
VxWorks
Programmer’s Guide

®

5.3.1
Edition 1

Copyright 1984 – 1998 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,

microfilm, retrieval system, or by any other means now known or hereafter invented without the

prior written permission of Wind River Systems, Inc.

VxWorks, Wind River Systems, the Wind River Systems logo, and wind are registered trademarks of

Wind River Systems, Inc. CrossWind, IxWorks, Tornado, VxMP, VxSim, VxVMI, WindC++, WindConfig,

Wind Foundation Classes, WindNet, WindPower, WindSh, and WindView are trademarks of

Wind River Systems, Inc.

All other trademarks used in this document are the property of their respective owners.

Corporate Headquarters
Wind River Systems, Inc.

1010 Atlantic Avenue

Alameda, CA 94501-1153

USA

toll free (US): 800/545-WIND

telephone: 510/748-4100

facsimile: 510/814-2010

Europe
Wind River Systems, S.A.R.L.

19, Avenue de Norvège

Immeuble B4, Bâtiment 3

Z.A. de Courtaboeuf 1

91953 Les Ulis Cédex

FRANCE

telephone: 33-1-60-92-63-00

facsimile: 33-1-60-92-63-15

Japan
Wind River Systems Japan

Pola Ebisu Bldg. 11F

3-9-19 Higashi

Shibuya-ku

Tokyo 150

JAPAN

telephone: 81-3-5467-5900

facsimile: 81-3-5467-5877

VxWorks Programmer’s Guide, 5.3.1
Edition 1

4 Mar 98

Part #: DOC-12067-ZD-00

CUSTOMER SUPPORT

Telephone E-mail Fax

Corporate: 800/872-4977 toll free, U.S. & Canada

510/748-4100 direct

support@wrs.com 510/814-2164

Europe: 33-1-69-07-78-78 support@wrsec.fr 33-1-69-07-08-26

Japan: 011-81-3-5467-5900 support@kk.wrs.com 011-81-3-5467-5877

If you purchased your Wind River Systems product from a distributor, please contact your

distributor to determine how to reach your technical support organization.

Please provide your license number when contacting Customer Support.

Contents
1 Overview ... 1

2 Basic OS ... 23

3 I/O System .. 103

4 Local File Systems .. 187

5 Network .. 237

6 Shared-Memory Objects ... 371

7 Virtual Memory Interface .. 405

8 Configuration ... 425

9 Target Shell .. 455

10 C++ Development .. 469

Appendices

A Motorola MC680x0 ... 487

B Sun SPARC, SPARClite ... 505
iii

VxWorks 5.3.1
Programmer’s Guide
C Intel i960 ... 525

D Intel x86 .. 539

E MIPS R3000, R4000, R4650 ... 579

F PowerPC ... 593

Index ... 609
iv

1
Overview
1.1 Introduction .. 3

1.2 Getting Started with the Tornado Development System 3

1.3 VxWorks: A Partner in the Real-time Development Cycle 4

1.4 VxWorks Facilities: An Overview ... 5

Multitasking and Intertask Communications 7

POSIX Interfaces ... 8

I/O System .. 8

Local File Systems .. 9

Network ... 11

Virtual Memory (Including VxVMI Option) 13

Shared-Memory Objects (VxMP Option) 14

Target-Resident Tools .. 14

C++ Development (including Wind Foundation Classes Option) 15

Utility Libraries .. 15

Performance Evaluation .. 17

Target Agent ... 18

Board Support Packages (BSPs) ... 18

VxWorks Simulator (VxSim Option) ... 19

1.5 Customer Services .. 20

1.6 Documentation Conventions .. 21
1

VxWorks 5.3.1
Programmer’s Guide
List of Tables

Table 1-1 Font Usage for Special Terms .. 21

List of Figures

Figure 1-1 Interaction Between Target Server and Target Agent 18
2

1

1
Overview
1.1 Introduction

This manual describes VxWorks, the high-performance real-time operating system

component of the Tornado development system. This manual includes the

following information:

■ How to use VxWorks facilities in the development of real-time applications.

■ How to use the target-resident tools included in VxWorks.

■ How to use the optional components VxVMI, VxMP, and Wind Foundation

Classes.

This chapter begins by providing pointers to information on how to set up and

start using VxWorks as part of the Tornado development system. It then provides

an overview of the role of VxWorks in the development of real-time applications,

an overview of VxWorks facilities, a summary of Wind River Systems customer

services, and a summary of the document conventions followed in this manual.

1.2 Getting Started with the Tornado Development System

See the following documents for information on installing and configuring the

Tornado development system, including VxWorks. Information on configuration

differs depending on whether your development host is UNIX or Windows; thus,

the Tornado User’s Guide is host specific.

■ The Wind River Products Installation Guide provides information on installing

all components of the Tornado Development System.
3

VxWorks 5.3.1
Programmer’s Guide
■ The Tornado User’s Guide provides information on configuring and connecting

the host and target environments, building your VxWorks application, booting

VxWorks, and running Tornado.

For either host, 8. Configuration in this manual provides advanced VxWorks

configuration information.

For a complete overview of Tornado documentation, see the documentation guide

in the Tornado User’s Guide.

1.3 VxWorks: A Partner in the Real-time Development Cycle

UNIX and Windows hosts are excellent systems for program development and for

many interactive applications. However, they are not appropriate for real-time

applications. On the other hand, traditional real-time operating systems provide

poor environments for application development or for non-real-time components

of an application, such as graphical user interfaces (GUIs).

Rather than trying to create a single operating system that “does it all,” the Wind

River philosophy is to utilize two complementary and cooperating operating

systems (VxWorks and UNIX, or VxWorks and Windows) and let each do what it

does best. VxWorks handles the critical real-time chores, while the host machine is

used for program development and for applications that are not time-critical.

You can scale VxWorks to include exactly the feature combinations your

application requires. During development, you can include additional features to

speed your work (such as the networking facilities), then exclude them to save

resources in the final version of your application.

You can use the cross-development host machine to edit, compile, link, and store

real-time code, but then run and debug that real-time code on VxWorks. The

resulting VxWorks application can run standalone—either in ROM or disk-

based—with no further need for the network or the host system.

However, the host machine and VxWorks can also work together in a hybrid

application, with the host machine using VxWorks systems as real-time “servers”

in a networked environment. For instance, a VxWorks system controlling a robot

might itself be controlled by a host machine that runs an expert system, or several

VxWorks systems running factory equipment might be connected to host

machines that track inventory or generate reports.
4

1

1
Overview
1.4 VxWorks Facilities: An Overview

This section provides a summary of VxWorks facilities; they are described in more

detail in the following subsections. For details on any of these facilities, see the

appropriate chapters in this manual.

■ High-Performance Real-time Kernel Facilities

The VxWorks kernel, wind, includes multitasking with preemptive priority

scheduling, intertask synchronization and communications facilities, interrupt

handling support, watchdog timers, and memory management.

■ POSIX Compatibility

VxWorks provides most interfaces specified by the 1003.1b standard (formerly

the 1003.4 standard), simplifying your ports from other conforming systems.

■ I/O System

VxWorks provides a fast and flexible ANSI C-compatible I/O system,

including UNIX standard buffered I/O and POSIX standard asynchronous

I/O. VxWorks includes the following drivers:

■ Local File Systems

VxWorks provides fast file systems tailored to real-time applications. One file

system is compatible with the MS-DOS® file system, another with the RT-11 file

system, a third is a “raw disk” file system, and a fourth supports SCSI tape

devices.

■ Network Facilities

VxWorks provides “transparent” access to other VxWorks and TCP/IP-

networked systems, a BSD1 Sockets-compliant programming interface, remote

procedure calls (RPC), SNMP (optional), remote file access (including NFS

client and server facilities and a non-NFS facility utilizing RSH, FTP, or TFTP),

1. BSD stands for Berkeley Software Distribution, and refers to a version of UNIX.

Network driver – for network devices (Ethernet, shared memory)

Pipe driver – for intertask communication

RAM “disk” driver – for memory-resident files

SCSI driver – for SCSI hard disks, diskettes, and tape drives

Keyboard driver – for PC x86 keyboards (x86 BSP only)

Display driver – for PC x86 VGA displays (x86 BSP only)

Disk driver – for IDE and floppy disk drives (x86 BSP only)

Parallel port driver – for PC-style target hardware
5

VxWorks 5.3.1
Programmer’s Guide
BOOTP, and proxy ARP. All VxWorks network facilities comply with standard

Internet protocols, both loosely coupled over serial lines or standard Ethernet

connections and tightly coupled over a backplane bus using shared memory.

■ Virtual Memory (Including VxVMI Option)

VxWorks provides both bundled and unbundled (VxVMI) virtual memory

support for boards with an MMU, including the ability to make portions of

memory noncacheable or read-only, as well as a set of routines for virtual-

memory management.

■ Shared-Memory Objects (VxMP Option)

The VxMP option provides facilities for sharing semaphores, message queues,

and memory regions between tasks on different processors.

■ Target-resident Tools

In the Tornado development system, the development tools reside on the host

system; see the Tornado User’s Guide for details. However, a target-resident

shell, module loader and unloader, and symbol table can be configured into

the VxWorks system if necessary.

■ Wind Foundation Classes

In addition to general C++ support including the Iostreams library from

AT&T, the optional component Wind Foundation Classes adds the following

C++ object libraries:

– VxWorks Wrapper Class library

– Tools.h++ library from Rogue Wave

– Booch Components library from Rogue Wave

■ Utility Libraries

VxWorks provides an extensive set of utility routines, including interrupt

handling, watchdog timers, message logging, memory allocation, string

formatting and scanning, linear and ring buffer manipulations, linked-list

manipulations, and ANSI C libraries.

■ Performance Evaluation Tools

VxWorks performance evaluation tools include an execution timer for timing

a routine or group of routines, and utilities to show CPU utilization percentage

by task.
6

1

1
Overview
■ Target Agent

The target agent allows a VxWorks application to be remotely debugged using

the Tornado development tools.

■ Board Support Packages

Board Support Packages (BSPs) are available for a variety of boards and

provide routines for hardware initialization, interrupt setup, timers, memory

mapping, and so on.

■ VxWorks Simulator (VxSim)

The optional component VxWorks Simulator, available for UNIX

environments only, simulates a VxWorks target for use as a prototyping and

testing environment.

Multitasking and Intertask Communications

Modern real-time systems are based on the complementary concepts of

multitasking and intertask communications. A multitasking environment allows

real-time applications to be constructed as a set of independent tasks, each with a

separate thread of execution and its own set of system resources. The intertask

communication facilities allow these tasks to synchronize and coordinate their

activity.

The VxWorks multitasking kernel, wind, uses interrupt-driven, priority-based task

scheduling. It features fast context switch times and low interrupt latency. Under

VxWorks, any subroutine can be spawned as a separate task, with its own context

and stack. Other basic task control facilities allow tasks to be suspended, resumed,

deleted, delayed, and moved in priority. See 2.3 Tasks, p.30 and the reference entry

for taskLib.

The wind kernel supplies semaphores as the basic task synchronization and

mutual-exclusion mechanism. There are several kinds of semaphores in wind,

specialized for different application needs: binary semaphores, counting

semaphores, mutual-exclusion semaphores, and POSIX semaphores. All of these

semaphore types are fast and efficient. In addition to being available to application

developers, they have also been used extensively in building higher-level facilities

in VxWorks.

For intertask communications, the wind kernel also supplies message queues,

pipes, sockets, and signals. The optional component VxMP provides shared-

memory objects as a communication mechanism for tasks executing on different

CPUs. For information on all these facilities, see 6. Shared-Memory Objects and
7

VxWorks 5.3.1
Programmer’s Guide
2.4 Intertask Communications, p.54. In addition, semaphores are described in the

semLib and semPxLib reference entries; message queues are described in the

msgQLib and mqPxLib reference entries; pipes are described in the pipeDrv
reference entry and 2.4.5 Pipes, p.88; sockets are described in the sockLib reference

entry and 2.4.6 Network Intertask Communication, p.89; and signals are described in

the sigLib reference entry and 2.4.7 Signals, p.90.

POSIX Interfaces

POSIX (the Portable Operating System Interface) is a set of standards under

development by representatives of the software community, working under an

ISO/IEEE charter. The purpose of this effort is to support application portability at

the source level across operating systems. This effort has yielded a set of interfaces

(POSIX standard 1003.1b, formerly called 1003.4) for real-time operating system

services. Using these interfaces makes it easier to move applications from one

operating system to another.

For a list of POSIX facilities, look under POSIX in the keyword index in the

VxWorks Reference Manual or in the Tornado Online Manuals. Nearly all POSIX

1003.1b interfaces are available in VxWorks, including POSIX interfaces for:

– asynchronous I/O

– semaphores

– message queues

– memory management

– queued signals

– scheduling

– clocks and timers

In addition, several interfaces from the traditional POSIX 1003.1 standard are also

supported.

I/O System

The VxWorks I/O system provides uniform device-independent access to many

kinds of devices. You can call seven basic I/O routines: creat(), remove(), open(),
close(), read(), write(), and ioctl(). Higher-level I/O routines (such as ANSI C-

compatible printf() and scanf() routines) are also provided.

VxWorks also provides a standard buffered I/O package (stdio) that includes ANSI

C-compatible routines such as fopen(), fclose(), fread(), fwrite(), getc(), and

putc(). These routines increase I/O performance in many cases.
8

1

1
Overview
The VxWorks I/O system also includes POSIX-compliant asynchronous I/O: a

library of routines that perform input and output operations concurrently with a

task’s other activities.

VxWorks includes device drivers for serial communication, disks, RAM disks,

SCSI tape devices, intertask communication devices (called pipes), and devices on

a network. Application developers can easily write additional drivers, if needed.

VxWorks allows dynamic installation and removal of drivers without rebooting

the system.

Internally, the VxWorks I/O system allows individual drivers complete control

over how the user requests are serviced. Drivers can easily implement different

protocols, unique device-specific routines, and even different file systems, without

interference from the I/O system itself. VxWorks also supplies several high-level

packages that make it easy for drivers to implement common device protocols and

file systems.

For a detailed discussion of the I/O system, see 3. I/O System. Relevant reference

entries include ioLib for basic I/O routines available to tasks, fioLib and ansiStdio
for various format-driven I/O routines, aioPxLib for asynchronous I/O, and

iosLib and tyLib for routines available to driver writers. Also see the reference

entries for the supplied drivers.

Local File Systems

VxWorks includes several local file systems for use with block devices (disks).

These devices all use a standard interface so that file systems can be freely mixed

with device drivers. A local file system for SCSI tape devices is also included. The

VxWorks I/O architecture makes it possible to have several different file systems

on a single VxWorks system, even at the same time.

MS-DOS Compatible File System: dosFs

VxWorks provides the dosFs file system, which is compatible with the MS-DOS file

system (for MS-DOS versions up to and including 6.2). The capabilities of dosFs

offer considerable flexibility appropriate to the varying demands of real-time

applications. Major features include:

■ A hierarchical arrangement of files and directories, allowing efficient

organization and permitting an arbitrary number of files to be created on a

volume.
9

VxWorks 5.3.1
Programmer’s Guide
■ The ability to specify contiguous file allocation on a per-file basis. Contiguous

files offer enhanced performance, while non-contiguous files result in more

efficient use of disk space.

■ Compatibility with widely available storage and retrieval media. Diskettes

created with dosFs and on MS-DOS personal computers can be freely

interchanged and hard drives created with MS-DOS can be read by dosFs if it

is correctly configured.

■ Optional case-sensitive file names, with name lengths not restricted to the MS-

DOS eight-character + extension convention.

Services for file-oriented device drivers using dosFs are implemented in dosFsLib.

RT-11 Compatible File System: rt11Fs

VxWorks provides the rt11Fs file system, which is compatible with that of the RT-

11 operating system. This file system has been used for real-time applications

because all files are contiguous. However, rt11Fs does have some drawbacks. It

lacks a hierarchical file organization that is particularly useful on large disks. Also,

the rigid contiguous allocation scheme may result in fragmented disk space. For

these reasons, dosFs is preferable to rt11Fs.

The VxWorks implementation of the RT-11 file system includes byte-addressable

random access (seeking) to all files. Each open file has a block buffer for optimized

reading and writing.

Services for file-oriented device drivers using rt11Fs are implemented in rt11FsLib.

Raw Disk File System: rawFs

VxWorks provides rawFs, a simple “raw disk file system” for use with disk devices.

rawFs treats the entire disk much like a single large file. The rawFs file system

permits reading and writing portions of the disk, specified by byte offset, and it

performs simple buffering. When only simple, low-level disk I/O is required,

rawFs has the advantages of size and speed.

Services for file-oriented device drivers using rawFs are implemented in

rawFsLib.

SCSI Sequential File System: tapeFs

VxWorks provides a file system for tape devices that do not use a standard file or

directory structure on tape. The tape volume is treated much like a raw device

where the entire volume is a large file. Any data organization on this large file is

the responsibility of a higher-level layer.
10

1

1
Overview
Services for SCSI sequential device drivers using tapeFs are implemented in

tapeFsLib.

Alternative File Systems

In VxWorks, the file system is not tied to the device or its driver. A device can be

associated with any file system. Alternatively, you can supply your own file

systems that use standard drivers in the same way, by following the same standard

interfaces between the file system, the driver, and the VxWorks I/O system.

Network

One key to VxWorks’s effective relationship with host development machines is its

extensive networking facilities. By providing a fast, easy-to-use connection

between the target and host systems, the network allows full use of the host

machine as a development system, as a debugging host, and as a provider of non-

real-time services in a final system.

VxWorks currently supports loosely coupled network connections over serial lines

(using SLIP, CSLIP, or PPP) or Ethernet networks (IEEE 802.3). It also supports

tightly coupled connections over a backplane bus using shared memory. VxWorks

uses the Internet protocols as implemented in BSD 4.3 for all network

communications.

In addition to the remote access provided by Tornado, VxWorks supports remote

command execution, remote login, and remote source-level debugging. VxWorks

also supports standard BSD socket calls, remote procedure calls, SNMP, remote file

access, boot parameter access from a host, and proxy ARP networks.

Sockets

VxWorks provides standard BSD socket calls, which allow real-time VxWorks

tasks and other processes to communicate in any combination with each other over

the network. There are two sets of VxWorks socket calls: you can use sockets that

are source-compatible with BSD 4.3 UNIX, or you can use the zbuf socket interface
to streamline throughput. (The TCP subset of the zbuf interface is sometimes called

“zero-copy TCP.”)

Any task can open one or more sockets, to which other sockets can be connected.

Data written to one socket of a connected pair is read, transparently, from the other

socket. Because of this transparency, the two tasks do not necessarily know

whether they are communicating with another process or VxWorks task on the

same CPU or on another CPU, or with a process running under some other host
11

VxWorks 5.3.1
Programmer’s Guide
operating system. Similarly, tasks using the zbuf socket interface are not aware of

whether their communications partners are using standard sockets, or are also

using the zbuf interface.

For information on sockets, see 5.2.6 Sockets, p.251 and 5.2.7 The Zbuf Socket
Interface, p.264 and the reference entries for sockLib and zbufSockLib.

Remote Procedure Calls (RPC)

Originally designed by Sun Microsystems using the Sun ONC standard and

available in the public domain, Remote Procedure Call (RPC) is a protocol that

allows a process on one machine to call a procedure that is executed by another

process on another machine. Thus with RPC, a VxWorks task or host machine

process can invoke routines that are executed on other VxWorks or host machines,

in any combination. See the RPC documentation (publicly and commercially

available) and the reference entry for rpcLib.

Simple Network Management Protocol (WindNet SNMP Option)

The WindNet SNMPv1/v2c optional component allows VxWorks targets to be

managed and configured remotely through SNMP (the Simple Network

Management Protocol). Application developers can customize the SNMP

management information base to include information specific to each application

and environment.

For detailed information about WindNet SNMP, see the WindNet SNMPv1/v2c
VxWorks Component Release Supplement.

Remote File Access: NFS, RSH, FTP, TFTP

Remote file access across the network is also available. A program running on

VxWorks can use the host machine as a virtual file system. Files on any host

machine can be accessed through the network exactly as if they were local to the

VxWorks system. A program running under VxWorks does not need to know

where that file is, or how to access it. For example, /dk/file might be a file local to

the VxWorks system, while host:file might be a file located on another machine

entirely.

Conversely, VxWorks can allow host machines to use files maintained on VxWorks

just as transparently: programs running on the host need not know that the files

they use are maintained on the VxWorks real-time system.

VxWorks includes the Sun Microsystems standard Network File System (NFS).

VxWorks systems can run NFS clients, using files from other systems that export
12

1

1
Overview
files over NFS, or run NFS servers, exporting files to other systems. Alternatively,

VxWorks can use the following protocols to provide transparent remote file access:

■ The Remote Shell protocol (RSH) can be used as a client, accessing files on

UNIX host systems running an RSH server.

■ The File Transfer Protocol (FTP) provides remote access to VxWorks files from

other systems using FTP.

■ The Trivial File Transfer Protocol (TFTP) provides read/write capability to and

from a remote server.

See the reference entries for nfsLib, remLib, ftpLib, ftpdLib, tftpLib, and

tftpdLib, and the following sections: 3.7.4 Network File System (NFS) Devices, p.137,

5.3.4 Remote File Transfer Using TFTP, p.291, and 3.7.5 Non-NFS Network Devices,

p.138.

Boot Parameter Access from Host

BOOTP is a basic bootstrap protocol which allows a booting target to configure

itself dynamically by obtaining the required parameters from the host via the

network, instead of using information encoded in the target’s non-volatile RAM or

ROM. The actual transfer of the boot image is performed by a file transfer program.

BOOTP and TFTP are commonly used together for network booting.

Proxy ARP Networks

Proxy ARP provides transparent network access by using Address Resolution

Protocol (ARP) to make distinct networks appear as one logical network. The

proxy ARP scheme implemented in VxWorks provides an alternative to the use of

explicit subnets for access to the shared memory network.

With proxy ARP, nodes on different subnetworks are assigned addresses with the

same subnet number. Because they appear to reside on the same network, and

because they can communicate directly, they use ARP to resolve each other’s

hardware address. The gateway node that responds to ARP requests is called the

proxy server.

Virtual Memory (Including VxVMI Option)

Virtual memory support is provided for boards with Memory Management Units

(MMU). Bundled virtual memory support provides the ability to mark buffers

noncacheable. This is useful for multiprocessor environments where memory is

shared across processors or where DMA transfers take place. For information on
13

VxWorks 5.3.1
Programmer’s Guide
bundled virtual memory support, see 7. Virtual Memory Interface and the reference

entries for vmBaseLib and cacheLib.

Unbundled virtual memory support is available as the optional component

VxVMI. VxVMI provides the ability to make text segments and the exception

vector table read-only, and includes a set of routines for developers to manage their

own virtual memory contexts. For information on VxVMI, see 7. Virtual Memory
Interface and the reference entry for vmLib.

Shared-Memory Objects (VxMP Option)

The following shared-memory objects (available with VxWorks as the optional

component, VxMP) are used for communication and synchronization between

tasks on different CPUs:

■ Shared semaphores can be used to synchronize tasks on different CPUs as well

as provide mutual exclusion to shared data structures.

■ Shared message queues allow tasks on multiple processors to exchange

messages.

■ Shared memory management is available to allocate common data buffers for

tasks on different processors.

For information on VxMP, see 6. Shared-Memory Objects and the reference entries

for smObjLib, smObjShow, semSmLib, msgQSmLib, smMemLib, and

smNameLib.

Target-Resident Tools

In the Tornado development system, a full suite of development tools reside and

execute on the host machine; see the Tornado User’s Guide for details. However, a

target-resident shell, symbol table, and module loader/unloader can be

configured into the VxWorks system if necessary, for example, to create a

dynamically configured run-time system.

For information on these target-resident tools, see 9. Target Shell and the reference

entries for shellLib, usrLib, dbgLib, loadLib, unldLib, and symLib.
14

1

1
Overview
C++ Development (including Wind Foundation Classes Option)

VxWorks supports C++ development. The GNU C++ compiler is shipped with

Tornado. The Iostreams library provides support for formatted I/O in C++. The

standard Tornado interactive development tools such as the debugger, the shell,

and the incremental loader include C++ support.

In addition, you can order the Wind Foundation Classes optional component to

add the following libraries:

– VxWorks Wrapper Class library

– Tools.h++ library from Rogue Wave

– Booch Components library from Rogue Wave

For more information on these libraries, see 10. C++ Development.

Utility Libraries

VxWorks supplies many subroutines of general utility to application developers.

These routines are organized as a set of subroutine libraries, which are described

below. We urge you to use these libraries wherever possible. Using library utilities

reduces both development time and memory requirements for the application.

Interrupt Handling Support

VxWorks supplies routines for handling hardware interrupts and software traps

without having to resort to assembly language coding. Routines are provided to

connect C routines to hardware interrupt vectors, and to manipulate the processor

interrupt level.

For information on interrupt handling, see the intLib and intArchLib reference

entries. Also see 2. Basic OS for information about the context where interrupt-

level code runs and for special restrictions that apply to interrupt service routines.

Watchdog Timers

A watchdog facility allows callers to schedule execution of their own routines after

specified time delays. As soon as the specified number of ticks have elapsed, the

specified “timeout” routine is called at the interrupt level of the system clock,

unless the watchdog is canceled first. This mechanism is entirely different from the

kernel’s task delay facility. For information on watchdog timers, see 2.6 Watchdog
Timers, p.99 and the reference entry for wdLib.
15

VxWorks 5.3.1
Programmer’s Guide
Message Logging

A simple message logging facility allows applications to send error or status

messages to a logging task, which then formats and outputs the messages to a

system-wide logging device (such as the system console, disk, or accessible

memory). The message logging facility can be used from either interrupt level or

task level. For information on this facility, see 3.5.3 Message Logging, p.122 and the

reference entry for logLib.

Memory Allocation

VxWorks supplies a memory management facility useful for dynamically

allocating, freeing, and reallocating blocks of memory from a memory pool. Blocks

of arbitrary size can be allocated, and you can specify the size of the memory pool.

This memory scheme is built on a much more general mechanism that allows

VxWorks to manage several separate memory pools.

String Formatting and Scanning

VxWorks includes a complete set of ANSI C library string formatting and scanning

subroutines that implement printf()/scanf() format-driven encoding and

decoding and associated routines. See the reference entries for fioLib and

ansiStdio.

Linear and Ring Buffer Manipulations

The library bLib contains buffer manipulation routines such as copying, filling,

comparing, and so on, that have been optimized for speed. The library rngLib
provides a set of general ring buffer routines that manage first-in-first-out (FIFO)

circular buffers. Additionally, these ring buffers have the property that a single

writer and a single reader can access a ring buffer “simultaneously” without being

required to interlock their accesses explicitly.

Linked-List Manipulations

The library lstLib contains a complete set of routines for creating and

manipulating doubly-linked lists.

ANSI C Libraries

VxWorks provides all C libraries specified by ANSI X3.159-1989. The ANSI C

specification includes the following libraries: assert, ctype, errno, float, limits,

locale, math, setjmp, signal, stdarg, stdio, stddef, stdlib, string, and time.
16

1

1
Overview
The header files float.h, limits.h, errno.h, and stddef.h provide ANSI-specified

definitions and declarations. The more commonly used libraries are described in

the following reference entries:

ansiCtype routines for character manipulation.

ansiMath trigonometric, exponential, and logarithmic routines.

ansiSetjmp routines for implementing a non-local goto.

ansiStdarg routines for traversing a variable-length argument list.

ansiStdio routines for manipulating streams for input/output.

ansiStdlib a variety of routines, including those for type translation, memory

allocation, and random number generation.

sigLib signal-manipulation routines.

Performance Evaluation

To understand and optimize the performance of a real-time system, it can be useful

to time some of the VxWorks or application routines. VxWorks provides various

timing facilities to help with this task.

The VxWorks execution timer can time any subroutine or group of subroutines.

Because the system clock is too slow to provide the resolution necessary to time

especially fast routines, the timer can also repeatedly execute a group of routines

until the time of a single iteration is known to a reasonable accuracy. For

information on the execution timer, see the timexLib reference entry.

VxWorks also provides the spy utility, which provides CPU utilization information

for each task: the CPU time consumed, the time spent at interrupt level, and the

amount of idle time. Time is displayed in ticks and in percentages. For information

on this utility, see the spyLib reference entry.2

Even more powerful monitoring of the VxWorks system is available using the

optional product WindView; for more information, see the WindView User’s Guide.

2. You can also use this utility through the Tornado browser; see the Tornado User’s Guide:
Browser for details.
17

VxWorks 5.3.1
Programmer’s Guide
Target Agent

The target agent follows the WDB (Wind DeBug) protocol, allowing a VxWorks

target to be connected to the Tornado development tools. In the target agent’s

default configuration, shown in Figure 1-1, the agent runs as the VxWorks task

tWdbTask. The Tornado target server sends debugging requests to the target

agent. The debugging requests often result in the target agent controlling or

manipulating other tasks in the system.

By default, the target server and agent communicate using the network. However,

you can use alternative communication paths. For more information on the default

configuration or alternative configurations of the target agent, see the Tornado
User’s Guide: Getting Started. For information on the Tornado target server, see the

Tornado User’s Guide: Overview.

Board Support Packages (BSPs)

Two target-specific libraries, sysLib and sysALib, are included with each port of

VxWorks. These libraries are the heart of VxWorks portability; they provide an

identical software interface to the hardware functions of all boards. They include

facilities for hardware initialization, interrupt handling and generation, hardware

clock and timer management, mapping of local and bus memory spaces, memory

sizing, and so on.

