
NEWTON POLYGON RELATIVE TO AN ARCTZEE-CHAR KUO AND ADAM PARUSI�NSKIAbstract. The notion of Newton polygon is well-known. We de�ne a generali-sation and apply it to study polar curves,  Lojasiewicz exponents, singularities atin�nity of complex polynomials (Ha Huy Vui's theorem), and �-constant deforma-tions. Philosophically speaking, the Newton polygon relative to an arc � exposesf in a horn neighborhood of �. The gradient of a function behaves erratically inthe process of blowing up. Our method indicates how it can be handled withoutresort to blow-ups.Throughout this paper let f(x; y) denote a germ of holomorphic function withTaylor expansion: f(x; y) = Hk(x; y) +Hk+1(x; y) + � � � :We shall assume f(x; y) is mini-regular in x of order k in the sense that Hk(1; 0) 6= 0.(This can be achieved by a linear transformation x0 = x, y0 = y + cx, c a genericconstant.)By a fractional (convergent) power series we mean a series of the form� : x = �(y) := c1yn1=N + c2yn2=N + � � � ; ci 2 C ;where N � n1 < n2 < � � � are positive integers, having no common divisor, suchthat �(tN ) has positve radius of convergence. We can identify � with the analyticarc � : x = c1tn1 + c2tn2 + � � � ; y = tN , jtj small, which is not tangent to the x-axis(since n1=N � 1).Let us apply the change of variablesX = x� �(y); Y = y;to f(x; y), yieldingF (X;Y ) := f(X + �(Y ); Y ) :=X cijX iY j=N :For each cij 6= 0, let us plot a dot at (i; j=N), called a Newton dot. The set of Newtondots is called the Newton diagram. They generate a convex hull, whose boundary is1991 Mathematics Subject Classi�cation. 32S05, 32S15, 14H20.The paper was prepared during the �rst author's stay in Angers. We would like to thankPRIA (Pôle de Recherche et d'Innovation �a Angers) for the �nancial support which made this visitpossible.The �rst author was also supported by an ARC Institutional Grant.1



2 TZEE-CHAR KUO AND ADAM PARUSI�NSKIcalled the Newton polygon of f relative to �, to be denoted by P(f;�). Note thatthis is just the Newton polygon of F in the usual sense.The Newton edges Es and their associated Newton angles �s are de�ned in anobvious way as illustrated in the following example. Take f(x; y) = x2 � y3 + y4,� : x = y3=2. Then P(f;�) has compact edges E1;E2 with tan �1 = 3=2, tan �2 = 5=2.
�1�243/2 1 2E1E2Convention: The "highest Newton edge", often denoted by EH, means the fol-lowing: If the highest vertex is on the y-axis, EH is the compact edge to its right;otherwise, EH is the vertical edge sitting on this vertex, as illustrated below.EH HE

1. Polar CurvesThe loci de�ned by @f=@x = 0 is called a polar curve. It consists of points wherethe level curves f = const have horizontal tangents as illustrated below.polar arcf=0



NEWTON POLYGON RELATIVE TO AN ARC 3Observe that the sharper is the cusp f = 0, the larger is the contact order with itspolar. Hence the contact order is a measurement of how singular the cusp is. Thefollowing theorem can be used to calculate the contact order, see [5].Take any q 2 Q+ (positive rationals). Take two fractional power series �(y); ��(y).We say � and �� are congruent modulo q if their di�erence has the form�(y)� ��(y) = cyq + � � � ; c 2 C :In this case we write � � �� mod q.We say �(y) is a (Newton-Puiseux) root mod q of f = 0 if there exists ��(y) suchthat f( ��(y); y) � 0 and � � �� mod q:If, in the Newton-Puiseux factorization,f(x; y) = unit � kYi=1[x� �i(y)];there are exactly m roots �i, �i � � mod q, we call m the multiplicity of �.Theorem 1.1. (Compare Lemma (3.3), [5]). If �(y) is a mod q root of f = 0 ofmultiplicity m, then it is a mod q root of @f=@x = 0 of multiplicity m� 1.There is also a version of Rolle's theorem. Take real numbers a1; : : : ; as�1; b1; b2,with b1 < b2. Let " > 0 be su�ciently small. Take qi 2 Q+, q1 < � � � < qs.Theorem 1.2. Let f(x; y) be real analytic. Suppose, for i = 1; 2,�i(y) := a1yq1 + � � �+ as�1yqs�1 + biyqs;are mod (qs + ") roots of f = 0. Then there is a real number as, b1 < as < b2, suchthat (y) := a1yq1 + � � �+ as�1yqs�1 + asyqsis a mod (qs + ") root of @f=@x = 0.This means that by adding higher order terms, with possibly non-real coe�cients,one can �nd a root of @f=@x.For a proof of Theorem 1.1, let us consider the Newton polygon of f relative to��(y) := �(y) + gyq;where g is a generic constant. Let (E1; �1); : : : ; (EH ; �H) denote the compact Newtonedges and the corresponding angles, EH being the highest edge. Note that (k; 0) is avertex of E1. Since g is a generic number, �� cannot be a root of f , EH has a vertexon the Y -axis, say (0; h0). The other vertex of EH ought to be (m;h1), h1 < h0,where m is the multiplicity of �. The reason is as follows.



