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Directional Sensitivity of Neurons in the Primary Auditory (AI)
Cortex: Effects of Sound-Source Intensity Level
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Reale, Richard A., Rick L. Jenison, and John F. Brugge. Direc-
tional sensitivity of neurons in the primary auditory (AI) cortex:
effects of sound-source intensity level. J Neurophysiol 89:
1024–1038, 2003; 10.1152/jn.00563.2002. Transient sounds were
delivered from different directions in virtual acoustic space while
recording from single neurons in primary auditory cortex (AI) of cats
under general anesthesia. The intensity level of the sound source was
varied parametrically to determine the operating characteristics of the
spatial receptive field. The spatial receptive field was constructed from
the onset latency of the response to a sound at each sampled direction.
Spatial gradients of response latency composing a receptive field are
due partially to a systematic co-dependence on sound-source direction
and intensity level. Typically, at any given intensity level, the distri-
bution of response latency within the receptive field was unimodal
with a range of approximately 3–4 ms, although for some cells and
some levels, the spread could be as much as 20 or as little as 2 ms.
Response latency, averaged across directions, differed among neurons
for the same intensity level, and also differed among intensity levels
for the same neuron. Generally, increases in intensity level resulted in
decreases in the mean and variance, which follows an inverse Gauss-
ian distribution. Receptive field models, based on response latency,
are developed using multiple parameters (azimuth, elevation, inten-
sity), validated with Monte Carlo simulation, and their spatial filtering
described using spherical harmonic analysis. Observations from an
ensemble of modeled receptive fields are obtained by linking the
inverse Gaussian density to the probabilistic inverse problem of
estimating sound-source direction and intensity. Upper bounds on
acuity is derived from the ensemble using Fisher information, and the
predicted patterns of estimation errors are related to psychophysical
performance.

I N T R O D U C T I O N

Animals must localize the source of transient sound under a
wide range of conditions in the natural world. This localization
ability is tied to the functional integrity of primary auditory
(AI) cortex (Jenkins and Merzenich 1984) and, presumably, to
those AI neurons sensitive to sound source direction (Barone et
al. 1996; Benson et al. 1981; Brugge et al. 1994 1996; Egger-
mont and Mossop 1998; Eisenman 1974; Imig et al. 1990;
Middlebrooks and Pettigrew 1981; Rajan et al. 1990; Samson
et al. 1993, 1994; Soviarvi and Hyvarinen 1974) and to the
major cues that the animal uses in localizing sound on the
horizontal plane (Brugge et al. 1969, 1973; Irvine et al. 1996;
Phillips and Irvine 1981, 1983; Reale and Brugge 1990; Reale
and Kettner 1986; Semple and Kitzes 1993a,b).

Directional sensitivity and selectivity of an AI neuron are
embodied in the auditory spatial receptive field, which is
defined by those sound-source directions in azimuth and ele-
vation from which a sound systematically affects the response
of the cell (Brugge et al. 1994, 1996). Auditory spatial recep-
tive fields are not static—they change in size and shape when
competing sound is introduced into the acoustic environment
(Brugge et al. 1998; Reale et al. 2000) and when the intensity
of the sound source varies (Brugge et al. 1996). Typically,
when there are no competing sounds and the intensity level of
the source is at or very near the threshold, an AI spatial
receptive field is confined to a small portion of acoustic space
(Brugge et al. 1994, 1996, 1998; Eisenman 1974; Middle-
brooks and Pettigrew 1981; Rajan et al. 1990). With few
exceptions (see Imig et al. 1990; Rajan et al. 1990; Samson et
al. 1993, 1994), increasing the stimulus strength by no more
than 10 dB over a wide range (40–80 dB) of suprathreshold
intensities results in marked increase in receptive field size
whether measured along the azimuth, along the elevation, or
along both (Brugge et al. 1994, 1996, 1998; Imig et al. 1990;
Middlebrooks and Pettigrew 1981; Rajan et al. 1990). This
attribute of AI spatial tuning is observed in other auditory
cortical fields as well (Middlebrooks et al. 1994, 1998). Thus
rather than providing a highly restricted view of auditory
space, spatial tuning at the cortical level affords a nearly
complete view of possible sound-source directions. In this
setting, detailed information on sound-source direction must be
encoded by a receptive field metric (e.g., discharge rate or
latency or pattern) that has an orderly relationship to direction
(Brugge et al. 1996; Jenison 1998; Middlebrooks et al. 1994,
1998; Furukawa and Middlebrooks 2002).

Previous studies from our laboratory showed that the first-
spike latency of most AI cells was tightly locked to the onset
of a transient directional stimulus and that for a sizeable
proportion of these cells this latency metric was distributed in
an orderly way across the spatial receptive field (Brugge et al.
1996, 1998; Reale et al. 2000). We hypothesized that direc-
tional information was derived from these spatial gradients. To
examine this possibility in a more rigorous way and to relate
the findings to extant psychophysical data, we first developed
functional approximations to auditory spatial receptive fields.
These approximations employed only directional dimensions
of azimuth and elevation (Jenison 1998), although we later
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extended that approach to space-time (Jenison et al. 2001b).
We then used maximum likelihood estimation methods to
demonstrate that an ensemble of AI neurons with receptive
fields having gradients of response latency contained sufficient
information to account for auditory spatial acuity of both cat
and human (Jenison 1998; Jenison et al. 1998). In an extension
to this theoretical observer approach, we showed how a relative
timing referent could be derived from the ensemble response
and thereby obviate the apparent lack of a temporal marker for
the onset of the stimulus (Jension 2001a).