Figure 1-1 Interaction Between Target Server and Target Agent

HOST TARGET

VxWorks OS

Communications
Driver

tWdbTask

tUser1 tUser2Target Server

(Target Agent)

(Ethernet, SLIP, etc.)NETWORK
18

1

1
Overview
Each BSP also includes a boot ROM or other boot mechanism. Many of these

import the run-time image from the development host. For information on boot

ROMs and other booting mechanisms see the Tornado User’s Guide: Getting Started.

For information on target-specific libraries, see 8.2 The Board Support Package (BSP),
p.427 and the target-specific reference entries for your board type.

VxWorks Simulator (VxSim Option)

VxSim, the VxWorks Simulator, is a UNIX program that simulates a VxWorks

target for use as a prototyping and testing environment. This optional product is

available for UNIX environments only.

VxSim is essentially a port of VxWorks to UNIX. In most regards, its capabilities

are identical to a true VxWorks system running on remote target hardware. You

can link in an application and rebuild the VxWorks image exactly the same way as

in any other VxWorks cross-development environment. All Tornado development

tools can be used with VxSim.

The difference between VxSim and a remote VxWorks target environment is that

in VxSim, the image executes on the UNIX machine itself as a UNIX process. There

is no emulation of instructions, because the code is in the host’s own CPU

architecture. VxSim includes a User Level IP (ULIP) driver, allowing it to obtain an

Internet address and communicate with the host (or other nodes on the network)

using the VxWorks networking tools.

Because target hardware interaction is not possible, device-driver development

may not be suitable for simulation. However, the VxWorks scheduler is

implemented in the VxSim UNIX process, maintaining true tasking interaction

with respect to priorities and preemption. This means that any application that is

written in a portable style and with minimal hardware interaction should be

portable between VxSim and VxWorks.

For more information on VxSim, see the VxSim User’s Guide.
19

VxWorks 5.3.1
Programmer’s Guide
1.5 Customer Services

A full range of support services is available from Wind River Systems to ensure

that you have the opportunity to make optimal use of the extensive features of

VxWorks.

This section summarizes the major services available. For more detailed

information, consult the Tornado User’s Guide: Customer Service.

Training

In the United States, Wind River Systems holds regularly scheduled classes on

Tornado and VxWorks. Customers can also arrange to have Tornado classes held

at their facility. The easiest way to learn about WRS training services, schedules,

and prices is through the World Wide Web. Point your site’s Web browser at the

following URL:

http://www.wrs.com/trainmain.html

You can also receive the training schedule from an automatic e-mail server. Send

e-mail with the following text in the header:

To: server@wrs.com
Subject: training

You can contact the Training Department at:

Outside of the United States, call your local distributor or nearest Wind River

Systems office for training information. See the back cover of this manual for a list

of Wind River Systems offices.

Customer Support

Direct contact with a staff of software engineers experienced in VxWorks is

available through the Wind River Systems Customer Support program. For

information on how to contact WRS Customer Support, see the copyright page at

the front of this manual.

Phone: 510/748–4100

800/545–WIND

Fax: 510/814–2010

E-mail: training@wrs.com
20

1

1
Overview
1.6 Documentation Conventions

Typographical Conventions

VxWorks documentation uses the conventions shown in Table 1-1 to differentiate

various elements. Parentheses are always included to indicate a subroutine name,

as in printf().

Cross-References

Cross-references in this guide to a reference entry for a tool or module refer to an

entry in the VxWorks Reference Manual (for target libraries or subroutines) or to the

reference appendix in the Tornado User’s Guide (for host tools). These references are

also provided in the Tornado Online Manuals. For more information about how to

access online documentation, see the Tornado User’s Guide: Documentation Guide.

Other references from one book to another are always at the chapter level, and take

the form Book Title: Chapter Name.

Table 1-1 Font Usage for Special Terms

Term Example

files, pathnames /etc/hosts

libraries, drivers memLib, nfsDrv

host tools more, chkdsk

subroutines semTake()

boot commands p

code display main ();

keyboard input make CPU=MC68040 ...

display output value = 0

user-supplied parameters name

constants INCLUDE_NFS

C keywords, cpp directives #define

named key on keyboard RETURN

control characters CTRL+C

lower-case acronyms fd
21

VxWorks 5.3.1
Programmer’s Guide
Pathnames

The top-level Tornado directory structure includes three major directories (see the

Tornado User’s Guide: Directories and Files). Because all VxWorks files reside in the

target directory, this manual uses relative pathnames starting below that directory.

For example, if you install Tornado in /usr/wind, the full pathname for the file

shown as config/all/configAll.h is /usr/wind/target/config/all/configAll.h.

NOTE: In this manual, forward slashes are used as pathname delimiters for both

UNIX and Windows filenames.

!

22

2
Basic OS
2.1 Introduction .. 29

2.2 Wind Features and POSIX Features ... 29

2.3 Tasks ... 30

2.3.1 Multitasking .. 30

2.3.2 Task State Transition .. 30

2.3.3 Wind Task Scheduling ... 32

Preemptive Priority Scheduling ... 32

Round-Robin Scheduling .. 33

Preemption Locks .. 34

2.3.4 Tasking Control .. 35

Task Creation and Activation ... 35

Task Names and IDs .. 35

Task Options ... 36

Task Information .. 37

Task Deletion and Deletion Safety ... 38

Task Control .. 39

2.3.5 Tasking Extensions ... 40

2.3.6 POSIX Scheduling Interface ... 41

Differences Between POSIX and Wind Scheduling 41

Getting and Setting POSIX Task Priorities 43

Getting and Displaying the Current Scheduling Policy 44
23

VxWorks 5.3.1
Programmer’s Guide
Getting Scheduling Parameters: Priority Limits and Time Slice 45

2.3.7 Task Error Status: errno .. 45

Layered Definitions of errno .. 46

A Separate errno Value for Each Task .. 46

Error Return Convention .. 46

Assignment of Error Status Values ... 47

2.3.8 Task Exception Handling ... 48

2.3.9 Shared Code and Reentrancy ... 48

Dynamic Stack Variables .. 49

Guarded Global and Static Variables .. 50

Task Variables ... 50

Multiple Tasks with the Same Main Routine 51

2.3.10 VxWorks System Tasks ... 52

The Root Task: tUsrRoot ... 52

The Logging Task: tLogTask .. 53

The Exception Task: tExcTask .. 53

The Network Task: tNetTask ... 53

The Target Agent Task: tWdbTask .. 53

Tasks for Optional Components .. 53

2.4 Intertask Communications ... 54

2.4.1 Shared Data Structures ... 55

2.4.2 Mutual Exclusion ... 55

Interrupt Locks and Latency .. 56

Preemptive Locks and Latency .. 56

2.4.3 Semaphores .. 57

Semaphore Control .. 57

Binary Semaphores .. 58

Mutual-Exclusion Semaphores .. 62

Counting Semaphores ... 65

Special Semaphore Options ... 66

POSIX Semaphores .. 67

2.4.4 Message Queues .. 74

Wind Message Queues .. 75

POSIX Message Queues .. 77
24

2

2
Basic OS
Comparison of POSIX and Wind Message Queues 86

Displaying Message Queue Attributes ... 87

Servers and Clients with Message Queues 87

2.4.5 Pipes ... 88

2.4.6 Network Intertask Communication .. 89

Sockets ... 89

Remote Procedure Calls (RPC) .. 90

2.4.7 Signals .. 90

Basic Signal Routines ... 91

POSIX Queued Signals .. 92

Signal Configuration ... 93

2.5 Interrupt Service Code .. 93

2.5.1 Connecting Application Code to Interrupts 94

2.5.2 Interrupt Stack .. 95

2.5.3 Special Limitations of ISRs ... 95

2.5.4 Exceptions at Interrupt Level ... 97

2.5.5 Reserving High Interrupt Levels ... 98

2.5.6 Additional Restrictions for ISRs at High Interrupt Levels 98

2.5.7 Interrupt-to-Task Communication .. 98

2.6 Watchdog Timers ... 99

2.7 POSIX Clocks and Timers ... 100

2.8 POSIX Memory-Locking Interface .. 101
25

VxWorks 5.3.1
Programmer’s Guide
List of Tables

Table 2-1 Task State Transitions ... 31

Table 2-2 Task Scheduler Control Routines 32

Table 2-3 Task Creation Routines ... 35

Table 2-4 Task Name and ID Routines .. 36

Table 2-5 Task Options .. 37

Table 2-6 Task Option Routines ... 37

Table 2-7 Task Information Routines ... 37

Table 2-8 Task-Deletion Routines ... 38

Table 2-9 Task Control Routines .. 39

Table 2-10 Task Create, Switch, and Delete Hooks 40

Table 2-11 Routines that Can Be Called by Task Switch Hooks 41

Table 2-12 POSIX Scheduling Calls ... 42

Table 2-13 Semaphore Control Routines ... 58

Table 2-14 Counting Semaphore Example ... 65

Table 2-15 POSIX Semaphore Routines .. 68

Table 2-16 Possible Outcomes of Calling sem_open() 71

Table 2-17 Wind Message Queue Control .. 75

Table 2-18 POSIX Message Queue Routines 77

Table 2-19 Message Queue Feature Comparison 86

Table 2-20 Basic Signal Calls (BSD and POSIX 1003.1b) 91

Table 2-21 POSIX 1003.1b Queued Signal Calls 93

Table 2-22 Interrupt Routines ... 94

Table 2-23 Routines that Can Be Called by Interrupt Service Routines 96

Table 2-24 Watchdog Timer Calls .. 99

Table 2-25 POSIX Memory Management Calls 102

List of Figures

Figure 2-1 Task State Transitions ... 31

Figure 2-2 Priority Preemption .. 33

Figure 2-3 Round-Robin Scheduling ... 34

Figure 2-4 Shared Code ... 49

Figure 2-5 Stack Variables and Shared Code 50

Figure 2-6 Task Variables and Context Switches 51

Figure 2-7 Multiple Tasks Utilizing Same Code 52

Figure 2-8 Shared Data Structures ... 55

Figure 2-9 Taking a Semaphore .. 59

Figure 2-10 Giving a Semaphore .. 59
26

2

2
Basic OS
Figure 2-11 Priority Inversion ... 63

Figure 2-12 Priority Inheritance ... 63

Figure 2-13 Task Queue Types .. 67

Figure 2-14 Full Duplex Communication Using Message Queues ... 74

Figure 2-15 Client-Server Communications Using Message Queues 88

Figure 2-16 Routine Built by intConnect() ... 95

List of Examples

Example 2-1 Getting and Setting POSIX Task Priorities 43

Example 2-2 Getting POSIX Scheduling Policy 44

Example 2-3 Getting the POSIX Round-Robin Time Slice 45

Example 2-4 Using Semaphores for Task Synchronization 61

Example 2-5 Recursive Use of a Mutual-Exclusion Semaphore 64

Example 2-6 POSIX Unnamed Semaphores ... 69

Example 2-7 POSIX Named Semaphores .. 72

Example 2-8 Wind Message Queues .. 76

Example 2-9 POSIX Message Queues .. 78

Example 2-10 Notifying a Task that a Message Queue is Waiting 81

Example 2-11 Setting and Getting Message Queue Attributes 85

Example 2-12 Watchdog Timers ... 100

Example 2-13 POSIX Timers ... 101
27

2

2
Basic OS
2.1 Introduction

Modern real-time systems are based on the complementary concepts of

multitasking and intertask communications. A multitasking environment allows a

real-time application to be constructed as a set of independent tasks, each with its

own thread of execution and set of system resources. The intertask communication

facilities allow these tasks to synchronize and communicate in order to coordinate

their activity. In VxWorks, the intertask communication facilities range from fast

semaphores to message queues and pipes to network-transparent sockets.

Another key facility in real-time systems is hardware interrupt handling, because

interrupts are the usual mechanism to inform a system of external events. To get

the fastest possible response to interrupts, interrupt service routines (ISRs) in
VxWorks run in a special context of their own, outside of any task’s context.

This chapter discusses the multitasking kernel, tasking facilities, intertask

communication, and interrupt handling facilities, which are at the heart of the

VxWorks run-time environment.

2.2 Wind Features and POSIX Features

The POSIX standard for real-time extensions (1003.1b) specifies a set of interfaces

to kernel facilities. To improve application portability, the VxWorks kernel, wind,

includes both POSIX interfaces and interfaces designed specifically for VxWorks.

This manual (especially in this chapter) uses the qualifier “Wind” to identify

facilities designed expressly for use with the VxWorks wind kernel. For example,

you can find a discussion of Wind semaphores contrasted to POSIX semaphores in

Comparison of POSIX and Wind Semaphores, p.68.
29

VxWorks 5.3.1
Programmer’s Guide
2.3 Tasks

It is often essential to organize applications into independent, though cooperating,

programs. Each of these independent programs, while executing, is called a task.

In VxWorks, tasks have immediate, shared access to most system resources, while

also maintaining enough separate context to maintain individual threads of

control.

2.3.1 Multitasking

Multitasking provides the fundamental mechanism for an application to control

and react to multiple, discrete real-world events. The VxWorks real-time kernel,

wind, provides the basic multitasking environment. Multitasking creates the

appearance of many threads of execution running concurrently when, in fact, the

kernel interleaves their execution on the basis of a scheduling algorithm. Each

apparently independent program is called a task. Each task has its own context,
which is the CPU environment and system resources that the task sees each time it

is scheduled to run by the kernel. On a context switch, a task’s context is saved in

the task control block (TCB). A task’s context includes:

– a thread of execution, that is, the task’s program counter

– the CPU registers and (optionally) floating-point registers

– a stack for dynamic variables and function calls

– I/O assignments for standard input, output, and error

– a delay timer

– a timeslice timer

– kernel control structures

– signal handlers

– debugging and performance monitoring values

In VxWorks, one important resource that is not part of a task’s context is memory

address space: all code executes in a single common address space. Giving each

task its own memory space requires virtual-to-physical memory mapping, which

is available only with the optional product VxVMI; for more information, see

7. Virtual Memory Interface.

2.3.2 Task State Transition

The kernel maintains the current state of each task in the system. A task changes

from one state to another as the result of kernel function calls made by the
30

2

2
Basic OS
Figure 2-1 Task State Transitions

Table 2-1 Task State Transitions

State Symbol Description

READY The state of a task that is not waiting for any resource other than the CPU.

PEND The state of a task that is blocked due to the unavailability of some resource.

DELAY The state of a task that is asleep for some duration.

SUSPEND The state of a task that is unavailable for execution. This state is used primarily for

debugging. Suspension does not inhibit state transition, only task execution. Thus

pended-suspended tasks can still unblock and delayed-suspended tasks can still awaken.

DELAY + S The state of a task that is both delayed and suspended.

PEND + S The state of a task that is both pended and suspended.

PEND + T The state of a task that is pended with a timeout value.

PEND + S + T The state of a task that is both pended with a timeout value and suspended.

state + I The state of task specified by state, plus an inherited priority.

suspended

pended

taskInit()

The highest-priority ready task is executing.

ready delayed

ready pended
ready delayed
ready suspended

pended ready
pended suspended
delayed ready
delayed suspended

suspended ready
suspended pended
suspended delayed

semTake() / msgQReceive()
taskDelay()
taskSuspend()
semGive() / msgQSend()
taskSuspend()
expired delay

taskSuspend()
taskResume() / taskActivate()
taskResume()
taskResume()
31

VxWorks 5.3.1
Programmer’s Guide
application. When created, tasks enter the suspended state. Activation is necessary

for a created task to enter the ready state. The activation phase is extremely fast,

enabling applications to pre-create tasks and activate them in a timely manner. An

alternative is the spawning primitive, which allows a task to be created and

activated with a single function. Tasks can be deleted from any state.

The wind kernel states are shown in the state transition diagram in Figure 2-1, and

a summary of the corresponding state symbols you will see when working with

Tornado development tools is shown in Table 2-1.

2.3.3 Wind Task Scheduling

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks.

Priority-based preemptive scheduling is the default algorithm in wind, but you can

select round-robin scheduling for your applications as well. The routines listed in

Table 2-2 control task scheduling.

Preemptive Priority Scheduling

With a preemptive priority-based scheduler, each task has a priority and the kernel

ensures that the CPU is allocated to the highest priority task that is ready to run.

This scheduling method is preemptive in that if a task that has higher priority than

the current task becomes ready to run, the kernel immediately saves the current

task’s context and switches to the context of the higher priority task. In Figure 2-2,

task t1 is preempted by higher-priority task t2, which in turn is preempted by t3.

When t3 completes, t2 continues executing. When t2 completes execution, t1
continues executing.

The wind kernel has 256 priority levels, numbered 0 through 255. Priority 0 is the

highest and priority 255 is the lowest. Tasks are assigned a priority when created;

Table 2-2 Task Scheduler Control Routines

Call Description

kernelTimeSlice() Control round-robin scheduling.

taskPrioritySet() Change the priority of a task.

taskLock() Disable task rescheduling.

taskUnlock() Enable task rescheduling.
32

2

2
Basic OS
however, while executing, a task can change its priority using taskPrioritySet().
The ability to change task priorities dynamically allows applications to track

precedence changes in the real world.

Round-Robin Scheduling

Preemptive priority scheduling can be augmented with round-robin scheduling. A

round-robin scheduling algorithm attempts to share the CPU fairly among all

ready tasks of the same priority. Without round-robin scheduling, when multiple

tasks of equal priority must share the processor, a single task can usurp the

processor by never blocking, thus never giving other equal-priority tasks a chance

to run.

Round-robin scheduling achieves fair allocation of the CPU to tasks of the same

priority by an approach known as time slicing. Each task of a group of tasks

executes for a defined interval, or time slice; then another task executes for an equal

interval, in rotation. The allocation is fair in that no task of a priority group gets a

second slice of time before the other tasks of a group are given a slice.

Round-robin scheduling can be enabled with the routine kernelTimeSlice(), which

takes a parameter for a time slice, or interval. This interval is the amount of time

each task is allowed to run before relinquishing the processor to another equal-

priority task.

More precisely, a run-time counter is kept for each task and incremented on every

clock tick. When the specified time-slice interval is completed, the counter is

cleared and the task is placed at the tail of the queue of tasks at its priority. New

Figure 2-2 Priority Preemption

t1

KEY: = preemption

time

HIGH

LOW

pr
io

rit
y

t3

t2

= task completion

t1

t2
33

VxWorks 5.3.1
Programmer’s Guide
tasks joining a priority group are placed at the tail of the group with a run-time

counter initialized to zero.

If a task is preempted by a higher priority task during its interval, its run-time

count is saved and then restored when the task is again eligible for execution.

Figure 2-3 shows round-robin scheduling for three tasks of the same priority: t1, t2,

and t3. Task t2 is preempted by a higher priority task t4 but resumes at the count

where it left off when t4 is finished.

Preemption Locks

The wind scheduler can be explicitly disabled and enabled on a per-task basis with

the routines taskLock() and taskUnlock(). When a task disables the scheduler by

calling taskLock(), no priority-based preemption can take place while that task is

running.

However, if the task explicitly blocks or suspends, the scheduler selects the next

highest-priority eligible task to execute. When the preemption-locked task

unblocks and begins running again, preemption is again disabled.

Note that preemption locks prevent task context switching but do not lock out

interrupt handling.

Preemption locks can be used to achieve mutual exclusion; however, keep the

duration of preemption locking to a minimum. For more information, see

2.4.2 Mutual Exclusion, p.55.

Figure 2-3 Round-Robin Scheduling

t1

KEY: = preemption

time

HIGH

LOW

pr
io

rit
y

t2 t3 t1

t4

t2 t2

= task completion

time slice

t3
34

2

2
Basic OS
2.3.4 Tasking Control

The following sections give an overview of the basic VxWorks tasking routines,

which are found in the VxWorks library taskLib. These routines provide the means

for task creation, control, and information. See the reference entry for taskLib for

further discussion. For interactive use, you can control VxWorks tasks from the

host-resident shell; see the Tornado User’s Guide: Shell.

Task Creation and Activation

The routines listed in Table 2-3 are used to create tasks.

The arguments to taskSpawn() are the new task’s name (an ASCII string), priority,

an “options” word, stack size, main routine address, and 10 arguments to be

passed to the main routine as startup parameters:

id = taskSpawn (name, priority, options, stacksize, main, arg1, …arg10);

The taskSpawn() routine creates the new task context, which includes allocating

the stack and setting up the task environment to call the main routine (an ordinary

subroutine) with the specified arguments. The new task begins execution at the

entry to the specified routine.

The taskSpawn() routine embodies the lower-level steps of allocation,

initialization, and activation. The initialization and activation functions are

provided by the routines taskInit() and taskActivate(); however, we recommend

you use these routines only when you need greater control over allocation or

activation.

Task Names and IDs

When a task is spawned, you can specify an ASCII string of any length to be the

task name. VxWorks returns a task ID, which is a 4-byte handle to the task’s data

Table 2-3 Task Creation Routines

Call Description

taskSpawn() Spawn (create and activate) a new task.

taskInit() Initialize a new task.

taskActivate() Activate an initialized task.
35

VxWorks 5.3.1
Programmer’s Guide
structures. Most VxWorks task routines take a task ID as the argument specifying

a task. VxWorks uses a convention that a task ID of 0 (zero) always implies the

calling task.

A task name should not conflict with any existing task name. Furthermore, to use

the Tornado development tools to their best advantage, task names should not

conflict with globally visible routine or variable names. To avoid name conflicts,

VxWorks uses a convention of prefixing all task names started from the target with

the letter t and task names started from the host with the letter u.

You may not want to name some or all of your application’s tasks. If a NULL

pointer is supplied for the name argument of taskSpawn(), then VxWorks assigns

a unique name. The name is of the form tN, where N is a decimal integer that

increases by one for each unnamed task that is spawned.

NOTE: In the shell, task names are resolved to their corresponding task IDs to

simplify interaction with existing tasks; see the Tornado User’s Guide: Shell.

The taskLib routines listed in Table 2-4 manage task IDs and names.

Task Options

When a task is spawned, an option parameter is specified by performing a logical

OR operation on the desired options, listed in the following table. Note that

VX_FP_TASK must be specified if the task performs any floating-point operations.

To create a task that includes floating-point operations, use:

tid = taskSpawn ("tMyTask", 90, VX_FP_TASK, 20000, myFunc, 2387, 0, 0,
0, 0, 0, 0, 0, 0, 0);

Task options can also be examined and altered after a task is spawned by means of

the routines listed in Table 2-6. Currently, only the VX_UNBREAKABLE option can

be altered.

Table 2-4 Task Name and ID Routines

Call Description

taskName() Get the task name associated with a task ID.

taskNameToId() Look up the task ID associated with a task name.

taskIdSelf() Get the calling task’s ID.

taskIdVerify() Verify the existence of a specified task.

!

36

2

2
Basic OS
Task Information

The routines listed in Table 2-7 get information about a task by taking a snapshot

of a task’s context when called. The state of a task is dynamic, and the information

may not be current unless the task is known to be dormant (that is, suspended).

Table 2-5 Task Options

Name Hex Value Description

VX_FP_TASK 0x8 Execute with the floating-point coprocessor.

VX_NO_STACK_FILL 0x100 Do not fill stack with 0xee.

VX_PRIVATE_ENV 0x80 Execute task with a private environment.

VX_UNBREAKABLE 0x2 Disable breakpoints for the task.

Table 2-6 Task Option Routines

Call Description

taskOptionsGet() Examine task options.

taskOptionsSet() Set task options.

Table 2-7 Task Information Routines

Call Description

taskIdListGet() Fill an array with the IDs of all active tasks.

taskInfoGet() Get information about a task.

taskPriorityGet() Examine the priority of a task.

taskRegsGet() Examine a task’s registers.

taskRegsSet() Set a task’s registers.

taskIsSuspended() Check if a task is suspended.

taskIsReady() Check if a task is ready to run.

taskTcb() Get a pointer to task’s control block.
37

VxWorks 5.3.1
Programmer’s Guide
Task Deletion and Deletion Safety

Tasks can be dynamically deleted from the system. VxWorks includes the routines

listed in Table 2-8 to delete tasks and protect tasks from unexpected deletion.

WARNING: Make sure that tasks are not deleted at inappropriate times: a task

must release all shared resources it holds before an application deletes the task.

Tasks implicitly call exit() if the entry routine specified during task creation

returns. Alternatively, a task can explicitly call exit() at any point to kill itself. A

task can kill another task by calling taskDelete().

When a task is deleted, no other task is notified of this deletion. The routines

taskSafe() and taskUnsafe() address problems that stem from unexpected

deletion of tasks. The routine taskSafe() protects a task from deletion by other

tasks. This protection is often needed when a task executes in a critical region or

engages a critical resource.

For example, a task might take a semaphore for exclusive access to some data

structure. While executing inside the critical region, the task might be deleted by

another task. Because the task is unable to complete the critical region, the data

structure might be left in a corrupt or inconsistent state. Furthermore, because the

semaphore can never be released by the task, the critical resource is now

unavailable for use by any other task and is essentially frozen.

Using taskSafe() to protect the task that took the semaphore prevents such an

outcome. Any task that tries to delete a task protected with taskSafe() is blocked.

When finished with its critical resource, the protected task can make itself available

* Memory that is allocated by the task during its execution is not freed when the

task is terminated.

Table 2-8 Task-Deletion Routines

Call Description

exit() Terminate the calling task and free memory (task stacks

and task control blocks only).*

taskDelete() Terminate a specified task and free memory (task stacks

and task control blocks only).*

taskSafe() Protect the calling task from deletion.

taskUnsafe() Undo a taskSafe() (make the calling task available for

deletion).

!

38

2

2
Basic OS
for deletion by calling taskUnsafe(), which readies any deleting task. To support

nested deletion-safe regions, a count is kept of the number of times taskSafe() and

taskUnsafe() are called. Deletion is allowed only when the count is zero, that is,

there are as many “unsafes” as “safes.” Protection operates only on the calling task.

A task cannot make another task safe or unsafe from deletion.

The following code fragment shows how to use taskSafe() and taskUnsafe() to
protect a critical region of code:

taskSafe ();
semTake (semId, WAIT_FOREVER); /* Block until semaphore available */
.
. critical region
.
semGive (semId); /* Release semaphore */
taskUnsafe ();

Deletion safety is often coupled closely with mutual exclusion, as in this example.

For convenience and efficiency, a special kind of semaphore, the mutual-exclusion
semaphore, offers an option for deletion safety. For more information, see Mutual-
Exclusion Semaphores, p.62.

Task Control

The routines listed in Table 2-9 provide direct control over a task’s execution.

VxWorks debugging facilities require routines for suspending and resuming a

task. They are used to freeze a task’s state for examination.

Tasks may require restarting during execution in response to some catastrophic

error. The restart mechanism, taskRestart(), recreates a task with the original

creation arguments. The Tornado shell also uses this mechanism to restart itself in

response to a task-abort request; for information, see the Tornado User’s Guide: Shell.

Table 2-9 Task Control Routines

Call Description

taskSuspend() Suspend a task.

taskResume() Resume a task.

taskRestart() Restart a task.

taskDelay() Delay a task; delay units are ticks.

nanosleep() Delay a task; delay units are nanoseconds.
39

VxWorks 5.3.1
Programmer’s Guide
Delay operations provide a simple mechanism for a task to sleep for a fixed

duration. Task delays are often used for polling applications. For example, to delay

a task for half a second without making assumptions about the clock rate, call:

taskDelay (sysClkRateGet () / 2);

The routine sysClkRateGet() returns the speed of the system clock in ticks per

second. Instead of taskDelay(), you can use the POSIX routine nanosleep() to
specify a delay directly in time units. Only the units are different; the resolution of

both delay routines is the same, and depends on the system clock. For details, see

2.7 POSIX Clocks and Timers, p.100.

As a side effect, taskDelay() moves the calling task to the end of the ready queue

for tasks of the same priority. In particular, you can yield the CPU to any other

tasks of the same priority by “delaying” for zero clock ticks:

taskDelay (NO_WAIT); /* allow other tasks of same priority to run */

A “delay” of zero duration is only possible with taskDelay(); nanosleep()
considers it an error.

2.3.5 Tasking Extensions

To allow additional task-related facilities to be added to the system without

modifying the kernel, wind provides task create, switch, and delete hooks, which allow

additional routines to be invoked whenever a task is created, a task context switch

occurs, or a task is deleted. There are spare fields in the task control block (TCB)

available for application extension of a task’s context. These hook routines are

listed in Table 2-10; for more information, see the reference entry for taskHookLib.

Table 2-10 Task Create, Switch, and Delete Hooks

Call Description

taskCreateHookAdd() Add a routine to be called at every task create.

taskCreateHookDelete() Delete a previously added task create routine.

taskSwitchHookAdd() Add a routine to be called at every task switch.

taskSwitchHookDelete() Delete a previously added task switch routine.

taskDeleteHookAdd() Add a routine to be called at every task delete.

taskDeleteHookDelete() Delete a previously added task delete routine.
40

2

2
Basic OS
User-installed switch hooks are called within the kernel context. Thus, switch

hooks do not have access to all VxWorks facilities. Table 2-11 summarizes the

routines that can be called from a task switch hook; in general, any routine that

does not involve the kernel can be called.

2.3.6 POSIX Scheduling Interface

The POSIX 1003.1b scheduling routines, provided by schedPxLib, are shown in

Table 2-12. These routines let you use a portable interface to get and set task

priority, get the scheduling policy, get the maximum and minimum priority for

tasks, and if round-robin scheduling is in effect, get the length of a time slice. To

understand how to use the routines in this alternative interface, be aware of the

minor differences between the POSIX and Wind methods of scheduling.