4 TZEE-CHAR KUO AND ADAM PARUSI�NSKITake any edge Es. The associated polynomial Es(z) is de�ned to be Es(z) :=Es(z; 1), where Es(X;Y ) :=X cijX iY j=N ; (i; j) 2 Es :As in [6], every root c 6= 0 of Es(z) = 0 leads to a root of f of the form��(y) + [cytan�s + � � � ];having contact order tan �s with ��. It follows that tan �H = q and tan �s < q fors < H. Since m is the multiplicity of �, EH(z) must be of degree m.The Newton diagram of @F=@X can be easily found. Namely, move every Newtondot (i; j=N) of F to (i� 1; j=N), if i � 1, and delete all Newton dots (0; j=N). Thisis simply because @@X (X iY j=N ) = iX i�1Y j=N . Therefore the highest Newton edge of@F=@X has vertices at (0; h0 � tan �H) and (m� 1; h1). The associated polynomialequation is ddzEH(z) = 0. All m� 1 roots are non-zero (since g is generic). Each rootleads to a root of @F=@X = 0, which is congruent to �� modulo q. The roots derivedfrom the other edges are not congruent to �� modulo q.Note that the polar curve does not change when we move from (x; y) to (X;Y ),because @f=@x = @F=@X. Hence, for m � 2, the proof is complete.For the case m = 1, the above wording can be slightly modi�ed to show that � isnot a modulo q root of @f=@x = 0.Rolle's Theorem is proved in the same way. Take a generic real number g and let��(y) := a1yq1 + � � �+ as�1yqs�1 + gyqs:Consider the highest Newton edge EH of P(f;��). The associated equation EH(z) = 0has b1 and b2 as real roots. Hence its derivative E 0H(z) has a real root, as, betweenb1 and b2. 2.  Lojasiewicz exponentIn this section we assume f(x; y) has an isolated singularity at 0, that is,k grad fk2 = j@f=@xj2 + j@f=@yj2 > 0; (x; y) 6= (0; 0); near (0; 0):Take any analytic arc (convergent power series)� : x = a1tn1 + a2tn2 + � � � ; y = b1tm1 + b2tm2 + � � � ;jtj small. Let N = minfn1;m1g. Let us de�ne `(�) 2 Q+ byk grad f(�(t))k � k�(t)k`(�) � jtjN`(�);(2.1)where A � B means that A=B lies between two positive constants. We callL(f) := sup� f`(�)g(2.2)the  Lojasiewicz exponent of f . The purpose of this section is to show the following



