
Ed Ionides University of Michigan 1

Inference and Filtering for Partially Observed
Diffusion Processes via Sequential Monte Carlo

Ed Ionides

Department of Statistics

University of Michigan



Ed Ionides University of Michigan 2

Outline

• Partially observed diffusion models.

• A new filter algorithm called Conditional Particle Filter (CPF).

• Implementation of CPF for partially observed diffusions.

• CPF as a Sequential Monte Carlo algorithm.

• Properties of CPF.
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Partially observed diffusion models

• An unobserved vector-valued “state” process xt

dxt = µ(xt, t)dt + σ(xt, t)dBt, t ∈ [0, T ]

• A discrete time “observation” process yt

yt = g(xt, ηt), t = 1, 2, . . . , T

for ηt an independent sequence of “observation noise”.

• Some generalizations are possible.

• A key to likelihood-based inference is to solve the filtering problem, i.e.

to evaluate f(xt | y1, . . . yt).
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Applications

• xt models a system (usually with some unkown parameters).

• yt models the available observations.

xt yt

(i) Population or disease dynamics. Birth, death, disease status data.

(ii) Meteorological models based on Meteorological station, balloon,

atmospheric science. satellite data.

(iii) Volatility of financial markets. Market prices, or individual trades.
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Conditional Particle Filtering (CPF)

• A “conditional particle”, x̂t, is a Markov process conditional on the

observations. x̂t is drawn from the conditional distribution of xt given

yt and xt−1=x̂t−1, namely f(xt | yt, xt−1=x̂t−1).

• (x̂t,Wt) is a properly weighted importance sample for the filtering

distribution f(xt | y1, . . . yt) if Wt =
∏t

s=1 ws for

ws = f(ys | xs−1=x̂s−1).

• “Properly weighted” means E[h(x̂t)Wt] ∝ E[h(xt)|y1, . . . , yt].

• In practice, we must truncate: Ŵt =
∏t

s=t−k ws.
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Questions

• Can CPF be implemented for partially observed diffusions? (YES)

• How does CPF relate to other filtering strategies?

• Can CPF apply for small or singular observation noise, e.g. when

xt = (xt,1, xt,2) and yt = xt,1? (YES)
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Simulating from x̂t

• Recall that xt solves an SDE, dxt = µ(xt)dt + σ(xt)dBt

x̂t also solves an SDE, dx̂t = µ̂(x̂t)dt + σ(x̂t)dBt

• The conditional process, x̂t, is also a diffusion.

• x̂t and xt have the same infinitesimal variance σ(·).

• µ̂ is difficult to calculate for nonlinear models.

• Approximate x̂t by x̃t with dx̃t = µ̃(x̃t)dt + σ(x̃t)dBt

(e.g. by linearization).
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Importance Sampling

• Let P, P̂ and P̃ be the laws of xt, x̂t and x̃t respectively.

• To sample from P̂ , we can simulate from P̃ and attach importance

weight dP̂ /dP̃ .

• Importance weights are only needed up to a constant of

proportionality, so we calculate dP/dP̃ ∝ dP̂ /dP̃ .

• This is Radon-Nikodym notation for the familiar result

fX|Y (x|y) =
fXY (x, y)

fY (y)
∝ fXY (x, y)

• In some models, dP̂/dP does not exist, and extra care is required.
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Conditional Particle Filtering (CPF) is a

variation of Sequential Monte Carlo (SMC)

• SMC methods are “interacting particle filters”. CPF is a special case

where the particles do not interact.

• The original SMC algorithm of Gordon et al (1993) is sometimes called

a “particle filter” (PF).

• In CPF, the truncation of weights plays a similar role to the resampling

of particles in PF.

• There is a continuum of possible algorithms between CPF and PF.

These algorithms extend existing generalizations of SMC (Doucet et

al, 2001).
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An Example

• For a linear Gaussian system

dzt = −αztdt + dBt

yt = zt + ηt

The likelihood of y1, . . . , yT can be found using the Kalman filter (KF).