Differences Between POSIX and Wind Scheduling

POSIX and Wind scheduling routines differ in the following ways:

■ POSIX scheduling is based on processes, while Wind scheduling is based on

tasks. Tasks and processes differ in several ways. Most notably, tasks can

address memory directly while processes cannot; and processes inherit only

some specific attributes from their parent process, while tasks operate in

exactly the same environment as the parent task.

Table 2-11 Routines that Can Be Called by Task Switch Hooks

Library Routines

bLib All routines

fppArchLib fppSave(), fppRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet(), intLock(), intUnlock()

lstLib All routines except lstFree()

mathALib All are callable if fppSave()/fppRestore() are used

rngLib All routines except rngCreate() and roundlet()

taskLib taskIdVerify(), taskIdDefault(), taskIsReady(), taskIsSuspended(),
taskTcb()

vxLib vxTas()
41

VxWorks 5.3.1
Programmer’s Guide
Tasks and processes are alike in that they can be scheduled independently.

■ VxWorks documentation uses the term preemptive priority scheduling, while

the POSIX standard uses the term FIFO. This difference is purely one of

nomenclature: both describe the same priority-based policy.

■ The POSIX scheduling algorithms are applied on a process-by-process basis.

The Wind methodology, on the other hand, applies scheduling algorithms on

a system-wide basis—either all tasks use a round-robin scheme, or all use a

preemptive priority scheme.

■ The POSIX priority numbering scheme is the inverse of the Wind scheme. In

POSIX, the higher the number, the higher the priority; in the Wind scheme, the

lower the number, the higher the priority, where 0 is the highest priority.

Accordingly, the priority numbers used with the POSIX scheduling library

(schedPxLib) do not match those used and reported by all other components

of VxWorks. You can override this default by setting the global variable

posixPriorityNumbering to FALSE. If you do this, the Wind numbering

scheme (smaller number = higher priority) is used by schedPxLib, and its

priority numbers match those used by the other components of VxWorks.

The POSIX scheduling routines are included when INCLUDE_POSIX_SCHED is

defined in configAll.h; see 8. Configuration for information on configuring

VxWorks.

Table 2-12 POSIX Scheduling Calls

Call Description

sched_setparam() Set a task’s priority.

sched_getparam() Get the scheduling parameters for a specified task.

sched_setscheduler() Set scheduling policy and parameters for a task.

sched_yield() Relinquish the CPU.

sched_getscheduler() Get the current scheduling policy.

sched_get_priority_max() Get the maximum priority.

sched_get_priority_min() Get the minimum priority.

sched_rr_get_interval() If round-robin scheduling, get the time slice length.
42

2

2
Basic OS
Getting and Setting POSIX Task Priorities

The routines sched_setparam() and sched_getparam() set and get a task’s priority,

respectively. Both routines take a task ID and a sched_param structure (defined in

h/sched.h). A task ID of 0 sets or gets the priority for the calling task. The

sched_priority member of the sched_param structure specifies the new task

priority when sched_setparam() is called. The routine sched_getparam() fills in

the sched_priority with the specified task’s current priority.

Example 2-1 Getting and Setting POSIX Task Priorities

/* This example sets the calling task’s priority to 150, then verifies
* that priority. To run from the shell, spawn as a task:

 * -> sp priorityTest
*/

/* includes */
#include "vxWorks.h"
#include "sched.h"

/* defines */
#define PX_NEW_PRIORITY 150

STATUS priorityTest (void)
{
struct sched_param myParam;

/* initialize param structure to desired priority */
myParam.sched_priority = PX_NEW_PRIORITY;
if (sched_setparam (0, &myParam) == ERROR)

{
printf ("error setting priority\n");
return (ERROR);
}

/* demonstrate getting a task priority as a sanity check; ensure it
 * is the same value that we just set.
 */

if (sched_getparam (0, &myParam) == ERROR)
{
printf ("error getting priority\n");
return (ERROR);
}

if (myParam.sched_priority != PX_NEW_PRIORITY)
{
printf ("error - priorities do not match\n");
return (ERROR);
}

else
printf ("task priority = %d\n", myParam.sched_priority);

return (OK);
}

43

VxWorks 5.3.1
Programmer’s Guide
The routine sched_setscheduler() is designed to set both scheduling policy and

priority for a single POSIX process (which corresponds in most other cases to a

single Wind task). In the VxWorks kernel, sched_setscheduler() controls only task

priority, because the kernel does not allow tasks to have scheduling policies that

differ from one another. If its policy specification matches the current system-wide

scheduling policy, sched_setscheduler() sets only the priority, thus acting like

sched_setparam(). If its policy specification does not match the current one,

sched_setscheduler() returns an error.

The only way to change the scheduling policy is to change it for all tasks; there is

no POSIX routine for this purpose. To set a system-wide scheduling policy, use the

Wind function kernelTimeSlice() described in Round-Robin Scheduling, p.33.

Getting and Displaying the Current Scheduling Policy

The POSIX routine sched_getscheduler() returns the current scheduling policy.

There are two valid scheduling policies in VxWorks: preemptive priority

scheduling (in POSIX terms, SCHED_FIFO) and round-robin scheduling by

priority (SCHED_RR).

Example 2-2 Getting POSIX Scheduling Policy

/* This example gets the scheduling policy and displays it. */

/* includes */

#include "vxWorks.h"
#include "sched.h"

STATUS schedulerTest (void)
{
int policy;

if ((policy = sched_getscheduler (0)) == ERROR)
{
printf ("getting scheduler failed\n");
return (ERROR);
}

/* sched_getscheduler returns either SCHED_FIFO or SCHED_RR */

if (policy == SCHED_FIFO)
printf ("current scheduling policy is FIFO\n");

else
printf ("current scheduling policy is round robin\n");

return (OK);
}

44

2

2
Basic OS
Getting Scheduling Parameters: Priority Limits and Time Slice

The routines sched_get_priority_max() and sched_get_priority_min() return the

maximum and minimum possible POSIX priority values, respectively.

If round-robin scheduling is enabled, you can use sched_rr_get_interval() to
determine the length of the current time-slice interval. This routine takes as an

argument a pointer to a timespec structure (defined in time.h), and writes the

number of seconds and nanoseconds per time slice to the appropriate elements of

that structure.

Example 2-3 Getting the POSIX Round-Robin Time Slice

/* The following example checks that round-robin scheduling is enabled,
* gets the length of the time slice, and then displays the time slice.
*/

/* includes */

#include "vxWorks.h"
#include "sched.h"

STATUS rrgetintervalTest (void)
{
struct timespec slice;

/* turn on round robin */

kernelTimeSlice (30);

if (sched_rr_get_interval (0, &slice) == ERROR)
{
printf ("get-interval test failed\n");
return (ERROR);
}

printf ("time slice is %l seconds and %l nanoseconds\n",
slice.tv_sec, slice.tv_nsec);

return (OK);
}

2.3.7 Task Error Status: errno

By convention, C library functions set a single global integer variable errno to an

appropriate error number whenever the function encounters an error. This

convention is specified as part of the ANSI C standard.
45

VxWorks 5.3.1
Programmer’s Guide
Layered Definitions of errno

In VxWorks, errno is simultaneously defined in two different ways. There is, as in

ANSI C, an underlying global variable called errno, which you can display by

name using Tornado development tools; see the Tornado User’s Guide. However,

errno is also defined as a macro in errno.h; this is the definition visible to all of

VxWorks except for one function. The macro is defined as a call to a function

__errno() that returns the address of the global variable, errno (as you might

guess, this is the single function that does not itself use the macro definition for

errno). This subterfuge yields a useful feature: because __errno() is a function, you

can place breakpoints on it while debugging, to determine where a particular error

occurs. Nevertheless, because the result of the macro errno is the address of the

global variable errno, C programs can set the value of errno in the standard way:

errno = someErrorNumber;

As with any other errno implementation, take care not to have a local variable of

the same name.

A Separate errno Value for Each Task

In VxWorks, the underlying global errno is a single predefined global variable that

can be referenced directly by application code that is linked with VxWorks (either

statically on the host or dynamically at load time). However, for errno to be useful

in the multitasking environment of VxWorks, each task must see its own version

of errno. Therefore errno is saved and restored by the kernel as part of each task’s

context every time a context switch occurs. Similarly, interrupt service routines
(ISRs) see their own versions of errno.

This is accomplished by saving and restoring errno on the interrupt stack as part

of the interrupt enter and exit code provided automatically by the kernel (see

2.5.1 Connecting Application Code to Interrupts, p.94). Thus, regardless of the

VxWorks context, an error code can be stored or consulted with direct

manipulation of the global variable errno.

Error Return Convention

Almost all VxWorks functions follow a convention that indicates simple success or

failure of their operation by the actual return value of the function. Many functions

return only the status values OK (0) or ERROR (-1). Some functions that normally

return a nonnegative number (for example, open() returns a file descriptor) also
46

2

2
Basic OS
return ERROR to indicate an error. Functions that return a pointer usually return

NULL (0) to indicate an error. In most cases, a function returning such an error

indication also sets errno to the specific error code.

The global variable errno is never cleared by VxWorks routines. Thus, its value

always indicates the last error status set. When a VxWorks subroutine gets an error

indication from a call to another routine, it usually returns its own error indication

without modifying errno. Thus, the value of errno that is set in the lower-level

routine remains available as the indication of error type.

For example, the VxWorks routine intConnect(), which connects a user routine to

a hardware interrupt, allocates memory by calling malloc() and builds the

interrupt driver in this allocated memory. If malloc() fails because insufficient

memory remains in the pool, it sets errno to a code indicating an insufficient-

memory error was encountered in the memory allocation library, memLib. The

malloc() routine then returns NULL to indicate the failure. The intConnect()
routine, receiving the NULL from malloc(), then returns its own error indication of

ERROR. However, it does not alter errno, leaving it at the “insufficient memory”

code set by malloc(). For example:

if ((pNew = malloc (CHUNK_SIZE)) == NULL)
return (ERROR);

We recommend that you use this mechanism in your own subroutines, setting and

examining errno as a debugging technique. A string constant associated with

errno can be displayed using printErrno() if the errno value has a corresponding

string entered in the error-status symbol table, statSymTbl. See the reference entry

errnoLib for details on error-status values and building statSymTbl.

Assignment of Error Status Values

VxWorks errno values encode the module that issues an error, in the most

significant two bytes, and use the least significant two bytes for individual error

numbers. All VxWorks module numbers are in the range 1–500; errno values with

a “module” number of zero are used for source compatibility.

All other errno values (that is, positive values greater than or equal to 501<<16,

and all negative values) are available for application use.

See the reference entry on errnoLib for more information about defining and

decoding errno values with this convention.
47

VxWorks 5.3.1
Programmer’s Guide
2.3.8 Task Exception Handling

Errors in program code or data can cause hardware exception conditions such as

illegal instructions, bus or address errors, divide by zero, and so forth. The

VxWorks exception handling package takes care of all such exceptions. The default

exception handler suspends the task that caused the exception, and saves the state

of the task at the point of the exception. The kernel and other tasks continue

uninterrupted. A description of the exception is transmitted to the Tornado

development tools, which can be used to examine the suspended task; see the

Tornado User’s Guide: Shell for details.

Tasks can also attach their own handlers for certain hardware exceptions through

the signal facility. If a task has supplied a signal handler for an exception, the

default exception handling described above is not performed. Signals are also used

for signaling software exceptions as well as hardware exceptions. They are

described in more detail in 2.4.7 Signals, p.90 and in the reference entry for sigLib.

2.3.9 Shared Code and Reentrancy

In VxWorks, it is common for a single copy of a subroutine or subroutine library to

be invoked by many different tasks. For example, many tasks may call printf(), but

there is only a single copy of the subroutine in the system. A single copy of code

executed by multiple tasks is called shared code. VxWorks dynamic linking facilities

make this particularly easy. Shared code also makes the system more efficient and

easier to maintain; see Figure 2-4.

Shared code must be reentrant. A subroutine is reentrant if a single copy of the

routine can be called from several task contexts simultaneously without conflict.

Such conflict typically occurs when a subroutine modifies global or static

variables, because there is only a single copy of the data and code. A routine’s

references to such variables can overlap and interfere in invocations from different

task contexts.

Most routines in VxWorks are reentrant. However, all routines which have a

corresponding name_r() routine should be assumed non-reentrant. For example,

because ldiv() has a corresponding routine ldiv_r(), you can assume that ldiv() is
not reentrant.

VxWorks I/O and driver routines are reentrant, but require careful application

design. For buffered I/O, we recommend using file-pointer buffers on a per-task

basis. At the driver level, it is possible to load buffers with streams from different

tasks, due to the global file descriptor table in VxWorks. This may or may not be

desirable, depending on the nature of the application. For example, a packet driver
48

2

2
Basic OS
can mix streams from different tasks because the packet header identifies the

destination of each packet.

The majority of VxWorks routines use the following reentrancy techniques:

– dynamic stack variables

– global and static variables guarded by semaphores

– task variables

We recommend applying these same techniques when writing application code

that can be called from several task contexts simultaneously.

Dynamic Stack Variables

Many subroutines are pure code, having no data of their own except dynamic stack

variables. They work exclusively on data provided by the caller as parameters. The

linked-list library, lstLib, is a good example of this. Its routines operate on lists and

nodes provided by the caller in each subroutine call.

Subroutines of this kind are inherently reentrant. Multiple tasks can use such

routines simultaneously without interfering with each other, because each task

does indeed have its own stack. See Figure 2-5.

Figure 2-4 Shared Code

TASKS SHARED CODE

...

taskTwo (void)
{
myFunc();

...
}

myFunc();

taskOne (void)
{
...

...
}

}

myFunc (void)
{
...
49

VxWorks 5.3.1
Programmer’s Guide
Guarded Global and Static Variables

Some libraries encapsulate access to common data. One example is the memory

allocation library, memLib, which manages pools of memory to be used by many

tasks. This library declares and uses its own static data variables to keep track of

pool allocation.

This kind of library requires some caution because the routines are not inherently

reentrant. Multiple tasks simultaneously invoking the routines in the library might

interfere with access to common variables. Such libraries must be made explicitly

reentrant by providing a mutual-exclusion mechanism to prohibit tasks from

simultaneously executing critical sections of code. The usual mutual-exclusion

mechanism is the semaphore facility provided by semLib and described in

2.4.3 Semaphores, p.57.

Task Variables

Some routines that can be called by multiple tasks simultaneously may require

global or static variables with a distinct value for each calling task. For example,

several tasks may reference a private buffer of memory and yet refer to it with the

same global variable.

Figure 2-5 Stack Variables and Shared Code

TASKS COMMON SUBROUTINETASK STACKS

...
myDataOne
...

...
myDataTwo
...

comFunc() (myDataOne);

taskOne ()
{
...

...
}

...

taskTwo ()
{
...

comFunc() (myDataTwo);
}

{

comFunc (yourData)
{
...
50

2

2
Basic OS
To accommodate this, VxWorks provides a facility called task variables that allows

4-byte variables to be added to a task’s context, so that the value of such a variable

is switched every time a task switch occurs to or from its owner task. Typically,

several tasks declare the same variable (4-byte memory location) as a task variable.

Each of those tasks can then treat that single memory location as its own private

variable; see Figure 2-6. This facility is provided by the routines taskVarAdd(),
taskVarDelete(), taskVarSet(), and taskVarGet(), which are described in the

reference entry for taskVarLib.

Use this mechanism sparingly. Each task variable adds a few microseconds to the

context switching time for its task, because the value of the variable must be saved

and restored as part of the task’s context. Consider collecting all of a module’s task

variables into a single dynamically allocated structure, and then making all

accesses to that structure indirectly through a single pointer. This pointer can then

be the task variable for all tasks using that module.

Multiple Tasks with the Same Main Routine

With VxWorks, it is possible to spawn several tasks with the same main routine.

Each spawn creates a new task with its own stack and context. Each spawn can also

pass the main routine different parameters to the new task. In this case, the same

rules of reentrancy described in Task Variables, p.50 apply to the entire task.

Figure 2-6 Task Variables and Context Switches

OLD TCB

pTaskVar globDat

NEW TCB

pTaskVar

value saved
in old

task’s TCB

value restored
from new

task’s TCB

current value of
globDat

globDat
51

VxWorks 5.3.1
Programmer’s Guide
This is useful when the same function needs to be performed concurrently with

different sets of parameters. For example, a routine that monitors a particular kind

of equipment might be spawned several times to monitor several different pieces

of that equipment. The arguments to the main routine could indicate which

particular piece of equipment the task is to monitor.

In Figure 2-7, multiple joints of the mechanical arm use the same code. The tasks

manipulating the joints invoke joint(). The joint number (jointNum) is used to

indicate which joint on the arm to manipulate.

2.3.10 VxWorks System Tasks

VxWorks includes several system tasks, described in the following sections.

The Root Task: tUsrRoot

The root task, tUsrRoot, is the first task executed by the kernel. The entry point of

the root task is usrRoot() in config/all/usrConfig.c and initializes most VxWorks

facilities. It spawns such tasks as the logging task, the exception task, the network

task, and the tRlogind daemon. Normally, the root task terminates and is deleted

after all initialization has occurred. You are free to add any necessary initialization

to the root task. For more information, see 8.3 Configuring VxWorks, p.430.

Figure 2-7 Multiple Tasks Utilizing Same Code

joint_1

joint_2

joint_3

joint
(
int jointNum
)
{
/* joint code here */
}

52

2

2
Basic OS
The Logging Task: tLogTask

The log task, tLogTask, is used by VxWorks modules to log system messages

without having to perform I/O in the current task context. For more information,

see 3.5.3 Message Logging, p.122 and the reference entry for logLib.

The Exception Task: tExcTask

The exception task, tExcTask, supports the VxWorks exception handling package

by performing functions that cannot occur at interrupt level. It must have the

highest priority in the system. Do not suspend, delete, or change the priority of this

task. For more information, see the reference entry for excLib.

The Network Task: tNetTask

The tNetTask daemon handles the task-level functions required by the VxWorks

network.

The Target Agent Task: tWdbTask

The target agent task, tWdbTask, is created if the target agent is set to run in task

mode; see 8.4.1 Scaling Down VxWorks, p.447. It services requests from the Tornado

target server; for information on this server, see the Tornado User’s Guide: Overview.

Tasks for Optional Components

The following VxWorks system tasks are created if their associated configuration

constants are defined; for more information, see 8.3 Configuring VxWorks, p.430.

tShell If you have included the target shell in the VxWorks configuration, it

is spawned as this task. Any routine or task that is invoked from the

target shell, rather than spawned, runs in the tShell context. For more

information, see 9. Target Shell.

tRlogind If you have included the target shell and the rlogin facility in the

VxWorks configuration, this daemon allows remote users to log in to

VxWorks. It accepts a remote login request from another VxWorks or

host system and spawns tRlogInTask and tRlogOutTask. These tasks

exist as long as the remote user is logged on. During the remote
53

VxWorks 5.3.1
Programmer’s Guide
session, the shell’s (and any other task’s) input and output are

redirected to the remote user. A tty-like interface is provided to the

remote user through the use of the VxWorks pseudo-terminal driver,

ptyDrv. For more information, see 3.7.1 Serial I/O Devices (Terminal and
Pseudo-Terminal Devices), p.131 and the reference entry for ptyDrv.

tTelnetd If you have included the target shell and the telnet facility in the

VxWorks configuration, this daemon allows remote users to log in to

VxWorks with telnet. It accepts a remote login request from another

VxWorks or host system and spawns the input task tTelnetInTask and

output task tTelnetOutTask. These tasks exist as long as the remote

user is logged on. During the remote session, the shell’s (and any other

task’s) input and output are redirected to the remote user. A tty-like

interface is provided to the remote user through the use of the

VxWorks pseudo-terminal driver, ptyDrv. See 3.7.1 Serial I/O Devices
(Terminal and Pseudo-Terminal Devices), p.131 and the reference entry

for ptyDrv for further explanation.

tPortmapd If you have included the RPC facility in the VxWorks configuration,

this daemon is an RPC server that acts as a central registrar for RPC

servers running on the same machine. RPC clients query the

tPortmapd daemon to find out how to contact the various servers.

tRdbTask If you have included the RDB facility in the VxWorks configuration,

this daemon services requests made by remote source-level

debuggers. The RDB modules fill a role roughly analogous to that of

the target agent, except that the RDB connection relies on VxWorks

facilities, such as the target-resident symbol table and the target-

resident dynamic linker. For more information on remote debugging,

see the Tornado User’s Guide: Debugger.

2.4 Intertask Communications

The complement to the multitasking routines described in the 2.3 Tasks, p.30 is the

intertask communication facilities. These facilities permit independent tasks to

coordinate their actions.

VxWorks supplies a rich set of intertask communication mechanisms, including:

■ Shared memory, for simple sharing of data.
54

2

2
Basic OS
■ Semaphores, for basic mutual exclusion and synchronization.

■ Message queues and pipes, for intertask message passing within a CPU.

■ Sockets and remote procedure calls, for network-transparent intertask

communication.

■ Signals, for exception handling.

The optional product, VxMP, provides intertask communication over the

backplane for tasks running on different CPUs. This includes shared semaphores,

shared message queues, shared memory, and the shared name database.

2.4.1 Shared Data Structures

The most obvious way for tasks to communicate is by accessing shared data

structures. Because all tasks in VxWorks exist in a single linear address space,

sharing data structures between tasks is trivial; see Figure 2-8. Global variables,

linear buffers, ring buffers, linked lists, and pointers can be referenced directly by

code running in different contexts.

2.4.2 Mutual Exclusion

While a shared address space simplifies exchange of data, interlocking access to

memory is crucial to avoid contention. Many methods exist for obtaining exclusive

access to resources, and vary only in the scope of the exclusion. Such methods

include disabling interrupts, disabling preemption, and resource locking with

semaphores.

Figure 2-8 Shared Data Structures

TASKS MEMORY

task 1

task 2

task 3

access
sharedData

access
sharedData

access
sharedData

sharedData
55

VxWorks 5.3.1
Programmer’s Guide
Interrupt Locks and Latency

The most powerful method available for mutual exclusion is the disabling of

interrupts. Such a lock guarantees exclusive access to the CPU:

funcA ()
{
int lock = intLock();
.
. critical region that cannot be interrupted
.
intUnlock (lock);
}

While this solves problems involving mutual exclusion with ISRs, it is

inappropriate as a general-purpose mutual-exclusion method for most real-time

systems, because it prevents the system from responding to external events for the

duration of these locks. Interrupt latency is unacceptable whenever an immediate

response to an external event is required. However, interrupt locking can

sometimes be necessary where mutual exclusion involves ISRs. In any situation,

keep the duration of interrupt lockouts short.

Preemptive Locks and Latency

Disabling preemption offers a somewhat less restrictive form of mutual exclusion.

While no other task is allowed to preempt the current executing task, ISRs are able

to execute:

funcA ()
{
taskLock ();
.
. critical region that cannot be interrupted
.
taskUnlock ();
}

However, this method can lead to unacceptable real-time response. Tasks of higher

priority are unable to execute until the locking task leaves the critical region, even

though the higher-priority task is not itself involved with the critical region. While

this kind of mutual exclusion is simple, if you use it, make sure to keep the

duration short. A better mechanism is provided by semaphores, discussed in

2.4.3 Semaphores, p.57.
56

2

2
Basic OS
2.4.3 Semaphores

VxWorks semaphores are highly optimized and provide the fastest intertask

communication mechanism in VxWorks. Semaphores are the primary means for

addressing the requirements of both mutual exclusion and task synchronization:

■ For mutual exclusion, semaphores interlock access to shared resources. They

provide mutual exclusion with finer granularity than either interrupt

disabling or preemptive locks, discussed in 2.4.2 Mutual Exclusion, p.55.

■ For synchronization, semaphores coordinate a task’s execution with external

events.

There are three types of Wind semaphores, optimized to address different classes

of problems:

binary The fastest, most general-purpose semaphore. Optimized for

synchronization or mutual exclusion.

mutual exclusion A special binary semaphore optimized for problems inherent

in mutual exclusion: priority inheritance, deletion safety, and

recursion.

counting Like the binary semaphore, but keeps track of the number of

times a semaphore is given. Optimized for guarding multiple

instances of a resource.

VxWorks provides not only the Wind semaphores, designed expressly for

VxWorks, but also POSIX semaphores, designed for portability. An alternate

semaphore library provides the POSIX-compatible semaphore interface; see

POSIX Semaphores, p.67.

The semaphores described here are for use on a single CPU. The optional product

VxMP provides semaphores that can be used across processors; see 6. Shared-
Memory Objects.

Semaphore Control

Instead of defining a full set of semaphore control routines for each type of

semaphore, the Wind semaphores provide a single uniform interface for

semaphore control. Only the creation routines are specific to the semaphore type.

Table 2-13 lists the semaphore control routines.

The semBCreate(), semMCreate(), and semCCreate() routines return a

semaphore ID that serves as a handle on the semaphore during subsequent use by
57

VxWorks 5.3.1
Programmer’s Guide
the other semaphore-control routines. When a semaphore is created, the queue

type is specified. Tasks pending on a semaphore can be queued in priority order

(SEM_Q_PRIORITY) or in first-in first-out order (SEM_Q_FIFO).

WARNING: The semDelete() call terminates a semaphore and deallocates any

associated memory. Take care when deleting semaphores, particularly those used

for mutual exclusion, to avoid deleting a semaphore that another task still requires.

Do not delete a semaphore unless the same task first succeeds in taking it.

Binary Semaphores

The general-purpose binary semaphore is capable of addressing the requirements

of both forms of task coordination: mutual exclusion and synchronization. The

binary semaphore has the least overhead associated with it, making it particularly

applicable to high-performance requirements. The mutual-exclusion semaphore

described in Mutual-Exclusion Semaphores, p.62 is also a binary semaphore, but it

has been optimized to address problems inherent to mutual exclusion.

Alternatively, the binary semaphore can be used for mutual exclusion if the

advanced features of the mutual-exclusion semaphore are deemed unnecessary.

A binary semaphore can be viewed as a flag that is available (full) or unavailable

(empty). When a task takes a binary semaphore, with semTake(), the outcome

depends on whether the semaphore is available (full) or unavailable (empty) at the

time of the call; see Figure 2-9. If the semaphore is available (full), the semaphore

becomes unavailable (empty) and the task continues executing immediately. If the

semaphore is unavailable (empty), the task is put on a queue of blocked tasks and

enters a state of pending on the availability of the semaphore.

Table 2-13 Semaphore Control Routines

Call Description

semBCreate() Allocate and initialize a binary semaphore.

semMCreate() Allocate and initialize a mutual-exclusion semaphore.

semCCreate() Allocate and initialize a counting semaphore.

semDelete() Terminate and free a semaphore.

semTake() Take a semaphore.

semGive() Give a semaphore.

semFlush() Unblock all tasks that are waiting for a semaphore.

!

58

2

2
Basic OS
When a task gives a binary semaphore, using semGive(), the outcome also

depends on whether the semaphore is available (full) or unavailable (empty) at the

time of the call; see Figure 2-10. If the semaphore is already available (full), giving

the semaphore has no effect at all. If the semaphore is unavailable (empty) and no

task is waiting to take it, then the semaphore becomes available (full). If the

semaphore is unavailable (empty) and one or more tasks are pending on its

availability, then the first task in the queue of blocked tasks is unblocked, and the

semaphore is left unavailable (empty).

Figure 2-9 Taking a Semaphore

Figure 2-10 Giving a Semaphore

no no
semaphore
available?

timeout =
NO_WAIT

yes yes

task continues;
semaphore

not taken

task continues;
semaphore

taken

task is
pended for

timeout
value

no no
semaphore
available?

yes yes

task continues;
semaphore

remains
unchanged

tasks
pended?

task continues,
semaphore

made available

task at front of
queue made ready;
semaphore remains

unavailable
59

VxWorks 5.3.1
Programmer’s Guide
Mutual Exclusion

Binary semaphores interlock access to a shared resource efficiently. Unlike

disabling interrupts or preemptive locks, binary semaphores limit the scope of the

mutual exclusion to only the associated resource. In this technique, a semaphore is

created to guard the resource. Initially the semaphore is available (full).

/* includes */
#include "vxWorks.h"
#include "semLib.h"

SEM_ID semMutex;

/* Create a binary semaphore that is initially full. Tasks *
* blocked on semaphore wait in priority order. */

semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);

When a task wants to access the resource, it must first take that semaphore. As long

as the task keeps the semaphore, all other tasks seeking access to the resource are

blocked from execution. When the task is finished with the resource, it gives back

the semaphore, allowing another task to use the resource.

Thus all accesses to a resource requiring mutual exclusion are bracketed with

semTake() and semGive() pairs:

semTake (semMutex, WAIT_FOREVER);
.
. critical region, only accessible by a single task at a time
.
semGive (semMutex);

Synchronization

When used for task synchronization, a semaphore can represent a condition or

event that a task is waiting for. Initially the semaphore is unavailable (empty). A

task or ISR signals the occurrence of the event by giving the semaphore (see

2.5 Interrupt Service Code, p.93 for a complete discussion of ISRs). Another task

waits for the semaphore by calling semTake(). The waiting task blocks until the

event occurs and the semaphore is given.

Note the difference in sequence between semaphores used for mutual exclusion

and those used for synchronization. For mutual exclusion, the semaphore is

initially full, and each task first takes, then gives back the semaphore. For

synchronization, the semaphore is initially empty, and one task waits to take the

semaphore given by another task.

In Example 2-4, the init() routine creates the binary semaphore, attaches an ISR to

an event, and spawns a task to process the event. The routine task1() runs until it
60

2

2
Basic OS
calls semTake(). It remains blocked at that point until an event causes the ISR to

call semGive(). When the ISR completes, task1() executes to process the event.

