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Abstract

This paper develops two very simple tests for the null hypothesis of

no cointegration in panel data. The tests are general enough to allow for

heteroskedastic and serially correlated errors, unit specific time trends,

cross-sectional dependence and an unknown structural break in both the

intercept and slope of the cointegrated regression, which may be located

at different dates for different units. The limiting distributions of the tests

are derived, and are found to be normal and free of nuisance parameters

under the null. A small simulation study is also conducted to investigate

the small-sample properties of the tests. In our empirical application, we

provide new evidence concerning the purchasing power parity hypothesis.
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1 Introduction

In recent years, there has been an upsurge in the availability and use of panel
data sets where economic variables are observed over extended periods of time
across a large number of cross-sectional units, such as countries, industries and
households. This development has in turn given rise to a great amount of
interest in econometric techniques for dealing with potentially nonstationary
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panel data variables. In particular, there has been a rapid growth in the use of
cointegration methods with large panel data sets to empirically test important
economic theories. See Breitung and Pesaran (2006) for a recent survey of the
econometric research in this area.

An important motivation for using such panel cointegration tests is that we
wish to gain statistical power through the pooling of information across units,
and to thereby improve upon the poor precision of univariate tests. So far, this
has mainly been achieved by the application of what might be called a first
generation of panel cointegration tests, which rely on many simplifying assump-
tions. This is problematic in the sense that violations of these assumptions can
significantly distort the size of the tests. The increase in power therefore usually
comes with nonnegligible costs.

One problem is that most panel cointegration tests are not equipped to
handle the kind of structural change that is usually present when analyzing data
that covers long periods of time. Although breaks of this kind can manifest
themselves in many ways, the most recognized ones are those that affect the
cointegration vector itself, which seems directly at odds with the conventional
wisdom that there should be a stable long-run cointegrating relationship. They
also complicates the interpretation of the test outcome, since structural breaks
and unit roots share many qualitative features. In fact, most tests that attempt
to distinguish between spurious and cointegrated processes will tend to favor
the spurious model when the true process is subject to structural breaks but is
otherwise cointegrated within the break regimes.

Another important problem that the first generation of tests has been un-
able handle is cross-sectional dependence. When studying macroeconomic and
financial data for example, cross-sectional dependencies are likely to be the rule
rather than the exception, due to strong inter-economy linkages. The tests of
Larsson et al. (2001), McCoskey and Kao (1998), Pedroni (1999, 2004) and
Westerlund (2005a, 2005b) all require independence among the cross-sectional
units, and their size properties become suspect when this assumption does not
hold.

Although these problems have been more or less ignored in the first gener-
ation of studies, some attempts have recently been made to obtain at least a
partial solution. Westerlund (2006a, 2006b) relaxes the assumption of a stable
cointegrating relationship, and allows for breaks in the deterministic compo-
nent. By contrast, Groen and Kleibergen (2003) make an attempt to relax the
cross-sectional independence assumption, and develop tests based on seemingly
unrelated regressions.

While potentially very appealing by themselves, these solutions will, how-
ever, be inadequate in any application that is characterized by both structural
change and cross-sectional dependence. What one would like to have is not two
tests, one for each problem, but one test that takes care of both problems simul-
taneously. In a recent working paper, Banerjee and Carrion-i-Silvestre (2006)
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have proposed a number of tests that are appropriate under various degrees of
structural breaks and cross-sectional dependence. Although much more gen-
eral than the first generation of tests, they do not provide practitioners with
an uniform solution that can be applied in all situations. In particular, it is
not possible to test for cointegration while entertaining the possibility of both
cross-sectional dependence and heterogeneous breaks, which is likely to be the
case in practice.

Another drawback that applies to all these approaches is that the limiting
test distributions depend critically on the nuisance parameters associated with
both the number of regressors and deterministic specification of the cointegrated
regression. Thus, there is not just one set of critical values, but one for each
combination of regressors and deterministic specification. Moreover, since the
asymptotic distribution is often a poor approximation in small samples, a new
set of critical values is usually needed for each sample size, see for example
Banerjee and Carrion-i-Silvestre (2006) and Westerlund (2006b).

In this paper, we propose two simple tests for the null hypothesis of no
cointegration that can be used under very general conditions. The tests are
derived from the popular Lagrange multiplier (LM) based unit root tests devel-
oped by Schmidt and Phillips (1992), Ahn (1993) and Amsler and Lee (1996),
and they are able to accommodate heteroskedastic and serially correlated errors,
individual specific intercepts and time trends, cross-sectional dependence and
an unknown break in both the intercept and slope of the cointegrated regres-
sion, which may be located different dates for different units. In spite of this
generality, both tests are very straightforward and easy to implement.

The asymptotic analysis reveals that the tests have limiting normal dis-
tributions that are free of nuisance parameters under the null hypothesis. In
particular, it is shown that the asymptotic null distributions are independent
of both the structural break and the common factors, which are used here to
model the cross-sectional dependence. Moreover, since the null distributions are
also independent of the regressors, there is only one set of critical values for all
testing situations considered. Another convenient property of the new tests is
that the null distributions are unaffected by erroneous omission of structural
breaks in the intercept, although this will naturally affect their power. A small
simulation study is also undertaken to evaluate the small-sample properties of
the new tests, and the results show that the asymptotic properties are borne
out well in small samples.

In our empirical application, we reevaluate the purchasing power parity
(PPP) hypothesis, using data on nominal dollar exchange rates and relative
price levels for 17 industrialized countries between the first quarter of 1973 and
the fourth quarter of 1998. The results suggest that the two variables are non-
stationary but not cointegrated, thus implying that PPP should be rejected for
all the members of the panel. This result holds even when we extend our tests
to allow for multiple structural breaks, representing the episodic behavior of the
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dollar in the 1980s.
The rest of this paper is organized as follows. The model is specified Section

2, and in Section 3, the new cointegration tests are developed. The asymptotic
properties of the tests are analyzed in Section 4, while Section 5 is devoted to
the simulation study. Section 6 holds the empirical application to PPP and
Section 7 concludes. Proofs of important results are given in the appendix.

2 Model and assumptions

We consider the scalar variate yit given by

yit = αi + ηit + δiDit + x′itβi + (Ditxit)′γi + zit, (1)

xit = xit−1 + wit, (2)

where t = 1, ..., T and i = 1, ..., N indexes the time series and cross-sectional
units, respectively. The vector xit has dimension K and contains the regressors.
This variable is modeled as a pure random walk process. The variable Dit is
a break dummy such that Dit = 1 if t > T b

i and zero otherwise. Thus, in this
setup, αi and βi represent the intercept and slope before the break, while δi and
γi represent the change in these parameters at the time of the shift.

The disturbance zit is assumed to have the following data generating process
that permits for cross-sectional dependence through the use of unobserved com-
mon factors

zit = λ′iFt + vit, (3)

Fjt = ρjFjt−1 + ujt, j = 1, ..., k, (4)

φi(L)∆vit = φivit−1 + eit, (5)

where φi(L) = 1−∑pi

j=1 φijL
j is a scalar polynomial in the lag operator L, Ft

is an k dimensional vector of unobservable common factors and λi is a vector
of loading parameters. By assuming that ρj < 1 for all j, we ensure that Ft is
strictly stationary, which implies that the order of integration of the composite
regression error zit depend only on the integratedness of the idiosyncratic dis-
turbance vit. Thus, in this data generating process, the relationship in (1) is
cointegrated if φi < 0 and it is spurious if φi = 0.

Next, we lay out the key assumptions needed for developing the new tests.

Assumption 1. (Error process.)

(a) E(eitekj) = 0 and E(witwkj) = 0 for all i 6= k, t and j;

(b) The groups eit and wit are mutually independent across both i and t;

(c) var(eit) = σ2
i > 0 and var(wit) = Ωi is positive definite.

For the asymptotic theory, the following condition is also required.
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Assumption 2. (Invariance principle.) The partial sum processes of eit and
wit satisfy an invariance principle. In particular, T−1/2

∑[rT ]
t=1 eit ⇒ σiWi(r) as

T →∞ for each i, where ⇒ denotes weak convergence and Wi(r) is a standard
Brownian motion defined on the unit interval r ∈ [0, 1].

Finally, to be able to handle the factors and structural breaks, the following
conditions are assumed to hold.

Assumption 3. (Common factors.)

(a) E(ut) = 0 and var(ut) < ∞;

(b) ut is independent of eit and wit for all i and t;

(c) N−1
∑N

i=1 λiλ
′
i → Σ, where Σ is positive definite.

Assumption 4. (Structural breaks.)

(a) The location of the break is an integer T b
i such that T b

i = λb
iT , where

λb
i ∈ [n, 1− n] and n ∈ (0, 1);

(b) The magnitude of the slope break is such that γi = O(T−a), where a > 0.

