the state of the environment and are queued
for execution in the third phase.

The final phase involves sending the messages and per-
forming the actions queued in the previous phase. Exter-
nal actions typically cause the agent to enter a new state
(e.g., to change its location) and hence sense new data.

SIM AGENT provides a library of classes and methods
for implementing agent simulations. The toolkit is im-
plemented in Pop-11, an AI programming language sim-
ilar to Lisp, but with an Algol-like syntax. Pop-11 sup-
ports object-oriented development via the OBJECTCLASS

library, which provides classes, methods, multiple inher-



itance, and generic functions.2 SIM AGENT defines two
basic classes, sim object and sim agent, which
can be extended (subclassed) to give the objects and
agents required for a particular simulation scenario. The
sim object class is the foundation of all SIM AGENT

simulations: it provides slots (fields or instance vari-
ables) for the object’s name, internal database, sensors,
and rulesystem together with slots which determine how
often the object will be run at each timestep, how many
processing cycles it will be allocated on each pass and so
on. The sim agent class is a subclass of sim object
which provides simple message based communication
primitives. SIM AGENT assumes that all the objects
in a simulation will be subclasses of sim object or
sim agent.

2.1 An example: SIM TILEWORLD

In this section we briefly outline the design and
implementation of a simple SIM AGENT simulation,
SIM TILEWORLD. Tileworld is a well established testbed
for agents [14]. It consists of an environment consist-
ing of tiles, holes and obstacles, and an agent whose goal
is to score as many points as possible by pushing tiles
to fill in the holes. The environment is dynamic: tiles,
holes and obstacles appear and disappear at rates con-
trolled by the simulation developer. Tileworld has been
used to study commitment strategies (i.e., when an agent
should abandon its current goal and replan) [13] and in
comparisons of reactive and deliberative agent architec-
tures [14]. SIM TILEWORLD is an implementation of a
multi-agent Tileworld [7], which consists of an environ-
ment and one or more agents (see Figure 2).

For the SIM TILEWORLD example three subclasses of
the SIM AGENT base class sim object were defined
to represent holes, tiles and obstacles, together with two
subclasses of sim agent to represent the environment
and the agents. The subclasses define additional slots to
hold the relevant simulation attributes, e.g., the position
of tiles, holes and obstacles, the types of tiles, the depth
of holes, the tiles being carried by the agent etc. By con-
vention, external data is held in slots, while internal data
(such as which hole the agent intends to fill next) is held
in the agent’s database.

The simulation consists of two or more active objects
(the environment and the agent(s)) and a variable number
of passive objects (the tiles, holes and obstacles). At sim-
ulation startup, instances of the environment and agent
classes are created and passed to the scheduler. At each
cycle the scheduler runs the environment agent to update
the agents’ environment. In SIM TILEWORLD the envi-
ronment agent has a simple rulesystem with no conditions
(i.e., it runs every cycle) which causes tiles, obstacles and
holes to be created and deleted according to user-defined

2OBJECTCLASS shares many features of the Common Lisp Object
System (CLOS).

Figure 2: A screen shot of SIM TILEWORLD

probabilities. The scheduler then runs the agents which
perceive the new environment and updates their internal
databases with the new sense data. The agents then run
all rules which have their conditions satisfied (no order-
ing of the rules is performed). Some of the rules may
queue external actions (e.g., moving to or pushing a tile)
which are performed in the second pass of the scheduler
at this cycle. This completes the cycle and the process is
repeated.

3 Distributing a SIM AGENT Simu-
lation with HLA

The High Level Architecture (HLA) allows different sim-
ulations, referred to as federates, to be combined into a
single larger simulation known as a federation [5]. The
federates may be written in different languages and may
run on different machines. More precisely, a federation
comprises:

• one or more federates

• a Federation Object Model (FOM)

• the Runtime Infrastructure (RTI)

The FOM defines the types of and the relationship
among the data exchanged between the federates in a par-
ticular federation and is supplied as data to the RTI at the
beginning of an execution.

The RTI is the middleware that provides common ser-
vices to simulation systems, and all communication be-
tween federates and federations is done via the RTI. Each
federate contains an RTI Ambassador and a Federate Am-
bassador along with the user simulation code (see Figure



Runtime Infrastructure

Ambassador Ambassador

User Simulation

Ambassador Ambassador

User Simulation

Ambassador Ambassador

User Simulation

Federate 3Federate 1 Federate 2

RTI Federate RTI Federate RTI Federate

Figure 3: The architecture of an HLA federation

3). The RTI Ambassador handles all outgoing informa-
tion passed from the user simulation to the RTI. Each call
made by the RTI Ambassador typically results in a corre-
sponding callback to the relevant federates. For example,
updating the value of an attribute of an object instance
on one federate will result in a callback(s) containing the
new value to the relevant federate(s). It is the job of the
Federate Ambassador to handle these callbacks and in-
voke appropriate code in the user simulation, e.g., update
a the value of a variable or field representing the attribute.