There is an advantage of handling event processing within the context of a

dedicated task: less processing takes place at interrupt level, thereby reducing

interrupt latency. This model of event processing is recommended for real-time

applications.

Example 2-4 Using Semaphores for Task Synchronization

/* This example shows the use of semaphores for task synchronization. */

/* includes */
#include "vxWorks.h"
#include "semLib.h"
#include "arch/ arch/iv arch.h" /* replace arch with architecture type */

SEM_ID syncSem; /* ID of sync semaphore */

init (
int someIntNum
)
{
/* connect interrupt service routine */
intConnect (INUM_TO_IVEC (someIntNum), eventInterruptSvcRout, 0);

/* create semaphore */
syncSem = semBCreate (SEM_Q_FIFO, SEM_EMPTY);

/* spawn task used for synchronization. */
taskSpawn ("sample", 100, 0, 20000, task1, 0,0,0,0,0,0,0,0,0,0);
}

task1 (void)
{
...
semTake (syncSem, WAIT_FOREVER); /* wait for event to occur */
printf ("task 1 got the semaphore\n");
... /* process event */
}

eventInterruptSvcRout (void)
{
...
semGive (syncSem); /* let task 1 process event */
...
}

Broadcast synchronization allows all processes that are blocked on the same

semaphore to be unblocked atomically. Correct application behavior often requires

a set of tasks to process an event before any task of the set has the opportunity to

process further events. The routine semFlush() addresses this class of

synchronization problem by unblocking all tasks pended on a semaphore.
61

VxWorks 5.3.1
Programmer’s Guide
Mutual-Exclusion Semaphores

The mutual-exclusion semaphore is a specialized binary semaphore designed to

address issues inherent in mutual exclusion, including priority inversion, deletion

safety, and recursive access to resources.

The fundamental behavior of the mutual-exclusion semaphore is identical to the

binary semaphore, with the following exceptions:

■ It can be used only for mutual exclusion.
■ It can be given only by the task that took it.
■ It cannot be given from an ISR.
■ The semFlush() operation is illegal.

Priority Inversion

Priority inversion arises when a higher-priority task is forced to wait an indefinite

period of time for a lower-priority task to complete. Consider the scenario in

Figure 2-11: t1, t2, and t3 are tasks of high, medium, and low priority, respectively.

t3 has acquired some resource by taking its associated binary guard semaphore.

When t1 preempts t3 and contends for the resource by taking the same semaphore,

it becomes blocked. If we could be assured that t1 would be blocked no longer than

the time it normally takes t3 to finish with the resource, there would be no problem

because the resource cannot be preempted. However, the low-priority task is

vulnerable to preemption by medium-priority tasks (like t2), which could inhibit

t3 from relinquishing the resource. This condition could persist, blocking t1 for an

indefinite period of time.

The mutual-exclusion semaphore has the option SEM_INVERSION_SAFE, which

enables a priority-inheritance algorithm. The priority-inheritance protocol assures

that a task that owns a resource executes at the priority of the highest-priority task

blocked on that resource. Once the task priority has been elevated, it remains at the

higher level until all mutual-exclusion semaphores that the task owns are released;

then the task returns to its normal, or standard, priority. Hence, the “inheriting”

task is protected from preemption by any intermediate-priority tasks. This option

must be used in conjunction with a priority queue (SEM_Q_PRIORITY).

In Figure 2-12, priority inheritance solves the problem of priority inversion by

elevating the priority of t3 to the priority of t1 during the time t1 is blocked on the

semaphore. This protects t3, and indirectly t1, from preemption by t2.

The following example creates a mutual-exclusion semaphore that uses the

priority inheritance algorithm:

semId = semMCreate (SEM_Q_PRIORITY | SEM_INVERSION_SAFE);
62

2

2
Basic OS
Figure 2-11 Priority Inversion

Figure 2-12 Priority Inheritance

t3

t1

t3

t2

HIGH

LOW

KEY: = preemption= take semaphore

= give semaphore

= own semaphore

pr
io

rit
y

= priority inheritance/release

= block

time

t1

t3

t3

t1 t3 t1

t2

HIGH

LOW

pr
io

rit
y

time
63

VxWorks 5.3.1
Programmer’s Guide
Deletion Safety

Another problem of mutual exclusion involves task deletion. Within a critical

region guarded by semaphores, it is often desirable to protect the executing task

from unexpected deletion. Deleting a task executing in a critical region can be

catastrophic. The resource might be left in a corrupted state and the semaphore

guarding the resource left unavailable, effectively preventing all access to the

resource.

The primitives taskSafe() and taskUnsafe() provide one solution to task deletion.

However, the mutual-exclusion semaphore offers the option SEM_DELETE_SAFE,

which enables an implicit taskSafe() with each semTake(), and a taskUnsafe()
with each semGive(). In this way, a task can be protected from deletion while it has

the semaphore. This option is more efficient than the primitives taskSafe() and

taskUnsafe(), as the resulting code requires fewer entrances to the kernel.

semId = semMCreate (SEM_Q_FIFO | SEM_DELETE_SAFE);

Recursive Resource Access

Mutual-exclusion semaphores can be taken recursively. This means that the

semaphore can be taken more than once by the task that owns it before finally

being released. Recursion is useful for a set of routines that must call each other but

that also require mutually exclusive access to a resource. This is possible because

the system keeps track of which task currently owns the mutual-exclusion

semaphore.

Before being released, a mutual-exclusion semaphore taken recursively must be

given the same number of times it is taken. This is tracked by a count that

increments with each semTake() and decrements with each semGive().

Example 2-5 Recursive Use of a Mutual-Exclusion Semaphore

/* Function A requires access to a resource which it acquires by taking
* mySem; function A may also need to call function B, which also
* requires mySem:
*/

/* includes */
#include "vxWorks.h"
#include "semLib.h"
SEM_ID mySem;

/* Create a mutual-exclusion semaphore. */

init ()
{
mySem = semMCreate (SEM_Q_PRIORITY);
}

64

2

2
Basic OS
funcA ()
{
semTake (mySem, WAIT_FOREVER);
printf ("funcA: Got mutual-exclusion semaphore\n");
...
funcB ();
...
semGive (mySem);
printf ("funcA: Released mutual-exclusion semaphore\n");
}

funcB ()
{
semTake (mySem, WAIT_FOREVER);
printf ("funcB: Got mutual-exclusion semaphore\n");
...
semGive (mySem);
printf ("funcB: Releases mutual-exclusion semaphore\n");
}

Counting Semaphores

Counting semaphores are another means to implement task synchronization and

mutual exclusion. The counting semaphore works like the binary semaphore

except that it keeps track of the number of times a semaphore is given. Every time

a semaphore is given, the count is incremented; every time a semaphore is taken,

the count is decremented. When the count reaches zero, a task that tries to take the

semaphore is blocked. As with the binary semaphore, if a semaphore is given and

a task is blocked, it becomes unblocked. However, unlike the binary semaphore, if

a semaphore is given and no tasks are blocked, then the count is incremented. This

means that a semaphore that is given twice can be taken twice without blocking.

Table 2-14 shows an example time sequence of tasks taking and giving a counting

semaphore that was initialized to a count of 3.

Table 2-14 Counting Semaphore Example

Semaphore Call Count after Call Resulting Behavior

semCCreate() 3 Semaphore initialized with initial count of 3.

semTake() 2 Semaphore taken.

semTake() 1 Semaphore taken.

semTake() 0 Semaphore taken.

semTake() 0 Task blocks waiting for semaphore to be available.

semGive() 0 Task waiting is given semaphore.

semGive() 1 No task waiting for semaphore; count incremented.
65

VxWorks 5.3.1
Programmer’s Guide
Counting semaphores are useful for guarding multiple copies of resources. For

example, the use of five tape drives might be coordinated using a counting

semaphore with an initial count of 5, or a ring buffer with 256 entries might be

implemented using a counting semaphore with an initial count of 256. The initial

count is specified as an argument to the semCCreate() routine.

Special Semaphore Options

The uniform Wind semaphore interface includes two special options. These

options are not available for the POSIX-compatible semaphores described in

POSIX Semaphores, p.67.

Timeouts

Wind semaphores include the ability to time out from the pended state. This is

controlled by a parameter to semTake() that specifies the amount of time in ticks

that the task is willing to wait in the pended state. If the task succeeds in taking the

semaphore within the allotted time, semTake() returns OK. The errno set when a

semTake() returns ERROR due to timing out before successfully taking the

semaphore depends upon the timeout value passed. A semTake() with NO_WAIT
(0), which means do not wait at all, sets errno to S_objLib_OBJ_UNAVAILABLE. A

semTake() with a positive timeout value returns S_objLib_OBJ_TIMEOUT. A

timeout value of WAIT_FOREVER (-1) means wait indefinitely.

Queues

Wind semaphores include the ability to select the queuing mechanism employed

for tasks blocked on a semaphore. They can be queued based on either of two

criteria: first-in first-out (FIFO) order, or priority order; see Figure 2-13.

Priority ordering better preserves the intended priority structure of the system at

the expense of some overhead in semTake() in sorting the tasks by priority. A FIFO

queue requires no priority sorting overhead and leads to constant-time

performance. The selection of queue type is specified during semaphore creation

with semBCreate(), semMCreate(), or semCCreate(). Semaphores using the

priority inheritance option (SEM_INVERSION_SAFE) must select priority-order

queuing.
66

2

2
Basic OS
POSIX Semaphores

POSIX defines both named and unnamed semaphores, which have the same

properties, but use slightly different interfaces. The POSIX semaphore library

provides routines for creating, opening, and destroying both named and unnamed

semaphores. The POSIX semaphore routines provided by semPxLib are shown in

Table 2-15.

With named semaphores, you assign a symbolic name1 when opening the

semaphore; the other named-semaphore routines accept this name as an

argument.

The POSIX terms wait (or lock) and post (or unlock) correspond to the VxWorks

terms take and give, respectively.

The initialization routine semPxLibInit() is called by default when

INCLUDE_POSIX_SEM is defined in configAll.h. The routines sem_open(),
sem_unlink(), and sem_close() are for opening and closing/destroying named

1. Some host operating systems, such as UNIX, require symbolic names for objects that are to

be shared among processes. This is because processes do not normally share memory in

such operating systems. In VxWorks, there is no requirement for named semaphores,

because all objects are located within a single address space, and reference to shared objects

by memory location is standard practice.

Figure 2-13 Task Queue Types

TCB

110

TCB

200

PRIORITY QUEUE FIFO QUEUE

priority

TCB

120 TCB

80

TCB

110

TCB

90
TCB

100
TCB

140
67

VxWorks 5.3.1
Programmer’s Guide
semaphores only; sem_init() and sem_destroy() are for initializing and destroying

unnamed semaphores only. The routines for locking, unlocking, and getting the

value of semaphores are used for both named and unnamed semaphores.

WARNING: The sem_destroy() call terminates an unnamed semaphore and

deallocates any associated memory; the combination of sem_close() and

sem_unlink() has the same effect for named semaphores. Take care when deleting

semaphores, particularly mutual exclusion semaphores, to avoid deleting a

semaphore still required by another task. Do not delete a semaphore unless the

deleting task first succeeds in locking that semaphore. (Likewise, for named

semaphores, close semaphores only from the same task that opens them.)

Comparison of POSIX and Wind Semaphores

POSIX semaphores are counting semaphores; that is, they keep track of the number

of times they are given.

The Wind semaphore mechanism is similar to that specified by POSIX, except that

Wind semaphores offer additional features: priority inheritance, task-deletion

safety, the ability for a single task to take a semaphore multiple times, ownership

of mutual-exclusion semaphores, semaphore timeouts, and the choice of queuing

mechanism. When these features are important, Wind semaphores are preferable.

Table 2-15 POSIX Semaphore Routines

Call Description

semPxLibInit() Initialize the POSIX semaphore library (non-POSIX).

sem_init() Initialize an unnamed semaphore.

sem_destroy() Destroy an unnamed semaphore.

sem_open() Initialize/open a named semaphore.

sem_close() Close a named semaphore.

sem_unlink() Remove a named semaphore.

sem_wait() Lock a semaphore.

sem_trywait() Lock a semaphore only if it is not already locked.

sem_post() Unlock a semaphore.

sem_getvalue() Get the value of a semaphore.

!

68

2

2
Basic OS
Using Unnamed Semaphores

In using unnamed semaphores, normally one task allocates memory for the

semaphore and initializes it. A semaphore is represented with the data structure

sem_t, defined in semaphore.h. The semaphore initialization routine, sem_init(),
allows you to specify the initial value.

Once the semaphore is initialized, any task can use the semaphore by locking it

with sem_wait() (blocking) or sem_trywait() (non-blocking), and unlocking it

with sem_post().

As noted earlier, semaphores can be used for both synchronization and mutual

exclusion. When a semaphore is used for synchronization, it is typically initialized

to zero (locked). The task waiting to be synchronized blocks on a sem_wait(). The

task doing the synchronizing unlocks the semaphore using sem_post(). If the task

blocked on the semaphore is the only one waiting for that semaphore, the task

unblocks and becomes ready to run. If other tasks are blocked on the semaphore,

the task with the highest priority is unblocked.

When a semaphore is used for mutual exclusion, it is typically initialized to a value

greater than zero (meaning that the resource is available). Therefore, the first task

to lock the semaphore does so without blocking; subsequent tasks block (if the

semaphore value was initialized to 1).

Example 2-6 POSIX Unnamed Semaphores

/* This example uses unnamed semaphores to synchronize an action between
* the calling task and a task that it spawns (tSyncTask). To run from
* the shell, spawn as a task:
* -> sp unnameSem

 */

/* includes */

#include "vxWorks.h"
#include "semaphore.h"

/* forward declarations */

void syncTask (sem_t * pSem);

void unnameSem (void)
{
sem_t * pSem;

/* reserve memory for semaphore */

pSem = (sem_t *) malloc (sizeof (sem_t));
69

VxWorks 5.3.1
Programmer’s Guide
/* initialize semaphore to unavailable */

if (sem_init (pSem, 0, 0) == -1)
{
printf ("unnameSem: sem_init failed\n");
return;
}

/* create sync task */

printf ("unnameSem: spawning task...\n");
taskSpawn ("tSyncTask", 90, 0, 2000, syncTask, pSem);

/* do something useful to synchronize with syncTask */

/* unlock sem */

printf ("unnameSem: posting semaphore - synchronizing action\n");
if (sem_post (pSem) == -1)

{
printf ("unnameSem: posting semaphore failed\n");
return;
}

/* all done - destroy semaphore */

if (sem_destroy (pSem) == -1)
 {
 printf ("unnameSem: sem_destroy failed\n");
 return;
 }
}

void syncTask
(
sem_t * pSem
)
{
/* wait for synchronization from unnameSem */

if (sem_wait (pSem) == -1)
{
printf ("syncTask: sem_wait failed \n");
return;
}

else
printf ("syncTask:sem locked; doing sync’ed action...\n");

/* do something useful here */
}

70

2

2
Basic OS
Using Named Semaphores

The sem_open() routine either opens a named semaphore that already exists, or, as

an option, creates a new semaphore. You can specify which of these possibilities

you want by combining the following flag values:

O_CREAT Create the semaphore if it does not already exist (if it exists, either fail

or open the semaphore, depending on whether O_EXCL is also

specified).

O_EXCL Open the semaphore only if newly created; fail if the semaphore exists

already.

The possible effects of a call to sem_open(), depending on which flags are set and

on whether the semaphore accessed already exists, are shown in Table 2-16. There

is no entry for O_EXCL alone, because using that flag alone is not meaningful.

A POSIX named semaphore, once initialized, remains usable until explicitly

destroyed. Tasks can explicitly mark a semaphore for destruction at any time, but

the semaphore remains in the system until no task has the semaphore open.

If INCLUDE_SHOW_ROUTINES is defined in the VxWorks configuration (for

details, see 8. Configuration), you can use show() from the Tornado shell to display

information about a POSIX semaphore:2

-> show semId
value = 0 = 0x0

The output is sent to the standard output device, and provides information about

the POSIX semaphore mySem with two tasks blocked waiting for it:

Semaphore name :mySem
sem_open() count :3
Semaphore value :0
No. of blocked tasks :2

2. This is not a POSIX routine, nor is it designed for use from programs; use it from the

Tornado shell (see the Tornado User’s Guide: Shell for details).

Table 2-16 Possible Outcomes of Calling sem_open()

Flag Settings Semaphore Exists Semaphore Does Not Exist

None Semaphore is opened Routine fails

O_CREAT Semaphore is opened Semaphore is created

O_CREAT and O_EXCL Routine fails Semaphore is created
71

VxWorks 5.3.1
Programmer’s Guide
For a group of collaborating tasks to use a named semaphore, one of the tasks first

creates and initializes the semaphore (by calling sem_open() with the O_CREAT
flag). Any task that needs to use the semaphore thereafter opens it by calling

sem_open() with the same name (but without setting O_CREAT). Any task that has

opened the semaphore can use it by locking it with sem_wait() (blocking) or

sem_trywait() (non-blocking) and unlocking it with sem_post().

To remove a semaphore, all tasks using it must first close it with sem_close(), and

one of the tasks must also unlink it. Unlinking a semaphore with sem_unlink()
removes the semaphore name from the name table. After the name is removed

from the name table, tasks that currently have the semaphore open can still use it,

but no new tasks can open this semaphore. The next time a task tries to open the

semaphore without the O_CREAT flag, the operation fails. The semaphore vanishes

when the last task closes it.

Example 2-7 POSIX Named Semaphores

/* In this example, nameSem() creates a task for synchronization. The
* new task, tSyncSemTask, blocks on the semaphore created in nameSem().
* Once the synchronization takes place, both tasks close the semaphore,
* and nameSem() unlinks it. To run this task from the shell, spawn
* nameSem as a task:

 * -> sp nameSem, "myTest"
 */

/* includes */
#include "vxWorks.h"
#include "semaphore.h"
#include "fcntl.h"

/* forward declaration */
int syncSemTask (char * name);

int nameSem
(
char * name
)
{
sem_t * semId;

/* create a named semaphore, initialize to 0*/
printf ("nameSem: creating semaphore\n");
if ((semId = sem_open (name, O_CREAT, 0, 0)) == (sem_t *) -1)

{
printf ("nameSem: sem_open failed\n");
return;
}

printf ("nameSem: spawning sync task\n");

taskSpawn ("tSyncSemTask", 90, 0, 2000, syncSemTask, name);
72

2

2
Basic OS
/* do something useful to synchronize with syncSemTask */

/* give semaphore */
printf ("nameSem: posting semaphore - synchronizing action\n");
if (sem_post (semId) == -1)

{
printf ("nameSem: sem_post failed\n");
return;
}

/* all done */
if (sem_close (semId) == -1)

{
printf ("nameSem: sem_close failed\n");
return;
}

if (sem_unlink (name) == -1)
{
printf ("nameSem: sem_unlink failed\n");
return;
}

printf ("nameSem: closed and unlinked semaphore\n");
}

int syncSemTask
(
char * name
)
{
sem_t * semId;

/* open semaphore */
printf ("syncSemTask: opening semaphore\n");
if ((semId = sem_open (name, 0)) == (sem_t *) -1)

{
printf ("syncSemTask: sem_open failed\n");
return;
}

/* block waiting for synchronization from nameSem */
printf ("syncSemTask: attempting to take semaphore...\n");
if (sem_wait (semId) == -1)

{
printf ("syncSemTask: taking sem failed\n");
return;
}

printf ("syncSemTask: has semaphore, doing sync’ed action ...\n");

/* do something useful here */

if (sem_close (semId) == -1)
{
printf ("syncSemTask: sem_close failed\n");
return;
}

}

73

VxWorks 5.3.1
Programmer’s Guide
2.4.4 Message Queues

Modern real-time applications are constructed as a set of independent but

cooperating tasks. While semaphores provide a high-speed mechanism for the

synchronization and interlocking of tasks, often a higher-level mechanism is

necessary to allow cooperating tasks to communicate with each other. In VxWorks,

the primary intertask communication mechanism within a single CPU is message
queues. The optional product, VxMP, provides global message queues that can be

used across processors; for more information, see 6. Shared-Memory Objects.

Message queues allow a variable number of messages, each of variable length, to

be queued. Any task or ISR can send messages to a message queue. Any task can

receive messages from a message queue. Multiple tasks can send to and receive

from the same message queue. Full-duplex communication between two tasks

generally requires two message queues, one for each direction; see Figure 2-14.

There are two message-queue subroutine libraries in VxWorks. The first of these,

msgQLib, provides Wind message queues, designed expressly for VxWorks; the

second, mqPxLib, is compatible with the POSIX standard (1003.1b) for real-time

extensions. See Comparison of POSIX and Wind Message Queues, p.86 for a

discussion of the differences between the two message-queue designs.

Figure 2-14 Full Duplex Communication Using Message Queues

task 2task 1

message queue 1

message queue 2

message

message
74

2

2
Basic OS
Wind Message Queues

Wind message queues are created and deleted with the routines shown in

Table 2-17. This library provides messages that are queued in FIFO order, with a

single exception: there are two priority levels, and messages marked as high

priority are attached to the head of the queue.

A message queue is created with msgQCreate(). Its parameters specify the

maximum number of messages that can be queued in the message queue and the

maximum length in bytes of each message. Enough buffer space is preallocated for

the specified number and length of messages.

A task or ISR sends a message to a message queue with msgQSend(). If no tasks

are waiting for messages on that queue, the message is added to the queue’s buffer

of messages. If any tasks are already waiting for a message from that message

queue, the message is immediately delivered to the first waiting task.

A task receives a message from a message queue with msgQReceive(). If messages

are already available in the message queue’s buffer, the first message is

immediately dequeued and returned to the caller. If no messages are available,

then the calling task blocks and is added to a queue of tasks waiting for messages.

This queue of waiting tasks can be ordered either by task priority or FIFO, as

specified in an option parameter when the queue is created.

Timeouts

Both msgQSend() and msgQReceive() take timeout parameters. When sending a

message, the timeout specifies how many ticks to wait for buffer space to become

available, if no space is available to queue the message. When receiving a message,

the timeout specifies how many ticks to wait for a message to become available, if

no message is immediately available. As with semaphores, the value of the timeout

parameter can have the special values of NO_WAIT (0), meaning always return

immediately, or WAIT_FOREVER (-1), meaning never time out the routine.

Table 2-17 Wind Message Queue Control

Call Description

msgQCreate() Allocate and initialize a message queue.

msgQDelete() Terminate and free a message queue.

msgQSend() Send a message to a message queue.

msgQReceive() Receive a message from a message queue.
75

VxWorks 5.3.1
Programmer’s Guide
Urgent Messages

The msgQSend() function allows specification of the priority of the message as

either normal (MSG_PRI_NORMAL) or urgent (MSG_PRI_URGENT). Normal

priority messages are added to the tail of the list of queued messages, while urgent

priority messages are added to the head of the list.

Example 2-8 Wind Message Queues

/* In this example, task t1 creates the message queue and sends a message
* to task t2. Task t2 receives the message from the queue and simply
* displays the message.
*/

/* includes */
#include "vxWorks.h"
#include "msgQLib.h"

/* defines */
#define MAX_MSGS (10)
#define MAX_MSG_LEN (100)

MSG_Q_ID myMsgQId;

task2 (void)
{
char msgBuf[MAX_MSG_LEN];

/* get message from queue; if necessary wait until msg is available */
if (msgQReceive(myMsgQId, msgBuf, MAX_MSG_LEN, WAIT_FOREVER) == ERROR)

return (ERROR);

/* display message */
printf ("Message from task 1:\n%s\n", msgBuf);
}

#define MESSAGE "Greetings from Task 1"
task1 (void)

{
/* create message queue */
if ((myMsgQId = msgQCreate (MAX_MSGS, MAX_MSG_LEN, MSG_Q_PRIORITY))

== NULL)
return (ERROR);

/* send a normal priority message, blocking if queue is full */
if (msgQSend (myMsgQId, MESSAGE, sizeof (MESSAGE), WAIT_FOREVER,

MSG_PRI_NORMAL) == ERROR)
return (ERROR);

}

76

2

2
Basic OS
POSIX Message Queues

The POSIX message queue routines, provided by mqPxLib, are shown in

Table 2-18. These routines are similar to Wind message queues, except that POSIX

message queues provide named queues and messages with a range of priorities.

The initialization routine mqPxLibInit() makes the POSIX message queue

routines available; the system initialization code must call it before any tasks use

POSIX message queues. As shipped, usrInit() calls mqPxLibInit() when

INCLUDE_POSIX_MQ is defined in configAll.h.

Before a set of tasks can communicate through a POSIX message queue, one of the

tasks must create the message queue by calling mq_open() with the O_CREAT flag

set. Once a message queue is created, other tasks can open that queue by name to

send and receive messages on it. Only the first task opens the queue with the

O_CREAT flag; subsequent tasks can open the queue for receiving only

(O_RDONLY), sending only (O_WRONLY), or both sending and receiving

(O_RDWR).

To put messages on a queue, use mq_send(). If a task attempts to put a message on

the queue when the queue is full, the task blocks until some other task reads a

message from the queue, making space available. To avoid blocking on mq_send(),
set O_NONBLOCK when you open the message queue. In that case, when the

Table 2-18 POSIX Message Queue Routines

Call Description

mqPxLibInit() Initialize the POSIX message queue library (non-POSIX).

mq_open() Open a message queue.

mq_close() Close a message queue.

mq_unlink() Remove a message queue.

mq_send() Send a message to a queue.

mq_receive() Get a message from a queue.

mq_notify() Signal a task that a message is waiting on a queue.

mq_setattr() Set a queue attribute.

mq_getattr() Get a queue attribute.
77

VxWorks 5.3.1
Programmer’s Guide
queue is full, mq_send() returns -1 and sets errno to EAGAIN instead of pending,

allowing you to try again or take other action as appropriate.

One of the arguments to mq_send() specifies a message priority. Priorities range

from 0 (lowest priority) to 31 (highest priority).

When a task receives a message using mq_receive(), the task receives the highest-

priority message currently on the queue. Among multiple messages with the same

priority, the first message placed on the queue is the first received (FIFO order). If

the queue is empty, the task blocks until a message is placed on the queue. To avoid

pending on mq_receive(), open the message queue with O_NONBLOCK; in that

case, when a task attempts to read from an empty queue, mq_receive() returns -1

and sets errno to EAGAIN.

To close a message queue, call mq_close(). Closing the queue does not destroy it,

but only asserts that your task is no longer using the queue. To request that the

queue be destroyed, call mq_unlink(). Unlinking a message queue does not destroy

the queue immediately, but it does prevent any further tasks from opening that

queue, by removing the queue name from the name table. Tasks that currently

have the queue open can continue to use it. When the last task closes an unlinked

queue, the queue is destroyed.

Example 2-9 POSIX Message Queues

/* In this example, the mqExInit() routine spawns two tasks that
* communicate using the message queue.
*/

/* mqEx.h - message example header */

/* defines */
#define MQ_NAME "exampleMessageQueue"

/* forward declarations */
void receiveTask (void);
void sendTask (void);

/* testMQ.c - example using POSIX message queues */

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"
#include "mqEx.h"

/* defines */
#define HI_PRIO 31
#define MSG_SIZE 16
78

2

2
Basic OS
int mqExInit (void)
{
/* create two tasks */
if (taskSpawn ("tRcvTask", 95, 0, 4000, receiveTask, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0) == ERROR)
{
printf ("taskSpawn of tRcvTask failed\n");
return (ERROR);
}

if (taskSpawn ("tSndTask", 100, 0, 4000, sendTask, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0) == ERROR)

{
printf ("taskSpawn of tSendTask failed\n");
return (ERROR);
}

}

void receiveTask (void)
{
mqd_t mqPXId; /* msg queue descriptor */
char msg[MSG_SIZE]; /* msg buffer */
int prio; /* priority of message */

/* open message queue using default attributes */
if ((mqPXId = mq_open (MQ_NAME, O_RDWR | O_CREAT, 0, NULL))

== (mqd_t) -1)
{
printf ("receiveTask: mq_open failed\n");
return;
}

/* try reading from queue */
if (mq_receive (mqPXId, msg, MSG_SIZE, &prio) == -1)

{
printf ("receiveTask: mq_receive failed\n");
return;
}

else
{
printf ("receiveTask: Msg of priority %d received:\n\t\t%s\n",

prio, msg);
}

}

/* sendTask.c - mq sending example */

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "mqEx.h"

/* defines */
#define MSG "greetings"
#define HI_PRIO 30
79

VxWorks 5.3.1
Programmer’s Guide
void sendTask (void)
{
mqd_t mqPXId; /* msg queue descriptor */

/* open msg queue; should already exist with default attributes */
if ((mqPXId = mq_open (MQ_NAME, O_RDWR, 0, NULL)) == (mqd_t) -1)

{
printf ("sendTask: mq_open failed\n");
return;
}

/* try writing to queue */
if (mq_send (mqPXId, MSG, sizeof (MSG), HI_PRIO) == -1)

{
printf ("sendTask: mq_send failed\n");
return;
}

else
printf ("sendTask: mq_send succeeded\n");

}

Notifying a Task that a Message is Waiting

A task can use the mq_notify() routine to request notification when a message for

it arrives at an empty queue. The advantage of this is that a task can avoid blocking

or polling to wait for a message.

The mq_notify() call specifies a signal to be sent to the task when a message is

placed on an empty queue. This mechanism uses the POSIX data-carrying

extension to signaling, which allows you, for example, to carry a queue identifier

with the signal (see POSIX Queued Signals, p.92).