• We compare algorithms on the nonlinear system xt = h(zt) with

yt = h−1(xt) + ηt and ηt ∼ N(0, τ2).

• Here, h(z) = [(|z|+ 1)2 − 1]sgn(z), so that h, its inverse and

their derivatives exist on [−∞,∞].

• Filters were compared by their root mean square error in calculating

the likelihood – a quantity we call the “accuracy”. Accuracy can be

decomposed into bias, filter variance and Monte Carlo variance.
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Table 1.

τ b× 102 σf × 102 σm × 102 A× 102

EKF 1 -3.32 25.1 n/a 25.4

LCPF 1 -1.62 15.5 4.67 16.4

PF 1 -0.45 3.26 8.54 9.27

CPF 1 -0.16 3.94 3.99 5.67

EKF 0.25 -8.1 42.7 n/a 43.9

LCPF 0.25 -5.3 30.7 2.94 31.8

PF 0.25 -2.52 13.7 21.7 29.8

CPF 0.25 -0.82 9.78 3.56 10.5

• Bias, b, filter error, σf , Monte Carlo error, σm, and accuracy, A.

• Calculated for the conditional particle filter (CPF), linearized conditional

particle filter (LCPF), particle filter (PF) and extended Kalman filter (EKF).
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• A realization with T = 100; transformed observations, h(yt), are

shown as points.

• The filtering means, estimating xt, are shown superimposed for EKF,

PF, LCPF and CPF. The methods agree closely on their point

estimates of xt (indistinguishable lines).
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• Two realizations of the prediction density,

• Calculated by transforming the analytically tractable linear model.
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Algorithmic parameters for Table 1

Description Required for Value

Np # of particles PF, LCPF, CPF 200

Nt # of steps per observation PF, CPF 5

for numerical

solution of SDE

Nf # of lags for filtering LCPF, CPF 3

Nr # of trials for CPF 10

importance resampling
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Example (Brownian Bridge)

• For xt = Bt, conditioning on x0 = x1 = y1 = 0 makes x̂t a

Brownian bridge, dx̂t = −x̂t(1− t)−1dt + dWt.

• Set Pδ , P̂δ to be the laws of xt, x̂t for t ∈ [0, 1− δ].

dPδ

dP̂δ

(ξ) = exp
{

2
∫ 1−δ

0

ξt dξt

1− t
+

∫ 1−δ

0

ξ2
t

(1− t)2
dt

}
.

• limδ→0 dPδ/dP̂δ does not exist. This might cause problems for our

method: (i) simulate from x̃t ≈ x̂t, (ii) weight according to dP/dP̃ .

• Remarkably (see Table 2), we can still use small δ > 0 and estimate

f(y1|x0) = EP̃δ

[
f(y1|x1−δ=x̃1−δ)

dPδ

dP̃δ

{x̃t}
]

.
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Table 2.

δ f̂(y1|x0) dPδ/dP̃δ f(y1|x̃1−δ)

0.2 0.399(0.216) 1.00(2.63) 0.57(0.28)

0.1 0.399(0.235) 0.92(3.68) 0.79(0.40)

0.04 0.396(0.248) 0.83(8.60) 1.24(0.64)

0.02 0.398(0.251) 0.68(18.0) 1.75(0.91)

• Monte Carlo estimates, f̂(y1|x0), of f(y1|x0) using CPF for a

Brownian bridge, truncating at t = 1− δ.

• Table shows mean, with SD in parentheses.

• The true value is f(y1|x0) = 1/
√

2π = 0.399
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Conclusions

• CPF is applicable to a wide class of challenging and important

nonlinear filtering problems.

• In an example of a nonlinear system for which an exact filter is

available, the conditional particle filter (CPF) was considerably more

accurate than the standard particle filter (PF).

• CPF had lower Monte Carlo error than PF, particularly for low

observation noise.

• CPF (unlike PF) can be made to work with singular observation noise.

• Currently we have only a basic understanding of why CPF succeeds

on models with low or singular observation noise.

• Future work is indicated on truncating weights as a Sequential Monte

Carlo technique.
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