Inference and Filtering for Partially Observed Diffusion Processes via Sequential Monte Carlo

Ed Ionides

Department of Statistics University of Michigan

Outline

- Partially observed diffusion models.
- A new filter algorithm called Conditional Particle Filter (CPF).
- Implementation of CPF for partially observed diffusions.
- CPF as a Sequential Monte Carlo algorithm.
- Properties of CPF.

Partially observed diffusion models

• An unobserved vector-valued "state" process x_t

$$dx_t = \mu(x_t, t)dt + \sigma(x_t, t)dB_t, \quad t \in [0, T]$$

• A discrete time "observation" process y_t

$$y_t = g(x_t, \eta_t), \quad t = 1, 2, \dots, T$$

for η_t an independent sequence of "observation noise".

- Some generalizations are possible.
- A key to likelihood-based inference is to solve the filtering problem, i.e. to evaluate f(x_t | y₁,...y_t).

Applications

- x_t models a system (usually with some unkown parameters).
- y_t models the available observations.

_	x_t	y_t
(i)	Population or disease dynamics.	Birth, death, disease status data.
(ii)	Meteorological models based on	Meteorological station, balloon,
	atmospheric science.	satellite data.
(iii)	Volatility of financial markets.	Market prices, or individual trades.

Conditional Particle Filtering (CPF)

- A "conditional particle", \hat{x}_t , is a Markov process conditional on the observations. \hat{x}_t is drawn from the conditional distribution of x_t given y_t and $x_{t-1} = \hat{x}_{t-1}$, namely $f(x_t \mid y_t, x_{t-1} = \hat{x}_{t-1})$.
- (\hat{x}_t, W_t) is a properly weighted importance sample for the filtering distribution $f(x_t \mid y_1, \dots, y_t)$ if $W_t = \prod_{s=1}^t w_s$ for $w_s = f(y_s \mid x_{s-1} = \hat{x}_{s-1}).$
- "Properly weighted" means $E[h(\hat{x}_t)W_t] \propto E[h(x_t)|y_1, \dots, y_t]$.
- In practice, we must truncate: $\hat{W}_t = \prod_{s=t-k}^t w_s$.

Questions

- Can CPF be implemented for partially observed diffusions? (YES)
- How does CPF relate to other filtering strategies?
- Can CPF apply for small or singular observation noise, e.g. when $x_t = (x_{t,1}, x_{t,2})$ and $y_t = x_{t,1}$? (YES)

Simulating from \hat{x}_t

- Recall that x_t solves an SDE, $dx_t = \mu(x_t)dt + \sigma(x_t)dB_t$ \hat{x}_t also solves an SDE, $d\hat{x}_t = \hat{\mu}(\hat{x}_t)dt + \sigma(\hat{x}_t)dB_t$
- The conditional process, \hat{x}_t , is also a diffusion.
- \hat{x}_t and x_t have the same infinitesimal variance $\sigma(\cdot)$.
- $\hat{\mu}$ is difficult to calculate for nonlinear models.
- Approximate \hat{x}_t by \tilde{x}_t with $d\tilde{x}_t = \tilde{\mu}(\tilde{x}_t)dt + \sigma(\tilde{x}_t)dB_t$ (e.g. by linearization).

Importance Sampling

- Let P, \hat{P} and \tilde{P} be the laws of x_t , \hat{x}_t and \tilde{x}_t respectively.
- To sample from \hat{P} , we can simulate from \tilde{P} and attach importance weight $d\hat{P}/d\tilde{P}$.
- Importance weights are only needed up to a constant of proportionality, so we calculate $dP/d\tilde{P}\propto d\hat{P}/d\tilde{P}.$
- This is Radon-Nikodym notation for the familiar result

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)} \propto f_{XY}(x,y)$$

• In some models, $d\hat{P}/dP$ does not exist, and extra care is required.

9

Conditional Particle Filtering (CPF) is a variation of Sequential Monte Carlo (SMC)

- SMC methods are "interacting particle filters". CPF is a special case where the particles do not interact.
- The original SMC algorithm of Gordon et al (1993) is sometimes called a "particle filter" (PF).
- In CPF, the truncation of weights plays a similar role to the resampling of particles in PF.
- There is a continuum of possible algorithms between CPF and PF. These algorithms extend existing generalizations of SMC (Doucet et al, 2001).

An Example

• For a linear Gaussian system

$$dz_t = -\alpha z_t dt + dB_t$$
$$y_t = z_t + \eta_t$$

The likelihood of y_1, \ldots, y_T can be found using the Kalman filter (KF).

