
CENTRO PER LA RICERCA
SCIENTIFICA E TECNOLOGICA

38050 Povo (Trento), Italy
Tel.: +39 0461 314312
Fax: +39 0461 302040
e−mail: prdoc@itc.it − url: http://www.itc.it

Trust−aware Decentralized Recommender Systems: PhD research proposal

Massa P.

June 2004

Technical Report # T04−06−07

 Istituto Trentino di Cultura, 2004

LIMITED DISTRIBUTION NOTICE

This report has been submitted for
publication outside of ITC and will probably be copyrighted if accepted for publication. It has been
issued as a Technical Report for
early dissemination of its contents. In view of the transfert of copy right to
the outside publisher, its
distribution outside of ITC prior
to publication should be limited to peer communications and specific
requests. After outside publication,
material will be available only in
the form authorized by the copyright owner.

Trust-aware Decentralized Recommender Systems:

PhD research proposal

Paolo Massa
Department of Information and Communication Technology - University of Trento

Via Sommarive 14 - I-38050 Povo (TN) - Italy
E-mail: massa@itc.it

29th May 2003

Abstract

This PhD thesis addresses the following problem: ex-
ploiting of trust information in order to enhance the
accuracy and the user acceptance of current Recom-
mender Systems (RS). RSs suggest to users items they
will probably like. Up to now, current RSs mainly gener-
ate recommendations based on users’ opinions on items.
Nowadays, with the growth of online communities, e-
marketplaces, weblogs and peer-to-peer networks, a new
kind of information is available: rating expressed by an
user on another user (trust). We analyze current RS
weaknesses and show how use of trust can overcome
them. We proposed a solution about exploiting of trust
into RSs and underline what experiments we will run in
order to test our solution.

1 Introduction

“Although an application designer’s first instinct is to
reduce a noble human being to a mere account number for
the computer’s convenience, at the root of that account
number is always a human identity” [24].

We are in the Information society. The quantity of
new information available every day (news, movies, sci-
entific papers, songs, websites, . . .) goes over our lim-
ited processing capabilities. For this reason, we need
something able to suggest us only the worthwhile infor-
mation. Recommender Systems (RS) [34, 39] have this
aim. In particular, RSs based on Collaborative Filter-
ing (CF) [16, 7] try to automate the “word of mouth”
process. The intuition is the following: when we have
to decide about going to see a new movie for example,
we often ask to some friends with similar movies tastes
and then we act based on their recommendations. CF
tries to automates this process to a world scale: there
is no more need the users asks to known people but it
is the system (that knows the judgement of everyone)
that finds users similar to her and recommends to her
the items they like.

However, RSs based on CF have some weaknesses:
cold start problem [40] is related to the situation when
an user enters the system and has expressed no ratings
so that the RS cannot find the like-minded users; any-

way in general the quantity of ratings an user gives is
very low compared to the quantity of available items (for
example, Eachmovie [29] dataset is 97.4% sparse), this
results in a great sparseness of the data and low confi-
dence of the automated strategies. Another concern is
related to the existence of users that want to maliciously
influence the system: if they know how the recommen-
dations are built they can express fake ratings in order
to achieve a certain goal (such as get their book recom-
mended to everyone). There are some recent study of
possible attacks in distributed systems [26, 22] but we
are not aware of research lines taking into account this
as a problem for RSs. Moreover, with current RSs it is
very hard (or impossible) for the user to control the rec-
ommendation process so that if the RS starts giving bad
quality recommendations, usually the user just stops in
using it [46, 17].

Nowadays, online communities (slashdot.org, af-
fero.org), e-marketplaces (ebay.com, amazon.com, epin-
ions.com, . . .), peer-to-peer networks (edonkey, gnutella)
and weblogs use and make available trust information
(judgement expressed by users on users). They use it
with slightly different specific goals but what they share
is the fact this introduce a sort of social control over the
all system.

We claim taking into account explicit trust informa-
tion provided by users into Recommender Systems can
overcome their inherent, previously cited weaknesses.

We also claim this environment reclaims a decentral-
ized approach: the only possible way to be in control
of the recommendation process is being able to do it by
yourself; in this sense, it does not make sense having
one centralized server as the only entity able to access
the information expressed by users and to generate rec-
ommendations. In order to have a real control over the
recommendation process, every single entity (we call it
peer referring to the peer-to-peer architecture) must self-
publish the data (ratings and trusts) so that it is possi-
ble for every peer to fetch all the information and self-
computes recommendation on behalf of its user. Self-
publishing is made very easy by recent tools such as
weblogs. We think decentralized data publishing is im-
portant for research too, in fact we claim research in RS
was slow and not successful as possible also because of

1

lack of available datasets and real testbeds for testing
innovative solutions.

We propose a strategy to exploit trust information
in order to enhance current RSs. Our proposed solution
is a multi step one where different algorithms, caring
for different types of input data, can be combined with
a special emphasis to the confidence they have in the
correctness of predicted information.

We also present some experiments we will run in or-
der to test our hypothesis. Some experiments will be on
sinthesized data, while some experiments will be on real
online communities. With this regard, we are adding
weblog functionalities to a classical music recommend
system: CoCoA1 [5]. In this case, our goal is to have a
system running with real users (about 1400 daily now)
that can express what are the bloggers they trust and
what are the classical tracks they like in which we will
be able to test our proposed solution against a commu-
nity of real users.

The structure of the proposal is the following.
In section 2, we present the past work relevant for

our research line. The chosen subject is quite interdisci-
plinary and so we refer to different topics such as Rec-
ommender Systems (section 2.1), Reputation-aware sys-
tems and Trust metrics (section 2.2), Peer-to-Peer and
distributed architecture (section 2.3), and Weblogs and
Semantic Web (section 2.4)

Section 3 provides the motivating context, i.e. the
reasons we claim make senseful and innovative to ex-
ploit trust information with the goal to create better
Recommender Systems.

In section 4 we outline what are the research prob-
lems arised in the new context while in section 5 we
clearly indicate the research problems we address along
with our proposed solution.

We present the experiments we plan to run in order
to evaluate our proposed solution in section 6. Finally in
section 7 we present the work already done and a detailed
road map for what must be done, while in section 8 we
indicate what we leave as future work.

2 State of the Art

In this section, we present the past work relevant for
our research line. The chosen subject is quite interdis-
ciplinary and so relevant papers come from many dif-
ferent fields. First, we analyze Recommender Systems,
automated tools that promise to give a solution to in-
formation overload. Then we concentrate on systems
that take explicitly into account trust and reputation,
analyzing how this information is currently used. We
then present peer-to-peer and distributed architectures
because it is in this environment that trust information
can really unveil its power being every peer free to be-
have as it prefers. Last, we analyze weblogs that are
a recent and very interesting Internet trend. They can
be seen as the first, real instantiation of the Semantic

1The running RS can be found at: http://cocoa.itc.it

Web, a web understandable by the machines. We think
a great amount of machine readable data created daily
in a distributed manner reclaims some mechanisms such
as trust metrics and Recommender Systems in order to
bring a little bit of order.

2.1 Recommender Systems

Acting upon recommendations from other people is a
normal part of life. We do it when we eat at restau-
rant on the advice of a friend, or we see a movie having
read the review in the newspaper of our choice. In each
case our decision to act upon a recommendation is based
on essentially three premises: first, we trust the recom-
mender; second, we assume that the recommender has
sufficient knowledge of our tastes or of the tastes of peo-
ple like us; third, we assume that the recommender has
knowledge of the alternatives available. By using recom-
mendations we can take a shortcut to the things we like
without having to try many things we dislike or without
having to acquire all the knowledge to make an informed
decision. Unsurprisingly, systems that automate this fa-
cility have become popular on the Internet.

Recommender systems (RS) [34, 39], in fact, have
been used to suggest movies, books, songs, jokes, etc.
They have been an important research line because they
promise to fulfill the e-commerce dream: a different and
personalized store for every single (potential) customer.

Two main algorithmic techniques have been used to
compute recommendations: content-based and Collabo-
rative Filtering (CF). The first one tries to suggest to the
user items similar to the ones she liked in the past. To do
this, it needs a representation of the items in term of fea-
tures: they can be some automatically extracted features
such as words frequency for text items or some human
edited features such as genre for movies. The CF [16, 7]
approach is more interesting and innovative. The rec-
ommender asks users to rate items so that it knows who
likes what. Then, when asked for a recommendation for
the current user (recommendee), it identifies users simi-
lar to her (her neighbours) and it suggests her the items
the neighbours have liked in past. The interesting point
is that the algorithm doesn’t need a representation of the
items in term of features but it is based on the tastes of
its users’ community. The best systems are hybrid in the
sense they combine the two approaches [40]. Strengths
and weaknesses of content-based and Collaborative Fil-
tering RSs will be explored in section 3.

A RS based on CF can acquire users’ opinions about
items in two ways: explicit, it asks the user to rate some
items or implicit, it infers users’ tastes from their usage
activity, for example, it assumes the user likes a book if
she buys it.

One problem the research on RS must face is the
difficulty in evaluating algorithms, due to lack of really
meaningful metrics and of precise statement of the prob-
lem faced. In [20], we proposed an on-line evaluation
framework. Another related problem is the scarsity of
public datasets of real ratings on items for offline exper-
iments and the total absence of publicly usable running

2

Recommender Systems for online tests.
An interesting application for RS is in the music do-

main: we developed a RS for suggesting classical music
compilations [5]. The running application can be found
at http://cocoa.itc.it. We also proposed recommendation
strategies to adapt Internet radio programs on the fly [6].

Interesting possibilities still unexploited for recom-
mender algorithms come from social network analysis by
which it is possible to spot out what are the neighbours
of an user by her actions. Location-aware computing also
offer new frontiers for RS [9], in fact, information about
the current location of the user opens new interesting
possibilities for recommendation algorithms.

Lately, there have been some attempts to move CF in
a distributed environment. John Canny in “Collabora-
tive Filtering with privacy” [10] criticizes the centralized
approach in which all the user data resides on a cen-
tral server and proposes an alternative model in which
users control all their log data. He also describes an al-
gorithm whereby every single user of the community can
compute a public “aggregate” of their data that does
not expose individual user’s data. Then every single
peer can use this aggregate to compute recommenda-
tions. The proposed algorithm uses factor analysis (a
technique of dimensionality reduction similar to singu-
lar value decomposition but more efficient) and crypto-
graphic techniques (asymmetric encryption). The key
idea is homomorphic encryption to allows sums of en-
crypted vectors to be computed and decrypted without
exposing individual data.

With this regard, another interesting papers is “Col-
laborative Filtering In A Distributed Environment:
An Agent-Based Approach” [19]. The authors have
proposed a system called iOwl to exchange meta-
data about web surfing activity between peers. They
have also created a usable application downloadable at
http://www.iowl.net. Essentially, a modified browser
records user’s clickstreams and data mining techniques
extract profile data, such as usual navigation patterns.
This metadata are exchanged with other peers and are
used to self compute recommendations of possibly inter-
esting URLs.

2.2 Reputation-aware systems and trust
metrics

Nowadays, with the emergence of online communities, e-
marketplaces, weblogs and peer-to-peer communities, a
new kind of information is available: rating expressed by
an user on another user. We call this information trust.