There are two distinct ways in which SIM AGENT

might use the facilities offered by the HLA. The first,
which we call the distribution of SIM AGENT, involves
using HLA to distribute the agents and objects compris-
ing a SIM AGENT simulation across a number of fed-
erates. The second, which we call inter-operation, in-
volves using HLA to integrate SIM AGENT with other
simulators. In this paper we concentrate on the former,
namely distributing an existing SIM AGENT simulation
using SIM TILEWORLD as an example. Based on the
SIM TILEWORLD implementation outlined in section 2.1,
we chose to split the simulation into n + 1 federates, cor-
responding to n Tileworld agents and the Tileworld envi-
ronment respectively.

The HLA provides services in six areas, namely Fed-
eration Management, Object Management, Declaration
Management, Ownership Management, Time Manage-
ment, and Data Distribution Management. In the re-
mainder of this section, we outline the role of these
services in distributing the SIM TILEWORLD simulation.
(We do not consider Federation Management for a dis-
tributed SIM AGENT federation as this is similar to other
HLA federations and Data Distribution Management is
not used in the current implementation of HLA AGENT.)

3.1 Object and declaration management

In the HLA, information about objects in the simulation
is not held centrally; rather each federate is responsible
for maintaining its own, local information about objects
of interest simulated by other federates. Object and Dec-
laration Management enable the federates to share data,

providing services for registering, updating, deleting, dis-
covering, reflecting and removing objects as well as sub-
scribing to and publishing data.

A Federate declares its interest in objects and attributes
at the beginning of a simulation by publishing any at-
tributes it may update during the simulation and subscrib-
ing to attributes which it would like to receive updates for.
A Federate which is subscribed to an attribute of a certain
class will also discover any instances of this class when
they are created.

In the distributed implementation of SIM TILEWORLD,
the communication between the agent and environment
federates is performed via the objects in the FOM, via
the creation, deletion and updating of attributes. Figure
4 depicts the FOM for the HLA SIM TILEWORLD. Two
main subclasses are defined: Agent and Object, with the
Object class having Tiles, Holes and Obstacles as sub-
classes. The Agent class is included in the FOM as cer-
tain attributes of agents may be accessed by other feder-
ates, e.g., the agents need to know the position of other
agents in the environment (for sensing).

TileWorld

position: position

life: Integer

Object

CarriedTiles: TilesList

Agent

ObjectRoot

privelegeToDeleteObject: string

Type: TypeEnum

HoleTile

Type: TypeEnum

Depth: Integer

Obstacle

Figure 4: An example FOM for SIM TILEWORLD

Table 1 illustrates the corresponding object class pub-
lications and subscriptions. The attribute position of the
Agent class is published by the Agent federate as this fed-
erate updates the position of the Agent. The same ap-
plies to the carriedTiles attribute for the Agent class. The
position attribute for the Tile class is published by both
the Environment and the Agent federate. This is because
when the tile is initially created, the Environment federate
will set the Tile’s position. However, when the Agent fed-
erate picks up the Tile it will start to update the position
attribute. Similarly, the depth attribute of the Hole class
will be updated when the agent places a tile in a hole.
Initially, when the hole is created, the Environment fed-
erate will set the depth of the hole. As the Agent federate
places tiles in the hole it will change the depth attribute.
The other attributes are largely self explanatory.



Federate
Object Environment Agent
Agent
privilegeToDelete publish publish
position subscribe publish
carriedTiles subscribe publish
Tile
privilegeToDelete publish publish
position publish publish
life publish subscribe
type publish subscribe
Hole
privilegeToDelete publish publish
position publish subscribe
life publish subscribe
type publish subscribe
depth publish publish
Obstacle
privilegeToDelete publish publish
position publish subscribe
life publish subscribe

Table 1: Object Class Publications and Subscriptions in
Tileworld Federation

3.2 Ownership management

HLA rules require federates to own attribute instances be-
fore they can update their value. This ensures that at any
point in time only one federate may update an attribute
and is achieved via ownership Management services. For
example, in a multi-agent Tileworld two (or more) agents
may try to push the same tile. Before an agent feder-
ate can move a tile it must obtain ownership of the tile’s
position attribute. Once the tile has been moved by this
agent, the second agent’s move should become invalid, as
the tile is no longer at the position at which the agent ini-
tially perceived it. To ensure that attributes are mutually
exclusive, we only allow transfer of ownership once per
simulation cycle for any given attribute. A federate will
then only relinquish ownership of an attribute if it has not
already been updated at the current cycle.

3.3 Time management

Time Management services in the HLA perform two
main roles, namely, coordinating the advancement of
logical time in federates and controlling delivery of
time-stamped events to prevent federates receiving ‘old’
events, i.e., events with logical time less than the feder-
ates current logical time.

SIM AGENT is a centralised, time-driven system where
simulation advances in timesteps, referred to as cycles.
As explained in section 2, at the end of a cycle a se-
ries of actions may change some aspects of the simula-
tion. These changes are then perceived by all agents at
the beginning of the next cycle. We therefore arrange for
the Federation to synchronise at the beginning of each

cycle, by making the all federates time-regulating and
time-constrained. This ensures that the federates will pro-
ceed in a timestep fashion, alternating between perform-
ing their external actions and perceiving changes.