Assumptions 1 through 4 form the basic conditions needed for developing the
new cointegration tests given in the next section. Consider first Assumption 1
(a). This assumption implies that the cross-sectional dependence is restricted to
the common factors, and is used in the derivation of the asymptotic distribution
of our tests. Note that while eit and wit are assumed to be cross-sectionally
independent, E(zitzjt) = λ′iE(FtF

′
t )λj for i 6= j so zit is permitted to be cross-

sectionally dependent. The extent of this dependence is determined by λi.
Assumption 1 (b) states that eit and wit are independent as groups, which is

satisfied if the regressors are strictly exogenous. Of course, in many applications,
imposing strict exogeneity can be quite restrictive, and in Section 4 we therefore
discuss some possibilities for dealing with the case when this assumption is
violated. Assumption 1 (c) states that Ωi is positive definite, which means that
xit cannot be cointegrated in case we have multiple regressors.

Assumption 2 states that an invariance principle applies to the partial sum
processes constructed from eit and wit as T grows for a given i. Apart from
some mild regulatory conditions, this assumption places little restriction on the
temporal dependencies of eit and wit, and encompasses for example the broad
class of all stationary autoregressive moving average (ARMA) models. It also
allows the covariance structure absorbed in σ2

i and Ωi to differ between the cross-
sectional units. Serial correlation in ∆vit is permitted through φi(L) giving the
long-run variance ω2

i = σ2
i /φi(1)2.

Assumptions 3 (a) and (b) ensure the consistency of the principal compo-
nents estimates of the common factors. Moreover, since ρj < 1, (a) and (b)
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ensure that an invariance principle holds for the partial sum process of Ft, and
that it is independent of the idiosyncratic disturbances. These assumptions are
standard in common factor analysis. Assumption 1 (c) ensures that the com-
mon factors have a nontrivial contribution to the variation of zit, which in turn
ensures that the factor model is identified.

Finally, consider Assumption 4. Assumption 4 (a) ensures that the break-
point is identified and that it does not lie too close to the beginning or end
of the sample. It also ensures that each regime contains a positive fraction of
the sample even in the limit as T grows. Assumption 4 (b) embodies the idea
that the post-break parameters of the regressors must return to their pre-break
values as T increases, which is a standard requirement in the structural break
literature, see Bai (1994, 1997) for a more thorough discussion. This assump-
tion is only needed to obtain the limiting distribution of the new statistics in
the case when there is a break in the slope, and even then our simulation study
indicate that it is probably stronger than is necessary.

Equations (1) through (5) are general enough to encompass three interesting
break cases. In Case 1, δi = γi = 0 so there is no break, whereas, in Case 2,
γi = 0 but δi is unrestricted suggesting a model with break in the intercept.
In Case 3, both γi and δi are unrestricted so both the intercept and slope are
permitted to shift. Note that in all three cases, no restrictions are placed on the
homogeneity of the break parameters or the associated break locations. Thus,
the break structure adopted here is completely heterogeneous.

3 Test construction

The hypothesis to be tested is that all the members of the panel are not coin-
tegrated against the alternative that at least one unit is cointegrated, which is
equivalent to testing H0 : φi = 0 for all i against H1 : φi < 0 for some i. This
hypothesis can be tested using the LM principle that the score vector has zero
mean when evaluated at the vector of true parameters under the null.

Consider therefore the following pooled log-likelihood function

log L = constant− 1
2

N∑

i=1

(
T log(σ2

i )− 1
σ2

i

T∑
t=1

e2
it

)
.

The tests that we propose can be derived as in Westerlund and Edgerton (2006)
by first concentrating the log-likelihood function with respect to σ2

i and then
evaluating the resulting score at the restricted maximum likelihood estimates.
If we let σ̂2

i = T−1
∑T

t=1 e2
it, then the score contribution for unit i is given by

∂ log L

∂φi
=

1
σ̂2

i

T∑
t=2

∆S̃itS̃it−1,
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where Ŝit is a residual from (1) to be defined in detail below, and where ∆S̃it

and S̃it−1 are the mean deviations of ∆Ŝit and Ŝit−1. The point here is that
the score vector is proportional to the numerator of the least squares estimate
of φi in the regression

∆Ŝit = constant + φiŜit−1 + error. (6)

It follows that a test of the hypothesis of the null of no cointegration for cross-
section unit i can be formulated equivalently as a zero slope restriction in (6),
which can be tested using either the least squares estimate of φi or its t-ratio.
Thus, by considering the form of the log-likelihood function, it is not difficult
to see that a panel test of H0 versus H1 can be constructed by using the cross-
sectional sum of these statistics for each i.

If there is no cross-sectional dependence, and thus no common factors, then
the variable Ŝit is defined as

Ŝit = yit − α̂i − δ̂iDit − η̂it− x′itβ̂i − (Ditxit)′γ̂i, (7)

where α̂i = yi1 − η̂i − δ̂iDi1 − x′i1β̂i − (Di1xi1)′γ̂i is the restricted maximum
likelihood estimate of αi. The remaining parameter estimates η̂i, δ̂i, β̂i and γ̂i

can readily be obtained by running least squares on the first differenced version
of (1). That is, we have

∆yit = η̂i + δ̂i∆Dit + ∆x′itβ̂i + ∆(Ditxit)′γ̂i + ∆ẑit. (8)

The construction of the test is therefore very simple in this case.
When there is cross-sectional dependence, and thus unobserved common

factors to be taken into account, the procedure becomes a little more involved.
We begin by taking first differences, in which case (3) becomes

∆zit = λ′i∆Ft + ∆vit.

Thus, had ∆zit been known, we could have estimated λi and ∆Ft directly by
the method of principal components. However, ∆zit is not known, and we must
therefore apply principal components to ∆ẑit, the residual from (8), instead. In
so doing, note that the above expression can be rewritten in terms of ∆ẑit as

∆ẑit = λ′i∆Ft + ∆v∗it, (9)

where ∆v∗it can be thought of as a composite error term, comprised of ∆vit

and the projections of ∆Ft and ∆vit onto all the explanatory variables of (8).1

Let λ, ∆F and ∆ẑ be K × N , (T − 1) × K and (T − 1) × N matrices of
stacked observations on λi, ∆Ft and ∆ẑit, respectively. The principal compo-
nents estimator ∆F̂ of ∆F can be obtained by computing

√
T − 1 times the

1In the appendix we show that v∗it is consistent for vit. Thus, the presence of the explana-
tory variables has no asymptotic effect on the estimation of the common factors, which can
therefore proceed exactly as in Bai and Ng (2004).
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eigenvectors corresponding to the K largest eigenvalues of the (T − 1)× (T − 1)
matrix ∆ẑ∆ẑ′. The corresponding matrix of estimated factor loadings is given
by λ̂ = ∆F̂ ′∆ẑ/(T − 1). The estimated common factor can be recovered as

F̂t =
t∑

j=2

∆F̂j .

Given λ̂i and F̂t, the variable Ŝit can be recovered by simply subtracting
λ̂′iF̂t from the right-hand side of (7). That is, we compute

Ŝit = yit − α̂i − δ̂iDit − η̂it− x′itβ̂i − (Ditxit)′γ̂i − λ̂′iF̂t,

This defactoring makes the test robust against cross-sectional dependence gen-
erated by common factors. To also make it robust against serial correlation, we
suggest augmenting the test regression in the following fashion

∆Ŝit = constant + φiŜit−1 +
pi∑

j=1

φij∆Ŝit−j + error. (10)

To obtain the new tests, define the variance ratio Si = ω̂i/σ̂i, where σ̂i is
the estimated regression standard error in (10) and ω̂2

i is an semiparametric
consistent estimator of ω2

i , the long run variance of ∆vit, which is defined as

ω̂2
i =

1
T − 1

Mi∑

j=−Mi

(
1− j

Mi + 1

) T∑

t=j+1

∆Ŝit∆Ŝit−j ,

where Mi is a kernel bandwidth parameter that determines how many lagged
covariances of ∆Ŝit to estimate in the kernel. If φ̂i is the least squares estimate
of φi in (10) and τi its t-ratio, then the panel LM based statistics of H0 versus
H1 are defined as follows

φN =
1
N

N∑

i=1

T φ̂iSi and τN =
1
N

N∑

i=1

τi.

Some remarks are in order. First, note the adjustment factor Si is only
needed to construct φN . As demonstrated in the next section, this is necessary
to make the test invariant with respect to the serial correlation properties on
the data.

Second, as in the unit root case studied by Schmidt and Phillips (1992),
the parameters used to compute Ŝit are estimated from the first differentiated
data. By contrast, the residual-based tests studied by Banerjee and Carrion-i-
Silvestre (2006) and Westerlund (2006a) are based on estimating the parameters
from the data in levels. Since yit and xit are nonstationary, this type of level
regression is spurious, which implies that the estimated regression parameters
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do not converge to constants, but remain random even asymptotically. As we
shall see, this lower degree of randomness makes the asymptotic properties of
φN and τN very simple.