Moreover, there are examples of communities that
are no more only virtual and online but have started
to produce important effects in the real world: for ex-
ample, ebay.com is the cause of a big movement of
goods and money in the real world even if it’s noth-
ing but a virtual community. Other examples of no-
more-so-virtual communities are weblogs (the blogo-
sphere), auction sites (ebay.com, yahoo auction, ama-
zon auction and many more), slashdot.org, affero.org,
epinions.com, peer-to-peer networks (edonkey network,

reputation-aware gnutella network). In the future with
the spread of mobile, pervasive and ubiquituous comput-
ing this information will become even more available and
useful and concrete.

We can ask ourselves “Is this information useful?”.
The answer is a great yes. For instance, ebay.com [36] a
site devoted to online auctions, allows traders to rate
their partners after a commercial transaction; in this
way, it can compute and show to users the reputation
as a seller and buyer of every member and this simple
number near the usernames is what enables big economic
movements to happen in the real world between people
geographically distant, who never met before and who
will never meet in future. This is the main reason for
the great (economic) success of this dotcom.

Other examples are slashdot.org, the “news for
nerds” site where everyone can post news story and rate
other users depending on posts they submit; here reputa-
tion is used to keep noise-to-signal ratio low and to give
special emphasis to interesting posts; affero.org is a sys-
tem that exploits trust elicitation in order to democrati-
cally and distributedly decide which open source projects
are the more promising for the community and worth
funding.

There are some attempts to build reputation-aware
systems also on top of current P2P networks: on
eDonkey network with the open source client eMule
(http://emule.sourceforge.net) and in reputation-aware
Gnutella servents [11]. Trust has been introduced with
the goal of blocking and spotting out leeches (peers who
only download without sharing) and misrupters (peers
who pollute the network with faked items).

[35] provides a complete analysis of most of the cur-
rent existing reputation systems.

Trust is not a strange or artificial concept. If you are
member of a mailing list, surely you have experienced
the following: the topic of the mailing list is of inter-
ested for you but while you are eager of reading mails
from some members (you value/trust them a lot!), you
don’t want to be bothered by mails of some other mem-
bers/spammers/disrupters (you totally distrust them!).
Tools that can help you in saying how much you trust
any member will enable services personalizing for you the
access to relevant information minimazing the quantity
of bad quality content you have to process. The same
can be said for newspapers, journalists, politicians, mu-
sicians, and people in general.

There are many different definitions of trust and re-
lated concepts such as reputation and reciprocity. This
shouldn’t surprise since trust is a very human and social
concept and it is in the speculation of men since the first
philosophers. Moreover these concepts have been stud-
ied by researchers and thinkers in different fields other
than computer science such as economics (game theory),
scientometrics (or bibliometrics), evolutionary biology,
anthrolopoly, philosophy and sociology [31].

We will clearly state our definition of trust and re-
lated concepts in section 5.2.

For now, we just point out how, in computer science
literature, trust is intended mainly as a diadic quantity

3

involving two peers: “a subjective expectation an agent
has about another’s future behaviour” [31] while repu-
tation is mainly seen as property of a peer assigned to
her by the embedded social network and computed from
the many trust relationships: “reputation is the memory
and summary of behaviour from past transactions” [32]
(chapter 17). Anyway they can be seen as two sides of
the same concept and are often used as sinonyms.

Many persons believe the world of future will be
based on reputation: reputation will become the only
“currency” of our life [37]. Also one of the sci-fi 2003
bestsellers explores the topic: in “Down and out in the
magic kingdom” [12], Cory Doctorow envisions a near-
future realistic world that’s seen “the death of scarcity”,
where nanotechnology takes care of everyone’s basic
needs and there is no more need for money. Instead,
what the population aspire to is “Whuffie”, a sort of
reputation capital representing the approval and respect
of your peers.

Marsh [28] was the first to introduce with his
PhD thesis a computational model for trust in the dis-
tributed artificial intelligence community and there are
some attempts to scientifically understand what trust
and reputation concepts can represents for computer sci-
ence [1, 45, 23, 22, 2, 31] but it is worth noting how the
research is very recent and how most of the proposed rep-
utation systems for online communities have been con-
structed with an intuitive approach and without a formal
model and a deep learning from approaches of the social
sciences. Often these papers just provide some possible,
reasonable intuitions but without solid ground or moti-
vations; sometimes there aren’t even tests on simulated
data and in general no evaluation with real communi-
ties. Researching in this direction is indeed very needed
in order to discover potentialities and possible problems
and to design systems that can get full advantage of this
information.

It is of course not possible to build a direct reputa-
tion relationship with every other peer, so it is impor-
tant to share judgements about other peers. Sen et al.
in [41] demonstrate that cooperating agents who share
their opinions about other agents perform better (i.e.
maximize individual utility) than selfish ones who don’t
collaborate.

Some trust metrics have been proposed: among oth-
ers, Advogato [26] and Fionna [25].

It is important to underline how all these metrics are
simple and intuitive and that more advanced ones can be
built only evaluating them in real, used systems. With
this regard, the more interesting projects are: NewsMon-
ster and BlogNet2, two OpenPrivacy projects working
with weblogs and news channels.

Many of these systems compute a global reputation
value for every single peer, with this regard they are
very similar to PageRank [33], the algorithm used in
Google.com for deciding the importance of an Internet
page. We will see some weaknesses of this approach in
section 3.

2http://newsmonster.org and http://peerfear.org/blognet

2.3 Peer-to-Peer and distributed archi-
tecture

The topic is very broad. In this research proposal, we
only briefly mention why it is a so hot subject nowadays,
which are the most interesting trends and how this is
relevant for our research.

From an historical point of view [42] up until 1994, In-
ternet’s architecture was peer-to-peer (P2P), in fact ma-
chines were assumed to be always on, always connected,
and with a permanent IP address. With the invention of
Mosaic, another model began to spread. To run a web
browser, a PC needed to be connected to the Internet
over a modem, with its own IP address. But PCs were
not always connected and so didn’t have a fixed IP ad-
dress. This prevented PC users from hosting any data or
net-facing application locally. This was the client-server
model: servers were powerful machines always connected
and with a fixed IP address while PCs were used only
as dumb client for occasional web browsing. Over time,
as hardware and software improved, treating PCs only
as clients starts to look as a waste and a new paradigm
started becoming the solution: P2P.

P2P is a class of applications that takes advantage
of resources – storage, cycles, content, human presence
– available at the edges of the Internet [42].

Three primary classes of P2P applications have
emerged: distributed computing (SETI@Home) , con-
tent sharing and collaboration (Groove Networks).
There are many examples of P2P networks for con-
tent sharing: Napster, Gnutella, Kazaa, Freenet, Chord,
Neurogrid, Alpine, Mojonation, Mnet, Overnet, Sem-
plesh, Kademlia, PlanetP, Pastry, Tapestry, CAN, just
to name a few of them3. There are also examples of
frameworks for P2P communication: Jxta and Jabber
for instance4.

Decentralized architectures offer some great opportu-
nities but present also some problems especially because
of their open and autonomous nature. Every peer is in
fact free to behave (i.e. following the protocol) as it
prefers. If the source code is available than everyone can
just change the standard behaviour modifying the code;
for example, this happened for Gnutella [27]. If the
protocol and the source code is secret, everyone can just
reverse-engineer the protocol and write his own peer with
a different (maybe better, maybe worst) behaviour [44].

In general, in a P2P network it is not possible to rely
also on availability of other peers, on file authenticity
and there is no central control of the network.

There is a big debate about P2P: it is positive or it
is negative? Two opposite approaches exist and can be
summarized as the “tragedy of the commons”[18] and
the “cornucopia of the commons” [8]. The commons
are some goods owned by the whole community and not
belonging to everyone in particular. Who supports the
first approach states that commons suffers of free riding

3Decentralized Meta-Data Strategies at
http://neurogrid.net/Decentralized Meta-Data Strategies-
neat.html

4http://jxta.org and http://jabber.org

4

phenomena5: everyone tries to increase her utility from
them, so overuses them even without a real need and this
leads shortly to total consumption and unavailability for
everyone. The other approach instead says that if the
effort in contributing to create a resource (an up to date
repository of informations, for example) is very low, than
new resources can be created by the spontaneous work of
all the users of a system and made available to everyone.
Moreover if the resource is not a consumable one (as it
is the case with bits) there is only increase of available
resources.

In the following we will use the term P2P in a more
relaxed ethimological sense: we will consider a peer ev-
ery logical indipendent entity that can be identified in a
unique way and is able to expose some information. To
be clear, we’ll consider a weblog (see subsection 2.4) as
a logical peer.

How P2P architectures are relevant for our research?
We have seen that in a decentralized environment ev-
ery peer is free to behave as she prefers. Anyway one
important way to incentive good behaviours is the pos-
sibility for peers to be rewarded or punished, essentially
to enable the explicitation of trust (see section 2.2).

In systems like ebay.com, every peer is free to behave
badly, for example to not send the item she has already
received the payment for. Instead peers almost always
behave correcly because the opinions of other peers con-
tribute to create their reputation in the system and rep-
utation is a value because it allows to make trade and
to get better prices. The same can be seen on slash-
dot.org where having a good reputation is equal to be
recognized as a guru by the community or in affero.org
where receiving many trust statements means you are
valuable for the open source community (i.e. a skilled
hacker) and this means you could find a very interesting
job easily. We can say that in a decentralized environ-
ment that takes into account trust, there are incentives
to well behave. This incentives allows to “harness the
power of disruptive technologies” [32] such as peer-to-
peer systems lowering down the inherent risks of these
distributed environment.

2.4 Weblogs and Semantic Web

A very interesting phenomena of the last years in Inter-
net are weblogs (often contracted in blogs).

They are a sort of online diary, a frequently updated
web site arranged chronologically, very easy to create
and maintain that doesn’t require knowing HTML or
programming. It provides a very low barrier entry for
personal web publishing and so many millions of people
in the world maintain their own blog and post on it daily
thoughts.

Their relevance is confirmed by the following facts:
in February 2003, Google bought Pyra Labs, a company
that created some of the earliest technology for writing
weblogs and its website, Blogger.com; Stanford and Har-
vard are promoting their use among their students as a
valuable mean of publishing of research ideas and results.

5Studies have claimed Gnutella is affected by free riding [3]

The technology is incredibly simple but has some
disruptive characteristics. Weblogging tools create the
standard HTML file for human browsing but also some
semantically well defined XML files that have the great
advantage of being machine understandable. For exam-
ple, together with the standard index.htm file there is
index.rss (and often index.xml); these files are expressed
in RSS (Rich Site Summary) format6.

By providing a summary of articles recently posted
to a website, this format allows receipt of categorized
information, the collection of which is automated and
can be read, searched and followed up at any time, also
with programs different from a web browser. All the
weblogs publish information in RSS format but also big
traditional media do it, CNN.com for instance.

Every weblog can so be parsed by machines and
in fact can be syndicated and aggregated via central-
ized services (http://daypop.com, http://weblogs.com,
http://blo.gs, etc.).

Moreover, links between blogs and items (so called
blog rolling) support the decentralized construction of a
rich information network (called blogosphere).

To give an idea of the disruptive potential of this
simple technique and its wide adoption let us look at
http://www.allconsuming.net, a site where you can know
what the blogging community is reading at the moment.
The functioning of the system is simple: a crawler gets
the blogs list from http://weblogs.com and then starts
parsing all of them extracting every URL containing an
ISBN (and a pointer to Amazon.com or other online
book repository). Then it aggregates this data and show
the books mentioned in the last hour or week or month.

