NEWTON POLYGON RELATIVE TO AN ARC
TZEE-CHAR KUO AND ADAM PARUSINSKI

ABSTRACT. The notion of Newton polygon is well-known. We define a generali-
sation and apply it to study polar curves, Lojasiewicz exponents, singularities at
infinity of complex polynomials (Ha Huy Vui’s theorem), and p-constant deforma-
tions. Philosophically speaking, the Newton polygon relative to an arc A exposes
f in a horn neighborhood of A. The gradient of a function behaves erratically in
the process of blowing up. Our method indicates how 1t can be handled without
resort to blow-ups.

Throughout this paper let f(z,y) denote a germ of holomorphic function with
Taylor expansion:

f(xvy) = Hk(:li,y) + Hk+1(x7y) 4+

We shall assume f(x,y) is mini-regular in @ of order k in the sense that Hy(1,0) # 0.
(This can be achieved by a linear transformation @’ = x, ¥y’ = y + cx, ¢ a generic
constant.)

By a fractional (convergent) power series we mean a series of the form

A= My) = clynl/N+02y”2/N +---, ¢ €C,

where N < ny < ng < --- are positive integers, having no common divisor, such
that A(+") has positve radius of convergence. We can identify A with the analytic
arc A: & = ¢y t™ 4 cpt™ + -+ y = Y, |t small, which is not tangent to the z-axis
(since ny /N > 1).

Let us apply the change of variables

X=z-MNy), Y=y,
to f(x,y), vielding
FX,Y) = (X +AY),Y) =) e, XYV,

For each ¢;; # 0, let us plot a dot at (¢, 7/N), called a Newton dot. The set of Newton
dots is called the Newton diagram. They generate a convex hull, whose boundary is
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called the Newton polygon of f relative to X, to be denoted by P(f, ). Note that
this is just the Newton polygon of F' in the usual sense.
The Newton edges E; and their associated Newton angles 6, are defined in an

obvious way as illustrated in the following example. Take f(z,y) = 2? — * + y*,
A:a = %2 Then P(f,)) has compact edges E;, E; with tan 6, = 3/2, tan 6, = 5/2.

oo | PN

Convention: The “highest Newton edge”, often denoted by Ep, means the fol-
lowing: If the highest vertex is on the y-axis, Ef is the compact edge to its right;
otherwise, Ej is the vertical edge sitting on this vertex, as illustrated below.

; Ey
Nl N\

1. PoLArR CURVES

The loci defined by df/0x = 0 is called a polar curve. It consists of points where
the level curves f = const have horizontal tangents as illustrated below.

polar arc

=0
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Observe that the sharper is the cusp f = 0, the larger is the contact order with its
polar. Hence the contact order is a measurement of how singular the cusp is. The
following theorem can be used to calculate the contact order, see [5].

Take any ¢ € QF (positive rationals). Take two fractional power series 3(y), 3(y).
We say 3 and 3 are congruent modulo ¢ if their difference has the form

Bly)—By)=cy’+---, ceC

In this case we write # = 3 mod q.
We say 3(y) is a (Newton-Puiseux) root mod q of f = 0 if there exists 3(y) such
that

f(B(y),y)=0 and B=F modgq.

If, in the Newton-Puiseux factorization,

k
fla,y) = unit - [ [ = Biw));
=1
there are exactly m roots (3;, 3; = mod ¢, we call m the multiplicity of (3.

Theorem 1.1. (Compare Lemma (3.3), [5]). If B(y) is a mod ¢ root of f = 0 of
multiplicity m, then it is a mod q root of df/dx = 0 of multiplicity m — 1.

There is also a version of Rolle’s theorem. Take real numbers ay,... ,a,_1, 01, b,
with b; < by. Let € > 0 be sufficiently small. Take ¢; € QF, ¢; < --+ < ¢s,.