Third, to handle the case when the location of the break is unknown, we
follow the strategy of Bai and Perron (1998), and estimate the breakpoint in-
dividually for each unit i by minimizing the sum of squared residuals from the
first difference regression in (8). Thus, the breakpoint estimator is defined as
follows

λ̂b
i = arg min

n≤λb
i≤1−n

1
T − 1

T∑
t=1

(∆ẑit)2.

In estimating the number of common factors Mi, we follow the recommendation
of Bai and Ng (2004) and minimize the following information criterion

k̂ = arg min
0≤k≤kmax

log(σ̂2) + k log
(

NT

N + T

)
N + T

NT
,

where σ̂2 = 1
NT

∑N
i=1

∑T
t=2(∆v̂it)2, ∆v̂it = ∆ẑit − λ̂′iF̂t is an consistent estima-

tor of ∆vit and kmax is an bounded integer such that k ≤ kmax.
Fourth, in applied work, the lag length pi in (10) must be estimated be-

fore the testing can begin. This is done preferably by using a data dependent
rule. For example, we may use the Campbell and Perron (1991) rule, which
is a sequential test rule based on the significance of the individual lag para-
meters φij in (10). Another possibility is to use an information criterion, such
as the Schwarz Bayesian criterion. Alternatively, the number of lags can be
determined independent of the data. Two examples of such deterministic rules
involves choosing pi arbitrarily or as a fixed function of T , which ensures that
the estimated test regression provides an increasingly good approximation of
the true autoregressive process in (5).2

4 Asymptotic distribution

In this section, we derive the asymptotic null distributions of the new statistics
under Assumptions 1 through 4. The asymptotic properties of T φ̂i and τi were
analyzed by Westerlund and Edgerton (2006) in the case of a single time series
with serially uncorrelated innovations. In our case, the data generating process
is much more general.

As shown in the appendix, under the null and Assumptions 1 to 4, then

T φ̂iSi ⇒ Bi = −
(

2
∫ 1

0

Ui(r)2dr

)−1

as T →∞,

2In this paper, we consider both types of lag selection rule. In particular, while Section 5
considers a fixed lag length, Section 6 considers a data dependent choice.
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where Vi(r) = Wi(r) − rWi(1) is a standard Brownian bridge and Ui(r) =
Vi(r)−

∫ 1

0
Vi(s)ds is a demeaned standard Brownian bridge. The corresponding

time series limit for the individual t-statistic is shown to be

τi ⇒ Ci = −
(

4
∫ 1

0

Ui(r)2dr

)−1/2

.

Thus, it is clear that under the assumption of no cross-sectional dependence,√
N times cross-sectional average of these statistics converge in distribution to

a normal variate by standard Lindberg-Lévy central limit theorem arguments.
The following theorem shows that the effect of the common factor is asymptot-
ically negligible, and that φN and τN are indeed asymptotically normal.

Theorem 1. (Asymptotic distributions.) Under the null hypothesis H0 and
Assumptions 1 through 4 (a), as T →∞ and then N →∞

√
N(φN − E(Bi))√

var(Bi)
,

√
N(τN − E(Ci))√

var(Ci)
⇒ N(0, 1).

Remark 1. The proof is given in the appendix but it is instructive to consider
briefly why it holds. It begins by showing that

T−1/2Ŝit = T−1/2
t∑

j=2

(vij − vi) + op(1),

where vi is the time series mean of vit. This implies that T−1/2Ŝit ⇒ ωiVi(r) as
T grows, which in turn implies that T−2 times the denominator of φ̂i converges
to ω2

i

∫ 1

0
Ui(r)2dr while T−1 times the numerator converges to −σiωi/2. The

asymptotic distributions of T φ̂iSi and τi now follow directly from the fact that
Si is consistent for ωi/σi. Note that these distributions are unaffected by the
presence of the common factors, which derives from the fact that F̂t converges to
Ft at rate

√
T suggesting that the estimated factors can basically be treated as

known. Thus, the defactoring essentially removes the common component from
the limiting distribution of T−1/2Ŝit. Because of this invariance, asymptotic
normality of φN and τN follows by the Lindberg-Lévy central limit theorem.

Remark 2. While unbiased in the absence of deterministic intercept and trend
terms, φ̂i is downwards biased in (1) with individual specific intercepts and
trends, which implies that T φ̂i diverges towards negative infinity. To account
for this, φN and τN are adjusted by the mean and standard deviation of their
respective limiting distributions as T grows. Numerical values of these adjust-
ment terms can be obtained via simulation methods. For this purpose, 10, 000
random walks of length T = 1, 000 were generated. By using these random walks
as a simulated Brownian motions, it is possible to evaluate the functionals Bi
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and Ci, and then to compute the moments. The resulting numerical values of
E(Bi) and var(Bi) are given by −1.9675 and 0.3301 with −8.4376 and 25.8964
being the corresponding values of E(Ci) and var(Ci). Because the normalized
statistics diverge towards negative infinity under the alternative, the computed
test value should be compared with the left tail of the normal distribution. If the
value is smaller than the appropriate left tail critical value, the null hypothesis
is rejected.

Remark 3. Since the limit of T−1/2Ŝit does not depend on xit, φN and τN

have the unusual property that their limiting distributions are unaffected by the
presence of the regressors. This is a great operational advantage as the same
set of moments can be applied regardless of the dimension of xit. Similarly, the
asymptotic null distributions are unaffected by the presence of structural breaks.
In fact, as shown by Westerlund and Edgerton (2006), since T−1/2Dit vanishes
asymptotically, a disregarded break in the intercept has no effect on T−1/2Ŝit,
which leaves the asymptotic null distributions of the tests unaffected. The
problem is that incorrect placement, or exclusion, of the break make the tests
biased towards accepting the null hypothesis. Thus, although the break does
not affect the asymptotic properties of the tests under the null, it does reduce
their power, which is why accounting for the break is important. Also, although
T−1/2Dit vanishes asymptotically, this is not the case for T−1/2(Ditxit)′, and
thus the invariance property does not extend to the case with a shift in the
slope.

Remark 4. Assumption 1 (b) requires that the regressors are strictly exoge-
nous. This is not necessary. To see this, note that if we redefine zit = λ′iFt + git

where git = w′itγi(L) + vit and γi(L) =
∑pi

j=−qi
γijL

j is a K dimensional lag
polynomial, then (1) can be rewritten as

yit = αi + ηit + δiDit + x′itβi + (Ditxit)′γi +
pi∑

j=−qi

∆x′itγij + zit.

Thus, since zit is orthogonal to wit, we can allow for weakly exogenous regressors
by simply augmenting (1) with the lags and leads of ∆xit, which is similar to the
conventional dynamic least squares arguments. The testing can now be carried
out as before, after modifying (7) and (8) accordingly.

In the appendix, we only provide the proof for the case when the tests are
constructed based on the true breakpoint. To prove that the same results hold if
λb

i is replaced by λ̂b
i , it is sufficient to show that the asymptotic null distributions

of the tests are unaffected when computed for an estimated breakpoint different
from λb

i . This is done in Westerlund and Edgerton (2006), where it is shown
that Assumption 4 (b) suffices to get rid of the asymptotic bias caused by using
λ̂b

i rather than λb
i . The proof in our case is almost identical, and is therefore

omitted. As we shall see, however, in practice this assumption is not very
restrictive in the sense that a violation has essentially no effect on the tests.
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5 Monte Carlo simulations

In this section, we investigate the small-sample properties of the new tests
through a small simulation study using (1) through (5) to generate the data.
For simplicity, we assume that the intercept is zero, that φi(L) = βi = 1 for all
i, and that δi, γi and φi are equal across i.3 We further assume that ∆xit, λi

and Ft are scalars drawn from the standard normal distribution.
For the disturbance eit, we have two scenarios. In the first, eit = uit +θuit−1

so eit follows a first order moving average process, while, in the second, eit =
ρeit−1 + uit, and eit therefore follows a first order autoregressive process. In
both cases, we assume uit ∼ N(0, 1). The data is generated for 3, 000 panels
with T + 50 time series observations, where the first 50 is disregarded to reduce
the effect of the initial values, which are all set to zero. For brevity, the number
of cross-sectional units is kept fixed at 20, which seemed sufficient to obtain
reasonably good precision in the estimated factors.

For the structural breaks, we have three different configurations, each of
which correspond to one of our three deterministic cases. For Case 1 with no
breaks, we have γ = δ = 0, whereas, for Case 2 with an intercept shift, γ = 0
and δ = 5. In Case 3, γ = δ = 5 so there is a break in both intercept and slope.
For convenience, we assume a common breakpoint in the middle of the sample.