Systematic spatial gradients of response latency were often
evident in AI spatial receptive fields over a wide range of
intensity level of the sound source and hence the size of the
field. We argued that this preservation of a functional gradient
may account for a listener’s ability to localized sound under
changing intensity conditions (Brugge et al. 1996). Under most
natural common listening conditions the intensity of the sound
changes and is unknown to the listener. In our initial receptive
field analyses, however, the intensity level of the sound source
was assumed to be known to the theoretical observer and hence
was ignored in the functional approximation. We have now
extended our functional modeling approach to include, along
with directional parameters, the intensity level of the sound
source as an unknown parameter to be estimated by the theo-
retical observer.

In this paper we describe the changes in the AI spatial
receptive field that typically occurs with changes in intensity of
the source. We show that the resultant systematic changes of
response latency within the receptive field are faithfully mod-
eled using functional approximation techniques that include
intensity as an unknown parameter. We then introduce the use
of spherical harmonic analysis to quantify concomitant
changes in receptive field shape. We go on to develop a
probability density function that links the receptive field model
with an inverse Gaussian distribution for response latency,
which we then use in an information theoretic analyses of a
simulated ensemble of AI neurons to derive estimation errors
in azimuth and elevation when the intensity level of the sound
source was assumed to be unknown. The modeled results are in
agreement with psychophysical findings. Preliminary reports
have been presented (Jenison 2001b; Jenison et al. 2001a).

M E T H O D S

Adult cats, with no sign of external or middle ear infection, were
premedicated with Acepromazine (maleate) (0.2 mg/kg, im) and Ket-
amine (hydrochloride) (20 mg/kg, im). A catheter was inserted into
the femoral vein for iv drug administration and fluid replacement.
Atropine sulfate (0.1 mg/kg, sc), dexamethasone sodium (0.2 mg/kg,
iv), and procaine penicillin (300,000 units, im) were also administered
before the animal was deeply anesthetized either with sodium pento-
barbital (11 cats) or with halothane (4 cats). Pentobarbital sodium was
administered intravenously (40 mg/kg, iv). Halothane (0.8–1.8%) was
administered with a carrier-gas mixture of oxygen (33%) and nitrous
oxide (66%) through an endotracheal tube using a scavenged Verni-
Trol vaporizer system and an anesthesia ventilator. Samples of in-
spiratory and expiratory air were drawn continuously from within the
endotracheal tube and a respiratory gas analyzer (Ohmeda 5250) used
to measure pulse rate, oxygen saturation, airway pressure, and con-
centrations of O2, CO2, N2O, and halothane, on a breath-by-breath
basis. When halothane was employed a muscle relaxant (pancuronium
bromide, 0.15 mg/kg, iv) was administered just before recordings
began, if spontaneous respiration was irregular or otherwise compro-

mised. Paralysis could be maintained throughout the experiment by
supplemental doses of pancuronium. Muscle relaxation under halo-
thane anesthesia, combined with careful monitoring of inspired and
expired gases and vital signs, provided a highly stable long-term
recording environment. Experimental protocols were approved by the
University of Wisconsin Institutional Animal Care and Use Com-
mittee.

When the animal reached a surgical plane of anesthesia, the pinnae
and other soft tissue were removed from the head. Hollow earpieces
were inserted into the truncated ear canals, sealed in place, and
connected to specially designed earphones. The transfer characteris-
tics of the left- and right-ear sound delivery systems were measured in
vivo near the tympanic membrane. A chamber was cemented to the
skull over the exposed left auditory cortex, filled with warm silicone
oil, and hydraulically sealed with a glass plate on which a Davies-type
microdrive was mounted. Action potentials were recorded extracellu-
larly with tungsten-in-glass microelectrodes in cortical area AI; their
times-of-occurrence were measured with respect to stimulus onset
within a window extending from 5 to 100 ms either by using a 1-�s
resolution and storing for off-line analyses or by digitizing their
waveforms at 25 kHz and using BrainWare software (TDT, Gaines-
ville, FL) on-line and off-line to sort action potentials among single
units. Tone burst stimuli delivered monaurally or binaurally were used
to estimate the best frequency (BF) of a neuron and some response
area features related to binaural interactions as described previously
(Brugge et al. 1996). The partial tonotopic map obtained by repeated
electrode penetrations made during the course of an experiment con-
firmed that the recordings were obtained from neurons in AI.

Sound-source stimuli were impulsive transients (either 6.4 or 10 ms
duration) delivered in virtual acoustic space, as described previously
(Brugge et al. 1994; Reale et al. 1996). In later experiments this stimulus
presentation was accomplished with a TDT System II (TDT). A veridical
model of virtual acoustic space (Chen et al. 1995; Wu et al. 1997) was
used to synthesize, in quasi-real-time, transient signals for sound-source
directions positioned in a spherical coordinate system (�180° to �180°
azimuth, �36° to �90° elevation) and centered on the cat’s interaural
axis. The virtual acoustic space used was derived from HRTFs measured
in a single cat and hence not tailored to each of our experimental animals.
Acoustic calibration, performed in-ear on each animal, was used to
provide a common intensity reference among animals; namely, the max-
imum intensity for a particular sound-source stimulus that occurs in the
virtual acoustic space. Intensity level is expressed as decibels of attenu-
ation (dBA) from this maximum. The spatial receptive field of a neuron,
for a sound source of a particular intensity level, was mapped using a
virtual acoustic space composed of either 1,650 directions on a Cartesian
graticule (approximately 4.5° azimuth by 9° elevation spacing, Brugge et
al. 1996) or 524 directions arranged along a spiral path (approximately 9°
separation) to provide uniform spherical sampling (Jenison et al. 2001b).
In either case, the spatial receptive field is rendered (on paper) using the
quartic-authalic equal area projection, which minimizes distortion in the
frontal hemisphere and includes all of auditory space around the cat.