The mq_notify() mechanism is designed to alert the task only for new messages

that are actually available. If the message queue already contains messages, no

notification is sent when more messages arrive. If there is another task that is

blocked on the queue with mq_receive(), that other task unblocks, and no

notification is sent to the task registered with mq_notify().

Notification is exclusive to a single task: each queue can register only one task for

notification at a time. Once a queue has a task to notify, no attempts to register with

mq_notify() can succeed until the notification request is satisfied or cancelled.

Once a queue sends notification to a task, the notification request is satisfied, and

the queue has no further special relationship with that particular task; that is, the

queue sends a notification signal only once per mq_notify() request. To arrange for

one particular task to continue receiving notification signals, the best approach is

to call mq_notify() from the same signal handler that receives the notification

signals. This reinstalls the notification request as soon as possible.
80

2

2
Basic OS
To cancel a notification request, specify NULL instead of a notification signal. Only

the currently registered task can cancel its notification request.

Example 2-10 Notifying a Task that a Message Queue is Waiting

/* In this example, a task uses mq_notify() to discover when a message
* is waiting for it on a previously empty queue.
*/

/* includes */
#include "vxWorks.h"
#include "signal.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

/* defines */
#define QNAM "PxQ1"
#define MSG_SIZE 64 /* limit on message sizes */

/* forward declarations */
static void exNotificationHandle (int, siginfo_t *, void *);
static void exMqRead (mqd_t);

/**
*
* exMqNotify - example of how to use mq_notify()
*
* This routine illustrates the use of mq_notify() to request notification
* via signal of new messages in a queue. To simplify the example, a
* single task both sends and receives a message.
*/

int exMqNotify
(
char * pMess /* text for message to self */
)
{
struct mq_attr attr; /* queue attribute structure */
struct sigevent sigNotify; /* to attach notification */
struct sigaction mySigAction; /* to attach signal handler */
mqd_t exMqId; /* id of message queue */

/* Minor sanity check; avoid exceeding msg buffer */
if (MSG_SIZE <= strlen (pMess))

{
printf ("exMqNotify: message too long\n");
return (-1);
}

/* Install signal handler for the notify signal - fill in a
 * sigaction structure and pass it to sigaction(). Because the
 * handler needs the siginfo structure as an argument, the
 * SA_SIGINFO flag is set in sa_flags.
 */
81

VxWorks 5.3.1
Programmer’s Guide
mySigAction.sa_sigaction = exNotificationHandle;
mySigAction.sa_flags = SA_SIGINFO;
sigemptyset (&mySigAction.sa_mask);

if (sigaction (SIGUSR1, &mySigAction, NULL) == -1)
{
printf ("sigaction failed\n");
return (-1);
}

/* Create a message queue - fill in a mq_attr structure with the
 * size and no. of messages required, and pass it to mq_open().
 */
attr.mq_flags = O_NONBLOCK; /* make nonblocking */
attr.mq_maxmsg = 2;
attr.mq_msgsize = MSG_SIZE;

if ((exMqId = mq_open (QNAM, O_CREAT | O_RDWR, 0, &attr)) ==
 (mqd_t) - 1)
{
printf ("mq_open failed\n");
return (-1);
}

/* Set up notification: fill in a sigevent structure and pass it
 * to mq_notify(). The queue ID is passed as an argument to the
 * signal handler.
 */
sigNotify.sigev_signo = SIGUSR1;
sigNotify.sigev_notify = SIGEV_SIGNAL;
sigNotify.sigev_value.sival_int = (int) exMqId;

if (mq_notify (exMqId, &sigNotify) == -1)
{
printf ("mq_notify failed\n");
return (-1);
}

/* We just created the message queue, but it may not be empty;
 * a higher-priority task may have placed a message there while
 * we were requesting notification. mq_notify() does nothing if
 * messages are already in the queue; therefore we try to
 * retrieve any messages already in the queue.
 */
exMqRead (exMqId);

/* Now we know the queue is empty, so we will receive a signal
 * the next time a message arrives.
 *
 * We send a message, which causes the notify handler to be
 * invoked. It is a little silly to have the task that gets the
 * notification be the one that puts the messages on the queue,
 * but we do it here to simplify the example.

*
 * A real application would do other work instead at this point.
 */
82

2

2
Basic OS
if (mq_send (exMqId, pMess, 1 + strlen (pMess), 0) == -1)
{
printf ("mq_send failed\n");
return (-1);
}

/* Cleanup */
if (mq_close (exMqId) == -1)

{
printf ("mq_close failed\n");
return (-1);
}

/* More cleanup */
if (mq_unlink (QNAM) == -1)

{
printf ("mq_unlink failed\n");
return (-1);
}

return (0);
}

/**
*
* exNotificationHandle - handler to read in messages
*
* This routine is a signal handler; it reads in messages from a message
* queue.
*/

static void exNotificationHandle
(
int sig, /* signal number */
siginfo_t * pInfo, /* signal information */
void * pSigContext /* unused (required by posix) */
)
{
struct sigevent sigNotify;
mqd_t exMqId;

/* Get the Id of the message queue out of the siginfo structure.
 */
exMqId = (mqd_t) pInfo->si_value.sival_int;

/* Request notification again; it resets each time a notification
 * signal goes out.
 */
sigNotify.sigev_signo = pInfo->si_signo;
sigNotify.sigev_value = pInfo->si_value;
sigNotify.sigev_notify = SIGEV_SIGNAL;

if (mq_notify (exMqId, &sigNotify) == -1)
{
printf ("mq_notify failed\n");
83

VxWorks 5.3.1
Programmer’s Guide
return;
}

/* Read in the messages
 */
exMqRead (exMqId);
}

/**
*
* exMqRead - read in messages
*
* This small utility routine receives and displays all messages
* currently in a POSIX message queue; assumes queue has O_NONBLOCK.
*/

static void exMqRead
(
mqd_t exMqId
)
{
char msg[MSG_SIZE];
int prio;

/* Read in the messages - uses a loop to read in the messages
 * because a notification is sent ONLY when a message is sent on
 * an EMPTY message queue. There could be multiple msgs if, for
 * example, a higher-priority task was sending them. Because the
 * message queue was opened with the O_NONBLOCK flag, eventually
 * this loop exits with errno set to EAGAIN (meaning we did an
 * mq_receive() on an empty message queue).
 */
while (mq_receive (exMqId, msg, MSG_SIZE, &prio) != -1)

{
printf ("exMqRead: received message: %s\n",msg);
}

if (errno != EAGAIN)
{
printf ("mq_receive: errno = %d\n", errno);
}

}

Message Queue Attributes

A POSIX message queue has the following attributes:

– an optional O_NONBLOCK flag

– the maximum number of messages in the message queue

– the maximum message size

– the number of messages currently on the queue

Tasks can set or clear the O_NONBLOCK flag (but not the other attributes) using

mq_setattr(), and get the values of all the attributes using mq_getattr().
84

2

2
Basic OS
Example 2-11 Setting and Getting Message Queue Attributes

/* This example sets the O_NONBLOCK flag, and examines message queue
* attributes.
*/

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

/* defines */
#define MSG_SIZE 16

int attrEx
(
char * name
)
{
mqd_t mqPXId; /* mq descriptor */
struct mq_attr attr; /* queue attribute structure */
struct mq_attr oldAttr; /* old queue attributes */
char buffer[MSG_SIZE];
int prio;

/* create read write queue that is blocking */
attr.mq_flags = 0;
attr.mq_maxmsg = 1;
attr.mq_msgsize = 16;
if ((mqPXId = mq_open (name, O_CREAT | O_RDWR , 0, &attr))

 == (mqd_t) -1)
return (ERROR);

else
printf ("mq_open with non-block succeeded\n");

/* change attributes on queue - turn on non-blocking */
attr.mq_flags = O_NONBLOCK;
if (mq_setattr (mqPXId, &attr, &oldAttr) == -1)

return (ERROR);
else

{
/* paranoia check - oldAttr should not include non-blocking.
 */
if (oldAttr.mq_flags & O_NONBLOCK)

return (ERROR);
else

printf ("mq_setattr turning on non-blocking succeeded\n");
}

/* try receiving - there are no messages but this shouldn't block */
if (mq_receive (mqPXId, buffer, MSG_SIZE, &prio) == -1)

{
if (errno != EAGAIN)

return (ERROR);
else

printf ("mq_receive with non-blocking didn’t block on empty queue\n");
}

85

VxWorks 5.3.1
Programmer’s Guide
else
return (ERROR);

/* use mq_getattr to verify success */
if (mq_getattr (mqPXId, &oldAttr) == -1)

return (ERROR);
else

{
/* test that we got the values we think we should */
if (!(oldAttr.mq_flags & O_NONBLOCK) || (oldAttr.mq_curmsgs != 0))

return (ERROR);
else

printf ("queue attributes are:\n\tblocking is %s\n\t
message size is: %d\n\t
max messages in queue: %d\n\t
no. of current msgs in queue: %d\n",
oldAttr.mq_flags & O_NONBLOCK ? "on" : "off",
oldAttr.mq_msgsize, oldAttr.mq_maxmsg,
oldAttr.mq_curmsgs);

}

/* clean up - close and unlink mq */

if (mq_unlink (name) == -1)
return (ERROR);

if (mq_close (mqPXId) == -1)
return (ERROR);

return (OK);

}

Comparison of POSIX and Wind Message Queues

The two forms of message queues solve many of the same problems, but there are

some significant differences. Table 2-19 summarizes the main differences between

the two forms of message queues.

Table 2-19 Message Queue Feature Comparison

Feature Wind Message Queues POSIX Message Queues

Message Priority Levels 1 32

Blocked Task Queues FIFO or priority-based Priority-based

Receive with Timeout Optional Not available

Task Notification Not available Optional (one task)

Close/Unlink Semantics No Yes
86

2

2
Basic OS
Another feature of POSIX message queues is, of course, portability: if you are

migrating to VxWorks from another 1003.1b-compliant system, using POSIX

message queues enables you to leave that part of the code unchanged, reducing the

porting effort.

Displaying Message Queue Attributes

The VxWorks show() command produces a display of the key message queue

attributes, for either kind of message queue3. For example, if mqPXId is a POSIX

message queue:

-> show mqPXId
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Message queue name : MyQueue
No. of messages in queue : 1
Maximum no. of messages : 16
Maximum message size : 16

Compare this to the output when myMsgQId is a Wind message queue:4

-> show myMsgQId
Message Queue Id : 0x3adaf0
Task Queuing : FIFO
Message Byte Len : 4
Messages Max : 30
Messages Queued : 14
Receivers Blocked : 0
Send timeouts : 0
Receive timeouts : 0

Servers and Clients with Message Queues

Real-time systems are often structured using a client-server model of tasks. In this

model, server tasks accept requests from client tasks to perform some service, and

usually return a reply. The requests and replies are usually made in the form of

intertask messages. In VxWorks, message queues or pipes (see 2.4.5 Pipes, p.88) are

a natural way to implement this.

3. However, to get information on POSIX message queues, INCLUDE_SHOW_ROUTINES
must be defined in the VxWorks configuration; for information, see 8. Configuration.

4. The built-in show() routine handles Wind message queues; see the Tornado User’s Guide:
Shell for information on built-in routines. You can also use the Tornado browser to get infor-

mation on Wind message queues; see the Tornado User’s Guide: Browser for details.
87

VxWorks 5.3.1
Programmer’s Guide
For example, client-server communications might be implemented as shown in

Figure 2-15. Each server task creates a message queue to receive request messages

from clients. Each client task creates a message queue to receive reply messages

from servers. Each request message includes a field containing the msgQId of the

client’s reply message queue. A server task’s “main loop” consists of reading

request messages from its request message queue, performing the request, and

sending a reply to the client’s reply message queue.

The same architecture can be achieved with pipes instead of message queues, or by

other means that are tailored to the needs of the particular application.

2.4.5 Pipes

Pipes provide an alternative interface to the message queue facility that goes

through the VxWorks I/O system. Pipes are virtual I/O devices managed by the

driver pipeDrv. The routine pipeDevCreate() creates a pipe device and the

underlying message queue associated with that pipe. The call specifies the name

Figure 2-15 Client-Server Communications Using Message Queues

reply queue 1

reply queue 2

server task

request queue

message

message

message

client 2

client 1
88

2

2
Basic OS
of the created pipe, the maximum number of messages that can be queued to it,

and the maximum length of each message:

status = pipeDevCreate (" /pipe/name", max_msgs, max_length);

The created pipe is a normally named I/O device. Tasks can use the standard I/O

routines to open, read, and write pipes, and invoke ioctl routines. As they do with

other I/O devices, tasks block when they read from an empty pipe until data is

available, and block when they write to a full pipe until there is space available.

Like message queues, ISRs can write to a pipe, but cannot read from a pipe.

As I/O devices, pipes provide one important feature that message queues

cannot—the ability to be used with select(). This routine allows a task to wait for

data to be available on any of a set of I/O devices. The select() routine also works

with other asynchronous I/O devices including network sockets and serial

devices. Thus, by using select(), a task can wait for data on a combination of

several pipes, sockets, and serial devices; see 3.3.8 Pending on Multiple File
Descriptors: The Select Facility, p.117.

Pipes allow you to implement a client-server model of intertask communications;

see Servers and Clients with Message Queues, p.87.

2.4.6 Network Intertask Communication

Sockets

In VxWorks, the basis of intertask communications across the network is sockets. A

socket is an endpoint for communications between tasks; data is sent from one

socket to another. When you create a socket, you specify the Internet

communications protocol that is to transmit the data. VxWorks supports the

Internet protocols TCP and UDP. VxWorks socket facilities are source compatible

with BSD 4.3 UNIX.

TCP provides reliable, guaranteed, two-way transmission of data with stream
sockets. In a stream-socket communication, two sockets are “connected,” allowing

a reliable byte-stream to flow between them in each direction as in a circuit. For this

reason TCP is often referred to as a virtual circuit protocol.

UDP provides a simpler but less robust form of communication. In UDP

communications, data is sent between sockets in separate, unconnected,

individually addressed packets called datagrams. A process creates a datagram

socket and binds it to a particular port. There is no notion of a UDP “connection.”
89

VxWorks 5.3.1
Programmer’s Guide
Any UDP socket, on any host in the network, can send messages to any other UDP

socket by specifying its Internet address and port number.

One of the biggest advantages of socket communications is that it is

“homogeneous.” Socket communications among processes are exactly the same

regardless of the location of the processes in the network, or the operating system

under which they are running. Processes can communicate within a single CPU,

across a backplane, across an Ethernet, or across any connected combination of

networks. Socket communications can occur between VxWorks tasks and host

system processes in any combination. In all cases, the communications look

identical to the application, except, of course, for their speed.

For more information, see 5.2.6 Sockets, p.251 and the reference entry for sockLib.

Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC) is a facility that allows a process on one machine to

call a procedure that is executed by another process on either the same machine or

a remote machine. Internally, RPC uses sockets as the underlying communication

mechanism. Thus with RPC, VxWorks tasks and host system processes can invoke

routines that execute on other VxWorks or host machines, in any combination.

As discussed in the previous sections on message queues and pipes, many real-

time systems are structured with a client-server model of tasks. In this model,

client tasks request services of server tasks, and then wait for their reply. RPC

formalizes this model and provides a standard protocol for passing requests and

returning replies. Also, RPC includes tools to help generate the client interface

routines and the server skeleton.

For more information on RPC, see 5.2.8 Remote Procedure Calls, p.278.

2.4.7 Signals

VxWorks supports a software signal facility. Signals asynchronously alter the

control flow of a task. Any task or ISR can raise a signal for a particular task. The

task being signaled immediately suspends its current thread of execution and the

task-specified signal handler routine is executed the next time the task is scheduled

to run. Note that the signal handler gets invoked even if the task is blocked. Signals

are more appropriate for error and exception handling than as a general-purpose

intertask communication mechanism.
90

2

2
Basic OS
The wind kernel supports two types of signal interface: UNIX BSD-style signals

and POSIX-compatible signals. The POSIX-compatible signal interface, in turn,

includes both the fundamental signaling interface specified in the POSIX standard

1003.1, and the queued-signals extension from POSIX 1003.1b. For the sake of

simplicity, we recommend that you use only one interface type in a given

application, rather than mixing routines from different interfaces.

For more information on signals, see the reference entry for sigLib.

Basic Signal Routines

Table 2-20 shows the basic signal routines. To make these facilities available, the

signal library initialization routine sigInit() must be called, normally from

usrInit() in usrConfig.c, before interrupts are enabled.

The colorful name kill() harks back to the origin of these interfaces in UNIX BSD.

Although the interfaces vary, the functionality of BSD-style signals and basic

POSIX signals is similar.

Table 2-20 Basic Signal Calls (BSD and POSIX 1003.1b)

POSIX 1003.1b
Compatible
Call

UNIX BSD
Compatible
Call

Description

signal() signal() Specify the handler associated with a signal.

kill() kill() Send a signal to a task.

raise() N/A Send a signal to yourself.

sigaction() sigvec() Examine or set the signal handler for a signal.

sigsuspend() pause() Suspend a task until a signal is delivered.

sigpending() N/A Retrieve a set of pending signals blocked from delivery.

sigemptyset()
sigfillset()
sigaddset()
sigdelset()
sigismember()

sigmask() Manipulate a signal mask.

sigprocmask() sigsetmask() Set the mask of blocked signals.

sigprocmask() sigblock() Add to a set of blocked signals.
91

VxWorks 5.3.1
Programmer’s Guide
In many ways, signals are analogous to hardware interrupts. The basic signal

facility provides a set of 31 distinct signals. A signal handler binds to a particular

signal with sigvec() or sigaction() in much the same way that an ISR is connected

to an interrupt vector with intConnect(). A signal can be asserted by calling kill().
This is analogous to the occurrence of an interrupt. The routines sigsetmask() and

sigblock() or sigprocmask() let signals be selectively inhibited.

Certain signals are associated with hardware exceptions. For example, bus errors,

illegal instructions, and floating-point exceptions raise specific signals.

POSIX Queued Signals

The sigqueue() routine provides an alternative to kill() for sending signals to a

task. The important differences between the two are:

■ sigqueue() includes an application-specified value that is sent as part of the

signal. You can use this value to supply whatever context your signal handler

finds useful. This value is of type sigval (defined in signal.h); the signal

handler finds it in the si_value field of one of its arguments, a structure

siginfo_t. An extension to the POSIX sigaction() routine allows you to register

signal handlers that accept this additional argument.

■ sigqueue() enables the queueing of multiple signals for any task. The kill()
routine, by contrast, delivers only a single signal, even if multiple signals

arrive before the handler runs.

VxWorks includes eight signals reserved for application use, numbered

consecutively from RTSIGMIN. The presence of these eight reserved signals is

required by POSIX 1003.1b, but the specific signal values are not; for portability,

specify these signals as offsets from RTSIGMIN (for example, write RTSIGMIN+2

to refer to the third reserved signal number). All signals delivered with sigqueue()
are queued by numeric order, with lower-numbered signals queuing ahead of

higher-numbered signals.

POSIX 1003.1b also introduced an alternative means of receiving signals. The

routine sigwaitinfo() differs from sigsuspend() or pause() in that it allows your

application to respond to a signal without going through the mechanism of a

registered signal handler: when a signal is available, sigwaitinfo() returns the

value of that signal as a result, and does not invoke a signal handler even if one is

registered. The routine sigtimedwait() is similar, except that it can time out.

For detailed information on signals, see the reference entry for sigLib.
92

2

2
Basic OS
Signal Configuration

The basic signal facility is included in VxWorks by default with

INCLUDE_SIGNALS (defined in configAll.h).

Before your application can use POSIX queued signals, they must be initialized

separately with sigqueueInit(). Like the basic signals initialization function

sigInit(), this function is normally called from usrInit() in usrConfig.c, after

sysInit() runs.

To initialize the queued signal functionality, also define

INCLUDE_POSIX_SIGNALS in configAll.h: with that definition, sigqueueInit() is
called automatically.

The constant NUM_SIGNAL_QUEUES in configAll.h specifies the number of

signals that can be simultaneously queued for a specific task. The routine

sigqueueInit() allocates that number of buffers for use by sigqueue(), which

requires a buffer for each currently queued signal. A call to sigqueue() fails if no

buffer is available.

2.5 Interrupt Service Code

Hardware interrupt handling is of key significance in real-time systems, because it

is usually through interrupts that the system is informed of external events. For the

fastest possible response to interrupts, interrupt service routines (ISRs) in VxWorks

run in a special context outside of any task’s context. Thus, interrupt handling

involves no task context switch. The interrupt routines, listed in Table 2-22, are

provided in intLib and intArchLib.

Table 2-21 POSIX 1003.1b Queued Signal Calls

Call Description

sigqueue() Send a queued signal.

sigwaitinfo() Wait for a signal.

sigtimedwait() Wait for a signal with a timeout.
93

VxWorks 5.3.1
Programmer’s Guide
For boards with an MMU, the optional product VxVMI provides write protection

for the interrupt vector table; see 7. Virtual Memory Interface.

2.5.1 Connecting Application Code to Interrupts

You can use system hardware interrupts other than those used by VxWorks.

VxWorks provides the routine intConnect(), which allows C functions to be

connected to any interrupt. The arguments to this routine are the byte offset of the

interrupt vector to connect to, the address of the C function to be connected, and

an argument to pass to the function. When an interrupt occurs with a vector

established in this way, the connected C function is called at interrupt level with

the specified argument. When the interrupt handling is finished, the connected

function returns. A routine connected to an interrupt in this way is called an

interrupt service routine (ISR).

Interrupts cannot actually vector directly to C functions. Instead, intConnect()
builds a small amount of code that saves the necessary registers, sets up a stack

entry (either on a special interrupt stack, or on the current task’s stack) with the

argument to be passed, and calls the connected function. On return from the

function it restores the registers and stack, and exits the interrupt; see Figure 2-16.

Table 2-22 Interrupt Routines

Call Description

intConnect() Connect a C routine to an interrupt vector.

intContext() Return TRUE if called from interrupt level.

intCount() Get the current interrupt nesting depth.

intLevelSet() Set the processor interrupt mask level.

intLock() Disable interrupts.

intUnlock() Re-enable interrupts.

intVecBaseSet() Set the vector base address.

intVecBaseGet() Get the vector base address.

intVecSet() Set an exception vector.

intVecGet() Get an exception vector.
94

2

2
Basic OS
For target boards with VME backplanes, the BSP provides two standard routines

for controlling VME bus interrupts, sysIntEnable() and sysIntDisable().

2.5.2 Interrupt Stack

Whenever the architecture allows it, all ISRs use the same interrupt stack. This stack

is allocated and initialized by the system at start-up according to specified

configuration parameters. It must be large enough to handle the worst possible

combination of nested interrupts.

Some architectures, however, do not permit using a separate interrupt stack. On

such architectures, ISRs use the stack of the interrupted task. If you have such an

architecture, you must create tasks with enough stack space to handle the worst

possible combination of nested interrupts and the worst possible combination of

ordinary nested calls. See the reference entry for your BSP to determine whether

your architecture supports a separate interrupt stack.

Use the checkStack() facility during development to see how close your tasks and

ISRs have come to exhausting the available stack space.

2.5.3 Special Limitations of ISRs

Many VxWorks facilities are available to ISRs, but there are some important

limitations. These limitations stem from the fact that an ISR does not run in a

regular task context: it has no task control block, for example, and all ISRs share a

single stack.

Figure 2-16 Routine Built by intConnect()

Wrapper built by intConnect() Interrupt Service Routine

intConnect (INUM_TO_IVEC (someIntNum), myISR, someVal);

save registers

set up stack

invoke routine

restore registers and stack

exit

myISR
(
int val;
)
(
/* deal with hardware*/

...
)

95

VxWorks 5.3.1
Programmer’s Guide
For this reason, the basic restriction on ISRs is that they must not invoke routines

that might cause the caller to block. For example, they must not try to take a

semaphore, because if the semaphore is unavailable, the kernel tries to switch the

caller to the pended state. However, ISRs can give semaphores, releasing any tasks

waiting on them.

Because the memory facilities malloc() and free() take a semaphore, they cannot

be called by ISRs, and neither can routines that make calls to malloc() and free().
For example, ISRs cannot call any creation or deletion routines.

Table 2-23 Routines that Can Be Called by Interrupt Service Routines

Library Routines

bLib All routines

errnoLib errnoGet(), errnoSet()

fppArchLib fppSave(), fppRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet()

intArchLib intLock(), intUnlock()

logLib logMsg()

lstLib All routines except lstFree()

mathALib All routines, if fppSave()/fppRestore() are used

msgQLib msgQSend()

pipeDrv write()

rngLib All routines except rngCreate() and rngDelete()

selectLib selWakeup(), selWakeupAll()

semLib semGive() except mutual-exclusion semaphores, semFlush()

sigLib kill()

taskLib taskSuspend(), taskResume(), taskPrioritySet(), taskPriorityGet(),
taskIdVerify(), taskIdDefault(), taskIsReady(), taskIsSuspended(),
taskTcb()

tickLib tickAnnounce(), tickSet(), tickGet()

tyLib tyIRd(), tyITx()

vxLib vxTas(), vxMemProbe()

wdLib wdStart(), wdCancel()
96

2

2
Basic OS
ISRs also must not perform I/O through VxWorks drivers. Although there are no

inherent restrictions in the I/O system, most device drivers require a task context

because they might block the caller to wait for the device. An important exception

is the VxWorks pipe driver, which is designed to permit writes by ISRs.

VxWorks supplies a logging facility, in which a logging task prints text messages

to the system console. This mechanism was specifically designed so that ISRs

could use it, and is the most common way to print messages from ISRs. For more

information, see the reference entry for logLib.

An ISR also must not call routines that use a floating-point coprocessor. In

VxWorks, the interrupt driver code created by intConnect() does not save and

restore floating-point registers; thus, ISRs must not include floating-point

instructions. If an ISR requires floating-point instructions, it must explicitly save

and restore the registers of the floating-point coprocessor using routines in

fppArchLib.

All VxWorks utility libraries, such as the linked-list and ring-buffer libraries, can

be used by ISRs. As discussed earlier (2.3.7 Task Error Status: errno, p.45), the global

variable errno is saved and restored as a part of the interrupt enter and exit code

generated by the intConnect() facility. Thus errno can be referenced and modified

by ISRs as in any other code. Table 2-23 lists routines that can be called from ISRs.

2.5.4 Exceptions at Interrupt Level

When a task causes a hardware exception such as illegal instruction or bus error,

the task is suspended and the rest of the system continues uninterrupted.

However, when an ISR causes such an exception, there is no safe recourse for the

system to handle the exception. The ISR has no context that can be suspended.

Instead, VxWorks stores the description of the exception in a special location in low

memory and executes a system restart.

The VxWorks boot ROMs test for the presence of the exception description in low

memory and if it is detected, display it on the system console. The e command in

the boot ROMs re-displays the exception description; see the Tornado User’s Guide:
Getting Started.

One example of such an exception is the message:

workQPanic: Kernel work queue overflow.

This exception usually occurs when kernel calls are made from interrupt level at a

very high rate. It generally indicates a problem with clearing the interrupt signal

or a similar driver problem.
97

VxWorks 5.3.1
Programmer’s Guide
2.5.5 Reserving High Interrupt Levels

The VxWorks interrupt support described earlier in this section is acceptable for

most applications. However, on occasion, low-level control is required for events

such as critical motion control or system failure response. In such cases it is

desirable to reserve the highest interrupt levels to ensure zero-latency response to

these events. To achieve zero-latency response, VxWorks provides the routine

intLockLevelSet(), which sets the system-wide interrupt-lockout level to the

specified level. If you do not specify a level, the default is the highest level

supported by the processor architecture.

NOTE: Some hardware prevents masking certain interrupt levels; check the

hardware manufacturer’s documentation. For example, on MC680x0 chips,

interrupt level 7 is non-maskable. Because level 7 is also the highest interrupt level

on this architecture, VxWorks uses 7 as the default lockout level—but this is in fact

equivalent to a lockout level of 6, since the hardware prevents locking out level 7.

2.5.6 Additional Restrictions for ISRs at High Interrupt Levels

ISRs connected to interrupt levels that are not locked out (either an interrupt level

higher than that set by intLockLevelSet(), or an interrupt level defined in

hardware as non-maskable) have special restrictions:

■ The ISR can be connected only with intVecSet().

■ The ISR cannot use any VxWorks operating system facilities that depend on

interrupt locks for correct operation.

2.5.7 Interrupt-to-Task Communication

While it is important that VxWorks support direct connection of ISRs that run at

interrupt level, interrupt events usually propagate to task-level code. Many

VxWorks facilities are not available to interrupt-level code, including I/O to any

device other than pipes. The following techniques can be used to communicate

from ISRs to task-level code:

■ Shared Memory and Ring Buffers. ISRs can share variables, buffers, and ring

buffers with task-level code.

■ Semaphores. ISRs can give semaphores (except for mutual-exclusion

semaphores and VxMP shared semaphores) that tasks can take and wait for.

!

98

2

2
Basic OS
■ Message Queues. ISRs can send messages to message queues for tasks to

receive (except for shared message queues using VxMP). If the queue is full,

the message is discarded.

■ Pipes. ISRs can write messages to pipes that tasks can read. Tasks and ISRs can

write to the same pipes. However, if the pipe is full, the message written is

discarded because the ISR cannot block. ISRs must not invoke any I/O routine

on pipes other than write().

■ Signals. ISRs can “signal” tasks, causing asynchronous scheduling of their

signal handlers.