NEWTON POLYGON RELATIVE TO AN ARC 5Theorem 2.1. The  Lojasiewicz exponent, L(f), is attained along the polar curve.More precisely, there is a Newton-Puiseux root of @f=@x = 0, : x = c1yn1=N + c2yn2=N + � � � ; 1 � N � n1 < n2 < � � � ;(2.3)such that L(f) = `().Here `() is de�ned by identifying  with the arc : x = c1tn1 + c2tn2 + � � � ; y = tN :(2.4)Following [6],  is called a "branch" of the polar curve, or simply a "polar branch".For real analytic f(x; y) we have the following version of Theorem 2.1. De�nethe real  Lojasiewicz exponent L(f) := sup�f`(�)g by taking the supremum over realanalytic �. Take a Newton-Puiseux root of @f=@x = 0, : x = a1yn1=N + � � �+ as�1yns�1=N + csyns=N + � � � ;(2.5)where ai 2 R, cs is the �rst non-real coe�cient, if there is one. Let us replace cs bya generic real number g, and callR : x = a1yn1=N + � � � + as�1yns�1=N + gyns=N(2.6)a real polar branch. In case s = 1, let R= .Theorem 2.2. The real  Lojasiewicz exponent, L(f), is attained along a real polarbranch.We shall now prove Theorems 2.1 and 2.2. It is easy to see that if � is tangent tothe x-axis, then `(�) = k � 1, k the multiplicity of f . We can therefore ignore thesearcs.Lemma 2.3. In the Newton diagram of f relative to a given� : x = c1yn1=N + c2yn2=N + � � � ; 1 � N � n1 < n2 < � � � ;(2.7)let (0; h0) and (1; h1) denote the lowest Newton dots on X = 0 and X = 1 respectively.Then `(�) = minfh0 � 1; h1g:(2.8)This Lemma is important, but the proof is easy. Let us writeF (X;Y ) := f(X + �(Y ); Y ) = unit � Y h0 + unit � Y h1X + terms divisible by X2:By the Chain Rule, @F=@X = @f=@x, @F=@Y = � 0(Y )@f=@x+ @f=@y. Hencej@F=@Xj+ j@F=@Y j � j@f=@xj+ j@f=@yj:Clearly, along X = 0, we havej@F=@Xj � jY jh1 ; j@F=@Y j � jY jh0�1;whence the result.



6 TZEE-CHAR KUO AND ADAM PARUSI�NSKINext, we de�ne the notion of sliding. Beginning with a given �(y), we wish to�nd a root of f = 0 which approximates �. In case � is already a root, we are done.Otherwise we can "slide � along f" to get a better approximation. The precisede�nition is as follows.Suppose � is not a root. Consider P(f; �). Take any root c (c 6= 0) of EH(z) = 0,the polynomial equation associated to the highest Newton edge EH. We then call�1 : x = �(y) + cytan�Ha sliding of � along f . A recursive sliding � ! �1 ! �2 ! � � � produces a limit,�1, which is a root of f = 0. This is the well-known procedure of �nding a Newton-Puiseux root of f = 0, as in [6].Assertion 1. Let  denote a sliding of � along @f=@x. Then `(�) � `().Theorem 2.1 clearly follows from this assertion.In the Newton diagram of f(x; y) relative to �, let (0; h0), (1; h1) denote the lowestNewton dots on X = 0 and X = 1 respectively. In the Newton diagram of f relativeto , let (0; �0), (1; �1) denote the lowest Newton dots on these lines. Consider alsothe Newton diagram of @f=@x relative to �. Let EH 0 denote the highest Newtonedge; let (0; h00) denote its vertex on X = 0.Assertion 2. �1 > h1 and �0 � minfh0; h1 + tan �H 0g.As an illustrative example, takef(x; y) = x2 + 2xy2 + c3y3 + c4y4; �(y) � 0:In case c3 6= 0, we have h0 = �0 = 3; in case c3 = 0 6= c4 6= 1, h0 = �0 = 4; in casec3 = 0 and c4 = 1, h0 = 4, �0 = 1; and in case c3 = c4 = 0, h0 = 1, �0 = 4. In allcases, h1 = tan �H 0 = 2.
c3 6= 0 c3 = 0; c4 = 1 c3 = c4 = 0** f(x,y) *? c3 = 0 6= c4 6= 1In the expansion F (X;Y ) =P cijX iY j=N , let us collect all the terms whose deriva-tives lie on EH 0: 'H 0(X;Y ) :=X cijX iY j=N ; (i� 1; j=N) 2 EH 0 :