In constructing the test statistics, we need to determine the appropriate lag
order pi to handle the serial correlation. Although this can in principle be done
using a data dependent rule, as we do in Section 6, in the simulations we choose
pi as a function of T , which is computationally less demanding. In particular,
since there is no obvious choice, we choose pi to the largest integer less than
4(T/100)2/9. The same rule is used for choosing the bandwidth Mi. In order
to eliminate the sample endpoints, we use a truncation of 0.1. The maximum
number of factors is 3. All computational work was performed in GAUSS.

We begin by presenting the results on the size and power of a nominal 5%
level test, and then we go on to discuss some results on the estimation of λb

i

and k. All results that are referred to but not reported are available from the
corresponding author upon request.

5.1 Size and power

Tables 1 through 3 contains the results of the size and power for the new tests.
Due to the different size properties of the tests, all powers are adjusted for size.

Consider first the results reported in Table 1 on the size of the tests when
φ = 0. As expected, we see that τN and φN generally perform well with good
size accuracy in most experiments, especially when there is no serial correlation.
Consistent with other simulation studies, such as Haug (1996), however, we
see that the adjustments to accommodate serial correlation are not completely

3Note that even though the data generating process is partly homogenous, the tests are
carried out assuming heterogeneity.
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effective, and that some distortions seem to remain. In particular, while τN

tends to perform well in almost all the experiments, there is a tendency for φN

to become oversized when θ and ρ are negative. However, in most cases there is
a significant improvement as T increases. Indeed, with T = 200, size is almost
perfect for both tests.

The overall best size accuracy is obtained by using τN , which seems very
robust against the different forms of serial correlation considered here. Among
the different versions of the tests considered, the best size is not surprisingly
obtained by using the true breakpoint and number of factors. The tests based on
an estimated breakpoint and number of factors are, however, almost as accurate,
and perform only slightly less well. At the other end of the scale, we have
the tests that incorrectly ignore the presence of the common factors, which
suffer from severe distortions. This result clearly demonstrates the importance
of accounting for the cross-sectional dependence, and the potential effects of
ignoring it.

Note also the relatively good performance of the no break tests in Case 2
when there is a shift in the intercept. This is to be expected since these tests are
asymptotically independent of the intercept break under the null. The ranking
of the tests is reversed in the slope shift model, in which case the tests based
on estimated and known breakpoints perform best. As explained in Section 4,
this is also well in line with what might be expected based on theory.

Additionally, note that our Monte Carlo design does not invoke Assumption
4 (b). That is, the size of the slope shift is not a decreasing function of T . In
spite of this, our results show that the size distortions of the tests based on an
estimated breakpoint decreases with T , which suggests that Assumption 4 (b)
is stronger than actually needed, at least in small samples.

The results of the power of the tests reported in Tables 2 and 3 can be
summarized as follows. Firstly, the power increases quickly as T increases, and
as φ departs form zero, which is a reflection of the consistency of the tests.
Secondly, the tests based on the assumption of no break can have very poor
power in Case 3 when there is a shift in the slope, thus corroborating the result
that erroneous omission of breaks should affect the tests by lowering their power.
In fact, since there is rarely any power beyond the size of the tests, this type of
misspecification is almost certain to result in a failure to reject the null.

Thirdly, with exception of the no break tests in Case 3, there are no big
differences in terms of power among the various tests considered. In particular,
it is seen that there is generally no loss of power involved in estimating the break
and the number of common factors rather than treating them as known. This
is of course very good news in applications, when there is usually little or no a
priori knowledge about the location of the break and number of factors.
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5.2 Break and factors

Table 4 presents some results of the estimated breakpoint and number of factors
under the null when φ = 0.

The results suggest that the new tests perform well in terms of accuracy
in the estimated breakpoint and number of common factors. In fact, the cor-
rect selection frequencies are nearly 100% in most cases, with averages that are
very close to their corresponding true values. This explains in part the good
performance of the tests in terms of size and power. Note also how the preci-
sion in the estimated number of factors drops markedly when a true break is
omitted, from almost 100% with breaks to almost 0% without. This is also to
be expected as the principal components estimator is based on the regression
error in (8), which then suffers from an omitted variables bias. This illustrates
the importance of considering both break and cross-section dependence in the
cointegration testing.

This good precision in the estimated break and factors is important not only
to the extent that it ensures good performance of the ensuing cointegration tests,
but also in its own right, because researchers often seek to draw conclusions
regarding these estimated parameters, especially the location of the break.

6 An application to the PPP hypothesis

In this section we illustrate the empirical implementation of our new panel
cointegration tests using as an example the PPP hypothesis, which states that
real exchange rates across countries should be long-run mean reverting. We
investigate the United States dollar real exchange rate, which is defined as

qit = eit + p∗t − pit,

where qit is the dollar real exchange rate for country i at the end of time period
t, eit is the corresponding dollar nominal exchange rate, pit is the domestic
consumer price index and p∗t is the United States consumer price index. All the
variables are expressed in logarithms.

The most common way of testing PPP is to use a conventional univariate
unit root test on the real exchange rate while allowing for a nonzero mean. A
time trend is not usually included, since this is deemed inconsistent with PPP
theory. The results obtained from this testing strategy have, however, been
very mixed and far from convincing. As a response to this, several authors
including Papell (2002) and Hegwood and Papell (1998) have argued that much
of the evidence against PPP may be due to misspecification of the estimated
test regression. Other, most recently Murray and Papell (2005) and Harris et
al. (2005), have argued that a failure to reject the null hypothesis of a unit root
in the real exchange rate can be at least partially explained by the low power
of univariate tests.
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In this section, we attempt to address both of these problems simultaneously
by using the LM based tests we have developed. This approach has several
advantages in comparison to conventional testing approaches. Firstly, by not
imposing a unit slope on the relative price level, the estimated PPP relation-
ship is not restricted to be proportional. This is likely to be of relevance in
the presence of trade barriers and measurement errors. Secondly, structural
breaks in both the level and slope of the PPP relationship can be taken into
account. Thirdly, by using panel data, we can improve upon the power rela-
tive to conventional univariate testing approaches. Fourthly, as first pointed
out by O’Connell (1998), by permitting for common factors the cross-sectional
dependence induced by the numeraire country is effectively eliminated.

The data that we use is taken from the International Financial Statistics
database of the International Monetary Fund, and covers the recent float pe-
riod from the first quarter of 1973 to the fourth quarter of 1998. It is comprised
of 17 countries, namely Austria, Belgium, Canada, Denmark, Finland, France,
Greece, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzer-
land, and the United Kingdom.4

The main purpose of this section is to illustrate the practical implementa-
tion of the new tests, and to show how they can be extended to accommodate
multiple breaks. The rationale for this extension is provided by Papell (2002)
who points out that most dollar based exchange rates have exhibited three large
structural breaks during the 1980s, when there were large appreciations of the
dollar, followed by equally large offsetting depreciations.

Before testing for cointegration, however, we must first check that both the
nominal dollar exchange rate and the relative price level are nonstationary.
To do this, we use the panel stationarity test recently proposed by Carrion-i-
Silvestre et al. (2005), which allows for both unknown structural breaks and
cross-sectional dependency. The results reported in Table 5 show that the null
hypothesis of stationarity can be rejected at the 5% level for all specifications
of the deterministic component, including the break models.5 We can thus
conclude that both the nominal exchange rate and relative price level appear to
be nonstationary, and can therefore proceed to test for cointegration between
these variables.

When applying the LM based tests developed in this paper, we follow Papell
(2002) and Harris et al. (2005), and allow for three breaks, which may be posi-
tioned at different dates for different units. These positions are estimated using
a grid search to minimize the sum of squared residuals from the first difference

4Apart from the frequency, this is the same sample as considered by Harris et al. (2005),
who implemented their test of the PPP hypothesis as a unit root test on the real exchange
rate. It is therefore interesting to examine whether their conclusions are robust with respect
to the assumed proportionality between nominal exchange rates and relative price levels, and
to the frequency of the data being used.

5In constructing the Carrion-i-Silvestre et al. (2005) test, we use a maximum of five breaks.
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Figure 1: Nominal dollar exchange rates with fitted trend functions.

regression in (8).6 To determine the number of lags to use in the augmented
test regression in (10), we follow Campbell and Perron (1991) who suggest us-
ing a sequential procedure based on the significance of the lag parameters. The
maximum number of lags is set to 10 and we use a significance level of 5%. The
maximum number of common factors is set to five.

The results of the cointegration tests are reported in Table 6, and the fitted
trend functions are shown graphically in Figures 1 to 3.7 In the figures, the
solid line represents the nominal exchange rate, the semisolid line represents
the regime shift model, the dashed line represents the level break model and
the dotted line represents the model without any break. It can easily be seen
that allowing for breaks substantially improves the fit of the estimated trend
functions, and that the regime shift model generally lies closest to the nominal

6We also implemented the test using the sequential break estimation procedure of Bai
(1997). Although computationally much more convenient, this algorithm did not succeed in
finding the grid search minimum. In fact, in agreement with the results of Hegwood and
Papell (1998), this procedure generally produced unsatisfactory results with a preponderance
of breaks occurring at the sample endpoint.