2.6 Watchdog Timers

VxWorks includes a watchdog-timer mechanism that allows any C function to be

connected to a specified time delay. Watchdog timers are maintained as part of the

system clock ISR. Normally, functions invoked by watchdog timers execute as

interrupt service code at the interrupt level of the system clock. However, if the

kernel is unable to execute the function immediately for any reason (such as a

previous interrupt or kernel state), the function is placed on the tExcTask work

queue. Functions on the tExcTask work queue execute at the priority level of the

tExcTask (usually 0). Restrictions on ISRs apply to routines connected to watchdog

timers. The functions in Table 2-24 are provided by the wdLib library.

A watchdog timer is first created by calling wdCreate(). Then the timer can be

started by calling wdStart(), which takes as arguments the number of ticks to

delay, the C function to call, and an argument to be passed to that function. After

the specified number of ticks have elapsed, the function is called with the specified

Table 2-24 Watchdog Timer Calls

Call Description

wdCreate() Allocate and initialize a watchdog timer.

wdDelete() Terminate and deallocate a watchdog timer.

wdStart() Start a watchdog timer.

wdCancel() Cancel a currently counting watchdog timer.
99

VxWorks 5.3.1
Programmer’s Guide
argument. The watchdog timer can be canceled any time before the delay has

elapsed by calling wdCancel().

Example 2-12 Watchdog Timers

/* This example creates a watchdog timer and sets it to go off in
* 3 seconds.
*/

/* includes */
#include "vxWorks.h"
#include "logLib.h"
#include "wdLib.h"

/* defines */
#define SECONDS (3)

WDOG_ID myWatchDogId;
task (void)

{
/* Create watchdog */

if ((myWatchDogId = wdCreate()) == NULL)
return (ERROR);

/* Set timer to go off in SECONDS - printing a message to stdout */

if (wdStart (myWatchDogId, sysClkRateGet() * SECONDS, logMsg,
"Watchdog timer just expired\n") == ERROR)

return (ERROR);

/* ... */
}

2.7 POSIX Clocks and Timers

A clock is a software construct (struct timespec, defined in time.h) that keeps time

in seconds and nanoseconds. The software clock is updated by system-clock ticks.

VxWorks provides a POSIX 1003.1b standard clock and timer interface.

The POSIX standard provides for identifying multiple virtual clocks, but only one

clock is required—the system-wide real-time clock, identified in the clock and

timer routines as CLOCK_REALTIME (also defined in time.h). VxWorks provides

routines to access the system-wide real-time clock; see the reference entry for

clockLib. (No virtual clocks are supported in VxWorks.)
100

2

2
Basic OS
The POSIX timer facility provides routines for tasks to signal themselves at some

time in the future. Routines are provided to create, set, and delete a timer; see the

reference entry for timerLib. When a timer goes off, the default signal (SIGALRM)

is sent to the task. Use sigaction() to install a signal handler that executes when the

timer expires (see 2.4.7 Signals, p.90).

Example 2-13 POSIX Timers

/* This example creates a new timer and stores it in timerid. */

/* includes */
#include "vxWorks.h"
#include "time.h"

int createTimer (void)
{
timer_t timerid;

/* create timer */

if (timer_create (CLOCK_REALTIME, NULL, &timerid) == ERROR)
{
printf ("create FAILED\n");
return (ERROR);
}

return (OK);
}

An additional POSIX function, nanosleep(), allows specification of sleep or delay

time in units of seconds and nanoseconds, as opposed to the ticks used by the

Wind taskDelay() function. Only the units are different, however, not the

precision: both delay routines have the same precision, determined by the system

clock rate.

2.8 POSIX Memory-Locking Interface

Many operating systems perform memory paging and swapping. These techniques

allow the use of more virtual memory than there is physical memory on a system,

by copying blocks of memory out to disk and back. These techniques impose

severe and unpredictable delays in execution time; they are therefore undesirable

in real-time systems.
101

VxWorks 5.3.1
Programmer’s Guide
Because the wind kernel is designed specifically for real-time applications, it never

performs paging or swapping. However, the POSIX 1003.1b standard for real-time

extensions also covers operating systems that perform paging or swapping. On

such systems, applications that attempt real-time performance can use the POSIX

page-locking facilities to declare that certain blocks of memory must not be paged

or swapped.

To help maximize portability, VxWorks includes the POSIX page-locking routines.

Executing these routines makes no difference in VxWorks, because all memory is,

in effect, always locked. They are included only to make it easier to port programs

between other POSIX-conforming systems and VxWorks.

The POSIX page-locking routines are in mmanPxLib (the name reflects the fact

that these routines are part of the POSIX “memory-management” routines).

Because in VxWorks all pages are always kept in memory, the routines listed in

Table 2-25 always return a value of OK (0), and have no further effect.

The mmanPxLib library is included automatically when the configuration

constant INCLUDE_POSIX_MEM is defined in configAll.h.

Table 2-25 POSIX Memory Management Calls

Call Purpose on Systems with Paging or Swapping

mlockall() Lock into memory all pages used by a task.

munlockall() Unlock all pages used by a task.

mlock() Lock a specified page.

munlock() Unlock a specified page.
102

3
I/O System
3.1 Introduction .. 109

3.2 Files, Devices, and Drivers ... 109

3.2.1 File Names and the Default Device ... 111

3.3 Basic I/O ... 112

3.3.1 File Descriptors ... 113

3.3.2 Standard Input, Standard Output, and Standard Error 113

Global Redirection ... 113

Task-Specific Redirection .. 114

3.3.3 Open and Close .. 114

3.3.4 Create and Remove .. 115

3.3.5 Read and Write ... 116

3.3.6 File Truncation .. 116

3.3.7 I/O Control ... 117

3.3.8 Pending on Multiple File Descriptors: The Select Facility 117

3.4 Buffered I/O: Stdio ... 120

3.4.1 Using Stdio .. 120

3.4.2 Standard Input, Standard Output, and Standard Error 121
103

VxWorks 5.3.1
Programmer’s Guide
3.5 Other Formatted I/O .. 121

3.5.1 Special Cases: printf(), sprintf(), and sscanf() 121

3.5.2 Additional Routines: printErr() and fdprintf() 122

3.5.3 Message Logging ... 122

3.6 Asynchronous Input/Output ... 122

3.6.1 The POSIX AIO Routines ... 123

3.6.2 AIO Control Block ... 124

3.6.3 Using AIO ... 125

AIO with Periodic Checks for Completion 126

Alternatives for Testing AIO Completion 128

3.7 Devices in VxWorks .. 131

3.7.1 Serial I/O Devices (Terminal and Pseudo-Terminal Devices) 131

Tty Options ... 132

Raw Mode and Line Mode ... 132

Tty Special Characters ... 133

I/O Control Functions .. 134

3.7.2 Pipe Devices ... 135

Creating Pipes .. 135

Writing to Pipes from ISRs ... 135

I/O Control Functions .. 136

3.7.3 Pseudo Memory Devices .. 136

Installing the Memory Driver .. 136

I/O Control Functions .. 137

3.7.4 Network File System (NFS) Devices ... 137

Mounting a Remote NFS File System from VxWorks 137

I/O Control Functions for NFS Clients .. 138

3.7.5 Non-NFS Network Devices .. 138

Creating Network Devices ... 139

I/O Control Functions .. 140

3.7.6 Block Devices ... 140
104

3

3
I/O System
File Systems .. 140

RAM Disk Drivers ... 140

SCSI Drivers .. 141

3.7.7 Sockets ... 152

3.8 Differences Between VxWorks and Host System I/O 152

3.9 Internal Structure ... 153

3.9.1 Drivers ... 155

The Driver Table and Installing Drivers ... 156

Example of Installing a Driver ... 157

3.9.2 Devices ... 158

The Device List and Adding Devices .. 158

Example of Adding Devices ... 158

3.9.3 File Descriptors ... 159

The Fd Table .. 160

Example of Opening a File ... 160

Example of Reading Data from the File .. 163

Example of Closing a File ... 163

Implementing select() ... 163

Cache Coherency .. 168

3.9.4 Block Devices .. 171

General Implementation ... 171

Low-Level Driver Initialization Routine .. 173

Device Creation Routine ... 174

Read Routine (Direct-Access Devices) .. 176

Read Routine (Sequential Devices) ... 177

Write Routine (Direct-Access Devices) ... 178

Write Routine (Sequential Devices) ... 178

I/O Control Routine .. 179

Device-Reset Routine .. 180

Status-Check Routine .. 180

Write-Protected Media .. 181

Change in Ready Status .. 181

Write-File-Marks Routine (Sequential Devices) 182

Rewind Routine (Sequential Devices) ... 182

Reserve Routine (Sequential Devices) .. 183
105

VxWorks 5.3.1
Programmer’s Guide
Release Routine (Sequential Devices) ... 183

Read-Block-Limits Routine (Sequential Devices) 183

Load/Unload Routine (Sequential Devices) 184

Space Routine (Sequential Devices) .. 185

Erase Routine (Sequential Devices) .. 185

3.9.5 Driver Support Libraries .. 186

List of Tables

Table 3-1 Basic I/O Routines .. 112

Table 3-2 File Access Flags .. 114

Table 3-3 Select Macros ... 118

Table 3-4 Asynchronous Input/Output Routines 123

Table 3-5 AIO Initialization Functions and Related Constants 124

Table 3-6 Drivers Provided with VxWorks 131

Table 3-7 Tty Options .. 132

Table 3-8 Tty Special Characters .. 134

Table 3-9 I/O Control Functions Supported by tyLib 135

Table 3-10 I/O Control Functions Supported by pipeDrv 136

Table 3-11 I/O Control Functions Supported by memDrv 137

Table 3-12 I/O Control Functions Supported by nfsDrv 139

Table 3-13 SCSI Constants ... 142

Table 3-14 Fields in the BLK_DEV Structure 175

Table 3-15 Fields in the SEQ_DEV Structure 175

Table 3-16 VxWorks Driver Support Routines 186
106

3

3
I/O System
List of Figures

Figure 3-1 Overview of the VxWorks I/O System 110

Figure 3-2 Example – Driver Initialization for Non-Block Devices 157

Figure 3-3 Example – Addition of Devices to I/O System 159

Figure 3-4 Example: Call to I/O Routine open() [Part 1] 161

Figure 3-5 Example: Call to I/O Routine open() [Part 2] 162

Figure 3-6 Example: Call to I/O Routine read() 164

Figure 3-7 Cache Coherency ... 168

Figure 3-8 Non-Block Devices vs. Block Devices 172

List of Examples

Example 3-1 The Select Facility .. 118

Example 3-2 Asynchronous I/O .. 126

Example 3-3 Asynchronous I/O with Signals 128

Example 3-4 Configuring SCSI Drivers ... 147

Example 3-5 Configuring a SCSI Disk Drive with Asynchronous Data

Transfer and No Tagged Command Queuing 148

Example 3-6 Working with Tape Devices ... 149

Example 3-7 Configuring a SCSI Disk for Synchronous Data Transfer with

Non-Default Offset and Period Values 150

Example 3-8 Changing the Bus ID of the SCSI Controller 150

Example 3-9 Hypothetical Driver .. 154

Example 3-10 Driver Code Using the Select Facility 166

Example 3-11 DMA Transfer Routine ... 169

Example 3-12 Address-Translation Driver ... 170
107

3

3
I/O System
3.1 Introduction

The VxWorks I/O system is designed to present a simple, uniform, device-

independent interface to any kind of device, including:

– character-oriented devices such as terminals or communications lines

– random-access block devices such as disks

– virtual devices such as intertask pipes and sockets
– monitor and control devices such as digital/analog I/O devices

– network devices that give access to remote devices

The VxWorks I/O system provides standard C libraries for both basic and buffered

I/O. The basic I/O libraries are UNIX-compatible; the buffered I/O libraries are

ANSI C-compatible. Internally, the VxWorks I/O system has a unique design that

makes it faster and more flexible than most other I/O systems. These are important

attributes in a real-time system.

This chapter first describes the nature of files and devices, and the user view of basic

and buffered I/O. The middle section discusses the details of some specific

devices. The final section is a detailed discussion of the internal structure of the

VxWorks I/O system.

Figure 3-1 diagrams the relationships between the different pieces of the VxWorks

I/O system. All the elements of the I/O system are discussed in this chapter, except

for file system routines, which are presented in 4. Local File Systems in this manual.

3.2 Files, Devices, and Drivers

In VxWorks, applications access I/O devices by opening named files. A file can

refer to one of two things:
109

VxWorks 5.3.1
Programmer’s Guide
■ An unstructured “raw” device such as a serial communications channel or an

intertask pipe.

■ A logical file on a structured, random-access device containing a file system.

Consider the following named files:

The first refers to a file called myfile, on a disk device called /usr. The second is a

named pipe (by convention, pipe names begin with /pipe). The third refers to a

physical serial channel. However, I/O can be done to or from any of these in the

same way. Within VxWorks, they are all called files, even though they refer to very

different physical objects.

Devices are handled by program modules called drivers. In general, using the I/O

system does not require any further understanding of the implementation of

Figure 3-1 Overview of the VxWorks I/O System

/usr/myfile /pipe/mypipe /tyCo/0

Driver Routines

xxRead()
xxWrite()

Basic I/O Routines
(device independent)

write()
read()

Application

Hardware Devices

Buffered I/O: stdio

fread()
fwrite()

Library Routines

tyLib

fioLib

fioRead()
printf()
sprintf()

Network
Disk Drive

Serial Device

File System Routines

xxRead()
xxWrite()
110

3

3
I/O System
devices and drivers. Note, however, that the VxWorks I/O system gives drivers

considerable flexibility in the way they handle each specific device. Drivers strive

to follow the conventional user view presented here, but can differ in the specifics.

See 3.7 Devices in VxWorks, p.131.

Although all I/O is directed at named files, it can be done at two different levels:

basic and buffered. The two differ in the way data is buffered and in the types of calls

that can be made. These two levels are discussed in later sections.

3.2.1 File Names and the Default Device

A file name is specified as a character string. An unstructured device is specified

with the device name. In the case of file system devices, the device name is

followed by a file name. Thus the name /tyCo/0 might name a particular serial I/O

channel, and the name DEV1:/file1 probably indicates the file file1 on the DEV1:
device.

When a file name is specified in an I/O call, the I/O system searches for a device

with a name that matches at least an initial substring of the file name. The I/O

function is then directed at this device.

If a matching device name cannot be found, then the I/O function is directed at a

default device. You can set this default device to be any device in the system,

including no device at all, in which case failure to match a device name returns an

error.

Non-block devices are named when they are added to the I/O system, usually at

system initialization time. Block devices are named when they are initialized for

use with a specific file system. The VxWorks I/O system imposes no restrictions on

the names given to devices. The I/O system does not interpret device or file names

in any way, other than during the search for matching device and file names.

It is useful to adopt some naming conventions for device and file names: most

device names begin with a slash (/), except non-NFS network devices and

VxWorks DOS devices (dosFs).

By convention, NFS-based network devices are mounted with names that begin

with a slash. For example:

/usr

Non-NFS network devices are named with the remote machine name followed by

a colon. For example:

host:
111

VxWorks 5.3.1
Programmer’s Guide
The remainder of the name is the file name in the remote directory on the remote

system.

File system devices using dosFs are often named with uppercase letters and/or

digits followed by a colon. For example:

DEV1:

File names and directory names on dosFs devices are often separated by

backslashes (\). These can be used interchangeably with forward slashes (/).

NOTE: Because device names are recognized by the I/O system using simple

substring matching, a slash (/) should not be used alone as a device name.

3.3 Basic I/O

Basic I/O is the lowest level of I/O in VxWorks. The basic I/O interface is source-

compatible with the I/O primitives in the standard C library. There are seven basic

I/O calls, shown in the following table.

Table 3-1 Basic I/O Routines

Call Description

creat() Create a file.

remove() Remove a file.

open() Open a file. (Optionally, create a file.)

close() Close a file.

read() Read a previously created or opened file.

write() Write a previously created or opened file.

ioctl() Perform special control functions on files or devices.

!

112

3

3
I/O System
3.3.1 File Descriptors

At the basic I/O level, files are referred to by a file descriptor, or fd. An fd is a small

integer returned by a call to open() or creat(). The other basic I/O calls take an fd
as a parameter to specify the intended file. An fd has no meaning discernible to the

user; it is only a handle for the I/O system.

When a file is opened, an fd is allocated and returned. When the file is closed, the

fd is deallocated. There are a finite number of fds available in VxWorks. To avoid

exceeding the system limit, it is important to close fds that are no longer in use. The

number of available fds is specified in the initialization of the I/O system.

3.3.2 Standard Input, Standard Output, and Standard Error

Three file descriptors are reserved and have special meanings:

0 = standard input

1 = standard output

2 = standard error output

These fds are never returned as the result of an open() or creat(), but serve rather

as indirect references that can be redirected to any other open fd.

These standard fds are used to make tasks and modules independent of their actual

I/O assignments. If a module sends its output to standard output (fd = 1), then its

output can be redirected to any file or device, without altering the module.

VxWorks allows two levels of redirection. First, there is a global assignment of the

three standard fds. Second, individual tasks can override the global assignment of

these fds with their own assignments that apply only to that task.

Global Redirection

When VxWorks is initialized, the global assignments of the standard fds are

directed, by default, to the system console. When tasks are spawned, they initially

have no task-specific fd assignments; instead, they use the global assignments.

The global assignments can be redirected using ioGlobalStdSet(). The parameters

to this routine are the global standard fd to be redirected, and the fd to direct it to.

For example, the following call sets global standard output (fd = 1) to be the open

file with a file descriptor of fileFd:

ioGlobalStdSet (1, fileFd);
113

VxWorks 5.3.1
Programmer’s Guide
All tasks in the system that do not have their own task-specific redirection write

standard output to that file thereafter. For example, the task tRlogind calls

ioGlobalStdSet() to redirect I/O across the network during an rlogin session.

Task-Specific Redirection

The assignments for a specific task can be redirected using the routine

ioTaskStdSet(). The parameters to this routine are the task ID (0 = self) of the task

with the assignments to be redirected, the standard fd to be redirected, and the fd
to direct it to. For example, a task can make the following call to write standard

output to fileFd:

ioTaskStdSet (0, 1, fileFd);

All other tasks are unaffected by this redirection, and subsequent global

redirections of standard output do not affect this task.

3.3.3 Open and Close

Before I/O can be performed to a device, an fd must be opened to that device by

invoking the open() routine (or creat(), as discussed in the next section). The

arguments to open() are the file name, the type of access, and, when necessary, the

mode:

fd = open (" name", flags, mode);

The possible access flags are shown in Table 3-2.

The mode parameter is used in the following special cases to specify the mode

(permission bits) of a file or to create subdirectories:

Table 3-2 File Access Flags

Flag Hex Value Description

O_RDONLY 0 Open for reading only.

O_WRONLY 1 Open for writing only.

O_RDWR 2 Open for reading and writing.

O_CREAT 200 Create a new file.

O_TRUNC 400 Truncate the file.
114

3

3
I/O System
■ In general, you can open only preexisting devices and files with open().
However, with NFS network, dosFs, and rt11Fs devices, you can also create

files with open() by or’ing O_CREAT with one of the access flags. In the case of

NFS devices, open() requires the third parameter specifying the mode of the

file:

fd = open (" name", O_CREAT | O_RDWR, 0644);

■ With both dosFs and NFS devices, you can use the O_CREAT option to create

a subdirectory by setting mode to FSTAT_DIR. Other uses of the mode

parameter with dosFs devices are ignored.

The open() routine, if successful, returns an fd (a small integer). This fd is then used

in subsequent I/O calls to specify that file. The fd is a global identifier that is not task

specific. One task can open a file, and then any other tasks can use the resulting fd
(for example, pipes). The fd remains valid until close() is invoked with that fd:

close (fd);

At that point, I/O to the file is flushed (completely written out) and the fd can no

longer be used by any task. However, the same fd number can again be assigned

by the I/O system in any subsequent open().

When a task exits or is deleted, the files opened by that task are not automatically

closed, because fds are not task specific. Thus, it is recommended that tasks

explicitly close all files when they are no longer required. As stated previously,

there is a limit to the number of files that can be open at one time.

3.3.4 Create and Remove

File-oriented devices must be able to create and remove files as well as open

existing files. The creat() routine directs a file-oriented device to make a new file

on the device and return a file descriptor for it. The arguments to creat() are

similar to those of open() except that the file name specifies the name of the new

file rather than an existing one; the creat() routine returns an fd identifying the

new file.

fd = creat (" name", flag);

The remove() routine removes a named file on a file-oriented device:

remove (" name");

Do not remove files while they are open.

With non-file-system oriented device names, creat() acts exactly like open();
however, remove() has no effect.
115

VxWorks 5.3.1
Programmer’s Guide
3.3.5 Read and Write

After an fd is obtained by invoking open() or creat(), tasks can read bytes from a

file with read() and write bytes to a file with write(). The arguments to read() are

the fd, the address of the buffer to receive input, and the maximum number of bytes

to read:

nBytes = read (fd, & buffer, maxBytes);

The read() routine waits for input to be available from the specified file, and

returns the number of bytes actually read. For file-system devices, if the number of

bytes read is less than the number requested, a subsequent read() returns 0 (zero),

indicating end-of-file. For non-file-system devices, the number of bytes read can be

less than the number requested even if more bytes are available; a subsequent

read() may or may not return 0. In the case of serial devices and TCP sockets,

repeated calls to read() are sometimes necessary to read a specific number of bytes.

(See the reference entry for fioRead() in fioLib). A return value of ERROR (-1)

indicates an unsuccessful read.

The arguments to write() are the fd, the address of the buffer that contains the data

to be output, and the number of bytes to be written:

actualBytes = write (fd, & buffer, nBytes);

The write() routine ensures that all specified data is at least queued for output

before returning to the caller, though the data may not yet have been written to the

device (this is driver dependent). write() returns the number of bytes written; if

the number returned is not equal to the number requested, an error has occurred.

3.3.6 File Truncation

It is sometimes convenient to discard part of the data in a file. After a file is open

for writing, you can use the ftruncate() routine to truncate a file to a specified size.

Its arguments are an fd and the desired length of the file:

status = ftruncate (fd, length);

If it succeeds in truncating the file, ftruncate() returns OK. If the size specified is

larger than the actual size of the file, or if the fd refers to a device that cannot be

truncated, ftruncate() returns ERROR, and sets errno to EINVAL.

The ftruncate() routine is part of the POSIX 1003.1b standard, but this

implementation is only partially POSIX-compliant: creation and modification

times are not updated. This call is supported only by dosFsLib, the DOS-

compatible file system library.
116

3

3
I/O System
3.3.7 I/O Control

The ioctl() routine is an open-ended mechanism for performing any I/O functions

that do not fit the other basic I/O calls. Examples include determining how many

bytes are currently available for input, setting device-specific options, obtaining

information about a file system, and positioning random-access files to specific

byte positions. The arguments to the ioctl() routine are the fd, a code that identifies

the control function requested, and an optional function-dependent argument:

result = ioctl (fd, function, arg);

For example, the following call uses the FIOBAUDRATE function to set the baud

rate of a tty device to 9600:

status = ioctl (fd, FIOBAUDRATE, 9600);

The discussion of specific devices in 3.7 Devices in VxWorks, p.131 summarizes the

ioctl() functions available for each device. The ioctl() control codes are defined in

ioLib.h. For more information, see the reference entries for specific device drivers.

3.3.8 Pending on Multiple File Descriptors: The Select Facility

The VxWorks select facility provides a UNIX- and Windows-compatible method

for pending on multiple file descriptors. The library selectLib provides both task-

level support, allowing tasks to wait for multiple devices to become active, and

device driver support, giving drivers the ability to detect tasks that are pended

while waiting for I/O on the device. To use this facility, the header file selectLib.h
must be included in your application code.

Task-level support not only gives tasks the ability to simultaneously wait for I/O

on multiple devices, but it also allows tasks to specify the maximum time to wait

for I/O to become available. For an example of using the select facility to pend on

multiple file descriptors, consider a client-server model in which the server is

servicing both local and remote clients. The server task uses a pipe to communicate

with local clients and a socket to communicate with remote clients. The server task

must respond to clients as quickly as possible. If the server blocks waiting for a

request on only one of the communication streams, it cannot service requests that

come in on the other stream until it gets a request on the first stream. For example,

if the server blocks waiting for a request to arrive in the socket, it cannot service

requests that arrive in the pipe until a request arrives in the socket to unblock it.

This can delay local tasks waiting to get their requests serviced. The select facility

solves this problem by giving the server task the ability to monitor both the socket

and the pipe and service requests as they come in, regardless of the communication

stream used.
117

VxWorks 5.3.1
Programmer’s Guide
Tasks can block until data becomes available or the device is ready for writing. The

select() routine returns when one or more file descriptors are ready or a timeout

has occurred. Using the select() routine, a task specifies the file descriptors on

which to wait for activity. Bit fields are used in the select() call to specify the read

and write file descriptors of interest. When select() returns, the bit fields are

modified to reflect the file descriptors that have become available. The macros for

building and manipulating these bit fields are listed in Table 3-3.

Applications can use select() with any character I/O devices that provide support

for this facility (for example, pipes, serial devices, and sockets). For information on

writing a device driver that supports select(), see Implementing select(), p.163.

Example 3-1 The Select Facility

/* selServer.c - select example
 * In this example, a server task uses two pipes: one for normal-priority
 * requests, the other for high-priority requests. The server opens both
 * pipes and blocks while waiting for data to be available in at least one
 * of the pipes.
 */

#include "vxWorks.h"
#include "selectLib.h"
#include "fcntl.h"

#define MAX_FDS 2
#define MAX_DATA 1024
#define PIPEHI "/pipe/highPriority"
#define PIPENORM "/pipe/normalPriority"

/**
* selServer - reads data as it becomes available from two different pipes
*
* Opens two pipe fds, reading from whichever becomes available. The
* server code assumes the pipes have been created from either another
* task or the shell. To test this code from the shell do the following:
* -> ld < selServer.o
* -> pipeDevCreate ("/pipe/highPriority", 5, 1024)

Table 3-3 Select Macros

Macro Function

FD_ZERO Zeros all bits.

FD_SET Sets bit corresponding to a specified file descriptor.

FD_CLR Clears a specified bit.

FD_ISSET Returns 1 if specified bit is set, otherwise returns 0.
118

3

3
I/O System
* -> pipeDevCreate ("/pipe/normalPriority", 5, 1024)
* -> fdHi = open ("/pipe/highPriority", 1, 0)
* -> fdNorm = open ("/pipe/normalPriority", 1, 0)
* -> iosFdShow
* -> sp selServer
* -> i
* At this point you should see selServer’s state as pended. You can now
* write to either pipe to make the selServer display your message.
* -> write fdNorm, "Howdy", 6
* -> write fdHi, "Urgent", 7
*/
STATUS selServer (void)
 {
 struct fd_set readFds; /* bit mask of fds to read from */
 int fds[MAX_FDS]; /* array of fds on which to pend */
 int width; /* number of fds on which to pend */
 int i; /* index for fd array */
 char buffer[MAX_DATA]; /* buffer for data that is read */

 /* open file descriptors */
 if ((fds[0] = open (PIPEHI, O_RDONLY, 0)) == ERROR)
 return (ERROR);
 if ((fds[1] = open (PIPENORM, O_RDONLY, 0)) == ERROR)
 return (ERROR);

 /* loop forever reading data and servicing clients */
 FOREVER
 {
 /* clear bits in read bit mask */
 FD_ZERO (&readFds);

 /* initialize bit mask */
 FD_SET (fds[0], &readFds);
 FD_SET (fds[1], &readFds);
 width = (fds[0] > fds[1]) ? fds[0] : fds[1];
 width++;

 /* pend, waiting for one or more fds to become ready */
 if (select (width, &readFds, NULL, NULL, NULL) == ERROR)
 return (ERROR);

 /* step through array and read from fds that are ready */
 for (i=0; i< MAX_FDS; i++)
 {
 /* check if this fd has data to read */
 if (FD_ISSET (fds[i], &readFds))
 {
 /* typically read from fd now that it is ready */
 read (fds[i], buffer, MAX_DATA);
 /* normally service request, for this example print it */
 printf ("SELSERVER Reading from %s: %s\n",
 (i == 0) ? PIPEHI : PIPENORM, buffer);
 }
 }
 }
 }
119

VxWorks 5.3.1
Programmer’s Guide
3.4 Buffered I/O: Stdio

The VxWorks I/O library provides a buffered I/O package that is compatible with

the UNIX and Windows stdio package and provides full ANSI C support. To

include the stdio package in the VxWorks system, define INCLUDE_ANSI_STDIO
in configAll.h.

Note that the implementation of printf(), sprintf(), and sscanf(), traditionally

considered part of the stdio package, is part of a different package in VxWorks.

These routines are discussed in 3.5 Other Formatted I/O, p.121.

3.4.1 Using Stdio

Although the VxWorks I/O system is efficient, some overhead is associated with

each low-level call. First, the I/O system must dispatch from the device-

independent user call (read(), write(), and so on) to the driver-specific routine for

that function. Second, most drivers invoke a mutual exclusion or queuing

mechanism to prevent simultaneous requests by multiple users from interfering

with each other.