4 Extending SIM AGENT

In this section we briefly sketch the extensions nec-
essary to the SIM AGENT toolkit to allow an existing
SIM AGENT simulation to be distributed using the HLA.
Together, the extensions constitute a new library which
we call HLA AGENT. Our aim is to make the distri-
bution transparent to the user simulation and to the ex-
isting SIM AGENT low level scheduler code which pro-
cesses the agents and objects comprising the simulation.
Ideally, the user simulation should run unchanged, with
the user providing additional information specifying the
number of federates in the federation and how the ob-
jects and agents in their simulation are to be assigned to
federates so as to make best use of available computing
resources. The distribution of the user simulation should
also be symmetric in the sense that no additional manage-
ment federates are required.

In what follows, we assume that we have an exist-
ing SIM AGENT simulation (e.g., SIM TILEWORLD) that
we want to distribute by placing disjoint subsets of the
objects and agents comprising the simulation on differ-
ent federates. Each federate corresponds to a single
SIM AGENT process and is responsible both for simulat-
ing the local objects forming its own part of the global
simulation, and for maintaining proxy objects which rep-
resent objects of interest being simulated by other fed-
erates. Each federate may be initialised with part of the
total model or all federates can run the same basic sim-
ulation code and use additional information supplied by
the user to determine which objects are to be simulated
locally. For example, in SIM TILEWORLD we may wish
to simulate the agent(s) on one federate and the environ-
ment on another.

The general picture is as follows:

• we extend SIM AGENT to hold additional data
about the federation and the federate in which the
SIM AGENT process is running, e.g., the FOM, the
agents to be simulated by this federate, proxies for
agents simulated by other federates, RTI bookkeep-
ing information etc.;

• we have to handle object creation and deletion by the
user simulation, and propagation of object attributes
when the user simulation updates externally visible
data;

• we have to modify the SIM AGENT scheduler so that
only those agents simulated by this federate are actu-
ally run at each cycle, to process the object discov-
ery, object deletion and attribute update callbacks,
and to and handle synchronisation at each cycle; and



• we need to add some code to connect to the RTI and
initialise the federate’s data structures.

The overall organisation of HLA AGENT is similar to
that illustrated in Figure 3. Each SIM AGENT federate
requires two ambassadors: an RTI Ambassador which
handles calls to the RTI and a Federate Ambassador that
handles callbacks from the RTI. Calls to the RTI are pro-
cessed asynchronously in a separate thread. However, for
simplicity, we have chosen to queue callbacks from the
RTI to the Federate Ambassador for processing at the end
of each simulation cycle. SIM AGENT has the ability to
call external C functions. We have therefore adopted the
reference implementation of the RTI written in C++ de-
veloped by DMSO, and defined C wrappers for the RTI
and Federate Ambassador methods needed for the imple-
mentation. We use Pop-11’s simple serialisation mecha-
nism to handle translation of SIM AGENT data structures
to and from the byte strings required by the RTI. All RTI
calls and processing of Federate Ambassador callbacks
can therefore be handled from SIM AGENT as though we
have an implementation of the RTI written in Pop-11.

In what follows, we briefly describe the changes to
SIM AGENT in more detail and outline the operation of
the modified scheduler over a single simulation cycle (see
Figure 1). It turns out that the changes to the sched-
uler are confined to the first (sensing) and third (action)
phases. The second phase involves only the internal op-
eration of the agent and updates to the agent’s private
database. Such updates are typically invisible to other
agents, and can be ignored for the purposes of distribu-
tion3.

4.1 Representing the federation

At each federate, we partition the objects managed by
the federate into local objects and proxy objects. Local
objects are instances of the standard sim object and
sim agent classes and their subclasses which are being
‘run’ by SIM AGENT on this federate. Proxy objects rep-
resent those local objects being simulated by other fed-
erates which this federate knows about (e.g., via object
discovery) and are used as targets for the sensors and ac-
tions of local objects. Note that a federate may not know
about all the objects in the simulation (and in the limit
case, none of the federates knows about all the objects in
the simulation).

We define two new classes, HLA federate and
HLA object. HLA federate contains slots to hold
the relevant data for a SIM AGENT process running on
a particular federate, e.g., the FOM for the federation, a
handle to the local RTI Ambassador etc. HLA object
holds RTI bookkeeping information for objects in the
simulation, e.g., the unique RTI identifier for the object
which is shared by all the federates in the simulation,

3We have not considered the distribution of the components of a
single agent across multiple federates.

published and subscribed attributes and a flag which indi-
cates whether the object is local or a proxy. All instances
of the existing SIM AGENT classes (i.e., sim object
and sim agent and their subclasses) need to hold this
bookkeeping information. We can accomplish this in a
straightforward way by declaring sim object to be a
subclass of HLA object—in OBJECTCLASS there is no
root class from which all other classes descend, and a
new class definition can “adopt” an existing class and its
subclasses.