7For space considerations, the results of the estimated breaks are not reported here. There
can be obtained upon request from the corresponding author. The median break dates are
the first quarter of 1981, the fourth quarter of 1987 and the fourth quarter of 1992 in the level
break model, and the first quarter of 1980, the second quarter of 1985 and the fourth quarter
of 1992 in the regime shift model.

16



Figure 2: Nominal dollar exchange rates with fitted trend functions.

exchange rate. In particular, it is interesting to see how the break models,
although very simple, can provide a good fit even to this type of volatile data.
In most cases, the shifts in the 1980s are well accounted for.

The cointegration results in Table 6 suggest that the null of no cointegration
cannot be rejected at any conventional significance level for any of the models
being considered. In fact, with the exception of φN in the level break model,
all the test statistics are positive, and thus lie to the right of the center of the
asymptotic normal distribution. The most extreme observation is for the τN

test in the no break model, which lies way out in the right tail. Thus, the PPP
hypothesis cannot be supported by the data.

Although this is consistent with the finding of Harris et al. (2005), our
result is actually much stronger. In their case, the authors only reject the null
of stationarity for the real exchange rate for the whole panel, which merely
says that the strong form of PPP fails for at least one country. By contrast,
we do not reject the null that nominal exchange rates and relative price levels
are not cointegrated for the entire panel. The latter conclusion is stronger in
the sense that it implies the failure of PPP for the panel as a whole, and it is
robust against nonproportionalities that may well have affected the Harris et
al. (2005) stationarity test. In fact, with such a general model specification
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Figure 3: Nominal dollar exchange rates with fitted trend functions.

it is actually quite remarkable that no evidence of cointegration is found.8 In
either case, these findings cast doubts on the claim by Papell (2002) that PPP
emerges once the breaks of the 1980s have been taken into account.

7 Conclusions

This paper proposes two new tests for the null hypothesis of no cointegration in
panel data. The tests are based on the univariate unit root tests developed by
Schmidt and Phillips (1992) and Amsler and Lee (1995), and they are derived by
applying the LM principle to an unobserved common factor representation of the
data. Allowable features include heteroskedastic and serially correlated errors,
individual specific intercepts and time trends, cross-sectional dependence and
an unknown break in both the intercept and slope of the cointegrated regression,
which may be located different dates for different units.

By using sequential limit arguments, we show that the tests have limiting
normal distributions that are free of nuisance parameters under the null hypoth-

8One possibility is that the model is too general, and that the new tests are not powerful
enough to reject. However, the results reported in Table 6 suggest that this is not very likely,
as the test statistics for the less general model with no break lie further out in the wrong tail
than those in the more general model with breaks.
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esis. In particular, it is shown that the asymptotic null distributions are inde-
pendent of the nuisance parameters associated with both the structural break
and common factors used to model the cross-sectional dependence. We also
show that the asymptotic null distributions are independent of the regressors.

The small-sample performance of the tests is evaluated via simulation meth-
ods. The results, which generally accords well with the asymptotic theory, sug-
gest that the tests generally perform well with small size distortions and good
power even in small samples. The t-test seems to have better size properties
then the coefficient test, and simultaneously maintain relatively good power,
and is probably the test to recommend.

In our application, we provide new evidence about the familiar PPP hypoth-
esis. In particular, drawing upon a panel of quarterly data covering 17 countries
between 1973 and 1998, we cannot find any evidence in favor of cointegration
between nominal exchange rates and relative price levels, which leads us to the
conclusion that PPP fails for all the members of the panel. This is true even
when we generalize our tests to accommodate multiple structural breaks in both
the intercept and slope of the estimated PPP relationship.
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Appendix: Mathematical proofs

In this appendix, we prove asymptotic null distributions of φN and τN . For con-
venience, we will introduce the notation Xp(xit) to indicate the error from pro-
jecting xit onto the generic vector Xit of projection variables. Thus, Xp(xit) =
xit − aiXit, where ai is a vector of projection parameters.

Lemma A.1. (Preliminaries for Lemma A.2.) Let Xit = (1, ∆Ŝit−1, ..., ∆Ŝit−pi)
′

and Sit = vit − vi1 −∆vi(t− 1). Under H0 and Assumptions 1 to 4, as T →∞
(a) T−1/2v∗it = T−1/2vit + op(1);

(b) T−1/2F̂t = T−1/2HFt + op(1);

(c) T−1/2Ŝit = T−1/2Sit + op(1);

(d) T−1
∑T

t=2 Xp(∆Ŝit)2 = T−1
∑T

t=2 e2
it + op(1);

(e) T−1
∑T

t=2 Xp(Ŝit−1)Xp(∆Ŝit) = T−1
∑T

t=2 Xp(Sit−1)(eit − ei) + op(1).

Proof of Lemma A.1.

We begin with (a). If Xit = (1,∆Dit, ∆b′it, ∆x′it)
′, then ∆v∗it becomes

T−1/2v∗it = T−1/2
t∑

j=2

∆v∗ij

= T−1/2vit − T−1
T∑

t=2

∆vitX
′
it

(
T−1

T∑
t=2

XitX
′
it

)−1

T−1/2
t∑

j=2

Xij

− λ′iT
−1

T∑
t=2

∆FtX
′
it

(
T−1

T∑
t=2

XitX
′
it

)−1

T−1/2
t∑

j=2

Xij . (A1)

The highest ordered term in Xit is ∆xit. Thus, by using Assumption 2, we get
T−1/2

∑t
j=2 Xij = Op(1). The term T−1

∑T
t=2 XitX

′
it can be written as

T−1
T∑

t=2

XitX
′
it = T−1

T∑
t=2




1 ∆Dit ∆b′it ∆x′it
∆Dit ∆D2

it ∆Dit∆b′it ∆Dit∆x′it
∆bit ∆bit∆Dit ∆bit∆b′it ∆bit∆x′it
∆xit ∆xit∆Dit ∆xit∆b′it ∆xit∆x′it


 .

Now, since ∆Dit equals one only at one point, all sums involving ∆Dit are op(1)
when normalized by T−1. Also, since ∆xit is mean zero by Assumption 2, it is
clear that T−1

∑T
t=2 ∆bit, T−1

∑T
t=2 ∆xit →p 0 as T →∞, where →p denotes

convergence in probability. The remaining terms involve cross-products of ∆xit
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and ∆bit, which, by Assumption 1 (c), converges in probability to Ωi if t > Ti

and zero otherwise. Hence, we can show that T−1
∑T

t=2 XitX
′
it = Op(1).

Next, consider T−1
∑T

t=2 ∆FtX
′
it, which can be written as

T−1
T∑

t=2

∆FtX
′
it = T−1

T∑
t=2

(
∆Ft, ∆Ft∆Dit, ∆Ft∆b′it, ∆Ft∆x′it

)
,

where T−1
∑T

t=2 ∆Ft, T−1
∑T

t=2 ∆Ft∆Dit →p 0 as T →∞. Hence, since ∆xit

and ∆Ft are orthogonal by Assumption 3 (b), T−1
∑T

t=2 ∆FtX
′
it = op(1). By

the same arguments, T−1
∑T

t=2 ∆vitX
′
it = op(1). This implies that (A1) can be

written as

T−1/2v∗it = T−1/2vit + op(1), (A2)

which establishes (a).
Consider (b). Because Ft can only be identified up to a scale matrix H, say,

we considered the rotation HFt of Ft. If we let ∆F̂t = H∆Ft + vt, then F̂t

becomes

T−1/2F̂t = T−1/2
t∑

j=2

∆F̂j

= T−1/2
t∑

j=2

H∆Fj + T−1/2
t∑

j=2

vj , (A3)

where the order of the second term follows from equation (A.3) of Bai and Ng
(2004), which says that

T−1/2
t∑

j=2

vj = Op(C−1
NT ),

where CNT = min{√T ,
√

N}. Here we also need (a) to ensure that vit is
asymptotically unaffected by the projections of ∆Ft and ∆vit onto Xit. Thus,
we can show that

T−1/2F̂t = T−1/2H(Ft − F1) + op(1) = T−1/2HFt + op(1), (A4)

where F1 = Op(1). This establishes (b).
Consider (c). If we let bit = xitDit, then Ŝit can be written as

Ŝit = yit − α̂i − δ̂iDit − η̂it− x′itβ̂i − b′itγ̂i − λ̂′iF̂t

= yit − yi1 − δ̂i(Dit −Di1)− η̂i(t− 1)− (xit − xi1)′β̂i

− (bit − bi1)′γ̂i − λ̂′iF̂t

= (vit − vi1)− (δ̂i − δi)(Dit −Di1)− (η̂i − ηi)(t− 1)

− (xit − xi1)′(β̂i − βi)− (bit − bi1)′(γ̂i − γi)− λ̂′iF̂t + λ′i(Ft − F1). (A5)
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For the third term, we have

η̂i − ηi = ∆yi − δ̂i∆Di −∆x′iβ̂i −∆b′iγ̂i − ηi

= ∆vi − (δ̂i − δi)∆Di −∆x′i(β̂i − βi)−∆b′i(γ̂i − γi) + λ′i∆F

= ∆vi − (δ̂i − δi)/(T − 1)− w′i(β̂i − βi)

− ∆b′i(γ̂i − γi) + λ′i∆F, (A6)

where we have suppressed the index t to denote that the time series average
has been taken. For the third equality, we used that ∆xit = wit and ∆Di =
1/(T − 1).