NEWTON POLYGON RELATIVE TO AN ARC 7Note that ddz'H 0(z; 1) = EH 0(z). In the expansion of 'H 0(X + cY tan �H0 ; Y ), theterm XY h00 has coe�cient 0, since EH 0(c) = 0. (The coe�cient of Y h1+tan �H0 may ormay not vanish.) Thus Assertion 2 follows.Assertion 1 now follows from Assertion 2, Lemma 2.3, and the fact that tan �H 0 � 1.Remark 2.4. After the preparation of this paper we have learnt that Theorem 2.1was also proved by a di�erent argument by Bogus lawska [2].3. Singularities at infinity of complex polynomialsLet P (x; y) be a polynomial over C .Theorem 3.1. (Ha Huy Vui, [3, 4]) The following conditions are equivalent:(1) For any sequence (xn; yn) ! 1 with the property that P (xn; yn) ! 0, thesequence k grad P (xn; yn)k does not tend to 0.(2) For any sequence (xn; yn) ! 1 with the property that P (xn; yn) ! 0, thesequence k grad P (xn; yn)k k(xn; yn)k does not tend to 0.When P (x; y) has degree d and the coe�cient of xd is non-zero, we say P (x; y) isregular in x. Note that in this case, if P (xn; yn) ! 0, (xn; yn) ! 1, then xn=yn isbounded.Addendum. Suppose P is regular in x and not of the form P (x; y) = g(x� cy); c 2C , g a polynomial of one variable. Then the above conditions are also equivalent to(3) For any sequence (xn; yn) ! 1 such that P (xn; yn) ! 0, k grad P (xn; yn)ktends to in�nity.In case P (x; y) = g(x � cy), (1) and (2) hold if and only if g has distinct roots.This case is trivial.For a proof of the theorem it su�ces to show that (2) implies (1) since the impli-cation (1))(2) is trivial. We shall prove the addendum later on.Assume condition (1) fails along a sequence (xn; yn). Using the Curve SelectionLemma, or Hironaka's Theorem, we can assume that (xn; yn) lies on an analyticcurve � : x = c1sn1 + c2sn2 + � � � ; y = s�N ;(3.1)where s ! 0, N > 0, n1 < n2 < � � � , (n1 need not be positive). We must haven1 +N � 0, since xn=yn is bounded. We can rewrite � as a fractional power series� : x = c1y�n1=N + c2y�n2=N + � � � ; �N � n1 < n2 < � � � :(3.2)Let us apply the change of variablesX = x� �(y); Y = y�1;(3.3)



8 TZEE-CHAR KUO AND ADAM PARUSI�NSKIand consider the Newton diagram ofM(X;Y ) := P (X + �(1=Y ); 1=Y ):(3.4)Clearly, it has at most �nitely many dots lying on or below the X-axis. Moreover,there is one dot at (d; 0), since P (x; y) is regular in x.Note that in the (X;Y )-plane, � is just the Y -axis. The assumption P (xn; yn) ! 0means that M(0; Y ) ! 0 as Y ! 0. All Newton dots ofM(0; Y ) lie above theX-axis.Let (1; h1) denote the lowest Newton dot on X = 1. We must have h1 > 0, sinceotherwise (1) would hold along �. Therefore, we can use the Newton dots on orbelow the X-axis to "swallow" (1; h1). This means, more precisely, that we let �slide along @M=@X, say to an arc 1.Example 3.2. M(X;Y ) = Y 3 � 2XY +X3Y �1 +X4.The dot (1; 1) represents �2XY . Let us take a root c 6= 0 of z3 � 2z = 0, sayc = p2, and let 1 be X = p2Y . Then �2XY is "swallowed" by X3Y �1.
The lowest Newton dot on X = 1 of M(X + 1(Y ); Y ) is higher than (1; h1). OnX = 0, all dots remain above the X-axis.A recursive sliding �! 1 ! 2 ! � � � , will then yield a root  of the polar curve@P=@x = @M=@X = 0, for whichfM(X;Y ) := M(X + (Y ); Y )has no dots on X = 1, and dots on X = 0 all lie above the X-axis.An easy calculation, using the Chain Rule, yieldsy(@P=@x) = Y �1(@fM=@X); y(@P=@y) = Y (@fM=@Y )� Y  0(Y )(@fM=@X);whence condition (2) fails along . Thus Theorem 3.1 is proven.Remark 3.3. The above proof actually shows that Conditions (1) and (2) of Theorem3.1 are equivalent to(4) For any root  : x = (y) of the polar curve @P=@x = 0, limy!1 P ((y); y) 6= 0(this limit can be in�nite).Moreover the equivalent conditions (1), (2), or (4) admit the following geometricinterpretation, see [3, 4]. We say that P (x; y) = 0 has no singularities at in�nity