This is an example of what Jon Udell calls “Manu-
factured Serendipity”. “Serendipity is all about mak-
ing fortunate discoveries by accident. You can’t au-
tomate accidental discoveries, but you can manufac-
ture the conditions in which such events are more
likely to occur. Blogs are all but that.” (from
http://www.intertwingly.net/stories/2002/03/13/ man-
ufacturedSerendipity.html).

Some bloggers have started expressing other kinds of
information with XML files. There is foaf.xml (Friend-
Of-A-Friend7) in which you can state who are your
friends, people you trust. There is smbmeta.xml8 by
which small and medium enterprises can express their
physical location, the area they serve, their type of busi-
ness, etc. There is XFML9, a simple XML format for ex-
changing metadata in the form of taxonomies and many
more.

In a way, weblogs are the real instantiation of se-
mantic web. Semantic web envisions a web of machine
processable information: “The Semantic Web will bring
structure to the meaningful content of Web pages, creat-
ing an environment where software agents roaming from
page to page can readily carry out sophisticated tasks
for users. . . The Semantic Web is not a separate Web

6http://backend.userland.com/rss
7http://xmlns.com/foaf/0.1/
8http://www.trellixtech.com/smbmetaintro.html
9http://xfml.org

5

but an extension of the current one, in which infor-
mation is given well-defined meaning, better enabling
computers and people to work in cooperation” (from
http://w3.org/2001/sw/).

It is everything about converging on some XML stan-
dard formats and succeeding in getting them widely
used. Nowadays, weblogs seems the only possible walk-
able way in this direction.

Weblogs are important for our research line because
they can be the empowering tool fostering the availabil-
ity of an always up to date distributed datasets of cor-
relations among peers (trust) and with items (ratings).
We will see in section 3 how one factor that slowed down
research in RS was the unavailability of public datasets
and testbeds. Weblogs promise to fill this gap.

3 Motivations and impact

We have already seen the great potential behind Recom-
mender Systems (RS). In particular we have examined
the simple but very effective intuition at the base of Col-
laborative Filtering (CF) that is automating the “word
of mouth” process. Anyway RSs (especially based on
CF) have some weaknesses we will examine in a short.

Essentially, we can say that CF automates the pro-
cess too much forgetting the social dimension of the en-
vironment. It doesn’t take into account what are the
opinions of people about other people but it simply tries
to predict them based on similarity about how they rate
items. We claim that taking into account direct judge-
ment of users on users (trust) can enhance RSs perfor-
mances.

An analysis of the concept of trust and its use has
already been done in section 2.2. We have outlined how
many current online communities make use of the con-
cept of trust in order to have a decentralized control over
the system. It is worth noting again how many of these
systems compute a global value of trust for every peer
(for instance, ebay.com shows shows near every username
a star of different colors where a color means a certain
level of reputation in the community computed on the
basis of every positive and negative feedback given by
users after every transaction). We claim this is a non-
sense because an user can be valuable for one peer and
not for another peer. We claim only personalized and
subjective computation of reputation can be really use-
ful and not attackable. We use the term “indirect trust”
to indicate a predicted trust to emphasize how this value
has only meaning as a relation among two peers and not
as a global value equal for everyone.

In the following we will continue using the term
“peer” intending a logical indipendent entity that can
be identified in a unique way and is able to expose some
information fetchable by other peers.

Let come back to our starting point: Recommender
Systems weaknesses; in the following we will examine
them one by one explaining also how trust-awareness
can help in overcoming them.

Content-based RSs require human editors to tag and

classify items. Content-based RSs tries to suggest to
the user items similar to the ones she liked in the past.
To do this, they need a representation of the items in
term of features. This representation can be extracted
automatically from items whenever it is possible: for
example, for read news, it is possible to extract the words
an user has interested in simply by parsing the text.
Even if this methods often doesn’t capture the essence
of the tastes of an user, they are used because very easy
to implement. Content-based RSs have more problems
when items cannot be parsed by machines: for example,
it is impossible or very difficult nowadays for a machine
to extract meaningful features such as genre, authors
from a song or a movie file. In this case we need human
beings to tag and classify items. This introduces a lot
of problems: first, it is not easy to decide which are the
right features we have to tag (genre, instruments, year,
...) and tagging is an expensive, boring, error-prone,
subjective activity. Moreover for some items such as
jokes is almost impossible to find what the right features
are.

Our approach is to use only information provided by
the user: ratings on items and trusts on users. In this
way our resulting system is totally independent of the
specific items features that are not taken into account
and can be applied to whatever domain.

Confidence in computed User Similarity is often very
low. The information expressed by user about who and
how much she trusts (“PeerA trusts PeerB 0.9”) is con-
sidered to be correct information, with total confidence.
Instead the information “peerA is similar to peerB 0.8” is
computed by the system. The confidence in the correct-
ness of this value depends on the quantity of information
that is available and the algorithm that is used. We will
define better confidence in section 5.2, for now we use
it for indicate the reliability of a computed value, the
degree of certainty the system has in it.

If we consider every user as a vector of ratings on
items and we put them in a matrix, the resulting ma-
trix users × items, the traditional input of Collaborative
Filtering techniques, is very very sparse (for example,
Eachmovie [29] dataset is 97.4% sparse). This is totally
normal, infact, if we need something to filter out bad
items or to suggest interesting ones, this means there are
many items we are not going to try and, consequently, to
rate. This results in our “profile” consisting of ratings of
few items over a huge set. This is an inherent weakness
of systems relying only on users rating items and this
is even esacerbated in the early phases of RS life cycle
when really few ratings are available.

In general, sparseness means that overlapping of pro-
files of 2 users (i.e. the number of items they both rated)
is very low and their user similarity often not computable
or anyway computable with low confidence. Singular
Value Decomposition has been proposed as a solution
for dimensionality reduction and consequent reduction
of sparseness [38] but it is not clear if when you start
with a so sparse matrix, it is really the amount of in-
formation available that is too less. Another proposed
solution are hybrid systems [40, 17], in which we have to

6

rely also on features based on content, especially in an
initial phase.

Another problem resulting in low confidence in com-
puted User Similarity is the so called cold start problem.
It arises when a new user enters in a new domain where,
clearly, she has expressed no ratings. In this case, CF
cannot compute similarity and find neighbours and com-
pute recommendations. It is even possible she is not able
or doesn’t want to rates items in this domain (let’s take
for example a computer scientist wanting to start reading
“black holes” physics books and knowing nothing about
them). However, in a social setting (as Internet at broad
is), the “new” user probably has (or can easily find) some
trustworthy, valuable peers; then these explicitly stated
valued neighbours will guide the recommendation pro-
cess that she has always under control with the possibil-
ity of expressing trust on new discovered peers, to rate
recommended items, to calibrate her own tastes and to
change every previously expressed statement.

Summarizing, we claim that expressing a trusted peer
is easier and more natural for users and allows an easy
bootstrap of the system; direct trust information has to-
tal confidence and is more reliable that computed user
similarity. Moreover trust has some inherent transitivity
properties (if A trusts B and B trusts C, A will probably
trust C). Considering the “Six Degrees of Separation”
folklore axiom10, we can claim that a small number of
trust statements can easily cover a big portion of the
social network if we exploit trust transitivity and propa-
gate trust. In the case of an undirect trustable peer, the
confidence is no more total but it is anyway a very useful
information in order to reduce significantly sparseness.

There can be the case when user similarity and trust
contradict each other; we will try to understand better
what this means in the following, anyway taking into
account also trust should be better than just relying on
user similarity.

CF techniques are attackable by malicious users.
CF takes into account every peer in the same way.

In this sense it has no means at all to discover malicious
peers. For this reason, malicious peers that knows how
the algorithm works can easily exploit it in order to in-
fluence the created recommendations. For example, let
suppose a malicious user wants the RS to recommend
ItemSpam to PeerA: she can create FakePeer, copy the
profile of PeerA and add a good rating to ItemSpam. In
this way the RS will find FakePeer as the most similar
to PeerA and recommend ItemSpam to it.

We think it is very important to take into account
attacks in a distributed system where every peer is free
to behave as it prefers. There is some research about
this in P2P systems [26, 22] but we know of no papers
pointing out this problem for RSs.

Moreover in a distributed virtual systems, the fact
that it is easy to create infinite new identities means
that you cannot trust a peer unless you have grown a
positive (direct or indirect) trust in her [14].

10In 1967, the Harvard Social Psychologist Stanley Milgram
tried to establish mail connections among random people. The
average number of steps in a successful chain was around 6. [30]

It is important to underline how also systems that
compute a global value of trust can be easily faked: for
example, this can be done in ebay.com when a person
creates a lot of fake peers (ebay identities) that rate her
as a very good trading partner. This allows the malicious
user to gain a global high reputation and then to use it in
a single, rich fraud transaction in which she don’t fulfill
her obligations stealing the money without sending the
agreed good. This attack have been studied in [22].

In our vision, exploiting of trust information allows
to be influenced only (or mainly) by “trustable” peers,
either direct peers or indirect ones (friends of friends).
This can reduce the user base used to find neighbours but
surely keeps out malicious and fake peers. The sharing
of opinions about peers is also a good way for detecting
or spotting out misbehaving peers.

CF techniques are difficult to control by the user.

As long as RSs give good results, everything is fine,
but when they start recommending badly, it is very dif-
ficult for the user to understand why and to fix the
problem; at the end the user usually quits using the
RS [46, 17].

Up to now, RSs are black boxes, i.e. the user receive
the recommendations but doesn’t know how it was gener-
ated and has no control in the recommendation process.
For example, in [21], the authors conducted a survey
with real users and found that users want to see how rec-
ommendations are generated, how their neighbours are
computed and how their neighbours rate items. Also [43]
that analyzes RSs from a Human Computer Interaction
perspective finds that RSs are effective if, among other,
“the system logic is at least somewhat transparent”.

Even if the RS exposes what it thinks of you (explicit
or implicit past ratings on items) and allows the user
to modify them, this is a very complicated, hard task
(imagine yourself re-examining 1000 ratings about books
and correcting the wrong ones!) [46]. It has been claimed
that “few of the amazon users revise their profiles” when
the recs start becoming obviously wrong [17]..

Moreover, in order to allow the user to control and
correct the recommendation process, RSs should expose
to the user the internal recommendation process and let
the user correct possible errors. For example, presenting
the predicted trust value of some users (the neighbours)
and giving the user the possibility to correct them. In
order to this be possible, RSs should expose as well info
about the peers (her blog, her ratings on items, her
photo, etc.) that the user can use to decide what the
real trust value can be.

Infact, usually RSs don’t recommend peers but just
items, they jump a step going directly to the items space:
doing so, they fail in helping in finding the right person
(and this is often what a user wants). CF automates
the process of recommending items but doesn’t help in
putting in touch with like minded people for community
forming.

Indeed, trust-aware RSs can easily also recommend
persons (possible trustable peers) and show the reasons
behind such a recommendation (the social network) and,
in doing so, allow community forming. By seeing peers,

7

users are encouraged to judge them and provide a trust
value in them allowing their social network to grow and
to become more precise and reliable.

Moreover, acting direclty modifying explicit trust on
users (and the following social network) is easier and
gives more control to user than acting on explicit rat-
ing of items. Anyway this is a claim and needs to be
demontrated (see experiments in section 6).