Now, by using (A6), the expression in (A5) can be written as

T−1/2Ŝit = T−1/2(vit − vi1 −∆vi(t− 1))− T−1/2
t∑

j=2

(wij − wi)′(β̂i − βi)

− T−1/2

(
Dit −Di1 −

(
t− 1
T − 1

))
(δ̂i − δi)

− T−1/2

(
bit − bi1 −

(
t− 1
T − 1

)
(biT − bi1)

)′
(γ̂i − γi)

− T−1/2(λ̂i − λi)′F̂t

+ T−1/2λ′i

(
(Ft − F̂t)− F1 −

(
t− 1
T − 1

)
(FT − F1)

)

= T−1/2(vit − vi1 −∆vi(t− 1))− I − II − III

− IV + V, say. (A7)

To prove (c), we show that I, II, III, IV and V are op(1).
First, consider I. Let Xit = (1, ∆Dit, ∆b′it)

′, then
√

T (β̂i − βi) is given as

√
T (β̂i − βi) =

(
T−1

T∑
t=2

Xp(∆xit)Xp(∆xit)′
)−1

· T−1/2
T∑

t=2

Xp(∆xit)Xp(∆zit), (A8)

where the denominator can be expanded as

T−1
T∑

t=2

Xp(∆xit)Xp(∆xit)′ = T−1
T∑

t=2

∆xit∆x′it − T−1
T∑

t=2

∆xitX
′
it

·
(

T−1
T∑

t=2

XitX
′
it

)−1

T−1
T∑

t=2

Xit∆x′it.

By the same arguments used in the proof of part (a) of this lemma, it is clear
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that T−1
∑T

t=2 Xit∆x′it and T−1
∑T

t=2 XitX
′
it are Op(1). It follows that

T−1
T∑

t=2

Xp(∆xit)Xp(∆xit)′ = T−1
T∑

t=2

∆xit∆x′it + Op(1) = Op(1). (A9)

For the numerator of (A8), we have

T−1/2
T∑

t=2

Xp(∆xit)Xp(∆zit) = T−1/2
T∑

t=2

∆xit∆vit − T−1
T∑

t=2

∆xitX
′
it

·
(

T−1
T∑

t=2

XitX
′
it

)−1

T−1/2
T∑

t=2

Xit∆zit,

where T−1
∑T

t=2 Xit∆zit →p 0 as T → ∞ because ∆vit, ∆xit and ∆Ft are
independent by Assumptions 1 and 2 (b). Also, T−1/2

∑T
t=2 ∆xit∆zit = Op(1)

by standard arguments for stationary processes. Hence, by using (A9), we get
√

T (β̂i − βi) = Op(1) ·Op(1) = Op(1).

By using this result, and that T−1/2
∑t

j=2(wij −wi) = Op(1) by Assumption 2,
we can show that

I = T−1
t∑

j=2

(wij − wi)′
√

T (β̂i − βi) = Op(T−1/2). (A10)

Next, consider II. If Xit = (1, ∆x′it,∆b′it)
′, then

√
T (δ̂i − δi) becomes

√
T (δ̂i − δi) =

(
T−1

T∑
t=2

Xp(∆Dit)2
)−1

T−1/2
T∑

t=2

Xp(∆Dit)Xp(∆zit), (A11)

where the denominator is given by

T−1
T∑

t=2

Xp(∆Dit)2 = T−1
T∑

t=2

(∆Dit)2 − T−1
T∑

t=2

∆DitX
′
it

·
(

T−1
T∑

t=2

XitX
′
it

)−1

T−1
T∑

t=2

Xit∆Dit.

It is clear that T−1
∑T

t=2(∆Dit)2 and T−1
∑T

t=2 Xit∆Dit are op(1). The re-
maining term involves cross-products of the elements in Xit, among which the
highest ordered term is Op(1). Hence, T−1

∑T
t=2 XitX

′
it is Op(1), which implies

that T−1
∑T

t=2 Xp(∆Dit)2 = op(1).
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For the numerator of (A11), we have

T−1/2
T∑

t=2

Xp(∆Dit)Xp(∆zit) = T−1/2
T∑

t=2

∆Dit∆zit − T−1/2
T∑

t=2

∆DitX
′
it

·
(

T−1
T∑

t=2

XitX
′
it

)−1

T−1
T∑

t=2

Xit∆zit.

This expression is clearly op(1), which implies that
√

T (δ̂i − δi) is op(1) too.
From this result, we deduce that

II = T−1

(
(Dit −Di1)−

(
t− 1
T − 1

))√
T (δ̂i − δi) = op(T−1). (A12)

For part III, we have

√
T (γ̂i − γi) =

(
T−1

T∑
t=2

Xp(∆bit)Xp(∆bit)′
)−1

· T−1/2
T∑

t=2

Xp(∆bit)Xp(∆zit), (A13)

where Xit = (1, ∆x′it, ∆Dit)′ defines the projection errors. The denominator of
this expression is given by

T−1
T∑

t=2

Xp(∆bit)Xp(∆bit)′ = T−1
T∑

t=2

∆bit∆b′it − T−1
T∑

t=2

∆bitX
′
it

·
(

T−1
T∑

t=2

XitX
′
it

)−1

T−1
T∑

t=2

Xit∆b′it.

By using the results derived earlier, it is clear that both terms on the right-
hand side of this expression are Op(1) so that T−1

∑T
t=2 Xp(∆bit)Xp(∆bit)′ is

also Op(1).
The numerator of (A13) is qual to

T−1/2
T∑

t=2

Xp(∆bit)Xp(∆zit) = T−1/2
T∑

t=2

∆bit∆zit − T−1
T∑

t=2

∆bitX
′
it

·
(

T−1
T∑

t=2

XitX
′
it

)−1

T−1/2
T∑

t=2

Xit∆zit,

where all terms with normalizing order T−1/2 are Op(1) by standard arguments
for stationary processes. Hence, since T−1

∑T
t=2 ∆bitX

′
it and T−1

∑T
t=2 XitX

′
it
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are Op(1), we can deduce that T−1/2
∑T

t=2 Xp(∆bit)Xp(∆zit) = Op(1), from
which it follows that

√
T (γ̂i − γi) = Op(1).

This shows that IV must be op(1) as seen by writing

III = T−1/2

(
T−1/2(bit − bi1)−

(
t− 1
T − 1

)
T−1/2 (biT − bi1)

)′

·
√

T (γ̂i − γi) = Op(T−1/2). (A14)

Now, consider IV . By using (b), this term can be written as

IV = T−1/2(λ̂i − λi)′F̂t =
√

T (λ̂i − λi)′T−1HFt + op(1)

= Op(1) · op(1) + op(1), (A15)

where
√

T (λ̂i − λi) = Op(1) follows from Lemma 1 of Bai and Ng (2004).
Similarly, (b) implies that V reduces to

V = T−1/2λ′i

(
(Ft − F̂t)− F1 −

(
t− 1
T − 1

)
(FT − F1)

)

= T−1/2λ′i

(
t− T

T − 1

)
F1 + op(1)

= Op(T−1/2) + op(1). (A16)

Putting everything together, (A7) can be written as

T−1/2Ŝit = T−1/2(vit − vi1 −∆vi(t− 1)) + op(1)

= T−1/2Sit + op(1). (A17)

This proves part (c).
Next, consider (d). Define

∆v̂it = ∆ẑit − λ̂′i∆F̂t. (A18)

Note that ∆ẑit can be written as

∆ẑit = ∆yit − η̂i −∆x′itβ̂i −∆Ditδ̂i −∆b′itγ̂i

= ∆zit − (η̂i − ηi)−∆x′it(β̂i − βi)−∆Dit(δ̂i − δi)−∆b′it(γ̂i − γi).