Because the VxWorks primitives are fast, this overhead is quite small. However, an

application processing a single character at a time from a file incurs that overhead

for each character if it reads each character with a separate read() call:

n = read (fd, & char, 1);

To make this type of I/O more efficient and flexible, the stdio package implements

a buffering scheme in which data is read and written in large chunks and buffered

privately. This buffering is transparent to the application; it is handled

automatically by the stdio routines and macros. To access a file with stdio, a file is

opened with fopen() instead of open() (many stdio calls begin with the letter f):

fp = fopen ("/usr/foo", "r");

The returned value, a file pointer (or fp) is a handle for the opened file and its

associated buffers and pointers. An fp is actually a pointer to the associated data

structure of type FILE (that is, it is declared as FILE *). By contrast, the low-level I/O

routines identify a file with a file descriptor (fd), which is a small integer. In fact, the

FILE structure pointed to by the fp contains the underlying fd of the open file.

An already open fd can be associated belatedly with a FILE buffer by calling

fdopen():

fp = fdopen (fd, "r");
120

3

3
I/O System
After a file is opened with fopen(), data can be read with fread(), or a character at

a time with getc(), and data can be written with fwrite(), or a character at a time

with putc().

The routines and macros to get data into or out of a file are extremely efficient. They

access the buffer with direct pointers that are incremented as data is read or written

by the user. They pause to call the low-level read or write routines only when a

read buffer is empty or a write buffer is full.

WARNING: The stdio buffers and pointers are private to a particular task. They are

not interlocked with semaphores or any other mutual exclusion mechanism,

because this defeats the point of an efficient private buffering scheme. Therefore,

multiple tasks must not perform I/O to the same stdio FILE pointer at the same

time.

3.4.2 Standard Input, Standard Output, and Standard Error

As discussed earlier in 3.3 Basic I/O, p.112, there are three special file descriptors (0,

1, and 2) reserved for standard input, standard output, and standard error. There

are three corresponding stdio FILE buffers that are automatically created when

required; they are then associated with those file descriptors: stdin, stdout, and

stderr. These can be used to do buffered I/O to the standard fds.

3.5 Other Formatted I/O

3.5.1 Special Cases: printf(), sprintf(), and sscanf()

The routines printf(), sprintf(), and sscanf() are generally considered to be part of

the standard stdio package. However, the VxWorks implementation of these

routines, while functionally the same, does not use the stdio package. Instead, it

uses a self-contained, formatted, non-buffered interface to the I/O system in the

library fioLib. Note that these routines provide the functionality specified by

ANSI; however, printf() is not buffered.

Because these routines are implemented in this way, the full stdio package, which

is optional, can be omitted from a VxWorks configuration without sacrificing their

!

121

VxWorks 5.3.1
Programmer’s Guide
availability. Applications requiring printf-style output that is buffered can still

accomplish this by calling fprintf() explicitly to stdout.

While sscanf() is implemented in fioLib and can be used even if stdio is omitted,

the same is not true of scanf(), which is implemented in the usual way in stdio.

3.5.2 Additional Routines: printErr() and fdprintf()

Additional routines in fioLib provide formatted but unbuffered output. The

routine printErr() is analogous to printf() but outputs formatted strings to the

standard error fd (2). The routine fdprintf() outputs formatted strings to a

specified fd.

3.5.3 Message Logging

Another higher-level I/O facility is provided by the library logLib, which allows

formatted messages to be logged without having to do I/O in the current task’s

context, or when there is no task context. The message format and parameters are

sent on a message queue to a logging task, which then formats and outputs the

message. This is useful when messages must be logged from interrupt level, or

when it is desirable not to delay the current task for I/O or use the current task’s

stack for message formatting (which can take up significant stack space). The

message is displayed on the console unless otherwise redirected at system startup

using logInit() or dynamically using logFdSet().

3.6 Asynchronous Input/Output

Asynchronous Input/Output (AIO) is the ability to perform input and output

operations concurrently with ordinary internal processing. AIO enables you to

decouple I/O operations from the activities of a particular task when these are

logically independent.

The benefit of AIO is greater processing efficiency: it permits I/O operations to

take place whenever resources are available, rather than making them await

arbitrary events such as the completion of independent operations. AIO eliminates

some of the unnecessary blocking of tasks that is caused by ordinary synchronous
122

3

3
I/O System
I/O; this decreases contention for resources between input/output and internal

processing, and expedites throughput.

The VxWorks AIO implementation meets the specification in the POSIX 1003.1b

standard. To include AIO in your VxWorks configuration, define

INCLUDE_POSIX_AIO and INCLUDE_POSIX_AIO_SYSDRV in configAll.h. The

second configuration constant enables the auxiliary AIO system driver, required

for asynchronous I/O on all current VxWorks devices.

3.6.1 The POSIX AIO Routines

The VxWorks library aioPxLib provides the POSIX AIO routines. To access a file

asynchronously, open it with the open() routine, like any other file. Thereafter, use

the file descriptor returned by open() in calls to the AIO routines. The POSIX AIO

routines (and two associated non-POSIX routines) are listed in Table 3-4.

The default VxWorks initialization code calls aioPxLibInit() automatically when

INCLUDE_POSIX_AIO is defined in configAll.h. This routine takes one parameter,

the maximum number of lio_listio() calls that can be outstanding at one time. By

* This function is not built into the Tornado shell. To use it from the Tornado

shell, you must define INCLUDE_SHOW_ROUTINES in your VxWorks

configuration; see 8. Configuration in this manual. When you invoke the

function, its output is sent to the standard output device.

Table 3-4 Asynchronous Input/Output Routines

Function Description

aioPxLibInit() Initialize the AIO library (non-POSIX).

aioShow() Display the outstanding AIO requests (non-POSIX).*

aio_read() Initiate an asynchronous read operation.

aio_write() Initiate an asynchronous write operation.

aio_listio() Initiate a list of up to LIO_MAX asynchronous I/O requests.

aio_error() Retrieve the error status of an AIO operation.

aio_return() Retrieve the return status of a completed AIO operation.

aio_cancel() Cancel a previously submitted AIO operation.

aio_suspend() Wait until an AIO operation is done, interrupted, or timed out.
123

VxWorks 5.3.1
Programmer’s Guide
default this parameter is MAX_LIO_CALLS (defined in configAll.h). When the

parameter is 0, the default value is taken from AIO_CLUST_MAX (defined in

h/private/aioPxLibP.h).

The AIO system driver, aioSysDrv, is initialized by default with the routine

aioSysInit() when both INCLUDE_POSIX_AIO and

INCLUDE_POSIX_AIO_SYSDRV are defined. The purpose of aioSysDrv is to

provide request queues independent of any particular device driver, so that you

can use any VxWorks device driver with AIO.

The routine aioSysInit() takes three parameters: the number of AIO system tasks

to spawn, and the priority and stack size for these system tasks. The number of

AIO system tasks spawned equals the number of AIO requests that can be handled

in parallel. The default initialization call uses three constants, all defined in

configAll.h:

aioSysInit(MAX_AIO_SYS_TASKS, AIO_TASK_PRIORITY, AIO_TASK_STACK_SIZE)

When any of the parameters passed to aioSysInit() is 0, the corresponding value

is taken from AIO_IO_TASKS_DFLT, AIO_IO_PRIO_DFLT, and

AIO_IO_STACK_DFLT (all defined in h/aioSysDrv.h).

Table 3-5 lists the names of the constants defined in configAll.h for initialization

routines called from usrConfig.c. It also shows the constants used within

initialization routines when the parameters are 0, and where these constants are

defined.

3.6.2 AIO Control Block

Each of the AIO calls takes an AIO control block (aiocb) as an argument to describe

the AIO operation. The calling routine must allocate space for the control block,

which is associated with a single AIO operation. No two concurrent AIO

Table 3-5 AIO Initialization Functions and Related Constants

Initialization
Function

configAll.h Constant
Def.

Value
Header File Constant
used when arg = 0

Def.
Value

Header File

aioPxLibInit() MAX_LIO_CALLS 0 AIO_CLUST_MAX 100 h/private/aioPxLibP.h

aioSysInit() MAX_AIO_SYS_TASKS 0 AIO_IO_TASKS_DFLT 2 h/aioSysDrv.h

AIO_TASK_PRIORITY 0 AIO_IO_PRIO_DFLT 50 h/aioSysDrv.h

AIO_TASK_STACK_SIZE 0 AIO_IO_STACK_DFLT 0x7000 h/aioSysDrv.h
124

3

3
I/O System
operations can use the same control block; an attempt to do so yields undefined

results.

The aiocb and the data buffers it references are used by the system while

performing the associated request. Therefore, after you request an AIO operation,

you must not modify the corresponding aiocb before calling aio_return(); this

function frees the aiocb for modification or reuse.

NOTE: If a routine allocates stack space for the aiocb, that routine must call

aio_return() to free the aiocb before returning.

The aiocb structure is defined in aio.h. It contains the following fields:

aio_fildes file descriptor for I/O

aio_offset offset from the beginning of the file

aio_buf address of the buffer from/to which AIO is requested

aio_nbytes number of bytes to read or write

aio_reqprio priority reduction for this AIO request

aio_sigevent signal to return on completion of an operation (optional)

aio_lio_opcode operation to be performed by a lio_listio() call

aio_sys VxWorks-specific data (non-POSIX)

For full definitions and important additional information, see the reference entry

for aioPxLib.

3.6.3 Using AIO

The routines aio_read(), aio_write(), or lio_listio() initiate AIO operations. The

last of these, lio_listio(), allows you to submit a number of asynchronous requests

(read and/or write) at one time. In general, the actual I/O (reads and writes)

initiated by these routines does not happen immediately after the AIO request. For

that reason, their return values do not reflect the outcome of the actual I/O

operation, but only whether a request is successful—that is, whether the AIO

routine is able to put the operation on a queue for eventual execution.

After the I/O operations themselves execute, they also generate return values that

reflect the success or failure of the I/O. There are two routines that you can use to

get information about the success or failure of the I/O operation: aio_error() and

aio_return(). You can use aio_error() to get the status of an AIO operation

!

125

VxWorks 5.3.1
Programmer’s Guide
(success, failure, or in progress), and aio_return() to obtain the return values from

the individual I/O operations. Until an AIO operation completes, its error status

is EINPROGRESS. To cancel an AIO operation, call aio_cancel().

AIO with Periodic Checks for Completion

The following code uses a pipe for the asynchronous I/O operations. The example

creates the pipe, submits an AIO read request, verifies that the read request is still

in progress, and submits an AIO write request. Under normal circumstances, a

synchronous read to an empty pipe blocks and the task does not execute the write,

but in the case of AIO, we initiate the read request and continue. After the write

request is submitted, the example task loops, checking the status of the AIO

requests periodically until both the read and write complete. Because the AIO

control blocks are on the stack, we must call aio_return() before returning from

aioExample().

Example 3-2 Asynchronous I/O

/* aioEx.c - example code for using asynchronous I/O */

/* includes */

#include "vxWorks.h"
#include "aio.h"
#include "errno.h"

/* defines */

#define BUFFER_SIZE 200

/**
*
* aioExample - use AIO library
*
* This example shows the basic functions of the AIO library.
*
* RETURNS: OK if successful, otherwise ERROR.
*/

STATUS aioExample (void)
 {
 int fd;
 static char exFile [] = "/pipe/1stPipe";
 struct aiocb aiocb_read; /* read aiocb */
 struct aiocb aiocb_write; /* write aiocb */
 static char * test_string = "testing 1 2 3";
 char buffer [BUFFER_SIZE]; /* buffer for read aiocb */

 pipeDevCreate (exFile, 50, 100);
126

3

3
I/O System
 if ((fd = open (exFile, O_CREAT | O_TRUNC | O_RDWR, 0666)) ==
 ERROR)
 {
 printf ("aioExample: cannot open %s errno 0x%x\n", exFile, errno);
 return (ERROR);
 }

 printf ("aioExample: Example file = %s\tFile descriptor = %d\n",
 exFile, fd);

 /* initialize read and write aiocbs */
 bzero ((char *) &aiocb_read, sizeof (struct aiocb));
 bzero ((char *) buffer, sizeof (buffer));
 aiocb_read.aio_fildes = fd;
 aiocb_read.aio_buf = buffer;
 aiocb_read.aio_nbytes = BUFFER_SIZE;
 aiocb_read.aio_reqprio = 0;

 bzero ((char *) &aiocb_write, sizeof (struct aiocb));
 aiocb_write.aio_fildes = fd;
 aiocb_write.aio_buf = test_string;
 aiocb_write.aio_nbytes = strlen (test_string);
 aiocb_write.aio_reqprio = 0;

 /* initiate the read */
 if (aio_read (&aiocb_read) == -1)
 printf ("aioExample: aio_read failed\n");

 /* verify that it is in progress */
 if (aio_error (&aiocb_read) == EINPROGRESS)
 printf ("aioExample: read is still in progress\n");

 /* write to pipe - the read should be able to complete */
 printf ("aioExample: getting ready to initiate the write\n");
 if (aio_write (&aiocb_write) == -1)
 printf ("aioExample: aio_write failed\n");

 /* wait til both read and write are complete */
 while ((aio_error (&aiocb_read) == EINPROGRESS) ||
 (aio_error (&aiocb_write) == EINPROGRESS))
 taskDelay (1);

 /* print out what was read */
 printf ("aioExample: message = %s\n", buffer);

 /* clean up */
 if (aio_return (&aiocb_read) == -1)
 printf ("aioExample: aio_return for aiocb_read failed\n");
 if (aio_return (&aiocb_write) == -1)
 printf ("aioExample: aio_return for aiocb_write failed\n");

 close (fd);
 return (OK);
 }
127

VxWorks 5.3.1
Programmer’s Guide
Alternatives for Testing AIO Completion

A task can determine whether an AIO request is complete in any of the following

ways:

■ Check the result of aio_error() periodically, as in the previous example, until

the status of an AIO request is no longer EINPROGRESS.

■ Use aio_suspend() to suspend the task until the AIO request is complete.

■ Use signals to be informed when the AIO request is complete.

The following example is similar to the preceding aioExample(), except that it uses

signals to be notified when the write is complete. If you test this from the shell,

spawn the routine to run at a lower priority than the AIO system tasks to assure

that the test routine does not block completion of the AIO request. (For details on

the shell, see the Tornado User’s Guide: Shell.)

Example 3-3 Asynchronous I/O with Signals

/* aioExSig.c - example code for using signals with asynchronous I/O */

/* includes */

#include "vxWorks.h"
#include "aio.h"
#include "errno.h"

/* defines */

#define BUFFER_SIZE 200
#define LIST_SIZE 1
#define EXAMPLE_SIG_NO 25 /* signal number */

/* forward declarations */

void mySigHandler (int sig, struct siginfo * info, void * pContext);

/**
*
* aioExampleSig - use AIO library.
*
* This example shows the basic functions of the AIO library.
* Note if this is run from the shell it must be spawned. Use:
* -> sp aioExampleSig
*
* RETURNS: OK if successful, otherwise ERROR.
*/

STATUS aioExampleSig (void)
 {
 int fd;
128

3

3
I/O System
 static char exFile [] = "/pipe/1stPipe";
 struct aiocb aiocb_read; /* read aiocb */
 static struct aiocb aiocb_write; /* write aiocb */
 struct sigaction action; /* signal info */
 static char * test_string = "testing 1 2 3";
 char buffer [BUFFER_SIZE]; /* aiocb read buffer */

 pipeDevCreate (exFile, 50, 100);

 if ((fd = open (exFile, O_CREAT | O_TRUNC| O_RDWR, 0666)) == ERROR)
 {
 printf ("aioExample: cannot open %s errno 0x%x\n", exFile, errno);
 return (ERROR);
 }

 printf ("aioExampleSig: Example file = %s\tFile descriptor = %d\n",
 exFile, fd);

 /* set up signal handler for EXAMPLE_SIG_NO */

 action.sa_sigaction = mySigHandler;
 action.sa_flags = SA_SIGINFO;
 sigemptyset (&action.sa_mask);
 sigaction (EXAMPLE_SIG_NO, &action, NULL);

 /* initialize read and write aiocbs */

 bzero ((char *) &aiocb_read, sizeof (struct aiocb));
 bzero ((char *) buffer, sizeof (buffer));
 aiocb_read.aio_fildes = fd;
 aiocb_read.aio_buf = buffer;
 aiocb_read.aio_nbytes = BUFFER_SIZE;
 aiocb_read.aio_reqprio = 0;

 bzero ((char *) &aiocb_write, sizeof (struct aiocb));
 aiocb_write.aio_fildes = fd;
 aiocb_write.aio_buf = test_string;
 aiocb_write.aio_nbytes = strlen (test_string);
 aiocb_write.aio_reqprio = 0;

 /* set up signal info */

 aiocb_write.aio_sigevent.sigev_signo = EXAMPLE_SIG_NO;
 aiocb_write.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
 aiocb_write.aio_sigevent.sigev_value.sival_ptr =
 (void *) &aiocb_write;

 /* initiate the read */

 if (aio_read (&aiocb_read) == -1)
 printf ("aioExampleSig: aio_read failed\n");

 /* verify that it is in progress */

 if (aio_error (&aiocb_read) == EINPROGRESS)
 printf ("aioExampleSig: read is still in progress\n");
129

VxWorks 5.3.1
Programmer’s Guide
 /* write to pipe - the read should be able to complete */

 printf ("aioExampleSig: getting ready to initiate the write\n");
 if (aio_write (&aiocb_write) == -1)
 printf ("aioExampleSig: aio_write failed\n");

 /* clean up */

 if (aio_return (&aiocb_read) == -1)
 printf ("aioExampleSig: aio_return for aiocb_read failed\n");
 else
 printf ("aioExampleSig: aio read message = %s\n",
 aiocb_read.aio_buf);

 close (fd);
 return (OK);
 }

void mySigHandler
 (
 int sig,
 struct siginfo * info,
 void * pContext
)

 {
 /* print out what was read */

 printf ("mySigHandler: Got signal for aio write\n");

 /* write is complete so let’s do cleanup for it here */

 if (aio_return (info->si_value.sival_ptr) == -1)
 {
 printf ("mySigHandler: aio_return for aiocb_write failed\n");
 printErrno (0);
 }
 }
130

3

3
I/O System
3.7 Devices in VxWorks

The VxWorks I/O system is flexible, allowing specific device drivers to handle the

seven I/O functions. All VxWorks device drivers follow the basic conventions

outlined previously, but differ in specifics; this section describes those specifics.

3.7.1 Serial I/O Devices (Terminal and Pseudo-Terminal Devices)

VxWorks provides terminal and pseudo-terminal device drivers (tty and pty
drivers). The tty driver is for actual terminals; the pty driver is for processes that

simulate terminals. These pseudo terminals are useful in applications such as

remote login facilities.1

VxWorks serial I/O devices are buffered serial byte streams. Each device has a ring

buffer (circular buffer) for both input and output. Reading from a tty device

extracts bytes from the input ring. Writing to a tty device adds bytes to the output

ring. The size of each ring buffer is specified when the device is created during

system initialization.

1. For the remainder of this section, the term tty is used to indicate both tty and pty devices.

Table 3-6 Drivers Provided with VxWorks

Module Driver Description

ttyDrv Terminal driver

ptyDrv Pseudo-terminal driver

pipeDrv Pipe driver

memDrv Pseudo memory device driver

nfsDrv NFS client driver

netDrv Network driver for remote file access

ramDrv RAM driver for creating a RAM disk

scsiLib SCSI interface library

- Other hardware-specific drivers
131

VxWorks 5.3.1
Programmer’s Guide
Tty Options

The tty devices have a full range of options that affect the behavior of the device.

These options are selected by setting bits in the device option word using the

ioctl() routine with the FIOSETOPTIONS function (see I/O Control Functions,

p.134). For example, to set all the tty options except OPT_MON_TRAP:

status = ioctl (fd, FIOSETOPTIONS, OPT_TERMINAL & ~OPT_MON_TRAP);

Table 3-7 is a summary of the available options. The listed names are defined in the

header file ioLib.h. For more detailed information, see the reference entry for

tyLib.

Raw Mode and Line Mode

A tty device operates in one of two modes: raw mode (unbuffered) or line mode. Raw

mode is the default. Line mode is selected by the OPT_LINE bit of the device option

word (see Tty Options, p.132).

In raw mode, each input character is available to readers as soon as it is input from

the device. Reading from a tty device in raw mode causes as many characters as

Table 3-7 Tty Options

Library Description

OPT_LINE Select line mode. (See Raw Mode and Line Mode, p.132.)

OPT_ECHO Echo input characters to the output of the same channel.

OPT_CRMOD Translate input RETURN characters into NEWLINE (\n); translate

output NEWLINE into RETURN-LINEFEED.

OPT_TANDEM Respond to X-on/X-off protocol (CTRL+Q and CTRL+S).

OPT_7_BIT Strip the most significant bit from all input bytes.

OPT_MON_TRAP Enable the special ROM monitor trap character, CTRL+X by default.

OPT_ABORT Enable the special target shell abort character, CTRL+C by default.

(Only useful if the target shell is configured into the system; see

9. Target Shell in this manual for details.)

OPT_TERMINAL Set all of the above option bits.

OPT_RAW Set none of the above option bits.
132

3

3
I/O System
possible to be extracted from the input ring, up to the limit of the user’s read buffer.

Input cannot be modified except as directed by other tty option bits.

In line mode, all input characters are saved until a NEWLINE character is input; then

the entire line of characters, including the NEWLINE, is made available in the ring

at one time. Reading from a tty device in line mode causes characters up to the end

of the next line to be extracted from the input ring, up to the limit of the user’s read

buffer. Input can be modified by the special characters CTRL+H (backspace),

CTRL+U (line-delete), and CTRL+D (end-of-file), which are discussed in Tty Special
Characters, p.133.

Tty Special Characters

The following special characters are enabled if the tty device operates in line mode,

that is, with the OPT_LINE bit set:

■ The backspace character, by default CTRL+H, causes successive previous

characters to be deleted from the current line, up to the start of the line. It does

this by echoing a backspace followed by a space, and then another backspace.

■ The line-delete character, by default CTRL+U, deletes all the characters of the

current line.

■ The end-of-file (EOF) character, by default CTRL+D, causes the current line to

become available in the input ring without a NEWLINE and without entering

the EOF character itself. Thus if the EOF character is the first character typed

on a line, reading that line returns a zero byte count, which is the usual

indication of end-of-file.

The following characters have special effects if the tty device is operating with the

corresponding option bit set:

■ The flow control characters, CTRL+Q and CTRL+S, commonly known as

X-on/X-off protocol. Receipt of a CTRL+S input character suspends output to

that channel. Subsequent receipt of a CTRL+Q resumes the output. Conversely,

when the VxWorks input buffer is almost full, a CTRL+S is output to signal the

other side to suspend transmission. When the input buffer is empty enough, a

CTRL+Q is output to signal the other side to resume transmission. X-on/X-off

protocol is enabled by OPT_TANDEM.

■ The ROM monitor trap character, by default CTRL+X. This character traps to the

ROM-resident monitor program. Note that this is drastic. All normal VxWorks

functioning is suspended, and the computer system is controlled entirely by

the monitor. Depending on the particular monitor, it may or may not be
133

VxWorks 5.3.1
Programmer’s Guide
possible to restart VxWorks from the point of interruption. The monitor trap

character is enabled by OPT_MON_TRAP.

■ The special target shell abort character, by default CTRL+C. This character

restarts the target shell if it gets stuck in an unfriendly routine, such as one that

has taken an unavailable semaphore or is caught in an infinite loop. The target

shell abort character is enabled by OPT_ABORT.

The characters for most of these functions can be changed using the tyLib routines

shown in Table 3-8.

I/O Control Functions

The tty devices respond to the ioctl() functions in Table 3-9, defined in ioLib.h. For

more information, see the reference entries for tyLib, ttyDrv, and ioctl().

NOTE: To change the driver’s hardware options (for example, the number of stop

bits or parity bits), use the ioctl() function SIO_HW_OPTS_SET. Because this

command is not implemented in most drivers, you may need to add it to your BSP

serial driver, which resides in src/drv/sio. The details of how to implement this

command depend on your board’s serial chip. The constants defined in the header

file h/sioLib.h provide the POSIX definitions for setting the hardware options.

Table 3-8 Tty Special Characters

Character Description Modifier

CTRL+H backspace (character delete) tyBackspaceSet()

CTRL+U line delete tyDeleteLineSet()

CTRL+D EOF (end of file) tyEOFSet()

CTRL+C target shell abort tyAbortSet()

CTRL+X trap to boot ROMs tyMonitorTrapSet()

CTRL+S output suspend N/A

CTRL+Q output resume N/A

!

134

3

3
I/O System
3.7.2 Pipe Devices

Pipes are virtual devices by which tasks communicate with each other through the

I/O system. Tasks write messages to pipes; these messages can then be read by

other tasks. Pipe devices are managed by pipeDrv and use the kernel message

queue facility to bear the actual message traffic.

Creating Pipes

Pipes are created by calling the pipe create routine:

status = pipeDevCreate ("/pipe/name", maxMsgs, maxLength);

The new pipe can have at most maxMsgs messages queued at a time. Tasks that

write to a pipe that already has the maximum number of messages queued are

delayed until a message is dequeued. Each message in the pipe can be at most

maxLength bytes long; attempts to write longer messages result in an error.

Writing to Pipes from ISRs

VxWorks pipes are designed to allow ISRs to write to pipes in the same way as

task-level code. Many VxWorks facilities cannot be used from ISRs, including I/O

to devices other than pipes. However, ISRs can use pipes to communicate with

tasks, which can then invoke such facilities.

Table 3-9 I/O Control Functions Supported by tyLib

Function Description

FIOBAUDRATE Set the baud rate to the specified argument.

FIOCANCEL Cancel a read or write.

FIOFLUSH Discard all bytes in the input and output buffers.

FIOGETNAME Get the file name of the fd.

FIOGETOPTIONS Return the current device option word.

FIONREAD Get the number of unread bytes in the input buffer.

FIONWRITE Get the number of bytes in the output buffer.

FIOSETOPTIONS Set the device option word.
135

VxWorks 5.3.1
Programmer’s Guide
ISRs write to a pipe using the write() call. Tasks and ISRs can write to the same

pipes. However, if the pipe is full, the message is discarded because the ISRs

cannot pend. ISRs must not invoke any I/O function on pipes other than write().

I/O Control Functions

Pipe devices respond to the ioctl() functions summarized in Table 3-10. The

functions listed are defined in the header file ioLib.h. For more information, see

the reference entries for pipeDrv and for ioctl() in ioLib.

3.7.3 Pseudo Memory Devices

The memDrv driver allows the I/O system to access memory directly as a pseudo-

I/O device. Memory location and size are specified when the device is created.

This feature is useful when data must be preserved between boots of VxWorks or

when sharing data between CPUs. This driver does not implement a file system as

does ramDrv. The ramDrv driver must be given memory over which it has

absolute control; whereas memDrv provides a high-level method of reading and

writing bytes in absolute memory locations through I/O calls.

Installing the Memory Driver

The driver is first initialized and then the device is created:

STATUS memDrv
(void)

STATUS memDevCreate
(char * name, char * base, int length)

Table 3-10 I/O Control Functions Supported by pipeDrv

Function Description

FIOFLUSH Discard all messages in the pipe.

FIOGETNAME Get the pipe name of the fd.

FIONMSGS Get the number of messages remaining in the pipe.

FIONREAD Get the size in bytes of the first message in the pipe.
136

3

3
I/O System
Memory for the device is an absolute memory location beginning at base. The

length parameter indicates the size of the memory. For additional information on

the memory driver, see the reference entries for memDrv, memDevCreate(), and

memDrv().

I/O Control Functions

The memory driver responds to the ioctl() functions summarized in Table 3-11.

The functions listed are defined in the header file ioLib.h. For more information,

see the reference entries for memDrv and for ioctl() in ioLib.

3.7.4 Network File System (NFS) Devices

Network File System (NFS) devices allow files on remote hosts to be accessed with

the NFS protocol. The NFS protocol specifies both client software, to read files from

remote machines, and server software, to export files to remote machines.

The driver nfsDrv acts as a VxWorks NFS client to access files on any NFS server

on the network. VxWorks also allows you to run an NFS server to export files to

other systems; see Allowing Remote Access to VxWorks Files through NFS, p.288 in

this manual.

Using NFS devices, you can create, open, and access remote files exactly as though

they were on a file system on a local disk. This is called network transparency.

Mounting a Remote NFS File System from VxWorks

Access to a remote NFS file system is established by mounting that file system

locally and creating an I/O device for it using nfsMount(). Its arguments are

(1) the host name of the NFS server, (2) the name of the host file system, and (3) the

local name for the file system.

Table 3-11 I/O Control Functions Supported by memDrv

Function Description

FIOSEEK Set the current byte offset in the file.

FIOWHERE Return the current byte position in the file.
137

VxWorks 5.3.1
Programmer’s Guide
For example, the following call mounts /usr of the host mars as /vxusr locally:

nfsMount ("mars", "/usr", "/vxusr");

This creates a VxWorks I/O device with the specified local name (/vxusr, in this

example). If the local name is specified as NULL, the local name is the same as the

remote name.

After a remote file system is mounted, the files are accessed as though the file

system were local. Thus, after the previous example, opening the file /vxusr/foo
opens the file /usr/foo on the host mars.

The remote file system must be exported by the system on which it actually resides.

However, NFS servers can export only local file systems. Use the appropriate

command on the server to see which file systems are local. NFS requires

authentication parameters to identify the user making the remote access. To set

these parameters, use the routines nfsAuthUnixSet() and nfsAuthUnixPrompt().

Define INCLUDE_NFS in configAll.h to include NFS client support in your

VxWorks configuration.

The subject of exporting and mounting NFS file systems and authenticating access

permissions is discussed in more detail in Transparent Remote File Access with NFS,

p.286. See also the reference entries nfsLib and nfsDrv, and the NFS

documentation from Sun Microsystems.