Theorem 1.2. Let f(x,y) be real analytic. Suppose, fori = 1,2,
Bily) == ary™ + -+ + as1y™ + biy*,
are mod (qs + €) roots of f = 0. Then there is a real number as, by < as < by, such
that
Yy) = awy™ + -+ asay™T +ay”
is @ mod (qs + €) root of df/0x = 0.
This means that by adding higher order terms, with possibly non-real coefficients,
one can find a root of df/dx.
For a proof of Theorem 1.1, let us consider the Newton polygon of f relative to
B(y) = By) +g9y",

where ¢ is a generic constant. Let (E1,61),...,(Eg,0g) denote the compact Newton
edges and the corresponding angles, Ex being the highest edge. Note that (k,0) is a
vertex of E;. Since g is a generic number, 3* cannot be a root of f, Ey has a vertex
on the Y-axis, say (0,ho). The other vertex of Ey ought to be (m,hy), hy < ho,
where m is the multiplicity of 3. The reason is as follows.
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Take any edge E;. The associated polynomial &(z) is defined to be &(z) =
Es(z,1), where

E(XY) =) ey X'YVIN (ij) €,
As in [6], every root ¢ # 0 of E(z) = 0 leads to a root of f of the form

B (y) + [ey™ + -],

having contact order tan s with 8*. It follows that tan 8y = ¢ and tanf; < ¢ for
s < H. Since m is the multiplicity of 3, £g(z) must be of degree m.

The Newton diagram of 0F'/0X can be easily found. Namely, move every Newton
dot (i,5/N) of F to (i —1,7/N), if i > 1, and delete all Newton dots (0,j/N). This
is simply because %(Xin/N) = (X 7'YI/N_ Therefore the highest Newton edge of
OF/0X has vertices at (0, hg — tan 0y) and (m — 1, hy). The associated polynomial
equation is %EH(Z) = 0. All m — 1 roots are non-zero (since g is generic). Each root
leads to a root of dF/JX = 0, which is congruent to * modulo g. The roots derived
from the other edges are not congruent to 4* modulo g.

Note that the polar curve does not change when we move from (z,y) to (X,Y),
because df/0x = JF/0X. Hence, for m > 2, the proof is complete.

For the case m = 1, the above wording can be slightly modified to show that 3 is
not a modulo ¢ root of df/dx = 0.

Rolle’s Theorem is proved in the same way. Take a generic real number ¢ and let

6*(y) = alyql _I_ ... _I_ as_lqu—l _I_qus‘

Consider the highest Newton edge Ey of P(f, 3*). The associated equation Eg(z) =0
has by and by as real roots. Hence its derivative £, (z) has a real root, as, between

bl and bz.

2. LOJASIEWICZ EXPONENT

In this section we assume f(x,y) has an isolated singularity at 0, that is,
lavad I = 107 /0cl® + 107 /0yf* > 0, (e,5) # (0,0),  near (0,0)

Take any analytic arc (convergent power series)

Az =alt™ +at™ + o, y=byt"™ Fbyt™ -,
|t| small. Let N = min{ny,m;}. Let us define {(\) € QT by
(2.1) Fgrad FAED ~ I ~ t[M,

where A ~ B means that A/B lies between two positive constants. We call
(2.2) L(F) := sup{f(A)}

the Lojasiewicz exponent of f. The purpose of this section is to show the following
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Theorem 2.1. The Lojasiewicz exponent, L(f), is attained along the polar curve.
More precisely, there is a Newton-Puiseux root of df/0x =0,

(2.3) o x:clynl/N—I—CQy”?/N—l—--- , 1<N<ni<nyg<---,
such that L(f) = ((v).

Here ((v) is defined by identifying v with the arc
(2.4) vyia=ct" +et™ 4 y:tN.

Following [6], v is called a "branch” of the polar curve, or simply a "polar branch”.