NEWTON POLYGON RELATIVE TO AN ARC 9if there is a "neighbourhood" U of in�nity and a positive constant � such that Pinduces a trivial �brationP : U \ fjP j < �g �! fz 2 C j jzj < �g:(3.5)The conditions (1), (2), or (4) are also equivalent to(5) P (x; y) = 0 has no singularities at in�nity.Indeed, consider the analytic map� : C 2 ! C 2 ; �(x; y) = (P (x; y); y):Since P (x; y) is regular in x, � is proper. It is easy to see that � is an analyticcovering branched along the polar curve @P=@x = 0. Suppose condition (4) holds.Then, for "; � positive and su�ciently small and U = U" = f(x; y)j jxj > "�1g themap de�ned in (3.5) is a covering space, so topologically trivial.On the other hand, suppose that (4) fails along a branch  of @P=@x = 0. Wemay also suppose that P (x; y) = 0 does not have multiple components (otherwiseP cannot be topologically trivial at generic points of such components). Consider,as before, U = U" = f(x; y)j jxj > "�1g and the �bres U";z = U" \ P�1(z) , jzj < �.Choose "; � small but positive. Then the projectionsU";z ! fxj jxj < "g;induced by (x; y) ! x, are analytic coverings branched along the points of the polarcurve. We may assume that there are no such points for z = 0, but the existence of shows that the set of such points is non-empty for z 6= 0 and small. This means,in particular, that the Euler characteristic �(U";z) changes at z = 0 and (5) fails.Now we show the claim of Addendum. For this it su�ces to show that (2) implies(3). We may use exactly the same argument as in the proof (2))(1) if we know thatfor any analytic curve �, as in (3.2),M(X;Y ) := P (X + �(1=Y ); 1=Y )must have Newton dots strictly below the X-axis. This follows from the followingtwo lemmas.Lemma 3.4. Let P (x; y) be a polynomial regular in x, of degree d, and suppose thatthere exists an analytic curve (3.2) such that the Newton diagram of M(X;Y ) :=P (X + �(1=Y ); 1=Y ) has no dots below the X-axis. Then there exists a polynomialof one variable g and c 2 C such thatP (x; y) = g(x� cy):(3.6)Proof. Write �(Y �1) = c1Y n1=N + c2Y n2=N + � � � = '(Y ) +  (Y );where '(Y ) contains the negative powers of Y and  (Y ) the non-negative ones.



10 TZEE-CHAR KUO AND ADAM PARUSI�NSKIDevelop P (x; y) as a polynomial of x:P (x; y) = axd + (by + e)xd�1 + � � � :(3.7)Note that by our assumption a 6= 0. ThenP (X + �(1=Y ); 1=Y ) = aXd + [ad�(Y �1) + bY �1 + e]Xd�1 + � � � :(3.8)If M(X;Y ) := P (X + �(1=Y ); 1=Y ) has no Newton dots below the X-axis then, ofcourse, [ad�(Y �1) + bY �1 + e] has no terms with negative exponents, that is'(Y ) = � badY �1:Set c = � bad . Then �(Y �1) = cY �1 + (Y ). Now we go back to the original variablesx; y. As we have just proved, Q(x; y) = P (x+ cy+ (y�1); y) does not have Newtondots above the x-axis. Here  (y) is a convergent power series.Lemma 3.5. If, for a polynomial P (x; y) and a convergent power seris  , Q(x; y) =P (x+ cy+ (y�1); y) does not have Newton dots above the x-axis, then P (x+ cy; y)does not depend on y. In other words, there is a polynomial of one variable g suchthat P (x+ cy; y) = g(x) (or equivalently P (x; y) = g(x� cy)).The proof is reduced to the case c = 0, when we change the variable x to x+ cy.Suppose P (x; y) is not independent of y. Amongst all non-zero terms divisible byy, let aijxiyj; j > 0, be the one for which (i; j) is largest lexicographically. Then,clearly, P (x+  (y�1); y) still has aijxiyj as a term. This is a contradiction.4. �-constant families of type F (x; y; t) = f(x; y) + tg(x; y)Let f(x; y); g(x; y) be two germs of holomorphic funtions. Consider a one parame-ter deformation F (x; y; t) = f(x; y)+ tg(x; y), t 2 (C ; 0). Recall that F is � constantif, and only if jg(x; y)j � jFxj+ jFyj:(4.1)We shall show in Theorem(4.1) below that F is a � constant deformation if, and onlyif, the Newton polygon of f relative to any analytic arc x = �(y) is not disturbedby g (in a precise meaning de�ned below). This, in particular, implies that such�-constant deformations are Whitney regular, that isjg(x; y)j � C(jxj+ jyj)(jFxj+ jFyj); C a constant:(4.2)Consider a given Newton polygon P. In case it has a vertex of the form Vs = (1; hs)on the line x = 1, we de�ne the straightened polygon, denoted by P, as follows: Erasethe edge Es and extend Es�1 to the y-axis, as indicated below.