R E S U L T S

Our results were derived from 244 single AI neurons from
which spatial receptive fields were obtained at different inten-
sity levels. The BFs of these neurons ranged from 5.9 to 29.1
kHz. Typically, AI neurons in our sample exhibited little or no
spontaneous activity and responded to an effective spatial
stimulus with a single spike or a short burst of spikes for up to
tens of hundreds of closely spaced directions. At each effective
direction, we measured the latency to the first spike evoked by
that stimulus. There were several observations common to all
neurons studied, as described in detail in a previous report
(Brugge et al. 1996). At any given intensity, response latency
often varied within the receptive field by approximately 3–4
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ms, although for some cells the spread could be as much as 20
ms. The distribution of response latency within the receptive
field at any given intensity was typically unimodal. The mean
of the distribution differed among neurons for the same inten-
sity level, and most often also differed among intensity levels
for the same neuron. Increases in intensity typically resulted in
decreases in the mean of the distribution. Response latency,
averaged across directions, was longest for an intensity level
near threshold for the cell, and decreased rapidly at intensity
levels approximately 20–30 dB above this threshold. Further
increases in intensity could evoke either asymptotic or non-
monotonic behaviors. Over a range of 10–50 dB, the mean
latency across a receptive field would typically shorten by at
least approximately 1–5 ms. Figure 1 illustrates several of
these response attributes for one neuron. The left-hand column
shows quartic-authalic maps of response latency (color coded)
at each of six intensity levels with highest intensity at the top.
Here the empirically measured response latency, averaged
across all effective directions, increased from 12.5 to 32.7 ms
over the 45-dB range of intensity studied (right-hand column,
open symbols). Similarly the SD of the distribution increased
from 2.2 to 27.2 ms. This empirical SD (dashed horizontal
lines) contains both the unsystematic and the systematic com-
ponents of the response variability. The systematic component
at any given intensity is due to the dependence of response
latency on the direction of the sound source.

Functional approximation of the auditory spatial receptive
field under changes in sound source intensity

Initially we developed a receptive field model that accounted
for the systematic variability in response latency that depended
on sound-source direction, and partitioned out the unsystematic
variability (Jenison 1998). Here we illustrate the behavior of
this model, which has now been extended to account for the
systematic variability that depends also on sound-source inten-
sity (for a theoretical treatment, see Jenison 2001b; Jenison et
al. 2001a). This extended functional approximation method
was applied to all 244 single units in our sample. No systematic
differences were seen in the modeled data that could be attrib-
uted to the anesthetic used.

Our prior functional approximation work on spatial recep-
tive fields used spherical basis functions with free parameters
(wij, �ij, �ij, and �ij) for fitting the basis functions. The free
parameters serve only to mathematically approximate the re-
ceptive field, where � and � specify the placement of each
basis function on the sphere, � specifies each width, and w
specifies each weight. The current extension of this approxi-
mation now includes an exponential dependence on the inten-
sity level, �, of the sound source defined as

rfi(�,�,�) � �
j�l

M

wij exp{ln (�) �ij(sin � sin �ij cos(� � �ij) � cos � cos �ij)}

� exp{�ij�} (1)

and a corresponding free fitting parameter �. The nonlinear
dependence on � was introduced to modulate the width pa-
rameter � of the spherical basis functions and allow for the
shape of the receptive field to depend on sound intensity.
Similarly, the nonlinear dependence of mean latency on inten-
sity is provided by introduction of the final term exp{�ij�} in

Eq. 1. Constrained optimization techniques were used to fit the
parameters wij, �ij, �ij, and �ij of the M basis functions defined
by Eq. 1 to the dependent neural response of interest—which in
this case was response latency. The details of the approxima-
tion techniques can be found in Jenison (1998, 2001b).

The middle column of Fig. 1 shows the results of applying
this extended model to the empirical data (left column) from
the same neuron. Although the latency data occupies a spher-
ical coordinate system, the model approximation is simply a
form of regression through a scatter of data where the predicted
latency corresponds to the systematic mean value for any given
direction and intensity. Thus the model captures the mean
latency as a function of direction (middle column) as well as
the increase in response latency, averaged across directions, as
a function of decreasing intensity (right column, filled sym-
bols). The modeled receptive fields also exhibit an increasing
RMS residual error with decreasing intensity (right column,
solid horizontal lines). Since this RMS residual error estimates
the unsystematic component of response variability, it is seen
to be smaller that the total variability (i.e., corresponding
dashed horizontal lines). We note here features of these recep-
tive fields that we return to in the DISCUSSION. At highest
stimulus intensities, the receptive field is very large and the
latency distribution is very narrow. Under this condition, the
spatial latency gradients are shallow and variance in response
latency is small. At the other end of the dynamic range, the
receptive fields are relatively small with latency gradients that
are steep and latency variance that is high.