For real analytic f(x,y) we have the following version of Theorem 2.1. Define
the real Lojasiewicz exponent L(f) := sup,{{(\)} by taking the supremum over real
analytic A. Take a Newton-Puiseux root of df/dz = 0,

(25) Y= alynl/N 4+ 4+ as_lyns—l/N + csyns/N e

where a; € R, ¢, is the first non-real coefficient, if there is one. Let us replace ¢; by
a generic real number g, and call

(26) YR XT = alynl/N _I_ . _I_ as_lyns—l/N _I_ gyns/N
a real polar branch. In case s = oo, let vg = 7.

Theorem 2.2. The real Lojasiewicz exponent, L(f), is attained along a real polar
branch.

We shall now prove Theorems 2.1 and 2.2. It is easy to see that if A is tangent to
the z-axis, then ((X) = k — 1, k the multiplicity of f. We can therefore ignore these

arcs.

Lemma 2.3. In the Newton diagram of [ relative to a given
(2.7) Bra=ciy"NfeyN 4. 1< N<ni<nyg<---,

let (0, ho) and (1, hy) denote the lowest Newton dots on X = 0 and X = 1 respectively.
Then

(2.8) ((3) = min{ho — 1, hy}.

This Lemma is important, but the proof is easy. Let us write

F(X,Y) = f(X +B(Y),Y) = unit - Y™ + unit - Y™ X + terms divisible by X?.
By the Chain Rule, 9F/0X = df |0z, 0F/0Y = 3'(Y)df 0z + df/dy. Hence
0F/0X| 4 |0F /Y| ~ |0f|0z| + |0fDy|.
Clearly, along X = 0, we have
OF[0X| ~ [Y|" [0F[0Y | ~ [Y]"7,

whence the result.
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Next, we define the notion of sliding. Beginning with a given 3(y), we wish to
find a root of f = 0 which approximates 3. In case 3 is already a root, we are done.
Otherwise we can 7slide [ along f” to get a better approximation. The precise
definition is as follows.

Suppose 3 is not a root. Consider P(f, 3). Take any root ¢ (¢ # 0) of Ey(z) = 0,
the polynomial equation associated to the highest Newton edge Ef. We then call

Bt = Bly) + g

a sliding of 3 along f. A recursive sliding 8 — 3y — (3 — --- produces a limit,
(B0, which is a root of f = 0. This is the well-known procedure of finding a Newton-
Puiseux root of f =0, as in [6].

Assertion 1. Let v denote a sliding of # along df/dx. Then ((3) < {(v).

Theorem 2.1 clearly follows from this assertion.

In the Newton diagram of f(x,y) relative to 3, let (0, hg), (1, h1) denote the lowest
Newton dots on X = 0 and X = 1 respectively. In the Newton diagram of f relative
to v, let (0,m0), (1,11) denote the lowest Newton dots on these lines. Consider also
the Newton diagram of df/0xz relative to 3. Let Epy: denote the highest Newton
edge; let (0, hy) denote its vertex on X = 0.

Assertion 2. n; > hy and 19 > min{hg, by + tan 0y }.
As an illustrative example, take
flay) = o + 229" + ey’ + ey’ Bly) =0.

In case ¢3 # 0, we have hg =19 = 3; in case c3 = 0 # ¢4 # 1, hg = no = 4; in case
cs=0and ¢y =1, hg =4, 7o = 00; and in case ¢3 = ¢4 = 0, hg = 00, 179 = 4. In all
cases, h; = tan 0y = 2.

f(x,y) cs #0 c3=0Fcs#Fles=0ca=1 c3=0¢4=0

In the expansion F(X,Y) = Y ¢; XYV let us collect all the terms whose deriva-
tives lie on Ep:

e (X, Y) =Y ;XY (i—1,j/N) € Ep.
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Note that %@H/(Z, 1) = Exi(z). In the expansion of /(X + Y% V), the
term XY has coefficient 0, since Ex/(c) = 0. (The coefficient of Y"1+t may or
may not vanish.) Thus Assertion 2 follows.