Thus, by using (A6), and some algebra, we get

∆ẑit = ∆zit + (η̂i − ηi)− T−1/2∆x′it
√

T (β̂i − βi)− T−1/2∆Dit

√
T (δ̂i − δi)

− T−1/2∆b′it
√

T (γ̂i − γi)

= ∆zit −∆zi − T−1/2(∆xit −∆xi)′
√

T (β̂i − βi)

− T−1/2(∆Dit −∆Di)
√

T (δ̂i − δi)− T−1/2(∆bit −∆bi)′
√

T (γ̂i − γi)

= ∆zit − dit, say.
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Note that, by (c) and ∆zi →p 0, dit = op(1). Moreover, from (A5),

Ŝit = yit − yi1 − δ̂i(Dit −Di1)− η̂i(t− 1)− (xit − xi1)′β̂i

− (bit − bi1)′γ̂i − λ̂′iF̂t

=
t∑

j=2

(∆yit − δ̂i∆Dit − η̂i −∆x′itβ̂i −∆b′itγ̂i − λ̂′i∆F̂t),

where we have used the fact that F̂1 = 0. It follows that

∆Ŝit = ∆yit − δ̂i∆Dit − η̂i −∆x′itβ̂i −∆b′itγ̂i − λ̂′i∆F̂t

= ∆ẑit − λ̂′i∆F̂t

= ∆v̂it.

By substituting ∆Ŝit and ∆ẑit into (A18), we get

∆Ŝit = ∆ẑit − λ̂′i∆F̂t

= ∆zit − dit − λ̂′i∆F̂t

= ∆vit − dit − (λ̂i − λi)′∆Ft − (λ̂i − λi)′(∆F̂t −∆Ft)

− λ′i(∆F̂t −∆Ft)

= ∆vit − dit − cit, say,

where cit = op(1) by Lemma 1 of Bai and Ng (2004).
Now, let Xit = (1, ∆Ŝit−1, ..., ∆Ŝit−pi)

′, then

T−1
T∑

t=2

Xp(∆Ŝit)2 = T−1
T∑

t=2

(Xp(∆vit)−Xp(dit)−Xp(cit))2

= T−1
T∑

t=2

Xp(∆vit)2 + T−1
T∑

t=2

Xp(dit)2 + T−1
T∑

t=2

Xp(cit)2

− 2T−1
T∑

t=2

Xp(∆vit)Xp(dit)− 2T−1
T∑

t=2

Xp(∆vit)Xp(cit)

− 2T−1
T∑

t=2

Xp(cit)Xp(dit).

The second and third terms are obviously op(1). For the fourth term,

T−1
T∑

t=2

Xp(∆vit)Xp(dit) ≤
(

T−1
T∑

t=2

Xp(∆vit)2
)1/2 (

T−1
T∑

t=2

Xp(dit)2
)1/2

= Op(1) · op(1),

where the inequality follows from the Cauchy-Schwarz inequality. By the same
arguments, it can be shown that the fifth and sixth terms are also op(1). Since

26



eit = φi(L)∆vit under the null, it follows that

T−1
T∑

t=2

Xp(∆Ŝit)2 = T−1
T∑

t=2

Xp(∆vit)2 + op(1)

= T−1
T∑

t=2

e2
it + op(1).

This proves (d).
Finally, consider (e). Note that Xp(Ŝit)2 can be written as

Xp(Ŝit)2 = (Xp(Ŝit−1)−Xp(∆Ŝit))2

= Xp(Ŝit−1)2 + Xp(∆Ŝit)2 + 2Xp(Ŝit−1)Xp(∆Ŝit),

so that

T−1
T∑

t=2

Xp(Ŝit−1)Xp(∆Ŝit) =
1
2
T−1(Xp(ŜiT )2 −Xp(Ŝi1)2)

− 1
2
T−1

T∑
t=2

Xp(∆Ŝit)2. (A19)

Similarly, for T−1
∑T

t=2 Xp(Sit−1)Xp(∆Sit), we have

T−1
T∑

t=2

Xp(Sit−1)Xp(∆Sit) =
1
2
T−1(Xp(SiT )2 −Xp(Si1)2)

− 1
2
T−1

T∑
t=2

Xp(∆Sit)2. (A20)

Comparing the right hand side of the two expressions, since Xp(Ŝit) = Ŝit−X ′
itai

with X ′
itai = Op(1), we have Xp(ŜiT )2/T − Xp(SiT )2/T = op(1) by part (c)

with t = T .
For the third term, since Xp(∆Sit) = Xp(∆vit −∆vi) = eit − ei,

T−1
T∑

t=2

Xp(∆Sit)2 = T−1
T∑

t=2

(eit − ei)2 = T−1
T∑

t=2

(e2
it − e2

i )

= T−1
T∑

t=2

e2
it + op(1),

which, together with T−1
∑T

t=2 Xp(∆Ŝit)2 = T−1
∑T

t=2 e2
it + op(1) from (d),

leads to

T−1
T∑

t=2

Xp(∆Ŝit)2 = T−1
T∑

t=2

Xp(∆Sit)2 + op(1),
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These results imply that (A19) and (A20) can be written as

T−1
T∑

t=2

Xp(Ŝit−1)Xp(∆Ŝit) = T−1
T∑

t=2

Xp(Sit−1)(eit − ei) + op(1),

which proves (e). ¥

Lemma A.2. (Preliminaries for Theorem 1.) Under the conditions of Lemma
A.1, as T →∞

(a) T−1/2vit ⇒ 1
φi(1)

σiWi(r);

(b) T−1/2Ŝit ⇒ 1
φi(1)

σiVi(r);

(c) T−2
∑T

t=2 Xp(Ŝit−1)2 ⇒ 1
φi(1)2

σ2
i

∫ 1

0

Ui(r)2dr;

(d) T−1
∑T

t=2 Xp(Ŝit−1)Xp(∆Ŝit) →p − 1
2φi(1)

σ2
i .

Proof of Lemma A.2.

Consider (a). From (3), under the null, we have that

φi(L)∆vit = eit.

Using the Beveridge-Nelson decomposition of φi(L), we can write φi(L) =
φi(1) + φ∗i (L)(1− L), and obtain

φi(L)∆vit = φi(1)∆vit + φ∗i (L)∆2vit = eit,

or, equivalently

∆vit = − φ∗i (L)
φi(1)

∆2vit +
1

φi(1)
eit.

This implies that

T−1/2vit = −φ∗i (L)
φi(1)

T−1/2∆vit +
1

φi(1)
T−1/2

t∑

j=2

eij

=
1

φi(1)
T−1/2

t∑

j=2

eij + op(1)

⇒ 1
φi(1)

σiWi(r), (A21)
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where the last result follows from Assumption 2, thus proving (a).
Part (b) is an immediate consequence of part (a) and Lemma A.1 (c), as can

be seen by writing

T−1/2Ŝit = T−1/2
t∑

j=2

(vit − vi) + op(1)

=
1

φi(1)
T−1/2

t∑

j=2

(eit − ei) + op(1)

⇒ 1
φi(1)

σiVi(r). (A22)

Consider (c). By using (b) and the rules for projections, we get

T−2
T∑

t=2

Xp(Ŝit−1)2 = T−2
T∑

t=2

Ŝ2
it−1 − T−2

(
T−1

T∑
t=2

Ŝit−1X
′
it

)

·
(

T−2
T∑

t=2

XitX
′
it

)−1

T−1
T∑

t=2

XitŜit−1

= T−2
T∑

t=2

Ŝ2
it−1 −

(
T−3/2

T∑
t=2

Ŝit−1

)2

+ op(1)

⇒ 1
φi(1)2

σ2
i

∫ 1

0

Vi(r)2dr − 1
φi(1)2

σ2
i

(∫ 1

0

Vi(r)dr

)2

=
1

φi(1)2
σ2

i

∫ 1

0

Ui(r)2dr,

where the second equality follows from the fact that all terms in Xit but the
constant are stationary and can be discarded asymptotically.

Finally, consider (d). From Lemma A.1, we have

Sit−1 = vit − vi1 −∆vi(t− 1) =
1

φi(1)

t∑
t=2

(eij − ei),

which, together with (a), implies

T−1
T∑

t=2

Xp(Ŝit−1)Xp(∆Ŝit) = T−1
T∑

t=2

Xp(Sit−1)(eit − ei) + op(1)

=
1

φi(1)
T−1

T∑
t=2

t∑

j=2

(eij − ei)(eit − ei) + op(1)

=
1

φi(1)
T−1

T∑
t=2

git−1∆git + op(1), (A23)
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where git =
∑t

j=2(eij − ei). To obtain the limit of the sum in (A23), we use the
formula in (A19), which suggests that

T−1
T∑

t=2

git−1∆git =
1
2
T−1(g2

iT − g2
i1)−

1
2
T−1

T∑
t=2

(∆git)2

= −1
2
T−1

T∑
t=2

(∆git)2 + op(1)

→p −1
2
σ2

i .

By inserting this into (A23), we get the required result, thus proving (d). ¥

Proof of Theorem 1.