The relationship between modeled and empirical data are
further exemplified using data from six additional neurons in
Fig. 2. For each neuron, the spatial receptive field was sampled
at between four and six intensity levels separated by 5, 10, or
20 dB. The lowest level was usually chosen to be within 20 dB
of the minimum threshold for that cell. For many cells, this
lowest level produced a mean (and SD) of response latency that
measured in tens of milliseconds. Furthermore, increasing the
intensity level resulted in significantly reduced mean values
and SD that typically asymptote to �5 ms. For other cells, like
those in the lower right of Fig. 2, the magnitude of change
observed across all sampled intensity levels was �10 ms.
Regardless of these idiosyncrasies, the modeling process is
clearly faithful to the specifics of each neuron’s “latency versus
intensity” profile. For each neuron modeled, the input set
consists of all measured response latencies (1,003–4,334 for
these 6 units) together with their corresponding sound-source
direction and intensity level.

Monte Carlo simulation

The veracity of the model in estimating the systematic
component of response variability is limited by the inherent
variability (noise) introduced by the modeling process itself.
This model noise is the result of the data dependence on the
constrained optimization techniques that were used to fit pa-
rameters to the basis functions that served to model the re-
sponse latency (see Jenison 1998, 2001b). There is no true
solution of the model for a particular neuron given a finite input
set consisting of measured response latencies together with
their corresponding sound-source directions and intensity lev-
els. Therefore the estimates of systematic variability shown in
Figs. 1 and 2 need to be compared with this inherent noise to
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FIG. 1. Auditory space receptive field based on 1st-spike latency from 1 AI neuron obtained at 6 different intensities. Intensity
in dBA shown above each row. Color bar annotations denote response latency limits (ms). Left column: maps of empirical values
of response latency (color coded) using a quartic-authalic projection. Central meridian corresponds to 0° azimuth and is directly
in front of the head; meridians forming edges (left edge � �180° and right edge � �180°) of the projection are behind the head.
Central parallel corresponds to 0° elevation and is coincident with interaural axis. Middle column: map projection of spherically
modeled response latency. Right column: graphs of response latency, averaged across directions, of empirical data (open symbols)
and modeled data (filled symbols) as a function of intensity. The 2 graphs are displaced vertically for clarity of presentation. Values
for number of observations (N), average (AVG), and SD (STD) are annotated for each empirical map at each intensity.
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judge their validity. The method we employed to measure the
model’s noise used Monte Carlo simulations. Figure 3 illus-
trates the results of this analysis using the same neuron that was
depicted in Fig. 1. The total number of measured response
latencies composing the input set for this cell was 4,987. In the
Monte Carol approach, one-half of these potential inputs are
chosen at random (with replacement) and that sub-set was used
to model the cell’s spatial receptive field. The sample and
model process was repeated 40 times as prescribed by Efron
and Tibshirani (1993). The left column maps the receptive
fields for each intensity level using the mean value at each
direction obtained from the Monte Carlo simulation. The mid-
dle column maps the receptive fields using the SD at each
direction. In general, regions with the shortest response laten-
cies are also the regions that map to the smallest SD. The right
column reproduces the function (model) from Fig. 1 that
showed the systematic increases in response latency and RMS
error (from 2.6 to 22.1), collapsed across directions (filled
circles, solid horizontal lines). In addition, the function that

results from Monte Carlo simulation plots the mean response
latency (filled squares) and its RMS error (i.e., model noise),
collapsed across directions, for direct comparison. At each
intensity level, the model noise is seen to be significantly less
than its paired value. These findings suggest that the model
approximations to the receptive fields shown in Figs. 1 and 2
were indeed valid estimates of systematic variability in re-
sponse latency that is due to both the dependence of latency on
the direction of the sound source and to the intensity level of
the source.

Receptive field shape changes with intensity level

We showed above that average response latency data from
the functionally modeled receptive fields in our study typically
followed their empirically derived counterparts, whether the
nonlinear growth in latency as a function of intensity was
expansive or compressive. We have also observed that in
extending the model from its original form there appears to be

FIG. 2. Response latency, averaged across di-
rections, as a function of intensity level. Six
panels obtained from different neurons. Empiri-
cal data use open symbols for means and dashed
horizontal lines for SD. Modeled data use filled
symbols for means and solid horizontal lines for
residual (RMS) error. The residual error lines for
the modeled receptive fields are naturally shorter,
because they estimate just the unsystematic vari-
ability. By comparison, empirically measured SD
reflects both systematic and unsystematic varia-
tion.
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FIG. 3. Auditory space receptive field based on response latency from 1 AI neuron using Monte Carlo simulation of spherically
modeled data. Intensity in dBA shown above each row. Left column: map projection of mean response latency obtained from 40
invocations of spherical modeling process. Middle column: map projection of SD of modeling process. Color bar annotations below
each columns denote response latency and SD limits, respectively. Right column: graphs of mean latency, collapsed across
directions, of single-invocation modeled data (F) and Monte Carlo modeled data (f) as a function of intensity. Values for residual
(RMS) error are annotated for both functions at each intensity. See Fig. 1 for further details.
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sufficient degrees of freedom to capture the potential changes
in shape of the receptive field that typically attend intensity
level changes. One visualization of these shape changes is
provided by iso-response contours, as shown by solid white
lines on the spatial receptive fields of three neurons illustrated
in Fig. 4. Because the approximation encompasses both the
dependence on spatial direction and on intensity level, a spatial
receptive field can be examined at any chosen intensity level
and on any graticule. Here we chose intensities varying from
10 (top) to 60 dBA (bottom) and a graticule with 9° spacing. At

a near-threshold intensity level, a particular response contour is
typically confined to only a quadrant of acoustic space, most
often contralateral to the cerebral location of the cell under
study. For these exemplar cells, and for most others in our
sample, raising the intensity level produced concomitant
changes in size and location of the contours. Here, for example,
the iso-response-latency contours for 1 unit (left column) is
seen to change in size, location, and orientation as intensity is
increased from 50 to 10 dBA. Neither contour is present in this
unit’s receptive field determined at 60 dBA. In other neurons,

FIG. 4. Auditory space receptive field based on response latency using spherical model for 3 AI neurons. Columns correspond
to different single units. Color bar annotations, below each column, denote response latency limits (ms). Intensity in dBA shown
above each row. Solid white lines map isolatency contours (1-ms separation). See Fig. 1 for further details.
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still more complicated changes are seen due to a nonmonotonic
relationship between response latency and intensity level. To
capture these changes quantitatively, and thereby study sys-
tematically intensity related changes in spatial receptive field
shape, we turned to spherical harmonic analysis.