- We compare algorithms on the nonlinear system $x_t = h(z_t)$ with $y_t = h^{-1}(x_t) + \eta_t$ and $\eta_t \sim N(0, \tau^2)$.
- Here, $h(z) = [(|z|+1)^2 1]sgn(z)$, so that h, its inverse and their derivatives exist on $[-\infty, \infty]$.
- Filters were compared by their root mean square error in calculating the likelihood – a quantity we call the "accuracy". Accuracy can be decomposed into bias, filter variance and Monte Carlo variance.

	au	$b \times 10^2$	$\sigma_f \times 10^2$	$\sigma_m \times 10^2$	$A \times 10^2$
EKF	1	-3.32	25.1	n/a	25.4
LCPF	1	-1.62	15.5	4.67	16.4
PF	1	-0.45	3.26	8.54	9.27
CPF	1	-0.16	3.94	3.99	5.67
EKF	0.25	-8.1	42.7	n/a	43.9
LCPF	0.25	-5.3	30.7	2.94	31.8
PF	0.25	-2.52	13.7	21.7	29.8
CPF	0.25	-0.82	9.78	3.56	10.5

Table 1.

• Bias, b, filter error, σ_f , Monte Carlo error, σ_m , and accuracy, A.

• Calculated for the conditional particle filter (CPF), linearized conditional particle filter (LCPF), particle filter (PF) and extended Kalman filter (EKF).

• A realization with T = 100; transformed observations, $h(y_t)$, are shown as points.

 The filtering means, estimating x_t, are shown superimposed for EKF, PF, LCPF and CPF. The methods agree closely on their point estimates of x_t (indistinguishable lines).

- Two realizations of the prediction density,
- Calculated by transforming the analytically tractable linear model.

Algorithmic parameters for Table 1

	Description	Required for	Value
N_p	# of particles	PF, LCPF, CPF	200
N_t	# of steps per observation	PF, CPF	5
	for numerical		
	solution of SDE		
N_{f}	# of lags for filtering	LCPF, CPF	3
N_r	# of trials for	CPF	10
	importance resampling		

Example (Brownian Bridge)

- For $x_t = B_t$, conditioning on $x_0 = x_1 = y_1 = 0$ makes \hat{x}_t a Brownian bridge, $d\hat{x}_t = -\hat{x}_t(1-t)^{-1}dt + dW_t$.
- Set P_{δ} , \hat{P}_{δ} to be the laws of x_t , \hat{x}_t for $t \in [0, 1 \delta]$.

$$\frac{dP_{\delta}}{d\hat{P}_{\delta}}(\xi) = \exp\left\{2\int_{0}^{1-\delta}\frac{\xi_t \,d\xi_t}{1-t} + \int_{0}^{1-\delta}\frac{\xi_t^2}{(1-t)^2}\,dt\right\}.$$

- $\lim_{\delta \to 0} dP_{\delta}/d\hat{P}_{\delta}$ does not exist. This might cause problems for our method: (i) simulate from $\tilde{x}_t \approx \hat{x}_t$, (ii) weight according to $dP/d\tilde{P}$.
- Remarkably (see Table 2), we can still use small $\delta>0$ and estimate

$$f(y_1|x_0) = E_{\tilde{P}_{\delta}} \left[f(y_1|x_{1-\delta} = \tilde{x}_{1-\delta}) \frac{dP_{\delta}}{d\tilde{P}_{\delta}} \{ \tilde{x}_t \} \right].$$

Table 2) • =
---------	-----------------

δ	$\hat{f}(y_1 x_0)$	$dP_{\delta}/d ilde{P}_{\delta}$	$f(y_1 \tilde{x}_{1-\delta})$
0.2	0.399(0.216)	1.00(2.63)	0.57(0.28)
0.1	0.399(0.235)	0.92(3.68)	0.79(0.40)
0.04	0.396(0.248)	0.83(8.60)	1.24(0.64)
0.02	0.398(0.251)	0.68(18.0)	1.75(0.91)

- Monte Carlo estimates, $\hat{f}(y_1|x_0)$, of $f(y_1|x_0)$ using CPF for a Brownian bridge, truncating at $t = 1 \delta$.
- Table shows mean, with SD in parentheses.
- The true value is $f(y_1|x_0) = 1/\sqrt{2\pi} = 0.399$

Conclusions

- CPF is applicable to a wide class of challenging and important nonlinear filtering problems.
- In an example of a nonlinear system for which an exact filter is available, the conditional particle filter (CPF) was considerably more accurate than the standard particle filter (PF).
- CPF had lower Monte Carlo error than PF, particularly for low observation noise.
- CPF (unlike PF) can be made to work with singular observation noise.
- Currently we have only a basic understanding of why CPF succeeds on models with low or singular observation noise.
- Future work is indicated on truncating weights as a Sequential Monte Carlo technique.

References

- Doucet, A., de Freitas, N., and Gordon, N. J. (2001). Sequential Monte Carlo Methods in Practice. Springer, New York.
- Gordon, N., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. *IEE Proceedings–F*, 140(2):107–113.
- Ionides, E. L. (2004). Inference and filtering for partially observed diffusion
 processes via sequential Monte Carlo. Submitted to Journal of
 Computational and Graphical Statistics. http://www.stat.
 lsa.umich.edu/~ionides/pubs/jcgs.pdf. Also see
 Tech. report #405, Univ. of Michigan Dept. of Statistics.
- Liu, J. S. (2001). *Monte Carlo Strategies in Scientific Computing*. Springer, New York.