RS up to now are centralized servers.

While trust-awareness can be done inside a single
centralized server, centralized approaches of data collec-
tion in general suffer of some huge disadvantages. Ex-
pressing information (what you like, who you like) in a
centralized RS server means that only that server will be
able to use it. We know that a private company has no
advantage in sharing it and making it public because it
is part of its enterprise value.

This results in users profiles being scattered in many
different, not cooperating servers (for example, users
preferences about books are stored in amazon.com, bar-
nesandnobles.com, gorilla.it, . . .); every single server suf-
fers even more of sparseness and has problems in giving
good quality recommendations. Moreover, this means
the user cannot move from one RS to another without
losing her profile (and, with it, the possibility to receive
good recommendations and to save time). In essence,
this situation is against competition and can easily lead
to global monopoly because it is almost impossible for
new RSs to enter the market while, for consolidated RS
owning much user information, it is even possible to en-
ter new correlated markets. Moreover, with a centralized
approach, it is the server that control your personal data
and decide about privacy policies; you cannot control
your data.

This is true also for trust information.

Clearly, companies prefer to not allow interoperabil-
ity or publicity of this information because it is their
company value. Ebay.com for instance doesn’t allow
other auctions websites (not even big companies like
amazon.com) to copy “their” reputation values and it’s
fighting law battle against competitors that have started
downloading them and including them in their own
sites [32]. Anyway, until this useful information will re-
main confined in narrow marketplaces, it will not inveil
all its disruptive potential power. For example, if you
specify what are your “trusted peers” about books in
amazon.com and another online books seller (such as
barnesandnobles.com) could have made an interesting
for you use of this information, you are in a sense slow-
ing down progress.

It make no sense to introduce all this trust concerns
and then let some commercial RS to make the compu-
tation with not even a possible concurrency. We know
that a commercial RS has some contradicting goals: for
example, it wants to provide good recommendations but
it also wants to recommend you items that are available
at its stores or with a greate revenue margin.

We claim that a recommendation computation can be
under user control only if the user has the possibility of
making self-recommendations (disposing of all the data).

The solution is already visible on the web and it is
straightforwardly simple: every user publishes this valu-
able information on her peer, on her site, under her con-
trol and then whichever service wants to use it in order
to provide clever services could just fetch it. This is hap-
pening in weblogs (see section 2.4) where many bloggers
publish on their site their blogosphere friends (the blogs
they find interesting and read regularly), the favourite
books, movies, songs lists, the currently listening lists,
the currently reading lists, their physical location, etc.

Now these new technologies (along with book-
marklets11 for example) allow decentralized and easy
publishing of semantic information and the Internet can
be seen (or can start to be seen) as a unique, huge, al-
ways updated database of relationships.

We want also to point out how research in RSs
has long suffered this overwhelming problem: lack
of datasets and real testbeds on which to apply and
test new hypothesis (imagine the difference if all the
world researchers could have had access to data of
amazon.com, barnesandnoble.com, etc. and could
have tested their new hypothesis on them). In fact
there were only two freely available datasets of rat-
ings on items, Eachmovie [29] and Movielens (available
at http://www.cs.umn.edu/Research/GroupLens/) and
they were used for offline testing but, in order to run on-
line experiments, researchers had to invest a lot of time
into creating their own RS and gathering enough users.
This is not an easy task: Grouplens working group of
University of Minnesota12 is a notable exception in this.

Summarizing, we claim that users’ judgements on
items and users, the important information used by Rec-
ommender Systems, shouldn’t be locked in the hard disk
of some server so that competition is not possible but
they should be self-published by every peer.

In this distributed environment, every peer becomes
the recommender of its user. In fact, peers self-publish
their “profiles” and can actively fetch other peers’ pro-
files so that every single peer has enough relevant infor-
mation to give recommendations to its user. In general,
we assume that a peer has enough memory (to record
peers’ profiles) and enough computational power (to cal-
culate recommendations); it if is not the case, a peer can
also ask for recommendations to a different peer, pos-
sibly a peer specialized in processing information and
giving specially clever recommendations.

4 Research Problems: Open is-

sues

In the environment envisioned at the end of section 3 a
good number of interesting issues arise. We will summa-
rize briefly them here. Then, in the next session we will
state which are the focuses of our work and which are
left for future work.

11They are javascript links that can be saved on bookmark lists
and works on webpages. See http://bookmarklets.com

12http://www.cs.umn.edu/Research/GroupLens

8

Trust is inherently transitive (if A trusts B and B
trusts C, there is some probability A trusts C). It is in-
teresting to study how it is possible to propagate trust
in a social network in order to predict some level of indi-
rect trust on unknown peers. An open issue is related to
a deep understanding of what trust represents in an on-
line community, especially considering the negative val-
ues that don’t seem to be very used in real communi-
ties [36].

Another open problem is to understand what are the
relationships between the concept of trust (either direct
or indirect) and user similarity in the context of a dis-
tributed Recommender System and to study how this
information can be exploited in order to increase perfor-
mances. In particular it is interesting to analyze how
the information can be combined considering the differ-
ent levels of confidence the system has in it.

Another interesting topic is related to explanation
of recommendations to the user that can be achieved
by showing what were the items influencing the recom-
mendation, who were the peers taken into account and
how they rated items and peers [21]. Moreover, study-
ing ways to show her social network to the peer are an
open problem too. An interesting and used approach
is one based on an open source graph visualization tool
(http://www.touchgraph.com).

A big concern with RS in general is the lack of objec-
tive and effective ways to evaluate the performances [20].
Offline measures are in a way artificial and don’t always
capture user acceptance while having a running recom-
mender used by many real users in order to test working
hypothesis is always very difficult and uncommon in the
research community.

Concerning the architecture, there are a number of
open questions: we have just indicated as a condition
the possibility for every peer to fetch all the information
of the other peers. This can be done through a standard
HTTP protocol or through one of the many different
P2P networks (Gnutella or Freenet for instance). Issues
such as replication and caching of the data also arise.

The distributed setting and, especially, the informa-
tion self-publishing create some issues related to inter-
operability of different formats. This arises both at the
syntactic level and at the semantic one.

In general, there is a big debate about the incentives
to well-behave in a distributed environment (see the cor-
nucopia/tragedy of the commons in section 2.3).

A huge concern in online communities is privacy.
This is especially true when these communities are re-
lated to expressing opinions about items of the world
(let’s suppose you are reading many books about how to
cure AIDS) [10]. Related to this there is the problem of
having a way to uniquely identify a peer in order to be
able to keep trust (or distrust) in her. The approaches
can go from using pseudonyms based on public key crip-
tography and not relatable to real identities to normal
IP addresses. It is also interesting to analyse the pos-
sible attacks that can be created against a distributed
system and the way in which trust can help in detecting
malicious peers and to spot them out.

Last it is surely a concern to deeply analyze the com-
plexity of proposed algorithms and to optimize them.
However, the strategy we follow is similar to what
Google.com does: the algorithms run offline in order to
precompute all the useful data (trust, user similarity,
recommendations for every user), then when asked, the
system just outputs the precomputed data. This creates
a time delay between when data are available and when
they are taken into account but we believe that in such
an environment, this is a reasonable trade-off.

5 Proposed solution

In this section we define the problems we address, the
environment we assume and the solution we propose. We
also introduce precise definitions for the key concepts.

We claim current Recommender systems use different
techniques in order to suggest to users which items they
will probably like. But, up to now, RSs don’t consider
explicitly stated direct trust information among users to
guide the recommendation process.

Our goal is to exploit this information in order to
create better RSs that can enhance current accuracy and
user acceptance.

In order to reach this goal, we address two of the
specific problems introduced in section 4.

The first is related to trust propagation: we are inter-
ested in understanding how much we can predict trust
values for peers not known by our peer (i.e. on which she
didn’t provide a direct trust value) but that are reach-
able through chains of trust. For instance, if A trusts
B at a certain degree and B trusts C at another degree,
what we can predict about the trust of A in C?

The second problem we address is about combining
the information related to trust (either direct or indirect)
with the user similarity about items ratings that is the
information at the base of current RSs based on Collab-
orative Filtering. We will take into special account the
concept of confidence in every kind of information.

We propose a solution to the problem and we define
some tests we will run in order to verify our solution
(see section 6). But first let us define the environment
we work on.

5.1 The environment

We assume the environment is composed by uniquely
identifiable peers that express trust values on other peers
and rating values on uniquely identifiable items. All the
information are public to every peer and every peer is
able to fetch them whenever it prefers.

Users express trust values in peers based on their per-
ceived quality as source of advise about items, i.e. a peer
should trust a peer if it rates items in a consistent way
w.r.t. herself and also if it especially good in providing
ratings on unknown but relevant items or if it rates very
rapidly new items.

More formally, we have:
P = {set of n uniquely identifiable peers}
I = {set of m uniquely identifiable items}

9

Every item has a creation date and a creator; there
are 2 possible environments: one where creators are
peers and the other where creator are just external iden-
tities (ex. “Kubrick”). For now, we consider the sec-
ond one, because the first one (that arise for example
when blog entries are the items to recommend) intro-
duces more problematic issues.

Every peer can express one or more trust statements
that embed her opinions about the trustworthiness of
another peer. Trust statements have the following form:

• trust(SourcePeer,TargetPeer).value=0.8 ∈ [0, 1]

• trust(SourcePeer,TargetPeer).date=22dec2002

This represents the fact SourcePeer has explicited,
on December 22, 2002, the fact she trusts TargetPeer as
0.8.

We can assume every trust statement of SourcePeer
is in a file Trusts.xml (expressed with some XML-based
format) that is publicly available on her peer. Every
peer is free to delete or change her trust statements but
also every peer is free to retain previously fetched trust
statements and to reason about them.

Moreover, every peer can also express one or more
rating statements in which she explicit her degree of in-
terest in a certain item. Rating statements have the
following form:

• rating(SourcePeer,Item).value=0.1 ∈ [0, 1]

• trust(SourcePeer,Item).date=12sep2001

This represents the fact SourcePeer has explicited on
September 12, 2001 she is not very interested in Item,
infact the rating is 0.1 where 0 is the minimum and 1 is
the maximum.

We can assume every rating statement of SourcePeer
is in a file Ratings.xml (expressed with some XML-based
format) that is publicly available on her peer. Every
peer is free to delete or change a rating statement but
also every peer is free to retain previously fetched rating
statements and to reason about them.

The information about the date is not considered in
this work, for example, if two trust statements of Sour-
cePeer on TargetPeer are available, we just consider the
last one (see section 8).

Every peer is also able to express information about
herself such as homepage, photos, description, blog en-
tries, etc. This information is not necessarily in ma-
chine readable format and it is used by humans in order
to decide, along with what items likes and which peers
trusts, about trust values on peers. The idea is that if
the peer writes many clever and interesting entries about
the books you like in her blog, you should decide to trust
her when the domain is books. This information is really
dependent on the domains in which the RS is in (music,
books, auctions, opensource projects, etc.) but anyway
this information has to be consumed only by the human
users in deciding about trust values. The algorithm will
then use the provided trust statements that embed such
a judgement.

In fixing the environment, we don’t consider different
ways of data publishing such as the fact data are cached
or replicated in some way or the fact that a peer could
like to show some statements to a peer and different ones
to another peer. This is an interesting problem because
it would be possible to take into account trust also as
provider of reliable information but this adds a good
level of complexity and we don’t address the issue.