NEWTON POLYGON RELATIVE TO AN ARC 11PEs-1P P s-1E Es s-1 and straightened toEEsIn case there is no vertex on x = 1, we set P= P.The Newton polygon relative to a polar branch does not have dots on x = 1, henceis already straightened.Theorem 4.1. Consider Ft(x; y) := F (x; y; t) = f(x; y) + tg(x; y). The followingconditions are equivalent:(a) jg(x; y)j � k grad (x;y) F (x; y; t)k, as (x; y) ! 0.(b) Take any arc � : x = a1yn1=N + a2yn2=N + � � � , 1 � N � n1 < n2 < � � � . Thestraightened Newton polygon of Ft relative to � is independent of t:P(Ft; �) = P(f; �); (t small ):(c) Take any polar branch, , of f(x; y). The highest Newton edge of P(f; ) is notdisturbed by g(x; y) in the sense de�ned below.Take r, 0 < r < 1. Let Mr denote the contractionMr : (i; j) 7! (ri; rj); (i; j) 2 R2:Take an edge, Es, of a Newton polygon P. We say Es is disturbed by g if for somer < 1, Mr(Es) contains at least one Newton dot of g. We say P is disturbed if someedge of P is.For example, in x3 + x2y + y4 + tx2, EH = E2 is not disturbed, but E1 is. Inx3 + x2y + y4 + txy2, EH is disturbed, E1 is not.EH not disturbedEH E1 *EH disturbedEH E1*A Newton dot of g can disturb at most two adjacent edges of P.We begin the proof of Theorem 4.1. Of course (b))(c). By the Curve SelectionLemma, (b))(a) is also clear. Assume (b) is not true, we shall show (a) and (c) areboth false.



12 TZEE-CHAR KUO AND ADAM PARUSI�NSKITake any arc � for which P := P(f; �) is disturbed by g(x; y). We de�ne a numberr(�), 0 < r(�) < 1, and a positive integer, k(�), as follows.The number r(�) is just the smallest rational such that Mr(�)(P) contains at leastone Newton dot of g(X + �(Y ); Y ). All Newton dots of g lie on or above Mr(�)(P).Amongst these dots on Mr(�)(P), let (i(�); j(�)=N) be the one for which the X-coordinate i(�) is minimal (i.e. closest to the Y -axis). Let Es(�) be the last edge ofP for which Mr(�)(Es(�)) contains (i(�); j(�)=N). Denote the initial vertex of Es(�)by Vs(�) = (ks(�); hs(�)). We then de�ne k(�) := ks(�).In order to simplify the notations we shall write Es := Es(�), s := s(�), r := r(�).Among all � which fail condition (b), let us choose one, still denoted by � (abusingnotation), such that k(�) is minimal.Now collect terms of f(X + �(Y ); Y ):Es(X;Y ) :=X aijX iY j=N ; (i; j=N) 2 Es;and collect terms of g(X + �(Y ); Y ):eEs(X;Y ) :=X cijX iY j=N ; (i; j=N) 2 Mr(Es);then consider the associated polynomials:Es(z) := Es(z; 1); eEs(z) := eEs(z; 1):Their degrees will be denoted by d and ~d respectively.We now begin to construct a polar branch, , which fails condition (c). Note thatd = k(�) and rd � ~d. It follows immediately that there is a root c of ddzEs(z) = 0,say of multiplicity m, such that r(m+ 1) � ~m, where ~m � 0 is the multiplicity of cas a root of eEs(z) = 0.Let us also write e := e(�) := tan �s, and setX1 = X + cY e; Y1 = Y; �1(Y ) = �(y) + cye;to transform P(f; �) to P(f;�1) by sliding. Consider the faces E(1)i , and vertices,V (1)i , of P(f;�1). The following hold:(i) E(1)1 = E1; : : : ;E(1)s�1 = Es�1; V (1)1 = V1; : : : ; V (1)s�1 = Vs�1; V (1)s = Vs.(ii) g(X + �1(Y ); Y ) has a Newton dot of the form ( ~m; ~h).There are three cases to consider:Case 1. The above number c is not a root of Es(z) = 0.The vertex V (1)s+1 lies on the Y1-axis; E(1)s is the highest edge; it has no Newton doton the line X1 = 1, and is disturbed by ( ~m; ~h).We can slide �1 to a polar branch, , as in x2. During the sliding, E(1)s is alwaysthe highest edge, being disturbed by ( ~m; ~h). Finally, the highest edge of P(f; ) isdisturbed, condition (c) is false.Case 2. The number c is a root of Es(z) = 0 with multiplicity � d� 1.