4.2 Creating and deleting objects

We assume that the class definitions for the objects and
agents comprising the simulation are available to all fed-
erates which publish and subscribe to the corresponding
FOM classes and attributes, and that all federates can
create instances of these classes to represent agents be-
ing simulated by the federate and as proxies for agents
being simulated by other federates. OBJECTCLASS pro-
vides wrappers, closures around existing methods which
extend or even replace the functionality of the method.
The existing SIM AGENT code is extended with ‘new’ and
‘destroy’ wrappers, which intercept calls to class con-
structors and destructors respectively. When a new object
is created by the user simulation, the new wrapper regis-
ters it with the RTI, triggering object discovery callbacks
and proxy creation on other federates. The new wrapper
also handles the bookkeeping information in the associ-
ated HLA object. A similar pattern is used with object
deletions. When an object in the user simulation becomes
garbage, the destroy wrapper is run. This ‘undeletes’ the
object by creating a new (non-weak) reference to it. This
ensures that the object persists until the end of the current
simulation cycle and allows the object to be deleted on all
federates at the same time. If the federate does not own
the object being deleted (e.g., if it is a proxy), the destroy
wrapper also negotiates with the federate that owns the
object for permission to delete it. By convention, a feder-
ate will always grant permission to delete an object unless
it intends to delete the object itself at this cycle or has al-
ready given permission to another federate. Requesting
permission to delete an object is therefore sufficient to
ensure that the object will be deleted.

4.3 Propagating the effects of actions

As stated in section 2, agents can perform two differ-
ent types of actions: internal actions which update the
agent’s private database, and external actions which up-
date publicly visible attributes of an object. Internal ac-
tions only affect the state of the agent and are processed
immediately, since the effects of the action (i.e., changes
to the contents of the agent’s database or working mem-
ory) typically form part of a larger decision making pro-
cess within the agent. However, in the case of external
actions, it is necessary to propagate the update to other



federates which subscribe to the attribute. This involves
calls to the RTI to acquire ownership of the attribute (if
it is not currently owned by this federate) and to do the
update.

The situation is complicated by the fact that external
actions are usually queued by SIM AGENT for execution
at the end of the current cycle. This avoids the agents
in the (local) simulation “seeing” different states of the
environment during the first pass of the scheduler, and
means that the order in which agents are processed by the
scheduler doesn’t matter in situations where two agents
attempt to update the same attribute. The problem of de-
tecting action conflicts is intractable in general, and it is
up to the simulation developer to design a SIM AGENT

simulation so as to avoid conflicts. One way to do this
is to arrange for each action to check that its precondi-
tions (i.e., the state the environment was in when the ac-
tion was selected) still hold before performing the update
and otherwise abort the action. For example, one agent
changing the position of a tile violates the precondition
for any other action (by the same or another agent) which
attempts to move the tile. However, this is not feasible in
a distributed setting, since any attribute updates resulting
from the actions of agents simulated by other federates
are not propagated until the end of the cycle.

We therefore extend current practice in SIM AGENT

and require that attribute updates be mutually exclusive.
A mutually exclusive attribute is one which cannot be up-
dated twice in the same cycle. For example, we may re-
quire that the position of an object can only change once
in any given cycle. This extension does not solve the
ramification problem, it simply provides some additional
tools for a simulation developer to manage inconsistent
updates.

Attributes in SIM AGENT are represented by slot val-
ues. Each slot has two predefined methods, an accessor
which returns the current value, and an updater, which
sets the value. In HLA AGENT, we use ‘update’ wrap-
pers to “intercept” calls to the slot updater methods and
propagate the new value to other federates by making the
appropriate RTI calls.

The wrapper for a slot updater first checks to see if
the slot corresponds to an attribute of a class in the FOM
which is published by the federate. If so, the federate re-
quests the RTI to propagate the update to other federates
which have subscribed to this attribute. This may involve
negotiating for ownership of the attribute instance with
another federate. To ensure that attributes are mutually
exclusive, we require that attribute ownership can only
be transferred once per simulation cycle, and a federate
will relinquish ownership of an attribute only if it has not
already been updated at the current cycle. For example,
if two agents running on different federates try to move a
given tile at the same cycle, whichever agent’s action is
processed first will acquire ownership of the tile and suc-
ceed, while the other agent’s action will be denied own-

ership and fail.4 Updates to slots not corresponding to
published attributes are assumed to be local to the feder-
ate and are not propagated.

To avoid multiple updates to the same attribute at the
same cycle being received out of order by other federates,
updates to attributes owned by this federate are queued,
and only the last update to each attribute is propagated
to the RTI. (This is necessary, for example, during ob-
ject creation to avoid values set by superclass initialisers
over-writing a value set by a class initialiser.) Updates to
attributes not owned by this federate are further delayed
until ownership of the attribute is transferred to the fed-
erate. If the federate is unable to obtain ownership of the
attribute, i.e., if the attribute has already been updated by
another federate at this cycle, then the local update is dis-
carded. All attribute updates are queued by the RTI for
delivery at the next timestep; as a result, agents on all
federates always see the same simulation state.

4.4 Simulation startup

We also need to add some additional initialisation code
which loads the FOM, federation description and the pa-
rameters for this federate, starts the RTI and Federate
Ambassadors, and creates an HLA federate object for
this federate.

When a HLA AGENT federate starts up, it loads the
user simulation code and runs a user-defined initialisation
procedure to create instances of all the objects and agents
that are to be run locally. The federate registers the ob-
jects created with the RTI and flushes the initial values of
their published slots to the RTI for propagation to other
federates. The RTI allocates a unique identifier to each
local object in the simulation, and notifies other federates
of their existence via ‘object discovery’ callbacks to the
Federate Ambassadors. Any objects created during ini-
tialisation of the local simulation which are not to be sim-
ulated on this federate are assigned proxies and the values
of subscribed slots are initialised following attribute up-
dates from the federate simulating the object to which the
proxy corresponds.