In the following we just assume that all the peers
publish the complete information, that peers can fetch
complete information about a peer, that it is not possible
to fool peers by showing to some peers some data and to
different peers different data and that all the peers in-
formation are always available (either because they are
always up or because there is a clever replication mech-
anism).

5.2 Definitions

Now that we have defined in detail the environment we
assume, let us give precise definitions of the key concepts.

Trust
The definition by Gambetta [15] is often cited: “...

trust (or, symmetrically, distrust) is a particular level of
the subjective probability with which an agent assesses
that another agent or group of agents will perform a par-
ticular action, both before he can monitor such action (or
independently of his capacity ever to be able to monitor
it) and in a context in which it affects his own action”.

In our environment the particular action is “to rate
items with the same value as the peer would have rated”

We assume that every trust statement
has a value in [0, 1], so that in this sense,
trust(SourcePeer,TargetPeer).value = 1 means that
SourcePeer believe that TargetPeer will rate the next
items in the exact same way as he would have done.
Conversely, trust(SourcePeer,TargetPeer).value = 0
means that SourcePeer believe that TargetPeer will rate
the next items exactly in the opposite way.

In reality the way an user decide about trust values
in a real setting can depend on many factors, for exam-
ple, if she writes interesting posts (on her weblog, on
slashdot.org or on a mailing list), if she fulfill her obli-
gations as a vendor or as a seller (on ebay.com), if you
download many and high quality files from her (on edon-
key P2P file sharing network or on gnutella reputation
aware clients), if she contributes greatly to and carries
on interesting open source projects (on affero.org), if you
think she is any good in writing reviews of books (on
amazon.com), and in general, if you trust her as a good
source of advice, possibly in the real world (she likes
items similar the ones you like, has many rated items
(good coverage), is very fast in rating new items, is able
to discover unknown, unrated but interesting items, ...).

There are even different definitions of trust: for ex-
ample, in evolutionary biology or in repeated games
where it is often defined as “perceived willingness to re-
ciprocate”; here we will consider trust on peer as rating
on peer expressing her subjective perceived quality as
source of advice.

10

A special attention should deserve the negative trust
statement (trust.value = 0), this can embed two seman-
tically different judgements: the meaning could be “it
is totally different from me (without regard to its ma-
liciousness)” or “it is a malicious user (without regard
to its similarity)”. We have to understand better if the
two meanings have to be separated into two judgements.
Anyway, for now, we are not considering this issue.

Moreover, we consider that the user express by her
trust value in PeerA her degree of agreement on PeerA’s
ratings on items and ratings on peers; in a way we assume
that if a peer is good (for me) in expressing ratings to
items, she is also good in finding trustable peers.

Trust usually is not symmetric: if A trusts B this
doesn’t mean B trusts A.

Reputation
Webster defines “reputation” as: 1. The general es-

timation in which a person is held by the public.
In general, reputation is seen more as a property of

a peer depending on the social network. Usually reputa-
tion means the global value computed weighting all the
available trust values. Many current online reputation
systems [35] allows you to see the global value of rep-
utation of every user and this value is computed from
every trust statements expressed by users; for example,
ebay.com shows near every username a star of different
colors where a color means a certain level of reputation
in the community computed on the basis of positive and
negative feedback given by users after every transaction.

Reputation in called karma on slashdot.org and
whuffie on [12].

We claim it is nonsense to compute a global value
for every peer when it is possible to compute a person-
alized, subjective value. It make no sense to show to ev-
eryone that user “Richard M. Stallman” is a reputable
peer. His reputation (from one peer’s subjective point
of view) should depend on the fact this peer expressed,
for example, she values “Bill Gates” or not. Comput-
ing a global value is also what PageRank [33] does when
trying to guess the “reputation” of a web page based on
the incoming and outgoing links. These approaches have
some inherent weaknesses: in particular they don’t take
into account as starting points the very personal view
of the world every peer has and they try to compute a
global value that should fit everyone. For this reason
they are also an easy target for a very basic attack (see
section 3) that allows to influence the computed global
value of reputation by the creation of many fake peers
stating “false” rating and trust statements.

For these reasons, we don’t use the term “reputa-
tion”. We make a difference between the term “direct
trust” (value provided by the peer) and “indirect trust”
(value computed by an algorithm on the base of some
chains of direct trust but always on a subjective basis).

Every trust value is totally subjective and different
for every peer. In our model, a global reputation value
for a peer is not used and so it is not computed; actually
we also claim it is useless because easily fakable.

Rating on item

A value expressing the subjective interest the peer
has in the item, i.e. how much she like it. Typical items
considered in research have been movies, songs, restau-
rants, jokes, etc. We consider it as a real number in
[0, 1]. This is the standard input data for the Collabora-
tive Filtering framework.

Peer
A uniquely identifiable autonomous entity able to ex-

pose some information. In a sense, it is the avatar of the
user, i.e. her virtual ego. It can be her blog, her Gnutella
running application, her instant messagging client, etc.
We use it often as a synomim of user, a user in a society
can be seen as a peer among peers.

User similarity
It is a value in [0, 1] that it’s computed by the sys-

tem; it represents the similarity of two peers. It can be
based on whatever values; we compute it based on rat-
ings on items (if we like same items, we are similar) but
we should not forget that it can be computed based on
trusts values (if we trust same people, we are similar) or
based on geographical coordinates (if we are physically
near, we are similar) or on any peer’s characteristic.

It is not required that User similarity was symmetric
[Similarity(A,B) = Similarity(B,A)] even if it often the
case.

Confidence
It is a value in [0.1] that represents how much we can

consider reliable a data. We will use it on information
computed by algorithms such as User Similarity or Indi-
rect Trust but also on starting data such as rating and
trust statements. Also the outputs of the algorithms will
exit with confidence values along.

For example, confidence in user similarity can depend
on the number of items both the users have rated.

Accuracy
A metric used to represent the quality of generated

recommendations. It is computable offline. For stan-
dard CF approaches, it is usually computed on standard
public datasets of ratings expressed by users on movies
such as Eachmovie [29] or Movielens.

The metrics most used are the following: Mean Abso-
lute Error and Ranking Error. With the first, we suppose
we don’t know the values we know, we try to predict
them and then compute some weighted sum of differ-
ence among predicted and real values. With the second
one, we suppose we have the correct ordered list of most
recommendable items and we compute the difference be-
tween the generated list and the correct one. It is also
possible to use standard metrics of information retrieval
such as Precision and Recall.

It has been argued that for RSs online evaluation are
more meaningful (but also more difficult to create) [20].

User acceptance
A metric used to represent the overall perceived qual-

ity of the Recommender System. Human computer in-
teraction factors go in it as well [43]. It is only com-
putable with an online survey with real users. In social

11

applied computer science application, it is much more
meaningful than offline metrics.

Context

A semantic category [31, 1]. Some examples are: clas-
sical music, movies, romantic movies, jokes, research pa-
pers, research papers on artificial intelligence, and so on
. . .

Every statement (trust and rating) is referred only
to a certain context. If you trust PeerB as a mechanic,
this does not imply that you trust PeerB as well as baby
sitter. In real world situations, there are surely depen-
dencies among different contexts: for example, trust as
violinist is probably very related to trust as musician
and it is possible and interesting to consider trust values
in one context to predict trust values in another con-
text. However, existing reputation systems (ebay.com,
amazon.com, affero.org, ...) consider only a single global
context. In this PhD work, relations of trust among dif-
ferent contexts is not considered because it add a huge
amount of complexity (see section 8)

5.3 Proposed solution: details

As previously stated, our goal is to exploit explicitly pro-
vided direct trust information in order to enhance the
accuracy and user acceptance of current Recommender
Systems.

Let us before state what is the basic assumption that
has guided our choices. This assumption will be anyway
verified by some experiments (see section 6).

The basic idea is that increase of trust of SourcePeer
in TargetPeer should also increase the weight given to
TargetPeer’s opinions when forming recommendations
for SourcePeer. The same point holds for User Simi-
larity: recommendations to SourcePeer should be based
on opinions of peers similar to SourcePeer.

And what are the expected relationships between
Trust and User Similarity? Intuitively, the most com-
mon and expected situation is that, when Trust(A,B) is
available and UserSimilarity(A,B) is computable with a
sufficient level of Confidence, Trust(A,B) and UserSim-
ilarity(A,B) have similar values; this represents that in
general a peer trusts similar peers.

This is so by definition because the user expresses
trust values in peers depending on how much they are
good as source of advice for them and in order to be a
good source of advice a peer should, in general, be at
least similar to the target peer.

But we are not saying that one information is the
exact copy of the other or that one is created using the
other: for example, trust(PeerA,PeerB) is not computed
using similarity of ratings of PeerA and PeerB, or vicev-
ersa. Infact Trust is explicily provided by the user and
User Similarity is computed by the algorithm taking as
input the rating statements explicitly provided by users.

We claim that Trust and US can complement each
other and also that it is totally possible one contradicts
the other, i.e. “I’m similar to a peer I don’t trust” or “I
trust a peer totally different from me”. In this cases it is

important to understand the deep meaning of such a so-
cial situation and to exploit in the best possible way: for
example, it can be the case a malicious peer has copied
the ratings of another peer in order to influence the rec-
ommendations she receives. Many of the possible situa-
tions will be analyzed in some experiments in section 6.

Moreover, in general, User Similarity (US) is com-
puted as a symmetric quantity, i.e. US(A,B)=US(B,A);
while Trust in general is not symmetric, i.e. the fact I
trust Richard doesn’t imply that Richard trusts me.

We are going to test our basic assumtions about re-
lationships between trust and user similarity against a
database of real users, allconsuming.net (see section 6).
Then, we keep a special attention when we synthetize
data for simulations in making the generating models
clearly explicit. We will of course simulate different com-
munities, ranging from the most “natural” to the most
“unexpected” ones. In this sense, the logical process is
the following: if there is a community where rating and
trust statements obey to these rules, then the algorithm
has those performance.

A trust-aware Recommender System has the follow-
ing methods:

Rating getRating(Peer,Item)

Item[] getAppreciatedItems(Peer,n)

Rating predictRating(Peer,Item)

Item[] predictAppreciatedItems(Peer,n)

Trust getTrust(Peer,Peer)

Peers[] getTrustedPeers(Peer,n)

Trust predictTrust(Peer,Peer)

Peers[] predictTrustedPeers(Peer,n)

This means it is able to predict how much the peer
will rate an item and how much the peer will trust an-
other peer. As a consequence, it is able to output the list
of most appreciated items and of most trustable peers.

We are now ready to expose the solution we propose
in order to achieve our previously stated goal. We give
a special emphasis to the concept of Confidence through
all our strategy. In fact we have claimed Direct Trust
has a total confidence because it is provided by the user
while User Similarity and Undirect Trust has a minor
confidence since they are computed by an algorithm. We
think that taking into account confidence in every step
(from data collection to peers trustability prediction to
recommendations computation) allows to better keep the
process under control and to let easily present it to the
user in every single step. This can solve the black box
problem as pointed out in [21]. Moreover the combining
strategy is able to integrate every algorithm in the dif-
ferent steps as long as they provide also self-confidence
in the predicted values.