Spherical harmonic analysis

Spherical harmonics provide a complete orthonormal basis
for expressing a function defined on a sphere (Hobson 1965),
and the spatial receptive field is a natural spherical function.
They play a role similar to that of cosines and sines in the
Fourier transform. Spherical harmonics vary according to their
so-called spatial frequency, l, ranging from 0 to �, and their
moment, m, which ranges from �l to �l. The complex spher-
ical harmonics themselves are defined in terms of the associ-
ated Legendre functions as follows

Yl
m(�,�) � (�1)m �2l � 1

4	

(l � m)!

(l � m)!
Pl

m (cos �)ejm�

The periodic nature of the spherical harmonic is separated into
elevational (�) dependence via the Legendre function, and

azimuthal (�) dependence via the moment parameter m in the
complex exponential function.

Since spherical harmonics form a complete orthonormal
basis, it allows an arbitrary function, in our case, rf (�,�,�), to
be expanded in terms of complex spherical harmonics such that

rf(�,�,�) � �
l�0

Lmax �
m��l

l

al
mYl

m (�,�)

The transform is carried out for the frequencies l only up to
some finite frequency Lmax. The absolute value of the moment
m is bounded by l. Spherical harmonics are illustrated in Fig.
5 using one spatial receptive field from a token single unit.
When the moment m equals 0, the harmonics are referred to as
zonal harmonics, and vary only in elevation and not in azimuth.
In these cases, there will be l cycles observed along any
meridian on the sphere. When the moments m equal the fre-
quency (l), the harmonics are known as sectorial, and periodic
variation is observed as a function of azimuth, dividing the
sphere into longitudinal sectors. Any other configurations of m
and l are referred to as tesseral harmonics, which reflect a
checker board pattern on the sphere. The analysis on the sphere

FIG. 5. Spherical harmonic magnitude spectrum for an auditory space receptive field. Spherical harmonics vary according to
their frequency, l, ranging from 0 to �, and their moment, m, which ranges from �l to �l. Magnitude coefficients �al

m� are color
coded and form a pyramid ranging from [l, m] � 0, 0 to [l, m] � Lmax, �Lmax. Examples of zonal, sectorial, and tesseral harmonics
are shown as map projections and connected by arrows to their corresponding elements in the magnitude spectrum.

1031DIRECTIONAL SENSITIVITY AND INTENSITY LEVEL

J Neurophysiol • VOL 89 • FEBRUARY 2003 • www.jn.org

 on F
ebruary 8, 2008 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


using complex spherical harmonics is fundamentally similar to
how we analyze an acoustic waveform (signal) as a function of
time using similar complex exponentials. To determine the
coefficients of the spherical transform, we integrate the product
of each spherical harmonic and a modeled spatial receptive
field rf (�,�,�) over � and �

al
m ��

0

2	 �
0

	

Y� l
m (�,�)rf (�,�,�) sin �d�d�

where Y� l
m (�,�) is the complex conjugate. The spherical mag-

nitude coefficients �al
m� form a pyramid with the apex corre-

sponding to [l,m] � 0,0 and a base ranging from [l,m] � Lmax,
�Lmax to [l,m] � Lmax, �Lmax. The magnitude weight of each
harmonic is colored coded. Lmax can be as large as necessary to
account for the highest spatial frequency in the receptive field,
although in our analyses it has been conservatively set to 20.
Examples of zonal, sectorial, and tesseral harmonics are shown
for their corresponding element in this spherical magnitude
spectrum. Since the coefficients a l

m are complex, there is a
corresponding phase spectrum, just as in the case of Fourier
analysis, which reflects the degree of harmonic shift. To the
degree that the receptive field is spatially low-pass, the spectral
matrix will be dominated by the apical region of the spectrum
pyramid. In this example the magnitude of the coefficients are
negligible for l � 6. The spectrum matrix is useful for cap-
turing the orthogonal contributions of the different types of
spherical harmonics. For example, a spectrum dominated by
the edge of the pyramid would reflect primarily sectorial har-
monics.

We have used spherical harmonic analysis to study shape
changes in our sample population. Figure 6 illustrates an ex-
ample of that analysis using the data from the three units in Fig.
4. As sound intensity was decreased (top to bottom), there was
a general trend for the receptive field to become more spatially
high-pass, as signaled by the increased magnitudes of the
coefficients toward the base of the spectrum pyramid. The
unit’s spectra shown in the right panel tends to be composed
primarily of sectorial harmonics relative to zonal harmonics, in
contrast with the other two units. All include the more complex
tesseral harmonics. To quantify these changes across intensity
we derived distributions using the ratio of averaged magnitude
coefficients from 165 units with appropriately sampled inten-
sity levels. Specifically, the log ratio of average sectorial (l �
m) magnitude coefficients to average zonal (m � 0) magnitude