4.5 A cycle of SIM AGENT in HLA

Once all federates have initialised, each federate enters
the main simulation loop as detailed below:

1. Wait for synchronisation with other federates.

2. For each object or agent in the scheduler list which
is not a proxy:

(a) Run the agent’s sensors on each of the objects
in the scheduler list. By convention, sensor
procedures only access the publicly available

4Two agents running on the same federate could update the attribute,
but in this case we can use checks on the preconditions of the actions,
since the updates are mirrored locally.



data held in the slots of an object, updated in
step 5.

(b) Transfer messages from other agents from the
input message buffer into the agent’s database.

(c) Run the agent’s rulesystem to update the
agent’s internal database and determine which
actions the agent will perform at this cycle (if
any). This may update the agent’s internal
database, e.g., with information about the state
of the environment at this cycle or the currently
selected action(s) etc.

3. Once all the agents have been run on this cycle, the
scheduler processes the message and action queues
for each agent, transfers outgoing messages to the
input message buffers of the recipient(s) for process-
ing at the next cycle, and runs the actions to update
objects in the environment and/or the publicly visi-
ble attributes of the agent. This can trigger further
calls to the RTI to propagate new values.

4. We then process the object discovery and deletion
callbacks for this cycle. For all new objects created
by other federates at this cycle we create a proxy
instance of the appropriate sim object subclass.
If other federates have deleted objects, we delete our
local proxies.

5. Finally, we process the attribute update callbacks
for this cycle, and use this information to update
the slots of the local objects and proxies simulated
at this federate (e.g., if an agent on another feder-
ate moves a tile simulated on this federate). The
update wrappers are disabled during slot update as
these would otherwise trigger a rebroadcast of the
attribute updates to the RTI.

6. Repeat.

4.6 Partitioning the user simulation

To distribute a simulation, the user must define the
classes and attributes that constitute the Federation Ob-
ject Model and, for each federate, provide a mapping
between the classes and attributes in the FOM and the
SIM AGENT classes and slots to be simulated on that
federate. The additional generic code, e.g., the defini-
tions of HLA federate and HLA object, extensions
to sim scheduler etc. are loaded as an additional li-
brary. If the user simulation is partitioned so that each
federate only creates instances of those objects and agents
it is responsible for simulating, then no additional user-
level code is required. In the case in which all feder-
ates use the same simulation code, the user must define
a procedure which is used to determine whether an ob-
ject should be simulated on the current federate. The user
therefore has the option of partitioning the simulation into

appropriate subsets for each federate, thereby minimis-
ing the number of proxy objects created by each federate
at simulation startup, or allowing all federates to create
a proxy for all non-local objects in the simulation. For
very large simulations, the latter approach may entail an
unacceptable performance penalty, but has the advantage
that distributed and non-distributed simulations can use
identical code.

5 Results

To evaluate the robustness and performance of HLA/RTI
and our distribution approach, we have developed a
SIM AGENT Federation using SIM TILEWORLD as a test
case.

The hardware platform used for our experiments is a
Linux cluster, comprising 44 1.6GHz AthlonMP 1900+
processors (22 dual nodes, each with 256 KB cache) in-
terconnected by a standard 100Mbps fast Ethernet switch.
Our test environment is a Tileworld 20 units by 20 units
in size with an object creation probability (for tiles,
holes and obstacles) of 0.1. The number of agents
in the Tileworld ranges from 1 to 64. In the current
SIM TILEWORLD federation, the environment is simu-
lated by a single federate while the agents are distributed
in one or more federates over the nodes of the cluster. In
all our experiments, we have only one agent federate per
each cluster node we use. We used the timers provided
by SIM AGENT which have a resolution of 1/100th of a
second, and the results obtained represent averages over
5 runs of 100 SIM AGENT cycles.

1 2 4 8 16 32 64
0

5

10

15

Number of Agents

A
ve

ra
ge

 C
um

m
ul

at
iv

e 
T

im
e 

(s
ec

s)

Elapsed time
CPU time

Figure 5: Total CPU and Elapsed Times for 1-64 Agents
in SIM TILEWORLD

For comparison, Figure 5 shows the total CPU and
elapsed times when executing 1, 2, 4, 8, 16, 32 and
64 SIM TILEWORLD agents on a single node using
SIM AGENT. As can be seen, the CPU and elapsed times
increase almost linearly with the number of agents, and



on an unloaded cluster node, the CPU and elapsed times
are very similar.

1 2 4 8 16 32 64
0

50

100

150

200

Number of Agents

T
im

e 
(s

ec
s)

CPU Total
Elapsed time

Figure 6: Total Elapsed Times for 1-64 Agents in
HLA AGENT.

Figure 6 shows the total CPU and elapsed times when
executing 1, 2, 4, 8, 16, 32 and 64 SIM TILEWORLD

agents and the environment in a single federate on a sin-
gle node using HLA AGENT. Again, the CPU and elapsed
times increase with the number of agents simulated, but
in this case the ratio of CPU to elapsed time is much
smaller, typically less than 0.1.