Assertion 1 now follows from Assertion 2, Lemma 2.3, and the fact that tan 87, > 1.

Remark 2.4. After the preparation of this paper we have learnt that Theorem 2.1
was also proved by a different argument by Bogustawska [2].

3. SINGULARITIES AT INFINITY OF COMPLEX POLYNOMIALS

Let P(x,y) be a polynomial over C.

Theorem 3.1. (Ha Huy Vui, [3, 4]) The following conditions are equivalent:

(1) For any sequence (x,,y,) — oo with the property that P(x,,y,) — 0, the
sequence || grad P(x,,y,)|| does not tend to 0.

(2) For any sequence (x,,y,) — oo with the property that P(x,,y,) — 0, the
sequence || grad P, yo) | |(2n, yo)|| does not tend to 0.

When P(z,y) has degree d and the coefficient of z¢ is non-zero, we say P(z,y) is
regular in x. Note that in this case, if P(x,,y,) — 0, (2n,y,) — o0, then x,/y, is
bounded.

Addendum. Suppose P is regular in « and not of the form P(x,y) = g(x —cy),c €
C, g a polynomial of one variable. Then the above conditions are also equivalent to

(3) For any sequence (x,,y,) — oo such that P(x,,y,) — 0, ||grad P(a.,y.)||
tends to infinity.

In case P(x,y) = g(x — cy), (1) and (2) hold if and only if ¢ has distinct roots.
This case is trivial.

For a proof of the theorem it suffices to show that (2) implies (1) since the impli-
cation (1)=(2) is trivial. We shall prove the addendum later on.

Assume condition (1) fails along a sequence (x,,y,). Using the Curve Selection
Lemma, or Hironaka’s Theorem, we can assume that (z,,y,) lies on an analytic

curve
(3.1) Nz =c ™ feps™ 4, y=s7",
where s — 0, N > 0, n; < nz < ---, (n; need not be positive). We must have

ni + N >0, since z,/y, is bounded. We can rewrite A as a fractional power series
(3.2) Neax=cy N pey N4 N<ng<ng <o,

Let us apply the change of variables
(3.3) X=z-ANy), Y=y
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and consider the Newton diagram of
(3.4) M(X,Y):=P(X+A1/Y),1/Y).

Clearly, it has at most finitely many dots lying on or below the X-axis. Moreover,
there is one dot at (d,0), since P(x,y) is regular in x.

Note that in the (X, Y')-plane, A is just the Y-axis. The assumption P(x,,y,) — 0
means that M(0,Y) — 0asY — 0. All Newton dots of M(0,Y") lie above the X-axis.

Let (1,hy1) denote the lowest Newton dot on X = 1. We must have hy > 0, since
otherwise (1) would hold along A. Therefore, we can use the Newton dots on or
below the X-axis to "swallow” (1,hy). This means, more precisely, that we let A
slide along M /0X, say to an arc ;.

Example 3.2. M(X,Y)=Y?-2XY + XY~ 4 X*
The dot (1,1) represents —2XY. Let us take a root ¢ # 0 of z* — 2z = 0, say
c= \/5, and let v4 be X = V2Y. Then —2XY is "swallowed” by X3y~

The lowest Newton dot on X =1 of M(X ++1(Y),Y) is higher than (1,.1). On
X =0, all dots remain above the X-axis.

A recursive sliding A — vy — 72 — -+ -, will then yield a root v of the polar curve
OP/0x = OM/0X = 0, for which

M(X,Y):=M(X +~(Y),Y)
has no dots on X = 1, and dots on X = 0 all lie above the X-axis.
An easy calculation, using the Chain Rule, yields
y(OP/0x) = Y Y OM/9X), y(dP/dy) =Y (OM]IY)— Y~ (Y)(OM/OX),
whence condition (2) fails along 4. Thus Theorem 3.1 is proven.