The message the user should grasp is the following: if
the confidence is high, this means the algorithm was able
to produce a reliable enough recommendation and this is
probably a conservative one; if the confidence is low, this
means the available data don’t allow to predict with a
safe level of certainty and also that the recommendation
can be a serendipitous, unexpected one.

12

We propose a 4 steps strategy to combine trust and
rating statements in order to create recommendations.
The steps are: trust propagation, user similarity compu-
tation, trust and user similarity combination and ratings
prediction.

The basic idea is that a direct trust statements should
be taken into account as certain while for all the other
computed quantities the algorithm should reason also
about their confidence.

Let us remind that all the computation are local to
a peer (in the following called ME) and computed on
behalf of her user, i.e. the user is the center of the com-
putation and everything is seen from her point of view.

The first step is trust propagation (figure 1). Here
the algorithm takes as input all the available Trust state-
ments of every peer. The goal of this step is to predict
how much ME should trust the peers she doesn’t know
(i.e. she has not expressed a trust statement on). We
call this data indirect trust.

ME

Cory

Doc

Ben

0.9

1.0

0.7

1.0

?

Figure 1: Trust propagation step: Given the social
network centred in ME and represented by trust state-
ments (solid lines), this step predicts indirect trust val-
ues, with confidence, on unknown peers (dotted line).

This is an open problem in research, there are some
proposed solutions (see section 2.2) but no clear winner.
We would also like to underline how all the proposed
metrics are simple because what was really missing was
a real testbed in which to test the reasonability of them.

We plan to take some algorithms from the litera-
ture and to test them and to improve and adapt them.
We model the problem as a Max Flow problem on a
graph [13].

The Max Flow problem consist of a directed graph
in which edges are labeled with capacities. There are
2 special nodes: the source and the sink. A flow is an
assignment of flows to each each edge, such that the flow
does not exceed the capacity for each edge and the sum
of the incoming flows equals the sum of the outgoing
flows for each edge, but the source or the sink. The goal
is to find a flow which maximizes the incoming flow at
the sink.

We take figure 1 as an example of trust graph. In this,
edges are trust statements and capacities are the trust
values. For example the edge from Cory to Ben means
that ME has fetched in Cory’s peer a trust statement
saying that Cory trusts Ben as 1.0 out of 1.0. The Max
Flow problem is about finding the maximum flow of trust
from ME (source) to Ben (sink). Essentially the trust

begins at ME and flows through peers depending on the
capacity of each edge (i.e. the amount of trustworthiness
given). The trustworthiness of peer sink is the quantity
of trust flow that reaches it.

We have to modify the Max Flow algorithm in order
to take into account the fact that every step in a trust
chain reduces the confidence we have in the computed
trust. To do this, we enter 2 paramenters: propagation
horizon and step confidence decay. Propagation horizon
is the maximum number of steps we let flow the trust
while step confidence decay is a factor that reduce the
confidence in the computed indirect trust on a peer at
every step. Both of them have to be decided based on
experiments with some euristics. We can say from now
that surely propagation horizon will be a number in the
range of 3 to 6, also considering the “Six Degrees of
Separation” folklore axiom [30]. The best algorithm to
solve the max flow problem is Ford and Fulkerson [13]
created in 1956.

Let us remember that computing a subjective value
of indirect trust for every peer enables us to not be in-
fluenced by malicious peers as long as there is no trust
chain from ME to them. A similar approach based on
max flow algorithm is taken in advogato trust metric [26]
that is also proven to be attack resistant.

In order to test alternatives, we could take into con-
sideration algorithms based on bayesian networks (con-
sidering trust as a probability) and Collaborative Filter-
ing strategies applied directly on the User × User trust
matrix.

The second step is User Similarity computation. It
takes every rating statements as input and produce as
output the similarity of the current peer (ME) against all
the other peers. The similarity value is complemented by
its confidence. For this step, we use the Pearson Corre-
lation coefficient that has proven to be the most effective
way to compute user similarity in CF settings [7]. An-
other less effective possibility is Vector Cosine similarity.
Both the techniques

We are referring here to standard CF techniques that
consider an user as a vector of ratings on items and in-
tend user similarity as the distance between two vectors
but we should note that alternatives have been proposed,
for example the use of Singular Value Decomposition in
order to reduce dimensionality [38]. The confidence in
user similarity can depend for example on how many
items where rated in common by the considered peers,
it is clear that if 2 peers rated only one movie and it
happens that the ratings are equal, this does not mean
they are necessarily two very similar peers. In this case
the algorithm should return 1 as user similarity but with
a confidence very low.

The third step is trust and user similarity combina-
tion. This take as input the trust values (either direct
and indirect) and the user similarity. At this moment the
algorithm must decide what should be the weight given
to every peer’s opinions when forming recommendations
for peer ME. We call this quantity User Influence. As
a baseline solution, we will compute User Influence in

13

one peer as a weighted sum of the two quantities coming
from previous steps (trust and user similarity).

We still consider the very important information re-
lated to confidence of input and also we provide confi-
dence in the computed User Influence.

In first approximation, we will use euristics for deter-
mining weights. At this stage we also think that direct
trust should always overwrite user similarity, in a sense
we are saying that if the user said she wants her recom-
mendations based on some peer she trusts, we cannot
disattend this expectation.

The euristics for calibrating the weights will be de-
fined thanks to the experiments (see section 6). The
experiments will also allows to better understand the re-
lationships between the two concepts of trust and user
similarity. This is a contribution all the research com-
munity can benefit.

In experiments, it is important to analyze results
with varying weights on similarity versus indirect trust,
considering also the two extremes: only indirect trust
and only user similarity. For example, in an environ-
ment with many malicious users it can be safer to just
rely on (direct and indirect) trust while on systems where
there are few incentives to directly express trust in other
peers or this information is very noisy it can be safer to
rely mainly in user similarity. The confidence in User
Influence about every single peer will also be computed.

In experiments we will also examine what are the
best approaches: for instance, if it’s better to simply
don’t consider a peer whose trust in is 0 or if a peer with
ratings exactly the opposite can be considered as a neg-
ative predictor (I like what she doesn’t and viceversa).

It is even possible to learn the optimal weights for
the different information by reinforcement learning or
adjust them on the fly by taking into account feedback
from users, but this is a something we will think about
depending on time.

The last step is ratings prediction. Its goal is to pre-
dict for every item not rated by peer ME how much the
user will like it. Then this information can be used for
example to output the top ten list of unrated interesting
items to the user. This step is a standard step in most
Collaborative Filtering approaches and we will rely on
standard solutions. The most common is the following:
in order to predict the rating of peer ME for an item, let
use the ratings given by other peers to this item and con-
sider them accordingly to the computed User Influence
of every single peer. The confidence in final predictions
about one item can be computed depending on the num-
ber of peers that rated that item and also depending on
the confidence the system carried on about their user
influence.

Let us underline the importance of confidence track-
ing through all the recommendation process. Essentially,
this would allow us to easily integrate every possible al-
gorithm in the different steps as long as they provide
also self-confidence in the predicted values, without hav-
ing to retune or redesing the all strategy. We can say
that it is not very important that the algorithm chosen

for one step would be the best one. It is indeed very
important that it can output a correct value for the con-
fidence in the computed data. For example, we could
game our recommendation process using a random algo-
rithm in one step, only requiring that it correctly states
the confidence in computed, that in this case is 0. In
the case of a step with a random algorithm, the final
outputs must be with confidence 0 but still everything
should work without ad hoc adjustments. Moreover, it is
also true that we can predict the mean confidence an al-
gorithm can have, for example, by making it run against
a test set. In this sense, our goal is to find the euristics
for confidence combination that work with whatever al-
gorithms. If tomorrow a better algorithm for network
propagation arise, we should be able to simply insert it
for step 1 with no changes.

Confidence can be taken into account also before the
first step, directly on starting data: let suppose for a
moment (violating our assumptions) that the starting
data are not 100% certain but that there is some noise
over some channels or that some peer can provide false
data. In this case being able to understand and remem-
ber what is the confidence of starting statements could
be also of help. Another case happens if we suppose that
starting

It is important to underline that this recommenda-
tion process should be transparent and known to the
user, i.e. the RS is not a black box. In this way, the user
can be aware of the way the system works and every
computed information at every step can be outputted to
her so that she can see it, understand it and, possibly,
directly modify it, providing feedback on the algorithm
as well. Tests will say which solutions are the most ef-
fective.

We are not going to conduct in this work a deep
study about complexity of the algorithms or optimiza-
tion. However, as already pointed out in section 4, we
follow the strategy of precomputing all the useful data
offline (trust, user similarity, recommendations for every
user) and then when asked the system just outputs the
precomputed data. This is similar to what many online
systems do, for instance Google.com.

There are some issues we haven’t decided about yet:
for instance, if the algorithm should also try to adjust
trust keeping track of what is changing in the society or
at least warning the user, if the algorithm should warn
the user when there are big changes in statement ex-
pressed by one trusted user and also if the system should
warn the user when there is a big change in trust state-
ment for some trusted peer (for example, many of your
friends change their trust value for HiddenPeer from 1
to 0 in a short time). These and other similar issues will
be clarified on a real system (see section 6.4).

6 Evaluation

In this section, we explain the tests we will run in order
to understand strengths and weaknesses of the proposed
solution. Some test will also be devoted to understand

14

relationships between trust and user similarity in real
world systems.

We will concentrate on Recommender System accu-
racy but we will also create the conditions in order to
be able to run our solutions in an real system. In the
latter we will be able to conduct surveys with real users
in order to test also user perceived usefulness and con-
trollability of the system.

6.1 Experiment to verify relationships
among trust and user similarity on a
real system: allconsuming.net

In section 5.3, we have defined what is the expected rela-
tionship among trust statements and rating statements.
In this first experiment, our aim is to understand what
the situation is in a real system with data collected from
real users.

Allconsuming.net is a web site where an user can cre-
ate her book lists (favourite, currently reading, finished,
etc.) and her list of friends in the literature domain, i.e.
users whose opinions about books the user cares about;
there are also some powerful and easy to use tools to
manage this information, to show it on personal blog
and to easily cite books in your daily posts. What is
fantastically good of Allconsuming.net is the fact that
all the collected data are public (they are published in
XML and are also fetchable through a SOAP interface).
At May 2003, in Allconsuming.net, there are almost 1000
users, the rated, cited or inserted books are many hun-
dreds of thousands and every user has expressed a list of
friends (users they trust).

We plan to use this information to validate our as-
sumptions. The mapping of Allconsuming.net data into
our setting (see section 5.1) is the following: personal
books lists and book citations are the rating statements
while friend lists are the trust statements; in this sense
we only have a boolean information: trust = 1 (when
peer is in friend list) or trust = undef (otherwise).

Similar experiments could be conducted on epin-
ions.com but we have to verify if crawling this web site
in order to collect its data does not infringe some copy-
rights.

6.2 Experiment to test trust propaga-
tion strategies

We will conduct some experiments in order to under-
stand which of the trust metrics available in literature
(see section 2.2) works better under many different con-
ditions. In order to do this, we will synthetize data
corresponding to many different types of communities;
for example, we will create communities that are cluster
consistent (peers of one cluster trust each other and dis-
trust peers of different clusters) or where there are some
leaders trusted by many and gregarious users who have
no trust statements on them and bad users who are dis-
trusted by many and also some communities where there
are no clear patterns of trust relationships.