coefficients log10

�a�m
m�

�a� l
0�

provides a measure of the relative

strength of each class for each receptive field. Figure 7 presents
the resulting distributions (left column) obtained at a low
intensity level (generally within 10 dB of threshold) and at a
high-intensity level (generally 25 dB greater). At both levels,
the mode of the histogram favors the zonal harmonics as
reflected by the increased area below a log ratio of zero in both
distributions. Thus it appears that across our population, spatial
receptive fields do not evidence a marked preference for peri-
odic variation as a function of azimuth in the manner exem-
plified by the predominance of sectorial harmonics for one unit
in Fig. 6. Rather, elevational dependence, in addition to azi-
muthal, is a common attribute in AI spatial receptive fields.
Furthermore, our analysis indicated that this elevational depen-
dence was expressed in a given cell’s receptive field across

intensity levels. A scatter diagram of the two intensity condi-
tions used in this analysis illustrates that a unit’s log ratio
remains relatively constant over intensity levels (r � 0.80).
Finally, the general low-pass nature of spatial receptive fields,
discussed informally earlier, is here shown quantified as deci-
bel magnitude spectra, averaged across the sample of 165 units,
as a function of frequency l. The curve pertaining to the
high-intensity calculation (solid line) is uniformly lower than
that corresponding to the low intensity sample (dashed line),
indicating the additional spectrum shift to lower spatial fre-
quencies at higher intensity levels.

Information theoretic analysis of sound-source direction
from ensemble responses

Information provided by a single neuron is not likely to be
sufficient to localize the direction of a sound source due to both
the broadness of the spatial receptive field and to the ambiguity
between a given response and the direction and/or intensity of
the source eliciting that response. This can be appreciated by
inspecting the iso-response contours within a receptive field
(e.g., Fig. 4). Rather, we hypothesize that sound direction is
encoded by a population of neurons having different but over-
lapping spatial receptive fields (Jenison 1998, 2001a,b; Jenison
et al. 2001a). In this approach, the neural responses (in our case
response latency) are considered as random variables, and each
neuron has a probability density function that links the recep-
tive field model to statistical behavior of the random variable.
A population of such cells can then be investigated analytically
using Fisher information to show how directional acuity is
enhanced or degraded as a consequence of neural response
variability and the structure of the receptive field.

Most analytical derivations for Fisher information are based
on the assumption of a multivariate Gaussian distribution of
error. However we have recently argued that the inverse
Gaussian (IG) density also performs well in capturing the
dependence of response-latency variance as a function of the
mean latency (Jenison 2001b; Jenison et al. 2001a). Previously,
we had only considered a linear model of variance growth. The
inverse Gaussian density, with the linked receptive field model,
rfi (�,�,�), is

pIG(xi��,�,�) � � 


2	[xi � �]3 exp��
[xi � � � rfi(�,�,�)]2

2[xi � �]rfi(�,�,�)2 � (2)

The mean corresponds to the receptive field rfi (�,�,�) and

the variance is
rfi(�,�,�)3



for the ith neuron in the population

ensemble. The important characteristic of the IG is that, like
the Poisson, the variance depends on the magnitude of the
mean. The IG has a more direct relationship to the Gaussian
and has been employed for analyzing inter-spike intervals by
Tuckwell (1988), Levine (1991), and Iyengar and Liao (1997).
The IG is a more accurate model of spike latency compared
with the standard Gaussian employed in Jenison (1998, 2000).
The parameter � has typically been used as an additional
degree of freedom for purposes of improving the fit of univar-
iate models. The Fisher information derivation for the IG
distribution can be found in Jenison (2001b). There the full
Fisher information matrix was constructed as a 3 � 3 matrix
whose diagonal corresponds to information for each parameter,
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the two directional parameters � and �, and the intensity
parameter �. The off-diagonal cells correspond to the cross-
information. Inverting the Fisher information matrix results in
a covariance matrix containing the individual Cramer-Rao
lower bounds on estimation variance for each parameter and
the covariance in the off-diagonals.

Consideration of only one parameter in the Fisher informa-
tion matrix leads to the following construction with respect to
the azimuth direction parameter � for a population of N neu-
rons

E � �

��
log L (�,�,�)�2

� 
 �
i�1

N [�rfi(�,�,�)/��]2

rfi(�,�,�)3 (3)

FIG. 6. Spherical harmonic magnitude spectra for auditory space receptive fields using spherical model for 3 AI neurons.
Columns correspond to the same 3 units shown in Fig. 4. Intensity level decreases from top to bottom. See Fig. 4 for further details.
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This construction illustrates the deflation of information as
the cube of the mean response latency; a consequence of the
direct relationship between variance and mean for the IG.
Figure 8 uses Fisher information to show how the lower bound
on the standard error (SE) for azimuth depends on intensity
level at three azimuth directions (top), and also how elevation
error (bottom) depends on intensity for a population of 26 AI
modeled units. We chose this subset of neurons because it
represents the most complete sampling we have of receptive
fields over a wide range of intensity. The model predictions of
the remaining neurons is good, but the number and range of
intensity was limited such that an attempt to extrapolate to over
a 50-dB range would probably not accurately reflect the struc-
tures of their receptive fields. There are several trends in the
population estimation error. First, the best acuity, reflected in
the smallest SE, is for directions near the midline (0° azimuth).
Second, improvement in acuity (smaller error) occurs as inten-
sity is initially increased (i.e., moving from right-to-left along
the dBA axis) from the lowest value (60 dBA), but only for
azimuths off the midline. This dichotomy is perhaps not un-
expected since is well known that acuity is best at the midline,
and therefore, is going to be most robust to very low intensities.
Further increases in intensity always resulted ultimately in
decreases in acuity (larger errors). Analysis of elevation errors
(Fig. 8, bottom) reveals similar behavior for elevation estimates
as a function of intensity. It follows, that there is an optimal
intensity level for direction acuity that appears to be around 40
dBA for this population of units.