Remark 3.3. The above proof actually shows that Conditions (1) and (2) of Theorem
3.1 are equivalent to

(4) For any root v : & = y(y) of the polar curve OP/dx = 0, lim,—oo P(y(y),y) # 0
(this limit can be infinite).

Moreover the equivalent conditions (1), (2), or (4) admit the following geometric

interpretation, see [3, 4]. We say that P(x,y) = 0 has no singularities at infinity
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if there is a "neighbourhood” U of infinity and a positive constant § such that P
induces a trivial fibration

(3.5) P:UN{|P| <} —{z€C||z] <}
The conditions (1), (2), or (4) are also equivalent to
(5) P(x,y) =0 has no singularities at infinity.

Indeed, consider the analytic map
¢:C =T, r,y) = (P(r,y).y).

Since P(x,y) is regular in x, ® is proper. It is easy to see that ® is an analytic
covering branched along the polar curve dP/dx = 0. Suppose condition (4) holds.
Then, for ¢, ¢ positive and sufficiently small and & = U. = {(z,y)||z| > 7'} the
map defined in (3.5) is a covering space, so topologically trivial.

On the other hand, suppose that (4) fails along a branch v of dP/dx = 0. We
may also suppose that P(x,y) = 0 does not have multiple components (otherwise
P cannot be topologically trivial at generic points of such components). Consider,
as before, Y = U. = {(x,y)||z| > 7'} and the fibres U., = U. N P~1(z) , |z| < 4.
Choose &, small but positive. Then the projections

Us - = {a]|z] < e},

induced by (x,y) — x, are analytic coverings branched along the points of the polar
curve. We may assume that there are no such points for z = 0, but the existence of
~ shows that the set of such points is non-empty for z # 0 and small. This means,
in particular, that the Euler characteristic y(U..) changes at z = 0 and (5) fails.

Now we show the claim of Addendum. For this it suffices to show that (2) implies
(3). We may use exactly the same argument as in the proof (2)=(1) if we know that
for any analytic curve A, as in (3.2),

M(X,Y):= P(X + \(1/Y),1/Y)

must have Newton dots strictly below the X-axis. This follows from the following
two lemmas.

Lemma 3.4. Let P(x,y) be a polynomial regular in x, of degree d, and suppose that
there exists an analytic curve (3.2) such that the Newton diagram of M(X,Y) :=

P(X + X1/Y),1/Y) has no dots below the X-axis. Then there exists a polynomial
of one variable g and ¢ € C such that

(3.6) Plx,y) = g(x — cy).
Proof. Write
AY ™) = e YN p oY = (V) 4 (Y,

where ¢(Y') contains the negative powers of Y and ¥(Y’) the non-negative ones.
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Develop P(x,y) as a polynomial of x:
(3.7) P(z,y) = az® + (by + e)a™ + -
Note that by our assumption ¢ # 0. Then
(3.8) PX +AM1/Y),1/Y) = aX? + [adA(Y 1) +bY 4 e] X 4o

If M(X,Y):=P(X 4+ X1/Y),1/Y) has no Newton dots below the X-axis then, of
course, [ad\(Y ') + bY ™! 4 €] has no terms with negative exponents, that is

b ._
Set ¢ = —L. Then A(Y ') = ¢¥ ! +4(Y). Now we go back to the original variables

z,y. As we have just proved, Q(x,y) = P(z +cy +¢¥(y™'),y) does not have Newton
dots above the z-axis. Here ¢(y) is a convergent power series.

Lemma 3.5. [f, for a polynomial P(x,y) and a convergent power seris 1, Q(x,y) =
Pz +cy+¢¥(y™'),y) does not have Newton dots above the x-axis, then P(x + cy,y)
does not depend on y. In other words, there is a polynomial of one variable g such
that P(x + cy,y) = g(x) (or equivalently P(x,y) = g(x — cy)).