According to the hypothesised models, we will gener-
ate complete trust statements, this means we will know
the subjective trust expressed by every peer on every
other peer. However, we will suppose peers will express
only a little percentage of these trust statements (with
varying precentages), as in a realistic setting usually is.

We will use different trust metrics in order to predict
indirect trust values and we will compare predicted data
with real data computing a global error value for every
single trust metric.

We will do the same also for data representing a real
community (allconsuming.net). In this case we will use
“leave one out” techniques: we will exclude one trust
statement and we will try to predict it.

This experiment is similar to what is done in [31].
With this experiment we will give a contribution to bet-
ter understand which algorithms works under which con-
ditions.

6.3 Experiments to test accuracy of pro-
posed solution on simulated commu-
nities.

After having verified what are relationships among rat-
ing and trust statements in a real system, we will syn-
thetize data in order to analyze the behaviour of our
proposed stategy in many different simulated situations,
from the most expected to the least expected.

We need to synthetize data in order to be able to
test our system performances under a controllable, repli-
cable, laboratory situation. In every case, we will point
out clearly what are the generating hypothesis; the state-
ment is the following: “if the population of a system be-
have like this, then the algorithm performs in this way”.

This approach is used also by most of the research in
trust, reputation, evolution of cooperation [45, 22, 31,
26].

Let now see some of the communities generating hy-
pothesis. In the following, for sake of clarity, we consider
the movie domain, so that the items are movies. The
first synthetized community obeys to our assumptions
that usually it is normal to trust an user if this is similar
in rating movies and distrust her if she is dissimilar.

We assume there are some hidden features related
to every user: for example, the mean value they give
to movies of a certain category (romance, thriller, etc.)
which represents their interest in this category. For ex-
ample, peer A likes romance as 0.6, while peer B likes
them as 0.7. We also assume that the distribution of rat-
ings of one peer in one category obeys a certain gaussian
with a certain variance.

Then we define the trust value of A in B as the mean
distance in their interests in categories. For example,
trust(A, B) = 1 − |0.6 − 0.7| = 0.9

In this way we have all the information about every
user: all the correct rating statements on movies and all
the correct trust statement on peers. We can imagine
every peer rated only a fraction of items and users. We
can then use our strategy to predict the missing values
and compute the error between predicted and correct

15

values. In particular, we can predict the items ratings
and compute the mean square error or we can predict
the list of 10 preferred items and compute the ranking
distance with the correct list. We can do the same for
the predicted indirect trust on peers. In this way, we can
verify the accuracy of the different possible strategies
(such as considering only user similarity or only trust
propagation or any combination).

There are many paramenters we could play with in
generating the simulated communities, in particular the
mean and variance of the distributions, the number of
movies, the number of peers, the number of movies rated
by every peer and the number of trust expressed by ev-
ery peer. Modifying them generates may different com-
munities, for example, one where there are few ratings
(sparseness problem) or few trust values (a not very con-
nected society).

We will also create communities where user similar-
ity and trust does not always confirm each other. Let
analyze the main cases that can arise.

• A peer expresses a high trust value on a peer with
low similarity: this tell the system “even if for now
we are not similar, I know her in real life, I trust
her and I want my recommendations to be based
on what she likes). Probably the system should
launch a warning to the user.

• A peer expresses a low trust value on a peer with
high similarity: this tells the system “even if we
are similar, I don’t want my recommendations to
be influenced by her opinions”. She is probably a
misbehaving peer, a thief or a spammer.

• A peer didn’t express a trust values for a very simi-
lar peer: this means the algorithm should probably
suggest her as a possible trusted peer

Moreover we design specific experiments to verify the
claims made in section 3. Let analyze them here:

Trust-awareness solve CF sparseness and cold start.
In this case we are interested in communities where the
ratings expressed on items are really a few, i.e. the ma-
trix of rating users × items is very sparse.

When there are few ratings on items, traditional CF
approaches have difficulties in computing user similari-
ties and for this reason the list of neighbours is a very
unreliable information; this usually results in low qual-
ity recommendations. This is a huge problem for recom-
mender systems, especially when they start operating.

We are interested in understanding how few explic-
itly provided trust statements can improve the accuracy
of RS. We can assume that the user cognitive effort is the
same for producing a rating statement or a trust state-
ment and we can assume an user has expressed n state-
ments (either rating or trust). In this case, we want to
verify if trust statements can improve the performances
w.r.t. rating statements.

Another problem of traditional CF is cold start: this
happens when a new user enter in the system and has

expressed no statements. For traditional CF, it is impos-
sible to compute her neighbours and so to give recom-
mendations. We claim that usually an user entering in a
system has (or can easily find) a trusted user already in
the system. This can also be the case of an user desiring
recommendations in one domain that is unknown to her,
for example, let immagine a computer scientist want-
ing to receive recommendations about physics theorems;
even if she doesn’t venture herself into rating physics
theorems, she probably has some physician friend she
trusts, in a sense she is delegating judgement on items
to this trusted friend; this has been labelled the Einstein
problem (see section 5.4.2 of [31]).

In this case, we want to understand if just one (or
few) trust statement allows the new user to easily jump
in and what is the accuracy of the resulting recommen-
dations. It is also interesting to verify how many indirect
trust values can be predicted with a certain level of con-
fidence, in a sense, we want to understand what is the
coverage of a social network given only few initial trust
statements.

Trust-awareness helps managing malicious peers.
Our approach allows to not be influenced by malicious
peer when they are detected, simply because having
them with trust = 0 (either by you or by your trusted
peers) means they are not taken into account. But we
need to understand better if the proposed strategy al-
lows also to spot out malicious peers. Essentially, a
malicious peer tries to create false statements in order
to influence the recommendations generated by another
peer; the simplest attack is made by copying a peer pro-
file (all her statements) in order to be considered similar
and by then rating high one item. This could result in
this item being recommended to that peer. We can easily
show how this simple attack have disruptive effects on
a traditional RS based on CF, for example simulating
the attack on a dataset of real ratings such as Each-
movie [29].

Interesting experiments to demonstrate the attack-
resistence of proposed trust metrics are carried on in [26,
22]. We need to think about similar experiments.

Trust-awareness increases user control.

It has been claimed that RSs are difficult to control
by the user [46, 17]. Tipically when the RSs start giv-
ing bad quality recommendations, the user simply stops
using it because it is very hard to understand why a rec-
ommendation was made and how to influence the rec-
ommending process. Even when possible, for example in
Amazon.com with the editing feature which allows you
to change past ratings in books, “most people never take
the time to use it” [17].

It has also been claimed that often users don’t know
or understand the process behind a RS [21, 43]. In gen-
eral, this black box model reduces the efficiency of RSs.

Moreover, we claim that showing to the user as well
the social network that is at the basis of the generated
recommendations allows her to better understand the
reasons behind a recommendation and to control it easily
when wrong.

Anyway, this has a lot to do with Human Computer

16

Interface issues and the increase in user control is some-
thing we will verify better by surveys with real users (see
next sections).

6.4 Online test: cocoa.itc.it/blog

We think that for social, applied computer science re-
search, more meaningful results derive from testing the
proposed solutions with real systems and users. In order
to have a viable testbed, we are going to add weblog ca-
pabilities (see section 2.4) to an online recommender sys-
tem we developed: CoCoA (Compilation Compiler Ad-
visor) [5]. The system is usable at: http://cocoa.itc.it.

CoCoA is a RS suggesting classical musical compi-
lations on the basis of past user created compilations.
It is based on the Karadar archive and this means
11.000 MP3 of classical music without copyright prob-
lems, Composers Biographies, 400 Opera’s Librettos,
2.000 photos of composers, rare scores and theatres,
5.000 texts of classical songs in original languages and
1.100 Midi files. But what is really important is the fact
there are about 1400 users connecting every day willing
to make compilations and to contribute to the system
with their passion and knowledge for classical music.

A CoCoA user will be able to keep her blog on co-
coa.itc.it/blog where they will be able to post daily en-
tries about classical music. They will also be able to
express ratings about other cocoaBloggers (trust values)
regarding their knowledge and utility for them on classi-
cal music. They will be able to express their ratings
about classical tracks and about classical composers.
They will create compilations (assembling some tracks
according to some idea) and rate compilations as well.
We will have a lively audience of users really interested
in classical music willing to contribute to the system (we
already receive many mails with suggestions and correc-
tions). We will be able to test many recommendation
strategies with real users and to tune and improve our
choices.

In homepage there will be a link to a controlled us-
age of the system; the user who will agree to use this
version will be prompted with questions about their ex-
perience with the Recommender System. We will ask to
them to provide lively feedback about every single rec-
ommendation, for example a thumb up/down one click
feedback.

We will also ask to participate in surveys; some of
the questions could be “Were recommendation useful?”,
“Do you think you have understood the recommenda-
tion process the system use? Can you describe it?”,
“Was useful the possibility to see your neighbours?”,
“Why did you modify your previously expressed trust
statements? (if they did)”, “Why did you modify your
previously expressed rating statements? (if they did)”,
“Was the RS starting giving bad quality recommenda-
tions? If yes, what did you do? If not, what would
you do in this case?”, “Was the system easy to use?”,
“which other RSs do you know (amazon, epinions, ebay,
. . .)?”, “which ones you have used?”, “did you find any
differences? which ones?”.

Anyway, we will also be able to run experiments of-
fline with collected data.

An important side effect of blog on CoCoA is the fact
that all the data will remain publicly available (in XML
format) to everyone. This will benefit the all research
community that will be able to use an always up to date,
large, distributed database of useful data. This will also
provide a solution to the traditional lack of dataset for
RSs sperimentation.

We are also thinking about making a competition
of Recommender Systems by providing a standard API
that every RS willing to participate has to implement in
order to partecipate in the challenge; we will design a
script that, when asked for a recommendation, will ask
to a randomly chosen RS and provide the result to the
user [20].

6.5 Other online tests

It is possible to think other test with real users based
on other running systems. We could address the blogo-
sphere (i.e. the set of all the blogs) or allconsuming.net,
a collector of books preferences for bloggers (see descrip-
tion in section 6.1).

In the first case, we could use the data about every
blog registered on weblogs.com. In particular, almost ev-
ery blog has a blogrolling list or a FOAF file of trusted
blog and we could use this information as trust state-
ments. We can then consider as items the words the
blogger writes in her entries or the categories she clas-
sifies her posts in (“politics”, “open source software”,
“mac”, “my cat”, etc.).

We could run our algorithm in order to discover
new trustable peers and to “recommend” new unex-
plored categories (or words). In order to receive feed-
back about the generated recommendations there are 2
possible ways: either we send a polite mail to the blog-
ger saying this mail was automatically generated by a
research driven RS and asking her to go to a web site to
write down some feedback about the recommendations
or we can just create a web site that is able to create rec-
ommendations for every blog and then make it enough
visited by bloggers (considered what the blogosphere is,
this is not an impossible situation).

Similar points hold for allconsuming.net but in this
case we could recommend books (and similar users).
This is precisely in the intentions of Allconsuming.net’s
developer who invites everyone to use this data in order
to create new, interesting services.

7 State of the project

7.1 Progress up to date

Relevant to this proposal, we have been surveying the
literature related to Recommender Systems and their
always problematic evaluation, to trust and reputation
metrics and to peer-to-peer. This activity has produced
as well some published papers [4, 5, 20].