D I S C U S S I O N

Characterizing auditory spatial receptive fields is not a sin-
gle-factor (i.e., sound-source direction) problem since under

FIG. 7. The log ratio of average-sec-
torial magnitude coefficients to average-
zonal magnitude coefficients for (A)
high and (B) low intensity. n � 165
units. C: scatter diagram of log ratio of
average coefficients for high and low
intensities. Three color symbols derived
from the 3 columns in Fig. 6: left (yel-
low), middle (magenta), and right
(cyan). D: average receptive field spatial
filtering, based on spherical harmonic
analysis, as a function of spatial fre-
quency (l) collapsed across moments
(m). Solid line corresponds to high in-
tensity and dashed line corresponds to
low intensity.

FIG. 8. Minimum directional estimation error by an ensemble of AI
neurons as a function of sound-source intensity level. Top: error in azi-
muthal direction (�̂ ) for 3 simulations with sound-source azimuths of 60°,
30°, and 0°, respectively. Elevation fixed at 0°. Bottom: error in azimuthal
direction (dotted line) and elevational direction (solid line) for simulations
with sound-source azimuth of 0° and elevation of 0°.
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natural conditions listeners localize sounds under varying be-
havioral conditions that include environments where sound
sources vary in intensity over a wide range. These nondirec-
tional variables can be reasonably hypothesized or experimen-
tally demonstrated to be important in determining the operating
characteristics of a cell’s spatial receptive field (Benson et al.
1981; Brugge et al. 1998; Furukawa and Middlebrooks 2001;
Reale et al. 2000; Recanzone et al. 1998, 2000; Su and Recan-
zone 2001), which in turn could confound localization ability.

The dependence of AI spatial receptive field properties on
sound-source intensity level is also indicated by dichotic stim-
ulation studies that employed the two major interaural cues for
directional hearing (i.e., interaural time and level differences).
In these experiments, the exact relationship between neural
response and an interaural cue was often critically dependent
on the intensity level of the source (Brugge et al. 1969, 1973;
Irvine et al. 1996; Phillips and Irvine 1981, 1983; Reale and
Brugge 1990; Reale and Kettner 1986; Semple and Kitzes
1993a,b). Thus for most AI cells, uncertainty in the intensity
level of the source introduces an inherent ambiguity between a
given response and the interaural difference cue that maps onto
the azimuthal direction of that source.

We have extended the nonparametric functional modeling of
auditory space receptive fields to include the dimension of
sound-source intensity. This new construction of the functional
model is an important extension because it characterizes for-
mally the covariation of response latency between two stimulus
dimensions. Thus the model captured the systematic response
variability due to the interplay of sound-source direction and
sound-source intensity with negligible modeling error as dem-
onstrated by cross-validation (i.e., Monte Carlo simulation).

Spherical harmonics

One interpretation of the spatial receptive field is that it
reveals the spatial filtering characteristics of the neuron. The
neuron, however, responds in both a linear, as well as nonlinear
fashion, as a function of space, time, and intensity (Jenison et
al. 2001b). A linear systems analysis analogous to Fourier
analysis was used to expand the spatial function into charac-
teristic patterns of spherical harmonics on the sphere. The
composition of the receptive field may be dominated by a
particular class of spherical harmonics. Although the tesseral
harmonics are difficult to interpret in terms of patterns of
directional sensitivity, the zonal harmonics reflect elevational
spatial periodicity, and the sectorial harmonics reflect azi-
muthal periodicity. The azimuthal sensitivity of spatial recep-
tive fields obtained from high-frequency neurons in other au-
ditory cortical and subcortical areas appears determined largely
by the pattern of interaural intensity differences (IID) caused
by separation of the ears on the head (Delgutte et al. 1995;
Fuzessery et al. 1990; Nelken et al. 1998; Tollin and Yin
2002b; Wenstrup et al. 1988). However, across these frequen-
cies, the IID-azimuth relationship in the cat varies with spher-
ical elevation (Martin and Webster 1989; Musicant et al. 1990).
Taken together, these relationships predict that spatial recep-
tive fields should be characterized by neither a predominance
of solely zonal nor sectorial harmonics. Our data (Fig. 7) are
consistent with this prediction in that the population distribu-
tion characterizing the range from zonal to sectorial was not
peaked at either extreme, but rather in the middle.

Analytic formulation of the spatial receptive field

All cortical response metrics that have been studied as
neural-code candidates for directional hearing suffer from
some form of ambiguity between stimulus dimensions and
unique response measurement. For example, in our AI sample,
it is common for a cell to produce the same discharge rate or
response latency for an array of sound-source directions (i.e.,
iso-response contour) in acoustic space; even when all other
stimulus variables are held constant (Brugge et al. 1996, 1997;
Jenison 1998). This ambiguity is easily compounded when
additional stimulus dimensions (e.g., background noise or
competing sound) are investigated (Brugge et al. 1998; Reale
and Brugge 2000). The intensity level of the sound source is
particularly notable in this regard (Heil et al. 1994; Phillips et
al. 1994; Schreiner 1998). For example, most high-BF neurons
in cat AI cortex are reported to exhibit an azimuthal sensitivity
that is dependent on the intensity level of a free-field stimulus
(Clarey et al. 1994; Imig et al. 1990; Rajan et al. 1990; Samson
et al. 1993, 1994). A similar result is inferred when cat AI
neurons are studied for the affect of intensity level on their
interaural intensity difference sensitivity (Irvine et al. 1996;
Semple and Kitzes 1993a,b); a major cue for the azimuthal
direction of high-frequency sound sources. These intensity
level effects are also common in other auditory cortical areas
(Middlebrooks et al. 1998) and in lower levels of the mamma-
lian central auditory system using both free-field or dichotic
stimulus delivery (Boudreau and Tsuchitani 1968; Fuzessery et
al. 1990; Irvine and Gago 1990; Semple and Kitzes 1987;
Tollin and Yin 2002a; Wenstrup et al. 1988).