The proof is reduced to the case ¢ = 0, when we change the variable = to = + ¢y.
Suppose P(x,y) is not independent of y. Amongst all non-zero terms divisible by
y, let a;;z'y’,7 > 0, be the one for which (i, ) is largest lexicographically. Then,
clearly, P(x 4+ (y™'), y) still has a;;2'y’ as a term. This is a contradiction. O

4. [--CONSTANT FAMILIES OF TYPE F(x,y,t) = f(x,y)+ tg(x,y)

Let f(x,y),g(x,y) be two germs of holomorphic funtions. Consider a one parame-
ter deformation F(x,y,t) = f(x,y)+tg(x,y),t € (C,0). Recall that F is p constant
if, and only if

(4.1) gz, y)| < [Fe| + | Fy.

We shall show in Theorem(4.1) below that F'is a u constant deformation if, and only
if, the Newton polygon of f relative to any analytic arc @ = A(y) is not disturbed
by ¢ (in a precise meaning defined below). This, in particular, implies that such
p-constant deformations are Whitney regular, that is

(1.2) lg(e.9)| < Ozl + yD(E] +|F,)). € a constant.

Consider a given Newton polygon P. In case it has a vertex of the form V; = (1, h;)
on the line # = 1, we define the straightened polygon, denoted by P, as follows: Erase
the edge E; and extend E;_; to the y-axis, as indicated below.
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E;

eyl

E - and ES . straightened to 521

S

=l

P P

In case there is no vertex on « = 1, we set P = P.
The Newton polygon relative to a polar branch does not have dots on = 1, hence
is already straightened.

Theorem 4.1. Consider Fy(z,y) := F(z,y,t) = f(z,y) + tg(z,y). The following

conditions are equivalent:
(a) lg(z,y)| < |lgrad (, ) F(z,y,1)]], as (z,y) = 0.
(b) Take any arc A : x = ary™ N 4+ ay™N 4.0 1< N <ny <ny<---. The
straightened Newton polygon of Fy relative to A is independent of t:
P(F, N) =P(f,N), (t small).

(c¢) Take any polar branch, v, of f(x,y). The highest Newton edge of P(f,~) is not
disturbed by g(x,y) in the sense defined below.

Take r, 0 < r < 1. Let M, denote the contraction
M, (1,7) = (ri,rg), (i,7) € R%

Take an edge, F;, of a Newton polygon P. We say E; is disturbed by ¢ if for some
r <1, M,(E;) contains at least one Newton dot of g. We say P is disturbed if some
edge of P is.

For example, in z° + 2%y + y* + t2%, Eg = E, is not disturbed, but £, is. In
22 4+ 2%y + y* + tzy?, Eg is disturbed, F; is not.

oy oy
" El I,
Eg not disturbed Ej disturbed

A Newton dot of g can disturb at most two adjacent edges of P.
We begin the proof of Theorem 4.1. Of course (b)=(c). By the Curve Selection
Lemma, (b)=(a) is also clear. Assume (b) is not true, we shall show (a) and (c¢) are

both false.
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Take any arc A for which P := P(f, A) is disturbed by g(z,y). We define a number
r(A), 0 < r(A) < 1, and a positive integer, k(A), as follows.

The number r(A) is just the smallest rational such that M,.,)(P) contains at least
one Newton dot of g(X + A(Y),Y’). All Newton dots of ¢ lie on or above MT(A)(@).

Amongst these dots on M, (), let (¢()), 7(A)/N) be the one for which the X-
coordinate ¢()) is minimal (i.e. closest to the Y-axis). Let E,) be the last edge of
P for which M,y (Egny) contains (2(A), j(A)/N). Denote the initial vertex of Ey
by Vi = (Fsnys hs(n))- We then define k() := k).

In order to simplify the notations we shall write I, := E,(), s := s(A), r := r(}).

Among all A which fail condition (b), let us choose one, still denoted by A (abusing
notation), such that k() is minimal.