Comparing the data for e.g., 64 agents simulated using
SIM AGENT and HLA AGENT, we can see that the HLA
introduces a significant overhead. In SIM AGENT, sim-
ulating 64 agents for 100 cycles takes 13.98 seconds of
CPU time and 14.01 seconds of elapsed time, or an aver-
age of about 0.138 CPU seconds and 0.138 elapsed sec-
onds per cycle.5 In HLA AGENT, simulating 64 agents for
100 cycles requires 19.22 seconds CPU time and 182.14
seconds elapsed time, and the average CPU and elapsed
times for each cycle of HLA AGENT are 0.189 and 1.795
seconds respectively (see Figure 8). These average cycle
times can be further broken down into the time for the
simulation phase (i.e., running the user simulation) and
the RTI phase (i.e., propagating updates, synchronising
with other federates etc). The overhead in the simulation
phase (basically running the slot update and access wrap-
pers and queueing attribute updates for propagation at the
end of the user simulation cycle) is on the order of 0.051
seconds per cycle and accounts for the bulk of the CPU
overhead (around 98%). In the RTI phase, queued at-
tribute updates are flushed to the RTI, incoming attribute
updates are applied to the slots of local objects and prox-
ies, object deletions are processed, and the federate syn-
chronises with other federates for the start of the next

5The reason the average elapsed time per cycle is not equal to the
total elapsed time / 100 is that the total elapsed time includes the time
to synchronise the federation and populate the simulation, which takes
very little CPU time.

simulation cycle. This accounts for approximately 0.001
seconds per cycle or 2% of the CPU overhead.

The elapsed time overhead is more significant. Each
cycle of HLA AGENT requires 0.394 seconds of elapsed
time for the simulation phase and 1.401 seconds of
elapsed time for the RTI phase (see Figure 9). There
are two issues here: the first is that the ratio of CPU
to elapsed time for the simulation phase is worse than
for SIM AGENT. This is presumably due to the time
spent in RTI calls during the simulation phase (e.g., reg-
istering object instances, requesting attribute ownership
transfers etc.). However the bulk of the overhead is the
elapsed time spent in the RTI phase. Detailed analysis
reveals that this consists largely of time spent in tick.
The current implementation of HLA AGENT calls tick
after each call to the RTI, e.g., updateAttribute-
Values, deleteObjectInstance etc., and uses a
mintick value of 0.01 and a maxtick of 10.0 seconds.
Each agent performs at least two updates per simulation
cycle, so with 64 agents we will have at least 128 updates
per cycle. This gives at least 128 ticks or 1.28 seconds
per simulation cycle, which corresponds fairly closely to
the elapsed time overhead in our experiments. The value
of 0.01 for mintick was determined empirically and
is the lowest that gave reliable propagation of updates.
With lower values (e.g., 0.005 or 0.001), we experienced
increasingly frequent loss of updates and failures of the
RTI Ambassador and/or the Federation Ambassador.

1 2 4 8 16
0

20

40

60

80

100

120

140

160

Number of Agent Nodes

T
im

e 
(s

ec
s)

Figure 7: Total Elapsed Time for an Agent Federate (64
Agents Distributed Over 1-16 Nodes).

We also investigated the effect of distributing the Tile-
world agents across varying numbers of federates. Since
the bulk of the overhead in HLA AGENT is determined by
the number of attribute updates and hence ticks, moving
agents (and the updates they generate) onto other nodes
should give a reduction in elapsed time for any given
node.

Figure 7 shows a breakdown of the total elapsed time
for an agent federate when distributing 64 agents over 1,



2, 4, 8, 16, 32 and 64 nodes of the cluster. As expected,
the elapsed time drops with increasing distribution, and
with 16 nodes the elapsed time is comparable to the non-
distributed case.

1 2 4 8 16
0

20

40

60

80

100

120

140

160

Number of Agent Nodes

T
im

e 
(s

ec
s)

Simulation Elapsed
RTI elapsed
Simulation CPU
RTI CPU

Figure 8: CPU time vs Elapsed Time for an Agent Feder-
ate (64 Agents Distributed over 1-16 Nodes).

Figure 8 shows a breakdown of the total CPU and
elapsed times for both the simulation and RTI phases of
HLA AGENT for an agent federate for each distribution of
64 agents over nodes of the cluster. The environment was
simulated in its own federate on a different cluster node
and the CPU and elapsed times for the environment fed-
erate for both the simulation and RTI phases are shown in
Figure 9.

1 2 4 8 16
0

20

40

60

80

100

120

140

160

Number of Agent Nodes

T
im

e 
(s

ec
s)

Simulation Elapsed
RTI elapsed
Simulation CPU
RTI CPU

Figure 9: CPU time vs Elapsed Time for the Environment
Federate (64 Agents Distributed over 1-16 Nodes).

Although preliminary, our experiments show that, even
with relatively lightweight agents like the Tileworld
agents, we can get speedup by distributing agent federates
across multiple cluster nodes. However processor utilisa-
tion is low due to the elapsed time overhead. We would
expect to see more favourable results with heavyweight
agents which intrinsically require more CPU time. For

example, Schattenberg and Uhrmacher [15] report exper-
iments with planning agents which require from 2 sec-
onds to 20 hours of CPU time per cycle.