NEWTON POLYGON RELATIVE TO AN ARC 13Of course, the multiplicity equals m + 1. This case cannot happen, for we would�nd k(�1) = m+ 1 � d � 1 < k(�), a contradiction to the assumption that k(�) isminimal.Case 3. Es(z) = (z � c)d.This case can be excluded from the o�set, as follows.First, we claim that � can be chosen to have the additional property that P(f; �)has no Newton dots on the line X = d� 1.This can be achieved by using the following idea of Bierstone-Milman [1], whichgeneralizes the Tschirnhausen transformation. Take a Newton-Puiseux root, ��(Y ),of @d�1@Xd�1f(X + �(Y ); Y ) = 0; OY (��) � e:It then follows that f(X + �(Y ) + ��(Y ); Y ) has no Newton dot on X = d � 1. Sowe can replace � by �+ ��.With this additional property of �, Es(z) is a Tschirnhausen polynomial in thesense that it has the forma0zd + a2zd�2 + � � �+ ad; a0 6= 0:The case a2 = � � � = ad = 0 can happen only if � is already a polar branch, andEs is vertical, disturbed by g. There is nothing more to prove.In case not all a2; : : : ; ad are zero, there are at least two distinct roots, Case 3cannot happen.We now begin to show Condition (a), too, is false. For this we need �rst thefollowing algebraic lemma.Take a pair of constants, w and ~w. Take a pair of polynomials, '(z) and ~'(z), sayof degree d and ~d respectively, written as'(z) = a0(z � z1)m1 � � � (z � zq)mq ; ~'(z) = b0(z � z1)n1 � � � (z � zq)nq ;where mi � 0; ni � 0; (mi; ni) 6= (0; 0), and zi 6= zj if i 6= j.Recall that the standard symmetric function of roots aresk =Xmizki ; ~sk =Xnizki ; k = 0; 1; 2; : : : :Lemma 4.2. Suppose �� w mi~w ni �� 6= 0, 1 � i � q. Suppose one of the following q � 1numbers ����w si~w ~si����; i = 0; : : : ; q � 2;(4.3)is not zero. Then there exists c such that����w'(c) '0(c)~w ~'(c) ~'0(c)���� = 0; but '(c) ~'(c) 6= 0:(4.4)



14 TZEE-CHAR KUO AND ADAM PARUSI�NSKIProof. Take a polynomial 	(z) =Y(z � zi)ei :Recall that 	0(z)	(z) =X eiz � zi . Hence, we have����w'(z) '0(z)~w ~'(z) ~'0(z)���� = '(z) ~'(z)R(z);where R(z) :=X�� w mi~w ni ��(z � zi)�1:In particular, R(z) is of the formR(z) = q(z)(z � z1) � � � (z � zq); q(zi) 6= 0:To show the lemma it su�ces to show that deg q(z) � 1. The expansions1z � zi = 1z + ziz2 + � � �+ zn�1izn + � � � ; 1 � i � q;lead to R(z) =X����w sk~w ~sk����z�(k+1):By (4.3), there is an integer p, 1 � p � q � 1, such thatlimz!1 zpR(z) = ����w sp�1~w ~sp�1���� 6= 0:This implies that the degree of q(z) is q � p � 1. This shows the lemma.Let us return to �, which minimizes k(�). Let us take'(z) = Es(z); ~'(z) = ~Es(z):Let w be the rational number such that Es(cY e; Y ) � Y w, c a generic number, andde�ne ~w similarly using eEs(cY e; Y ) instead.Assertion 4.3. For all i, �� w mi~w ni �� 6= 0, 1 � i � q.Take any i, and consider the root zi. Let us slide � to �1:�1(y) = �(y) + ziye; X1 = X + ziY e; Y1 = Y:This substitution turns Es into an edge E(1)s of P(f; �1), having the same initial vertexas Es, but its terminal vertex, denoted by V (for simplicity of notation), has X1-coordinate mi. The disturbing terms eEs are likewise transformed, having its leftestNewton dot, denoted by ~V , on the line Xi = ni.