Now collect terms of f(X + A(Y),Y):
E(X,Y) = ayX'YIN (i, j/N) € Ey,
and collect terms of g(X + A(Y),Y):
E(X.Y) =) e X'VIN (i, j/N) € M,(E,),
then consider the associated polynomials:
E(2):=E(z,1),  E(2) = E(z,1).

Their degrees will be denoted by d and d respectively.
We now begin to construct a polar branch, v, which fails condition (c¢). Note that
d = Ek()) and rd > d. It follows immediately that there is a root ¢ of %55(2) =0,
say of multiplicity m, such that r(m + 1) > m, where m > 0 is the multiplicity of ¢
as a root of &(z) = 0.
Let us also write e := e(A) := tan §;, and set
Xi=X+eY, Vi=Y, MY)=Ay) + ey,
to transform P(f, ) to P(f, ;) by sliding. Consider the faces Egl),
V. of P(f, M1). The following hold:
(i) BV =Br,o B =B VP =V v = v v = v
(ii) g(X + A1 (Y),Y) has a Newton dot of the form (mn, N).

There are three cases to consider:

and vertices,

Case 1. The above number ¢ is not a root of &(z) = 0.
The vertex Vs(i)l lies on the Yj-axis; E() is the highest edge; it has no Newton dot

on the line X; = 1, and is disturbed by (i, ;L)
We can slide Ay to a polar branch, ~, as in §2. During the sliding, Egl) is always

the highest edge, being disturbed by (1, k). Finally, the highest edge of P(f,~) is

disturbed, condition (c) is false.

Case 2. The number ¢ is a root of E(z) = 0 with multiplicity < d — 1.
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Of course, the multiplicity equals m + 1. This case cannot happen, for we would
find k(A1) =m+1<d—1< k()), a contradiction to the assumption that k(X) is
minimal.

Case 3. E,(2) = (z — ¢)*.

This case can be excluded from the offset, as follows.

First, we claim that A can be chosen to have the additional property that P(f, )
has no Newton dots on the line X =d — 1.

This can be achieved by using the following idea of Bierstone-Milman [1], which
generalizes the Tschirnhausen transformation. Take a Newton-Puiseux root, A*(Y),
of

ad—l
Hxd-1
It then follows that f(X + A(Y) + A*(Y),Y) has no Newton dot on X =d — 1. So
we can replace A by A + A\*.

FIXHMY)Y) =0, Oy(X) > e

With this additional property of A, &(z) is a Tschirnhausen polynomial in the
sense that it has the form

aoz +agzTr 4 4 ag, ap#0.

The case ay = --- = a4 = 0 can happen only if A is already a polar branch, and
E; is vertical, disturbed by ¢g. There is nothing more to prove.

In case not all ay,...,ay are zero, there are at least two distinct roots, Case 3
cannot happen.

We now begin to show Condition (a), too, is false. For this we need first the
following algebraic lemma.

Take a pair of constants, w and . Take a pair of polynomials, ¢(z) and ¢(z), say
of degree d and d respectively, written as

@(2) = ao(z —21)™ -+ (2= 2)™, P(2) = bo(z — 21)™ -+ (2 — z4)"™,
where m; > 0,n; > 0, (m;,n;) # (0,0), and z; # z; if i # j.

Recall that the standard symmetric function of roots are

Eooox k
Skzg mz; Skzg nizy, k=0,1,2,....

# 0, 1 <1 < q. Suppose one of the following g — 1

Lemma 4.2. Suppose ‘ o e
numbers

(4.3) Yo =0, 92,

WS

1s not zero. Then there exists ¢ such that

wele) ¢'(c) =0, but o(c)@(c) # 0.

(44) b3(c) F(c)
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Proof. Take a polynomial
U(z) = H(Z — z)%.

v’ ;
Recall that \I/((j)) = Z . i . Hence, we have

we(z) ¢'(2)
wp(z) ¢(z)

w mg
Wong

q(z)
(z—21) (2= 2)

To show the lemma it suffices to show that deg ¢(z) > 1. The expansions

= ¢(2)p(2) R(2),

where

-1

z—zz

In particular, R(z) is of the form

R(z) = q(zi) # 0.