17

We have developed an online Recommender System:
CoCoA (running at cocoa.itc.it/blog). We have investi-
gated into Weblogs and have installed on an IRST ma-
chine what we repute the most promising tool, Movable
Type (downloadable at http://www.movabletype.org).
Weblogs will be available on CoCoA website soon.

7.2 Road map

In order to achieve our goals before the end of the third
PhD year, we have set up a precise road map.

In the month of June 2003, we will completely define
our strategies and write or adapt the used algorithms
(maxflow, Collaborative Filtering and rating combiner).
In the mean time, we will deploy blogs on CoCoA web
site.

In the month of July 2003, we will fetch the data from
allconsuming.net and run the first experiments on them,
in particular in order to understand how our assumptions
map on a real world case.

In the month of August, based on the insight the pre-
vious experiment will be able to give us, we will create
the community generator in order to be able to synthe-
size many simulated communities based on many differ-
ent parameters.

September, October and November will be spent at
Stanford University as a visiting PhD. This time will be
devoted to get feedback from professors and students of
this University and to, possibly, tune and calibrate our
solutions. In the mean time, while more experiments are
run, we will keep on refining the proposed strategies and
the evaluation techniques as well.

During November 2003, we think we will be able to
collect enough meaningful data from blogs on CoCoA
and will start running our online experiments. This will
sure need some revising and retuning.

In November, we will as well start writing one paper
for an important conference whose deadlines are usually
in January or February, for example ECAI-2004 (Euro-
pean Conference on Artificial Intelligence) whose dead-
line for paper submission is in February 2004.

The first months of 2004 will be devoted to present
the work in conferences and to write a paper for an in-
ternational journal.

In the following months, we will concentrate on writ-
ing the PhD thesis, in order to finish for September 2004.

8 Future work

In this section we recall briefly what are the topics we
are not going to work on in this PhD thesis but that
are anyway worth thinking about. Most of them were
explained in section 4.

We will not take into account privacy concerns that
are however very relevant. In peer-to-peer networks, this
is a very studied topic and has many implications in
online communities and decentralized recommender sys-
tems as well. Authentication and identity persistence is
also very imporant because without these it’s impossible
to keep trust in every single peer and reason about it. In

our work, we assume there are no privacy problems (ev-
ery peer agrees on showing every information to others)
and that it is possible to keep the same identity while
it is not possible for a peer to impersonate another one
(for example, we could use as ID the IP address).

Another very relevant issue in distributed systems
and in trust-aware systems are possible attacks. Being
every entity (we called them peers) totally autonomous,
it is free to behave as it prefers. It is still a big challenge
to design systems that are resistant to every possible
attack.

Related to the architecture, we just made the as-
sumptions that every peer self-publish some informa-
tion and that every other peer is able to fetch it. In a
more realistic environment, there could be issues such as
replication and caching of data, data forwarding, secure
communication through public key criptography, differ-
ent fetch policies, etc.

Another great concern in a distributed environment
is syntactic and semantic interoperability. The first arise
when two different peer publish information with differ-
ent formats, the second when the same format is used in
a semantically different way. In this work we assumed
that all the peers share a common syntax and seman-
tic. Related to this there is the issue about statements
being context-dependent (a peer can trust RudePeer as
a mechanic but not as a baby sitter). It is true that
some kind of inference from one context to another can
be done, moreover contexts could be organized in ontolo-
gies (context “violinist classical music” is child of context
“ classical music”). Such cross context reasoning is not
taken into account, every single context will have its own
statements.

A deep study of complexity of the algorithm is out of
the scope of this work, especially concerning optimiza-
tion. We will test runtimes in experiments, of course.
Anyway we plan to have the algorithms running offline
pre-computing recommendations and, when asked, they
will simply output the precomputed data. This inserts a
delay into taking into account recent data but we believe
it is a reasonable tradeoff.

Moreover, we will not use the time information pro-
vided in every statement. We believe taking into account
time in systems usually increase the amount of complex-
ity and effects are usually hard to keep under control and
to evaluate. In our work, when we have more than one
statement made by a peer about a target, we consider
only the last one.

References

[1] Alfarez Abdul-Rahman and Stephen Hailes. Sup-
porting trust in virtual communities. In HICSS,
2000.

[2] Karl Aberer and Zoran Despotovic. Managing trust
in a peer-2-peer information system. In CIKM,
pages 310–317, 2001.

18

[3] E. Adar and B. Huberman. Free riding on gnutella.
Technical report, Xerox PARC, 2000.

[4] S. Aguzzoli, P. Avesani, and P. Massa. Composi-
tional cbr via collaborative filtering. In ICCBR ’01
Workshop on CBR in Electronic Commerce, Van-
couver - Canada, August 2001.

[5] S. Aguzzoli, P. Avesani, and P. Massa. Collabora-
tive case-based recommendation systems. Lecture
Notes in Computer Science, 2416, 2002.

[6] P. Avesani, P. Massa, M. Nori, and A. Susi. Collabo-
rative radio community. Lecture Notes in Computer
Science, 2347, 2002.

[7] J. Breese, D. Heckerman, and C. Kadie. Empiri-
cal analysis of predictive algorithms for collabora-
tive filtering. In Proceedings of the Fourteenth Con-
ference on Uncertainty in Artifi cial Intelligence,
Madison, WI, July 1998. Morgan Kaufmann.

[8] Dan Bricklin. The Cornucopia of the
Commons: How to get volunteer labor.
http://bricklin.com/cornucopia.htm, 2001.

[9] M. Brunato and R. Battiti. PILGRIM: A location
broker and mobility-aware recommendation system.
Technical report, DIT - University of Trento - Italy,
2002.

[10] J. Canny. Collaborative filtering with privacy. In
IEEE Conference on Security and Privacy, Oak-
land, CA, USA, May 2002.

[11] F. Cornelli, E. Damiani, S. De Capitani di Vimer-
cati, S. Paraboschi, and P. Samarati. Implement-
ing a reputation-aware gnutella servent. In Interna-
tional Workshop on Peer-to-Peer Computing, May
2002.

[12] C. Doctorow. Down and Out in the Magic Kingdom.
Tor Books, January 2003.

[13] L. R. Jr. Ford and D. R. Fulkerson. Maximal Flow
Through a Network. Canadian Journal of Mathe-
matics, pages 99–404, 1956.

[14] E. J. Friedman and P. Resnick. The Social Cost
of Cheap Pseudonyms. Journal of Economics and
Management Strategy, 10(2):173–199, 2001.

[15] Diego Gambetta. Can We Trust Trust? (in Making
and Breaking Cooperative Relations), chapter 13,
pages 213–237. 2000.

[16] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry.
Using collaborative filtering to weave an infor-
mation tapestry. Communications of the ACM,
35(12):61–70, 1992.

[17] Lisa Guernsey. Making Intelligence a Bit Less Ar-
tificial. New York Times, 5 January 2003.

[18] Garrett Hardin. The tragedy of the commons. Sci-
ence, 162:1243–1248, 1968.

[19] A. Harth, M. Bauer, and B. Breutmann. Iowl col-
laborative filtering in a distributed environment:
An agent-based approach. Technical report, Uni-
versity of Applied Sciences - Wurzburg - Germany,
2000.

[20] C. Hayes, P. Massa, P. Avesani, and P. Cunning-
ham. An on-line evaluation framework for rec-
ommender systems. In Workshop on Personaliza-
tion and Recommendation in E-Commerce, Malaga,
2002. Springler.

[21] J.L. Herlocker, J.A. Konstan, and J. Riedl. Ex-
plaining Collaborative Filtering Recommendations.
In Proc. of CSCW 2000., 2000.

[22] S. Kamvar, M. Schlosser, and H. Garcia-molina.
Eigenrep: reputation management in p2p network.
In Proc. of WWW, 2003.

[23] S. Ketchpel and H. Garcia-Molina. A sound and
complete algorithm for distributed commerce trans-
actions. Distributed Computing, 12(1), 1999.

[24] R Khare and A Rifkin. Weaving a Web of Trust.
World Wide Web Journal, 2(3):77–112, 1997.

[25] F. Labalme and K. Burton. Enhancing the internet
with reputations: an openprivacy white paper. Web
page, March 2001.

[26] R. Levien. Advogato Trust Metric.
http://www.advogato.org/trust-metric.html,
2000.

[27] Farhad Manjoo. Gnutella bandwidth bandits. sa-
lon.com/tech/feature/2002/08/08/gnutella developers/,
August 2002.

[28] S. Marsh. Formalising Trust as a Computational
Concept. PhD thesis, Univ. of Stirling, Scotland,
1994.

[29] P. McJones. Eachmovie col-
laborative filtering data set.
http://research.compaq.com/SRC/eachmovie/,
1997.

[30] Stanley Milgram. The Small World Problem. Psy-
chology Today, 61, 1967.

[31] L. Mui. Computational Models of Trust and Rep-
utation: Agents, Evolutionary Games, and Social
Networks. PhD thesis, Massachusetts Institute of
Technology, 20 December 2002.

[32] Andy Oram, editor. Peer-to-peer: harnessing the
power of disruptive technologies. O’Reilly and As-
sociates, March 2001.

[33] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stan-
ford Digital Library Technologies Project, 1998.

19

[34] P. Resnick and H.R. Varian. Recommender systems.
Communications of the ACM, 40(3):56–58, 1997.

[35] P. Resnick, R. Zeckhauser, E. Friedman, and
K. Kuwabara. Reputation Systems. Communica-
tion of the ACM, 43(12), December 2000.

[36] Paul Resnick and Richard Zeckhauser. Trust
Among Strangers in Internet Transactions: Empiri-
cal Analysis of eBay’s Reputation System. The Eco-
nomics of the Internet and E-Commerce. Advances
in Applied Microeconomics, 11, 2002.

[37] Rishab Aiyer Ghosh. Cooking pot markets: an eco-
nomic model for the trade in free goods and ser-
vices on the Internet. First Monday, a Peer-reviewed
Journal on the Internet.

[38] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Application of dimensionality reduction in recom-
mender systems–a case study, 2000.

[39] J.B. Schafer, J. Konstan, and J. Riedl. Recom-
mender systems in e-commerce. In Proceeding of the
ACM Conference on Electronic Commerce, Pitts-
burgh, PA, USA, November 1999.

[40] A. Schein, A. Popescul, L. Ungar, and D. Pennock.
Methods and metrics for cold-start recommenda-
tions, 2002.

[41] S. Sen, A. Biswas, and S. Debnath. Believing others:
pros and cons. Artificial Intelligence, 142(2):179–
203, December 2002.

[42] Clay Shirky. What is p2p ... and what isn’t?
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-
whatisp2p.html, November 2000.

[43] K. Swearingen and R. Sinha. Beyond algorithms:
An hci perspective on recommender systems, 2001.

[44] Bryce Wilcox-O’Hearn. Experiences Deploying A
Large-Scale Emergent Network. In Proceedings of
the First International Workshop on Peer-to-Peer
Systems (IPTPS ’02), 2002.

[45] Giorgos Zacharia, Alexandros Moukas, and Pattie
Maes. Collaborative reputation mechanisms in elec-
tronic marketplaces. In HICSS, 1999.

[46] Jeffrey Zaslow. If TiVo Thinks You Are Gay, Here’s
How to Set It Straight. The Wall Street Journal, 26
November 2002.

20