6 Related Work

There has been relatively little work to date on the dis-
tributed simulation of multi-agent systems. In this sec-
tion, we outline some of the current research in the area.

Schattenberg and Uhrmacher [15, 19] have developed
a Java-Based Agent Modelling Environment for Simula-
tion (JAMES). In JAMES, agents are modelled as situ-
ated automata, and the agent program is compiled into
transition rules. JAMES extends the DEVS formalism
[20] and utilises an approach based on discrete event sim-
ulation rather than the time-stepped simulation used by
HLA AGENT. This can simplify the representation time
in simulations of agent behaviour and may also be more
efficient if the lower bound on the response time of an
agent is a large multiple of the minimum time between
events in the simulation. JAMES uses a centralised server
architecture to simplify the tracking and administration of
moving agents. This introduces a centralised bottleneck
which can affect performance when there are large num-
bers of agents in the simulation. The main objective of
the JAMES work is to facilitate small and large scale test-
ing of multi-agent systems, and the system has been used
to implement a version of Tileworld for testing simple
planning agents. Interoperability with other simulations
is not an aim.

DGensim (Distributed Gensim) [1], is also an exten-
sion of a non-distributed agent simulator, Gensim [2].
In the original Gensim, as in SIM AGENT, actions per-
formed by agents are processed on an agent-by-agent ba-
sis. This has the undesired effect that the results of some
agent’s actions become apparent before others. Although
using small time cycles reduces the problem it does not
completely eliminate it. DGensim divides the simulation
onto n node processors, n − 1 of which execute the in-
ternals of an agent and an agent manager. The remaining
processor executes the environment manager. In DGen-
sim agents send their decisions (which are timestamped)
asynchronously to an action monitoring agent inside the
environment manager. Although agents make their deci-
sions asynchronously, the environment manager is a time-
driven simulation. As a result, agent actions aren’t pro-
cessed by the environment until the environment’s sim-
ulation time reaches the timestamp associated with the
action. The central aim of DGensim was to improve
fidelity of the original Gensim system, with increased
speed of simulation execution viewed as a useful side-
effect. However, DGensim also has a centralised bottle
neck in the environment manager. As with JAMES, in-
teroperability with other types of simulation was not a
design goal.

MACE-3J is a Java-based MAS simulation, integra-



tion and development testbed [9]. It is an extension of
the original MACE testbed [8], which aims to fulfil the
need for tools to support distributed collaborative scien-
tific research in large scale, large-grain MAS. As with
HLA AGENT, agents are distributed via proxies. This al-
lows ‘real’ agents to interact with simulated agents as all
interaction is performed via the proxy. MACE3J has been
used in a number of experimental applications, including
the distribution of legacy a agent application written in
Java.

7 Summary

In this paper, we have presented an approach to dis-
tributing simulations of agent-based systems using the
SIM AGENT toolkit and the HLA. We showed how the
HLA can be used to distribute an existing SIM AGENT

simulation with different agents being simulated by dif-
ferent federates and briefly outlined the changes nec-
essary to the SIM AGENT toolkit to allow integration
with the HLA. The resulting library, which we call
HLA AGENT, incorporates a simple solution to the prob-
lem of action conflicts in a distributed environment which
exploits the existing Ownership Management services of
the HLA. The integration of SIM AGENT and HLA is
transparent in the sense that an existing SIM AGENT user
simulation runs unmodified and the agents are unaware
that other parts of the simulation are running remotely,
and symmetric in the sense that no additional manage-
ment federates are required. The allocation of agents to
federates can be easily configured to make best use of
available computing resources.

We are currently investigating the performance of
HLA AGENT in a number of SIM AGENT applications,
and preliminary results for Tileworld example described
above show that we can obtain speedup by distributing
agents and federates across multiple nodes in a cluster.
However further work is required to characterise the per-
formance of HLA AGENT with different kinds of agents
and environments. One key problem is the efficient prop-
agation of updates to the shared environment. Our ap-
proach currently makes no use of the Data Distribution
Management services provided by the RTI. This is an
area of current work [12]. As part of this work we are
implementing additional tools for data collection and de-
bugging. Existing low-level tools such as the Federation
Management Tool, which allows control and monitoring
of a federation execution, do not present a user-level view
of the simulation. As a first step we have implemented a
monitoring federate for the Tileworld federation which
simply subscribes to a given set of classes and attributes
and graphically displays updates to proxies of objects and
agents simulated on other federates. It should also be
relatively straightforward to implement a simple form of
code migration to support coarse grain load balancing.
One advantage of using heavyweight proxies is that it is

easy to move the execution of a local object to its proxy
on another federate, by transferring the values of its un-
published slots and the contents of its database and reset-
ting the proxy flags.

Another area for future work is inter-operation, using
HLA to integrate SIM AGENT with other simulators. This
would allow the investigation of different agent archi-
tectures and environments using different simulators in
a straightforward way. Initial investigation suggests that
the additional changes to SIM AGENT required to support
inter-operation are relatively straightforward, and the key
issue is one of specifying interfaces for sensor and ac-
tion data. We are currently in the process of developing
a set of inter-operability guidelines for SIM AGENT sim-
ulations.