1 1z 2
=+ S+t , 1 <1<y,
z—z oz 0z
lead to
R(z) =3[ k|
w Sk

By (4.3), there is an integer p, 1 < p < ¢ — 1, such that

) W Sp_q
| b = P
Zggoz R(Z) w Sp 1 7£ 0.
This implies that the degree of ¢(z) is ¢ — p > 1. This shows the lemma. O

Let us return to A, which minimizes k(). Let us take

p(2) = &(2), @(2) = &(2).
Let w be the rational number such that &(cY*,Y) ~ Y™ ¢ a generic number, and
define @ similarly using &(cY*,Y) instead.

Assertion 4.3. For alli, |5 )

#0,1<i<q.
Take any i, and consider the root z;. Let us slide A to Ag:
My)=My)+zy°, Xi=X+zY, Y=Y

This substitution turns E; into an edge E ) of P(f, A1), having the same initial vertex
as Eg, but its terminal vertex, denoted by V' (for simplicity of notation), has Xj-
coordinate m;. The disturbing terms E, are likewise transformed, having its leftest
Newton dot, denoted by V, on the line X; = n;.
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mi

Suppose ‘% .

= (0. Then by a simple Plane Geometry argument, we would have
V= Myy(V) € Mooy(B(f, M),
It would then follow that k(A1) < k(A), a contradiction.

Now, take an indeterminate, I'; and let Ap(y) := A(y) 4+ I'y®. Then consider the
Taylor expansions

FX 4+ 2 (V) Y) =YY" (I, Y)+ YO, (ILY) X + -+,
G X+ A (Y),Y) = Y70 (T,Y) + Y7 (T, Y)X 4 --- .
Note that
bo(I,0) = @(I), ®1(I',0) = ¢'(I');
®o(I',0) = ('), &4(I,0) = &'(I).
We are now in a position to apply Lemma 4.2.

Case 1. Suppose ‘gg‘ # 0.

The first number in (4.3) is not zero, since so = d, 39 = d. Let us take a constant
¢ satisfying (4.4).

We shall construct a relative polar curve P, that is a curve along which

OF/0x = 0F/[dy =0,

such that ¢ is not identically zero on P.
Let us write, as shorthands,

AT,Y) i= wdy + Y09, /0Y, A(L,Y) :=wdy + YIDy/Y.
To construct P consider the following system of equations
{tA(r, Y)+ Y TAT,Y) =0
to(I,Y)+ Y9, (I, Y) = 0.
The coefficient determinant of (4.5)

(4.5)

A(L,Y)

A(TVY) = AL Y)
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is zero when I' = ¢, Y = 0. Hence we can use the Newton-Puiseux Theorem to find

a root I'(Y) of A:
AT(Y),Y)=0, T(0)=c

Since A(F(O), 0) =@(e) #0, t =t(Y):= Y WAT(Y), Y)/A(F(Y), Y) is a solution
of (4.5), for I' = I'(Y).
Consequently

PY — (I'(Y), Y, ¢(Y))

is a relative polar curve, 9F/dx = 0F/dy = 0 along P, yet |g(x,y)| ~ y®. This
shows that Condition (a) is false in Case 1.

Case 2. Suppose ‘gg‘ =0.

This case is actually easy. In the first place, we have w — w > e. This is proved
by a simple argument of Plane Geometry. (Indeed, equality holds only in a trivial
case.)

Take a generic constant I'. Consider the curve Ap(y) := A(y) + I'y®. Along this
curve

DfJOX ~ Y™ Ff(X + Ap(Y), V)oY ~ Y71 ¢(X,Y)~Y".
This shows (a) is again false, thus completing the proof.
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