In most of the studies cited above, a small proportion of
neurons has been identified with spatial receptive field charac-
teristics that can be classified as intensity invariant. One rea-
sonable suggestion, therefore, is that a neural code for sound-
source direction is carried by this sub-population using one of
the hypothesized receptive field characteristics (e.g., maximal
response). In our studies, however, we have investigated an
alternative proposal. Namely, that within an ensemble of AI
cortical neurons with spatial receptive fields that are typically
large and exhibit multiple co-variations among stimulus di-
mensions, there is sufficient information (in a statistical sense)
to code for sound-source direction (Jenison 1998, 2000, 2001a;
Jenison et al. 2001a). This information theoretic approach
benefits greatly from the analytic formulation of the spatial
receptive field and the application of standard quantitative tools
for parameter estimation.

Fisher information

We, as well as others, have investigated the consequences of
broad receptive fields on population coding using Fisher infor-
mation and the Cramer-Rao lower bound (CRLB) under the
assumption of independent noise (Jenison 1998; Paradiso
1988; Seung and Sompolinsky 1993), and correlated noise
(Abbott and Dayan 1999; Gruner and Johnson 1999; Jenison
2000; Sompolinsky et al. 2001). The CRLB is a lower bound
on the variance, or the SE, of any unbiased estimator, and is
derived from Fisher information with respect to a family of
parametric probability distributions. The CRLB is inversely
related to Fisher information mathematically and intuitively.
As the magnitude of Fisher information increases, we expect
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the estimated SE to diminish. If the CRLB can be derived
analytically, it can be used to compute the minimum possible
variance about any value estimated by a theoretical ideal ob-
server. Under the assumption of independence, even very
broad and nonuniform spatial receptive fields in auditory cor-
tex can demonstrate psychophysical localization acuity with as
few as 10 cells in the population (Jenison 1998, 2000).

Most analytical derivations for Fisher information are based
on the assumption of a multivariate Gaussian distribution of
error; however, deviation from the standard Gaussian assump-
tion requires alternative constructions for Fisher. By examining
the residual error from the current model, we ascertained the
magnitude of response-latency variance and modeled that vari-
ability using an alternative to the Gaussian distribution, that of
the IG, whose variance depends on the mean latency and
allows formal evaluation of the growth in variance using Fisher
information. This relationship may prove useful beyond field
AI, since response latency metrics have recently been shown to
carry a significant proportion of the directional information in
nonprimary auditory cortical areas (Furukawa and Middle-
brooks 2002), and in visual (Gawne et al. 1996; Heller et al.
1995; Wiener and Richmond 1999) and somesthetic (Petersen
et al. 2001) sensory representations.

The normal and Poisson densities are well known. The
Poisson and its variants have been used extensively as point-
process and rate models. Less familiar Tweedie densities in-
clude the inverse Gaussian and gamma. Most recently Barbieri
et al. (2001) have modeled spike trains using these densities to
address deficiencies in their earlier Poisson models (Brown et
al. 1998). Tweedie densities are characterized by an index p
where E[x] � � and var[x] � 
�p. The indices p � [0, 1, 2, 3]
correspond to the normal, Poisson, gamma, and IG, respec-
tively (Jorgenson 1987, 1999). The IG distribution has a his-
tory dating back to 1915 when Schrodinger presented deriva-
tions of the density of the first passage time distribution of
Brownian motion with motion drift (Chhikara and Folks 1989;
Seshadri 1999). Tweedie (1941) coined the term inverse
Gaussian based on his observation that the cumulant generating
function of IG is the inverse of the cumulant generating func-
tion for the Gaussian. We have analyzed the goodness-of-fit of
the IG (Jenison 2001b; Jenison et al. 2001a), and found it to be
a reasonable model of increasing variability as a function of
mean first-spike latency.

In this study, we employed the Fisher information derivation
for the IG distribution that was recently suggested as a viable
alternative to the standard Gaussian (Jenison 2001b; Jenison et
al. 2001a). When a small ensemble of AI cells was studied in
this way, the influence of sound-source intensity was mani-
fested as a nonmonotonic relationship with acuity. Except near
the midline (i.e., 0 azimuth), acuity was best at an intensity
between the minimum and maximum level tested. These re-
sults have some support in the psychophysical literature at
high-intensity levels (MacPherson and Middlebrooks 2000)
and at low intensity levels (Su and Recanzone 2001). The
nonmonotonic behavior can be explained in terms of the com-
peting contributions to population coding. As the sound inten-
sity increases the general trend for the population is to broaden
and flatten the receptive fields that results in a general decrease
in spatial gradients (see Figs. 1 and 6). However, it is also the

case that as the intensity decreases the mean first-spike latency
increases together with an increase in variance (see Figs. 1 and
2). These two characteristics contribute to the increase in the
standard error at high and low intensities.

This work was supported by National Institutes of Health Grants DC-03554,
DC-00116, and HD-03352.
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