NEWTON POLYGON RELATIVE TO AN ARC 15Suppose �� w mi~w ni �� = 0. Then by a simple Plane Geometry argument, we would have~V = Mr(�)(V ) 2 Mr(�)(P(f;�1)):It would then follow that k(�1) < k(�), a contradiction.ni mieV VewwNow, take an indeterminate, �, and let ��(y) := �(y) + �ye. Then consider theTaylor expansionsf(X + ��(Y ); Y ) = Y w�0(�; Y ) + Y w�e�1(�; Y )X + � � � ;g(X + ��(Y ); Y ) = Y ~w ~�0(�; Y ) + Y ~w�e ~�1(�; Y )X + � � � :Note that �0(�; 0) = '(�); �1(�; 0) = '0(�);~�0(�; 0) = ~'(�); ~�1(�; 0) = ~'0(�):We are now in a position to apply Lemma 4.2.Case 1. Suppose �� w d~w ~d �� 6= 0.The �rst number in (4.3) is not zero, since s0 = d, ~s0 = ~d. Let us take a constantc satisfying (4.4).We shall construct a relative polar curve P, that is a curve along which@F=@x = @F=@y = 0;such that g is not identically zero on P.Let us write, as shorthands,A(�; Y ) := w�0 + Y @�0=@Y; ~A(�; Y ) := ~w~�0 + Y @ ~�0=@Y:To construct P consider the following system of equations(t ~A(�; Y ) + Y w� ~wA(�; Y ) = 0t~�1(�; Y ) + Y w� ~w�1(�; Y ) = 0:(4.5)The coe�cient determinant of (4.5)�(�; Y ) := ����A(�; Y ) �1(�; Y )~A(�; Y ) ~�1(�; Y )����



16 TZEE-CHAR KUO AND ADAM PARUSI�NSKIis zero when � = c, Y = 0. Hence we can use the Newton-Puiseux Theorem to �nda root �(Y ) of �: �(�(Y ); Y ) = 0; �(0) = c:Since ~A(�(0); 0) = ~'(c) 6= 0, t = t(Y ) := Y w� ~wA(�(Y ); Y )= ~A(�(Y ); Y ) is a solutionof (4.5), for � = �(Y ).Consequently P : Y �! (�(Y ); Y; t(Y ))is a relative polar curve, @F=@x = @F=@y = 0 along P, yet jg(x; y)j � y ~w. Thisshows that Condition (a) is false in Case 1.Case 2. Suppose �� w d~w ~d �� = 0.This case is actually easy. In the �rst place, we have w � ~w � e: This is provedby a simple argument of Plane Geometry. (Indeed, equality holds only in a trivialcase.)Take a generic constant �. Consider the curve ��(y) := �(y) + �ye. Along thiscurve @f=@X � Y w�e; @f(X + ��(Y ); Y )=@Y � Y w�1; g(X;Y ) � Y ~w:This shows (a) is again false, thus completing the proof.References[1] E. Bierstone and P.D. Milman, Canonical desingularization in characteristic zero by blowingup the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302.[2] M. Bogus lawska, On the  Lojasiewicz exponent of the gradient of holomorphic functions,preprint University of  L�od�z.[3] H.V. H�a, Nombres de  Lojasiewicz et singularit�e �a l'in�ni des polynômes de deux variablescomplexes, C.R. Acad. Sci. Paris S�er. I Math. 311 (1990), 429{432.[4] H.V. H�a, On the Irregularity at In�nity of Algebraic Plane Curves, University of Hanoi preprint91/4, 1991.[5] T.-C. Kuo and Y.C. Lu, On analytic function germs of two complex variables, Topology, 16(1977), 299-310.[6] R. Walker, Algebraic Curves, Princeton University Press (1950).School of Mathematics and Statistics, University of Sydney, Sydney, NSW, 2006,AustraliaE-mail address: tck@maths.usyd.edu.auD�epartement de Math�ematiques, Universit�e d'Angers, 2, bd Lavoisier, 49045 Angerscedex, FranceE-mail address: parus@tonton.univ-angers.fr