Acknowledgements

We would like to thank Bora Kumova, Aaron Sloman,
Ron Chrisley and other members of the Modelling and
Analysis of Systems and Agents groups at the University
of Birmingham for many helpful discussions and com-
ments on earlier versions of the design presented in this
paper. This work is part of the PDES-MAS project6 and is
supported by EPSRC research grant No. GR/R45338/01.

References

[1] J. Anderson. A generic distributed simulation sys-
tem for intelligent agent design and evaluation. In
H. S. Sarjoughian, F. E. Cellier, M. M. Marefat, and
J. W. Rozenblit, editors, Proceedings of the Tenth
Conference on AI, Simulation and Planning, AIS-
2000, pages 36–44. Society for Computer Simula-
tion International, March 2000.

[2] J. Anderson and M. Evans. A generic simulation
system for intelligent agent designs. Applied Artifi-
cial Intelligence, 9(5):527–562, October 1995.

[3] S. M. Atkin, D. L. Westbrook, P. R. Cohen, and
G. D. Jorstad. AFS and HAC: Domain general agent
simulation and control. In J. Baxter and B. Logan,
editors, Software Tools for Developing Agents: Pa-
pers from the 1998 Workshop, pages 89–96. AAAI
Press, July 1998. Technical Report WS–98–10.

[4] J. Baxter and R. T. Hepplewhite. Agents in tank
battle simulations. Communications of the ACM,
42(3):74–75, 1999.

[5] High level architecture interface specification, ver-
sion 1.3, 1998.

6http://www.cs.bham.ac.uk/∼gkt/Research/PDES/pdes-mas.html



[6] E. H. Durfee and T. A. Montgomery. MICE:
A flexible testbed for intelligent coordination ex-
periements. In Proceedings of the Ninth Dis-
tributed Artificial Intelligence Workshop, pages 25–
40, September 1989.

[7] E. Ephrati, M. Pollack, and S. Ur. Deriving multi-
agent coordination through filtering strategies. In
C. Mellish, editor, Proceedings of the Fourteenth
International Joint Conference on Artificial Intelli-
gence, pages 679–685, San Francisco, 1995. Mor-
gan Kaufmann.

[8] L. Gasser, C. Braganza, and N. Herman. Mace:
A flexible testbed for distributed ai research. In
M. N. Huhns, editor, Distributed Artificial Intelli-
gence, pages 119–152. Pitman Publishers, 1987.

[9] L. Gasser and K. Kakugawa. Mace3j: Fast flexible
distributed simulation of large, large-grain multi-
agent systems. In Proceedings of AAMAS-2002,
Bologna, July 2002.

[10] F. Kuhl, R. Weatherly, and J. Dahmann. Creating
Computer Simulation Systems: An Introduction to
the High Level Architecture. Prentice Hall, 1999.

[11] B. Logan, M. Fraser, D. Fielding, S. Benford,
C. Greenhalgh, and P. Herrero. Keeping in touch:
Agents reporting from collaborative virtual environ-
ments. In K. Forbus and M. S. El-Nasr, editors, Ar-
tificial Intelligence and Interactive Entertainment:
Papers from the 2002 AAAI Symposium, pages 62–
68, Menlo Park, CA, March 2002. AAAI Press.
Technical Report SS–02–01.

[12] B. Logan and G. Theodoropoulos. The distributed
simulation of multi-agent systems. Proceedings of
the IEEE, 89(2):174–186, February 2001.

[13] M. E. Pollack, D. Joslin, A. Nunes, S. Ur, and
E. Ephrati. Experimental investigation of an agent
commitment strategy. Technical Report TR 94–
31, University of Pittsburgh, Pittsburgh, PA 15260,
1994.

[14] M. E. Pollack and M. Ringuette. Introducing the
tileworld: Experimentally evaluating agent archi-
tecture. In National Conference on Artificial Intel-
ligence, pages 183–189, 1990.

[15] B. Schattenberg and A. M. Uhrmacher. Plan-
ning agents in JAMES. Proceedings of the IEEE,
89(2):158–173, Feb. 2001.

[16] M. Scheutz and B. Logan. Affective vs. delibera-
tive agent control. In Proceedings of the AISB’01
Symposium on Emotion, Cognition and Affective
Computing, pages 1–10. AISB, The Society for the
Study of Artificial Intelligence and the Simulation
of Behaviour, March 2001.

[17] A. Sloman and B. Logan. Building cognitively rich
agents using the SIM AGENT toolkit. Communica-
tions of the ACM, 42(3):71–77, March 1999.

[18] A. Sloman and R. Poli. SIM AGENT: A toolkit
for exploring agent designs. In M. Wooldridge,
J. Mueller, and M. Tambe, editors, Intelligent
Agents II: Agent Theories Architectures and Lan-
guages (ATAL-95), pages 392–407. Springer–
Verlag, 1996.

[19] A. M. Uhrmacher. Dynamic structures in model-
ing and simulation: a reflective approach. ACM
Transactions on Modeling and Computer Simula-
tion (TOMACS), 11(2):206–232, 2001.

[20] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory
of Modeling and Simulation. Academic Press, 2nd
edition, 2000.