The least squares estimator of φi can be written as

T φ̂i =

(
T−2

T∑
t=2

Xp(Ŝit−1)2
)−1

T−1
T∑

t=2

Xp(Ŝit−1)Xp(∆Ŝit).

Hence, by Lemma A.2, T φ̂i has the following limit as T →∞

T φ̂i ⇒ −
(

2
∫ 1

0

Ui(r)2dr

)−1

.

Now, consider the variance ratio Si = ω̂i/σ̂i. Using the results of Lemma A.2
(c), it follows that σ̂2

i can be written

σ̂2
i = T−1

T∑
t=2

(Xp(∆Ŝit)− φ̂iXp(Ŝit−1))2

= T−1
T∑

t=2

Xp(∆Ŝit)2 − 2(T φ̂)T−2
T∑

t=2

Xp(∆Ŝit)Xp(Ŝit−1)

+ (T φ̂)2T−3
T∑

t=2

Xp(Ŝit−1)2

= T−1
T∑

t=2

e2
it + op(1) →p σ2

i . (A24)

Thus, σ̂2
i is consistent. Moreover, suppose that T, Mi → ∞ with Mi/T → 0,

then the consistency of ω̂2
i , the estimated long-run variance of ∆vit based on

∆Ŝit, is an immediate consequence of the fact that ∆Ŝit = ∆v̂it, and ∆v̂it is
consistent for ∆vit as shown in Lemma A.1 (d).
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Since Si →p ωi/σi = φi(1), we can therefore show that

φN =
1
N

N∑

i=1

T φ̂iSi ⇒ 1
N

N∑

i=1

Bi →p E(Bi),

where the limit arguments are taken first as T →∞ and then as N →∞. The
sequential limit distribution of φN is readily obtained by writing

N−1/2φN −
√

NE(Bi) =
√

N

(
1
N

N∑

i=1

T φ̂iSi − E(Bi)

)
.

Assume that var(Bi) < ∞ exists. By Assumption 1 through 4, and the Lindberg-
Lévy central limit theorem, then as T →∞ and then N →∞

N−1/2φN −
√

NE(Bi) ⇒ N(0, var(Bi)).

This establishes the first part of the proof.
To obtain the corresponding sequential limit for τN , we need to evaluate

SE(φ̂i), the standard error of φ̂i, which may be written as

SE(φ̂i) =

(
σ̂−2

i

T∑
t=2

Xp(Ŝit−1)2
)−1/2

.

By using (A24) and Lemma A.2 (b), as T →∞, we get

T 2SE(φ̂i)2 =

(
σ̂−2

i T−2
T∑

t=2

Xp(Ŝit−1)2
)−1

⇒ φi(1)2
(∫ 1

0

Ui(r)2dr

)−1

,

which implies that

τN =
1
N

N∑

i=1

φ̂i

SE(φ̂i)
=

1
N

N∑

i=1

T φ̂i√
T 2SE(φ̂i)2

⇒ 1
N

N∑

i=1

Ci →p E(Ci).

Next, similar to the analysis of φN , we expand the statistic as

√
NτN −

√
NE(Ci) =

√
N

(
N−1

N∑

i=1

φ̂i

SE(φ̂i)
− E(Ci)

)
.

Again, by assuming that var(Ci) < ∞ exists, we obtain

N−1/2τN −
√

NE(Ci) ⇒ N(0, var(C)),

as T →∞ and then N →∞ by the Lindeberg-Lévy central limit theorem. This
completes the second part of the proof. ¥
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Table 4: Estimated break and number of factors when φ = 0.

Frequency count Average selection

Case T θ ρ bλ bk(bλ) bk(0) bλ bk(bλ) bk(0)

1 100 0 0 − 100.0 100.0 − 1.0 1.0

0.3 0 − 100.0 100.0 − 1.0 1.0

−0.3 0 − 100.0 100.0 − 1.0 1.0

0 0.3 − 100.0 100.0 − 1.0 1.0

0 −0.3 − 100.0 100.0 − 1.0 1.0

200 0 0 − 100.0 100.0 − 1.0 1.0

0.3 0 − 100.0 100.0 − 1.0 1.0

−0.3 0 − 100.0 100.0 − 1.0 1.0

0 0.3 − 100.0 100.0 − 1.0 1.0

0 −0.3 − 100.0 100.0 − 1.0 1.0

2 100 0 0 70.3 97.4 0.3 50.2 1.0 2.0

0.3 0 69.5 98.0 0.2 50.1 1.0 2.0

−0.3 0 68.9 97.8 0.1 50.1 1.0 2.0

0 0.3 69.7 98.8 0.2 50.0 1.0 2.0

0 −0.3 69.0 97.9 0.0 50.0 1.0 2.0

200 0 0 65.6 100.0 20.9 100.2 1.0 1.8

0.3 0 64.8 100.0 29.7 100.2 1.0 1.7

−0.3 0 65.6 100.0 27.9 99.6 1.0 1.7

0 0.3 64.9 99.9 29.7 100.6 1.0 1.7

0 −0.3 65.0 100.0 30.1 100.2 1.0 1.7

3 100 0 0 93.5 99.1 3.5 50.0 1.0 2.0

0.3 0 94.2 99.1 4.6 50.0 1.0 2.0

−0.3 0 93.9 99.1 3.4 50.0 1.0 2.0

0 0.3 93.8 99.6 4.4 50.0 1.0 2.0

0 −0.3 93.4 99.7 3.1 50.0 1.0 2.0

200 0 0 95.5 100.0 1.3 100.0 1.0 2.0

0.3 0 95.5 99.9 2.1 100.0 1.0 2.0

−0.3 0 95.6 99.7 2.6 100.0 1.0 2.0

0 0.3 95.3 100.0 2.3 100.0 1.0 2.0

0 −0.3 95.4 100.0 1.9 100.0 1.0 2.0

Notes: The value bλ refers to the estimated breakpoint and bk refers to the estimated

number of factors. The notation bk(a) is used to indicate that the estimated number

of factors is based on the rule a for selecting the breakpoint. The frequency counts

refer to the correct selection frequencies. See Table 1 for an explanation of the

remaining features of the table.

35



T
ab

le
5:

P
an

el
st

at
io

na
ri

ty
te

st
s

of
th

e
P

P
P

hy
po

th
es

is
.

N
o
m

in
a
l
ex

ch
a
n
g
e

ra
te

R
el

a
ti

v
e

p
ri

ce
le

v
el

S
p
ec

ifi
ca

ti
o
n

V
a
lu

e
p
-v

a
lu

ea
p
-v

a
lu

eb
V

a
lu

e
p
-v

a
lu

ea
p
-v

a
lu

eb

C
o
n
st

a
n
t

2
8
.7

1
0

0
.0

0
0

0
.0

1
5

4
5
.0

1
4

0
.0

0
0

0
.0

0
0

C
o
n
st

a
n
t

a
n
d

tr
en

d
1
6
.5

9
2

0
.0

0
0

0
.0

2
0

3
0
.0

0
9

0
.0

0
0

0
.0

0
0

B
re

a
k

in
co

n
st

a
n
t

5
.0

1
3

0
.0

0
0

0
.0

0
5

1
3
.2

1
9

0
.0

0
0

0
.0

0
0

B
re

a
k

in
co

n
st

a
n
t

a
n
d

tr
en

d
1
1
.4

5
3

0
.0

0
0

0
.0

4
5

1
1
.9

5
1

0
.0

0
0

0
.0

0
5

N
o
te

s:
T

h
e

te
st

is
im

p
le

m
en

te
d

u
si

n
g

a
m

a
x
im

u
m

o
f
fi
v
e

b
re

a
k
s

a
n
d

th
e

B
a
rt

le
tt

k
er

n
el

w
it

h
th

e

b
a
n
d
w

id
th

o
f
4
(T

/
1
0
0
)2

/
9
.

a
T

h
e

p
-v

a
lu

es
a
re

fo
r

a
o
n
e-

si
d
ed

te
st

b
a
se

d
o
n

th
e

n
o
rm

a
l
d
is

tr
ib

u
ti

o
n
.

b
T

h
e

p
-v

a
lu

es
a
re

fo
r

a
o
n
e-

si
d
ed

te
st

b
a
se

d
o
n

th
e

b
o
o
ts

tr
a
p
p
ed

d
is

tr
ib

u
ti

o
n
.

W
e

u
se

5
0
0

b
o
o
st

ra
p

re
p
li
ca

ti
o
n
s.

36



Table 6: Panel cointegration tests of the PPP hypothesis.

τN φN

Model Value p-value Value p-value

No break 2.385 0.991 1.026 0.847

Level break 0.271 0.607 −0.267 0.395

Regime shift 0.636 0.738 0.422 0.664

Notes: The test is implemented using the Campbell and Perron (1991)

automatic procedure to select the lag length. We use three breaks, which

are determined by grid search at the minimum of the sum of squared

residuals. The p-values are for a one-sided test based on the normal

distribution.
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