I/O Control Functions for NFS Clients

NFS client devices respond to the ioctl() functions summarized in Table 3-12. The

functions listed are defined in ioLib.h. For more information, see the reference

entries for nfsDrv and for ioctl() in ioLib.

3.7.5 Non-NFS Network Devices

VxWorks also supports network access to files on the remote host through the

Remote Shell protocol (RSH) or the File Transfer Protocol (FTP). These

implementations of network devices use the driver netDrv. When a remote file is

opened using RSH or FTP, the entire file is copied into local memory. As a result,

the largest file that can be opened is restricted by the available memory. Read and

write operations are performed on the in-memory copy of the file. When closed,

the file is copied back to the original remote file if it was modified.
138

3

3
I/O System
In general, NFS devices are preferable to RSH and FTP devices for performance

and flexibility, because NFS does not copy the entire file into local memory.

However, NFS is not supported by all host systems.

Creating Network Devices

To access files on a remote host using either RSH or FTP, a network device must

first be created by calling the routine netDevCreate(). The arguments to

netDevCreate() are (1) the name of the device, (2) the name of the host the device

accesses, and (3) which protocol to use: 0 (RSH) or 1 (FTP).

For example, the following call creates an RSH device called mars: that accesses the

host mars. By convention, the name for a network device is the remote machine’s

name followed by a colon (:).

netDevCreate ("mars:", "mars", 0);

Files on a network device can be created, opened, and manipulated as if on a local

disk. Thus, opening the file mars:/usr/foo actually opens /usr/foo on host mars.

Note that creating a network device allows access to any file or device on the

remote system, while mounting an NFS file system allows access only to a

specified file system.

For the files of a remote host to be accessible with RSH or FTP, permissions and

user identification must be established on both the remote and local systems.

Creating and configuring network devices is discussed in detail in Transparent
Remote File Access with RSH and FTP, p.283 and in the reference entry for netDrv.

Table 3-12 I/O Control Functions Supported by nfsDrv

Function Description

FIOFSTATGET Get file status information (directory entry data).

FIOGETNAME Get the file name of the fd.

FIONREAD Get the number of unread bytes in the file.

FIOREADDIR Read the next directory entry.

FIOSEEK Set the current byte offset in the file.

FIOSYNC Flush data to a remote NFS file.

FIOWHERE Return the current byte position in the file.
139

VxWorks 5.3.1
Programmer’s Guide
I/O Control Functions

RSH and FTP devices respond to the same ioctl() functions as NFS devices except

for FIOSYNC and FIOREADDIR. The functions are defined in the header file

ioLib.h. For more information, see the reference entries for netDrv and ioctl().

3.7.6 Block Devices

A block device is a device that is organized as a sequence of individually accessible

blocks of data. The most common type of block device is a disk. In VxWorks, the

term block refers to the smallest addressable unit on the device. For most disk

devices, a VxWorks block corresponds to a sector, although terminology varies.

Block devices in VxWorks have a slightly different interface than other I/O

devices. Rather than interacting directly with the I/O system, block device support

consists of low-level drivers that interact with a file system. The file system, in turn,

interacts with the I/O system. This arrangement allows a single low-level driver

to be used with various different file systems and reduces the number of I/O

functions that must be supported in the driver. The internal implementation of

low-level drivers for block devices is discussed in 3.9.4 Block Devices, p.171.

File Systems

For use with block devices, VxWorks is supplied with file system libraries

compatible with the MS-DOS (dosFs) and RT-11 (rt11Fs) file systems. In addition,

there is a library for a simple raw disk file system (rawFs), which treats an entire

disk much like a single large file. Also supplied is a file system that supports SCSI

tape devices, which are organized so that individual blocks of data are read and

written sequentially. Use of these file systems is discussed in 4. Local File Systems in

this manual. Also see the reference entries for dosFsLib, rt11FsLib, rawFsLib, and

tapeFsLib.

RAM Disk Drivers

RAM drivers, as implemented in ramDrv, emulate disk devices but actually keep

all data in memory. Memory location and “disk” size are specified when a RAM

device is created by calling ramDevCreate(). This routine can be called repeatedly

to create multiple RAM disks.
140

3

3
I/O System
Memory for the RAM disk can be preallocated and the address passed to

ramDevCreate(), or memory can be automatically allocated from the system

memory pool using malloc().

After the device is created, a name and file system (dosFs, rt11Fs, or rawFs) must

be associated with it using the file system’s device initialization routine or file

system’s make routine, for example, dosFsDevInit() or dosFsMkfs(). Information

describing the device is passed to the file system in a BLK_DEV structure. A pointer

to this structure is returned by the RAM disk creation routine.

In the following example, a 200KB RAM disk is created with automatically

allocated memory, 512-byte sections, a single track, and no sector offset. The device

is assigned the name DEV1: and initialized for use with dosFs.

BLK_DEV *pBlkDev;
DOS_VOL_DESC *pVolDesc;
pBlkDev = ramDevCreate (0, 512, 400, 400, 0);
pVolDesc = dosFsMkfs ("DEV1:", pBlkDev);

The dosFsMkfs() routine calls dosFsDevInit() with default parameters and

initializes the file system on the disk by calling ioctl() with the FIODISKINIT.

If the RAM disk memory already contains a disk image, the first argument to

ramDevCreate() is the address in memory, and the formatting arguments must be

identical to those used when the image was created. For example:

pBlkDev = ramDevCreate (0xc0000, 512, 400, 400, 0);
pVolDesc = dosFsDevInit ("DEV1:", pBlkDev, NULL);

In this case, dosFsDevInit() must be used instead, because the file system already

exists on the disk and does not require re-initialization. This procedure is useful if

a RAM disk is to be created at the same address used in a previous boot of

VxWorks. The contents of the RAM disk are then preserved. Creating a RAM disk

with rt11Fs using rt11FsMkfs() and rt11FsDevInit() follows these same

procedures. For more information on RAM disk drivers, see the reference entry for

ramDrv. For more information on file systems, see 4. Local File Systems.

SCSI Drivers

SCSI is a standard peripheral interface that allows connection with a wide variety

of hard disks, optical disks, floppy disks, and tape drives. SCSI block drivers are

compatible with the dosFs and rt11Fs libraries, and offer several advantages for

target configurations. They provide:

– local mass storage in non-networked environments

– faster I/O throughput than Ethernet networks
141

VxWorks 5.3.1
Programmer’s Guide
The SCSI-2 support in VxWorks supersedes previous SCSI support, although it

offers the option of configuring the original SCSI functionality, now known as

SCSI-1. With SCSI-2 enabled, the VxWorks environment can still handle SCSI-1

applications, such as file systems created under SCSI-1. However, applications that

directly used SCSI-1 data structures defined in scsiLib.h may require

modifications and recompilation for SCSI-2 compatibility.

The VxWorks SCSI implementation consists of two modules, one for the device-

independent SCSI interface and one to support a specific SCSI controller. The

scsiLib library provides routines that support the device-independent interface;

device-specific libraries provide configuration routines that support specific

controllers (for example, wd33c93Lib for the Western Digital WD33C93 device or

mb87030Lib for the Fujitsu MB87030 device). There are also additional support

routines for individual targets in sysLib.c.

Configuring SCSI Drivers

Constants associated with SCSI drivers are listed in Table 3-13. Define these in

config.h.

To enable SCSI functionality, define INCLUDE_SCSI in config.h. This enables SCSI-

1. To enable SCSI-2, you must define, in addition to SCSI-1, the constants

INCLUDE_SCSI2 and (if you plan to use SCSI tape support) INCLUDE_TAPEFS. To

enable automatic configuration of drivers, define SCSI_AUTO_CONFIG in

config.h.

NOTE: Including SCSI-2 in your VxWorks image can significantly increase the

image size. If you receive a warning from vxsize when building VxWorks, or if the

Table 3-13 SCSI Constants

Constant Description

INCLUDE_SCSI Include SCSI interface.

INCLUDE_SCSI2 SCSI-2 extensions.

INCLUDE_SCSI_DMA Enable DMA for SCSI.

INCLUDE_SCSI_BOOT Allow booting from a SCSI device.

SCSI_AUTO_CONFIG Auto-configure and locate all targets on a SCSI bus.

INCLUDE_DOSFS Include the DOS file system.

INCLUDE_TAPEFS Include the tape file system.

!

142

3

3
I/O System
size of your image becomes greater than that supported by the current setting of

RAM_HIGH_ADRS, be sure to see 8.4.1 Scaling Down VxWorks, p.447 and Creating
Bootable Applications in the Tornado User’s Guide: Cross-Development for information

on how to resolve the problem.

Configuring the SCSI Bus ID

Each board in a SCSI-2 environment must define a unique SCSI bus ID for the SCSI

initiator. SCSI-1 drivers, which support only a single initiator at a time, assume an

initiator SCSI bus ID of 7. However, SCSI-2 supports multiple initiators, up to eight

initiators and targets at one time. Therefore, to ensure a unique ID, choose a value

in the range 0-7 to be passed as a parameter to the driver’s initialization routine

(for example, ncr710CtrlInitScsi2()) by the sysScsiInit() routine in sysScsi.c. For

more information, see the reference entry for the relevant driver initialization

routine. If there are multiple boards on one SCSI bus, and all of these boards use

the same BSP, then different versions of the BSP must be compiled for each board

by assigning unique SCSI bus IDs.

ROM Size Adjustment for SCSI Boot

If INCLUDE_SCSI_BOOT is defined in config.h, larger ROMs may be required for

some boards. If this is the case, the definition of ROM_SIZE in Makefile and in

config.h should be changed to a size that suits the capabilities of the target

hardware.

Structure of the SCSI Subsystem

The SCSI subsystem supports libraries and drivers for both SCSI-1 and SCSI-2. It

consists of the following six libraries which are independent of any SCSI controller:

scsiLib routines that provide the mechanism for switching SCSI

requests to either the SCSI-1 library (scsi1Lib) or the SCSI-2

library (scsi2Lib), as configured by the board support

package (BSP).

scsi1Lib SCSI-1 library routines and interface, used when only

INCLUDE_SCSI is defined (see Configuring SCSI Drivers,

p.142.)

scsi2Lib SCSI-2 library routines and all physical device creation and

deletion routines.

scsiCommonLib commands common to all types of SCSI devices.

scsiDirectLib routines and commands for direct access devices (disks).
143

VxWorks 5.3.1
Programmer’s Guide
scsiSeqLib routines and commands for sequential access block devices

(tapes).

Controller-independent support for the SCSI-2 functionality is divided into

scsi2Lib, scsiCommonLib, scsiDirectLib, and scsiSeqLib. The interface to any of

these SCSI-2 libraries can be accessed directly. However, scsiSeqLib is designed to

be used in conjunction with tapeFs, while scsiDirectLib works with dosFs, rt11Fs,

and rawFs. Applications written for SCSI-1 can be used with SCSI-2; however,

SCSI-1 device drivers cannot.

VxWorks targets using SCSI interface controllers require a controller-specific

device driver. These device drivers work in conjunction with the controller-

independent SCSI libraries, and they provide controller configuration and

initialization routines contained in controller-specific libraries. For example, the

Western Digital WD33C93 SCSI controller is supported by the device driver

libraries wd33c93Lib, wd33c93Lib1, and wd33c93Lib2. Routines tied to SCSI-1

(such as wd33c93CtrlCreate()) and SCSI-2 (such as wd33c93CtrlCreateScsi2()) are

segregated into separate libraries to simplify configuration. There are also

additional support routines for individual targets in sysLib.c.

Booting and Initialization

To boot from a SCSI device, see 4.2.21 Booting from a Local dosFs File System Using
SCSI, p.218.

After VxWorks is built with SCSI support, the system startup code initializes the

SCSI interface by executing sysScsiInit() and usrScsiConfig() when the constant

INCLUDE_SCSI is defined. The call to sysScsiInit() initializes the SCSI controller

and sets up interrupt handling. The physical device configuration is specified in

usrScsiConfig(), which is in src/config/usrScsi.c. The routine contains an example

of the calling sequence to declare a hypothetical configuration, including:

– definition of physical devices with scsiPhysDevCreate()
– creation of logical partitions with scsiBlkDevCreate()
– specification of a file system with either dosFsDevInit() or rt11FsDevInit()

If you are not using SCSI_AUTO_CONFIG, modify usrScsiConfig() to reflect your

actual configuration. For more information on the calls used in this routine, see the

reference entries for scsiPhysDevCreate(), scsiBlkDevCreate(), dosFsDevInit(),
rt11FsDevInit(), dosFsMkfs(), and rt11FsMkfs().

Device-Specific Configuration Options

The SCSI libraries have the following default behaviors enabled:

– SCSI messages
144

3

3
I/O System
– disconnects

– minimum period and maximum REQ/ACK offset

– tagged command queuing

– wide data transfer

Device-specific options do not need to be set if the device shares this default

behavior. However, if you need to configure a device that diverges from these

default characteristics, use scsiTargetOptionsSet() to modify option values. These

options are fields in the SCSI_OPTIONS structure, shown below. SCSI_OPTIONS is

declared in scsi2Lib.h. You can choose to set some or all of these option values to

suit your particular SCSI device and application.

typedef struct /* SCSI_OPTIONS - programmable options */
{
UINT selTimeOut; /* device selection time-out (us) */
BOOL messages; /* FALSE => do not use SCSI messages */
BOOL disconnect; /* FALSE => do not use disconnect */
UINT8 maxOffset; /* max sync xfer offset (0 => async.) */
UINT8 minPeriod; /* min sync xfer period (x 4 ns) */
SCSI_TAG_TYPE tagType; /* default tag type */
UINT maxTags; /* max cmd tags available (0 => untag */
UINT8 xferWidth; /* wide data trnsfr width in SCSI units */
} SCSI_OPTIONS;

There are numerous types of SCSI devices, each supporting its own mix of SCSI-2

features. To set device-specific options, define a SCSI_OPTIONS structure and

assign the desired values to the structure’s fields. After setting the appropriate

fields, call scsiTargetOptionsSet() to effect your selections. Example 3-5 illustrates

one possible device configuration using SCSI_OPTIONS.

Call scsiTargetOptionsSet() after initializing the SCSI subsystem, but before

initializing the SCSI physical device. For more information about setting and

implementing options, see the reference entry for scsiTargetOptionsSet().

WARNING: Calling scsiTargetOptionsSet() after the physical device has been

initialized may lead to undefined behavior.

The SCSI subsystem performs each SCSI command request as a SCSI transaction.

This requires the SCSI subsystem to select a device. Different SCSI devices require

different amounts of time to respond to a selection; in some cases, the selTimeOut
field may need to be altered from the default.

If a device does not support SCSI messages, the boolean field messages can be set

to FALSE. Similarly, if a device does not support disconnect/reconnect, the

boolean field disconnect can be set to FALSE.

The SCSI subsystem automatically tries to negotiate synchronous data transfer

parameters. However, if a SCSI device does not support synchronous data transfer,

!

145

VxWorks 5.3.1
Programmer’s Guide
set the maxOffset field to 0. By default, the SCSI subsystem tries to negotiate the

maximum possible REQ/ACK offset and the minimum possible data transfer

period supported by the SCSI controller on the VxWorks target. This is done to

maximize the speed of transfers between two devices. However, speed depends

upon electrical characteristics, like cable length, cable quality, and device

termination; therefore, it may be necessary to reduce the values of maxOffset or

minPeriod for fast transfers.

The tagType field defines the type of tagged command queuing desired, using one

of the following macros:

– SCSI_TAG_UNTAGGED
– SCSI_TAG_SIMPLE
– SCSI_TAG_ORDERED
– SCSI_TAG_HEAD_OF_QUEUE

For more information about the types of tagged command queuing available, see

the ANSI X3T9-I/O Interface Specification Small Computer System Interface (SCSI-
2).

The maxTags field sets the maximum number of command tags available for a

particular SCSI device.

Wide data transfers with a SCSI target device are automatically negotiated upon

initialization by the SCSI subsystem. Wide data transfer parameters are always

negotiated before synchronous data transfer parameters, as specified by the SCSI

ANSI specification, because a wide negotiation resets any prior negotiation of

synchronous parameters. However, if a SCSI device does not support wide

parameters and there are problems initializing that device, you must set the

xferWidth field to 0. By default, the SCSI subsystem tries to negotiate the

maximum possible transfer width supported by the SCSI controller on the

VxWorks target in order to maximize the default transfer speed between the two

devices. For more information on the actual routine call, see the reference entry for

scsiTargetOptionsSet().

SCSI Configuration Examples

The following examples show some possible configurations for different SCSI

devices. Example 3-4 is a simple block device configuration setup. Example 3-5

involves selecting special options and demonstrates the use of

scsiTargetOptionsSet(). Example 3-6 configures a tape device and a tape file

system. Example 3-7 configures a SCSI device for synchronous data transfer.

Example 3-8 shows how to configure the SCSI bus ID. These examples can be

embedded either in the usrScsiConfig() routine or in a user-defined SCSI

configuration function.
146

3

3
I/O System
Example 3-4 Configuring SCSI Drivers

In the following example, usrScsiConfig() was modified to reflect a new system

configuration. The new configuration has a SCSI disk with a bus ID of 4 and a

Logical Unit Number (LUN) of 0 (zero). The disk is configured with a dosFs file

system (with a total size of 0x20000 blocks) and a rawFs file system (spanning the

remainder of the disk). The following usrScsiConfig() code reflects this

modification.

/* configure Winchester at busId = 4, LUN = 0 */

if ((pSpd40 = scsiPhysDevCreate (pSysScsiCtrl, 4, 0, 0, NONE, 0, 0, 0))
== (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
}

else
{
/* create block devices - one for dosFs and one for rawFs */

if (((pSbd0 = scsiBlkDevCreate (pSpd40, 0x20000, 0)) == NULL) ||
((pSbd1 = scsiBlkDevCreate (pSpd40, 0, 0x20000)) == NULL))
{
return (ERROR);
}

/* initialize both dosFs and rawFs file systems */

if ((dosFsDevInit ("/sd0/", pSbd0, NULL) == NULL) ||
(rawFsDevInit ("/sd1/", pSbd1) == NULL))
{
return (ERROR);
}

}

If problems with your configuration occur, insert the following lines at the

beginning of usrScsiConfig() to obtain further information on SCSI bus activity.

#if FALSE
scsiDebug = TRUE;
scsiIntsDebug = TRUE;
#endif

Do not declare the global variables scsiDebug and scsiIntsDebug locally. They can

be set or reset from the shell; see the Tornado User’s Guide: Shell for details.
147

VxWorks 5.3.1
Programmer’s Guide
Example 3-5 Configuring a SCSI Disk Drive with Asynchronous Data Transfer and No Tagged Command Queuing

In this example, a SCSI disk device is configured without support for synchronous

data transfer and tagged command queuing. The scsiTargetOptionsSet() routine

is used to turn off these features. The SCSI ID of this disk device is 2, and the LUN

is 0:

int which;
SCSI_OPTIONS option;
int devBusId;

devBusId = 2;
which = SCSI_SET_OPT_XFER_PARAMS | SCSI_SET_OPT_TAG_PARAMS;
option.maxOffset = SCSI_SYNC_XFER_ASYNC_OFFSET;

/* => 0 defined in scsi2Lib.h */
option.minPeriod = SCSI_SYNC_XFER_MIN_PERIOD; /* defined in scsi2Lib.h */
option.tagType = SCSI_TAG_UNTAGGED; /* defined in scsi2Lib.h */
option.maxTag = SCSI_MAX_TAGS;

if (scsiTargetOptionsSet (pSysScsiCtrl, devBusId, &option, which) == ERROR)
{
SCSI_DEBUG_MSG ("usrScsiConfig: could not set options\n", 0, 0, 0, 0,

0, 0);
return (ERROR);
}

/* configure SCSI disk drive at busId = devBusId, LUN = 0 */

if ((pSpd20 = scsiPhysDevCreate (pSysScsiCtrl, devBusId, 0, 0, NONE, 0, 0,
0)) == (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
return (ERROR);
}

148

3

3
I/O System
Example 3-6 Working with Tape Devices

SCSI tape devices can be controlled using common commands from

scsiCommonLib and sequential commands from scsiSeqLib. These commands

use a pointer to a SCSI sequential device structure, SEQ_DEV, defined in seqIo.h.

For more information on controlling SCSI tape devices, see the reference entries for

these libraries.

This example configures a SCSI tape device whose bus ID is 5 and whose LUN is

0. It includes commands to create a physical device pointer, set up a sequential

device, and initialize a tapeFs device.

/* configure Exabyte 8mm tape drive at busId = 5, LUN = 0 */

if ((pSpd50 = scsiPhysDevCreate (pSysScsiCtrl, 5, 0, 0, NONE, 0, 0, 0))
== (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
return (ERROR);
}

/* configure the sequential device for this physical device */

if ((pSd0 = scsiSeqDevCreate (pSpd50)) == (SEQ_DEV *) NULL)
{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiSeqDevCreate failed.\n");

return (ERROR);
}

/* setup the tape device configuration */

pTapeConfig = (TAPE_CONFIG *) calloc (sizeof (TAPE_CONFIG), 1);
pTapeConfig->rewind = TRUE; /* this is a rewind device */
pTapeConfig->blkSize = 512; /* uses 512 byte fixed blocks */

/* initialize a tapeFs device */

if (tapeFsDevInit ("/tape1", pSd0, pTapeConfig) == NULL)
{
return (ERROR);
}

/* rewind the physical device using scsiSeqLib interface directly*/

if (scsiRewind (pSd0) == ERROR)
{
return (ERROR);
}

149

VxWorks 5.3.1
Programmer’s Guide
Example 3-7 Configuring a SCSI Disk for Synchronous Data Transfer with Non-Default Offset and Period Values

In this example, a SCSI disk drive is configured with support for synchronous data

transfer. The offset and period values are user-defined and differ from the driver

default values.The chosen period is 25, defined in SCSI units of 4 ns. Thus the

period is actually 4 * 25 = 100 ns. The synchronous offset is chosen to be 2. Note

that you may need to adjust the values depending on your hardware environment.

int which;
SCSI_OPTIONS option;
int devBusId;

devBusId = 2;

which = SCSI_SET_IPT_XFER_PARAMS;
option.maxOffset = 2;
option.minPeriod = 25;

if (scsiTargetOptionsSet (pSysScsiCtrl, devBusId &option, which) ==
ERROR)
{
SCSI_DEBUG_MSG ("usrScsiConfig: could not set options\n",

0, 0, 0, 0, 0, 0)
return (ERROR);
}

/* configure SCSI disk drive at busId = devBusId, LUN = 0 */

if ((pSpd20 = scsiPhysDevCreate (pSysScsiCtrl, devBusId, 0, 0, NONE,
0, 0, 0)) == (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n")
return (ERROR);
}

Example 3-8 Changing the Bus ID of the SCSI Controller

To change the bus ID of the SCSI controller, modify sysScsiInit() in sysScsi.c. Set

the SCSI bus ID to a value between 0 and 7 in the call to xxxCtrlInitScsi2() (where

xxx is the controller name); the default bus ID for the SCSI controller is 7.
150

3

3
I/O System
Troubleshooting

■ Incompatibilities Between SCSI-1 and SCSI-2

Applications written for SCSI-1 may not execute for SCSI-2 because data

structures in scsi2Lib.h, such as SCSI_TRANSACTION and SCSI_PHYS_DEV,

have changed. This applies only if the application used these structures

directly.

If this is the case, you can choose to configure only the SCSI-1 level of support,

or you can modify your application according to the data structures in

scsi2Lib.h. In order to set new fields in the modified structure, some

applications may simply need to be recompiled, and some applications will

have to be modified and then recompiled.

■ SCSI Bus Failure

If your SCSI bus hangs, it could be for a variety of reasons. Some of the more

common are:

– Your cable has a defect. This is the most common cause of failure.

– The cable exceeds the cumulative maximum length of 6 meters specified

in the SCSI-2 standard, thus changing the electrical characteristics of the

SCSI signals.

– The bus is not terminated correctly. Consider providing termination

power at both ends of the cable, as defined in the SCSI-2 ANSI

specification.

– The minimum transfer period is insufficient or the REQ/ACK offset is too

great. Use scsiTargetOptionsSet() to set appropriate values for these

options.

– The driver is trying to negotiate wide data transfers on a device that does

not support them. In rejecting wide transfers, the device-specific driver

cannot handle this phase mismatch. Use scsiTargetOptionsSet() to set the

appropriate value for the xferWidth field for that particular SCSI device.
151

VxWorks 5.3.1
Programmer’s Guide
3.7.7 Sockets

In VxWorks, the underlying basis of network communications is sockets. A socket

is an endpoint for communication between tasks; data is sent from one socket to

another. Sockets are not created or opened using the standard I/O functions.

Instead they are created by calling socket(), and connected and accessed using

other routines in sockLib. However, after a stream socket (using TCP) is created

and connected, it can be accessed as a standard I/O device, using read(), write(),
ioctl(), and close(). The value returned by socket() as the socket handle is in fact

an I/O system fd.

VxWorks socket routines are source-compatible with the BSD 4.3 UNIX socket

functions and the Windows Sockets (Winsock 1.1) networking standard. Use of

these routines is discussed in 5.2.6 Sockets, p.251.

3.8 Differences Between VxWorks and Host System I/O

Most commonplace uses of I/O in VxWorks are completely source-compatible

with I/O in UNIX and Windows. However, note the following differences:

■ Device Configuration. In VxWorks, device drivers can be installed and

removed dynamically.

■ File Descriptors. In UNIX and Windows, fds are unique to each process. In

VxWorks, fds are global entities, accessible by any task, except for standard

input, standard output, and standard error (0, 1, and 2), which can be task

specific.

■ I/O Control. The specific parameters passed to ioctl() functions can differ

between UNIX and VxWorks.

■ Driver Routines. In UNIX, device drivers execute in system mode and are not

preemptible. In VxWorks, driver routines are in fact preemptible because they

execute within the context of the task that invoked them.
152

3

3
I/O System
3.9 Internal Structure

The VxWorks I/O system is different from most in the way the work of performing

user I/O requests is apportioned between the device-independent I/O system and

the device drivers themselves.

In many systems, the device driver supplies a few routines to perform low-level

I/O functions such as inputting or outputting a sequence of bytes to character-

oriented devices. The higher-level protocols, such as communications protocols on

character-oriented devices, are implemented in the device-independent part of the

I/O system. The user requests are heavily processed by the I/O system before the

driver routines get control.

While this approach is designed to make it easy to implement drivers and to

ensure that devices behave as much alike as possible, it has several drawbacks. The

driver writer is often seriously hampered in implementing alternative protocols

that are not provided by the existing I/O system. In a real-time system, it is

sometimes desirable to bypass the standard protocols altogether for certain

devices where throughput is critical, or where the device does not fit the standard

model.

In the VxWorks I/O system, minimal processing is done on user I/O requests

before control is given to the device driver. Instead, the VxWorks I/O system acts

as a switch to route user requests to appropriate driver-supplied routines. Each

driver can then process the raw user requests as appropriate to its devices. In

addition, however, several high-level subroutine libraries are available to driver

writers that implement standard protocols for both character- and block-oriented

devices. Thus the VxWorks I/O system gives you the best of both worlds: while it

is easy to write a standard driver for most devices with only a few pages of device-

specific code, driver writers are free to execute the user requests in nonstandard

ways where appropriate.

There are two fundamental types of device: block and character (or non-block; see

Figure 3-8). Block devices are used for storing file systems. They are random access

devices where data is transferred in blocks. Examples of block devices include

hard and floppy disks. Character devices are any device that does not fall in the

block category. Examples of character devices include serial and graphical input

devices, for example, terminals and graphics tablets.

As discussed in earlier sections, the three main elements of the VxWorks I/O

system are drivers, devices, and files. The following sections describe these

elements in detail. The discussion focuses on character drivers; however, much of

it is applicable for block devices. Because block drivers must interact with
153

VxWorks 5.3.1
Programmer’s Guide
VxWorks file systems, they use a slightly different organization; see 3.9.4 Block
Devices, p.171.

Example 3-9 shows the abbreviated code for a hypothetical driver that is used as

an example throughout the following discussions. This example driver is typical

of drivers for character-oriented devices.

In VxWorks, each driver has a short, unique abbreviation, such as net or tty, which

is used as a prefix for each of its routines. The abbreviation for the example driver

is xx.

Example 3-9 Hypothetical Driver

/***
* xxDrv - driver initialization routine
*
* xxDrv() initializes the driver. It installs the driver via iosDrvInstall.
* It may allocate data structures, connect ISRs, and initialize hardware.
*/

STATUS xxDrv ()
 {

xxDrvNum = iosDrvInstall (xxCreat, 0, xxOpen, 0, xxRead, xxWrite, xxIoctl);
 (void) intConnect (intvec, xxInterrupt, ...);
 ...
 }

/***
* xxDevCreate - device creation routine
*
* Called to add a device called <name> to be serviced by this driver. Other
* driver-dependent arguments may include buffer sizes, device addresses...
* The routine adds the device to the I/O system by calling iosDevAdd.
* It may also allocate and initialize data structures for the device,
* initialize semaphores, initialize device hardware, and so on.
*/

STATUS xxDevCreate (name, ...)
 char * name;
 ...
 {
 status = iosDevAdd (xxDev, name, xxDrvNum);
 ...
 }

/***
* The following routines implement the basic I/O functions. The xxOpen()
* return value is meaningful only to this driver, and is passed back as an
* argument to the other I/O routines.
*/
154

3

3
I/O System
int xxOpen (xxDev, remainder, mode)
 XXDEV * xxDev;
 char * remainder;
 int mode;
 {
 /* serial devices should have no file name part */

 if (remainder[0] != 0)
 return (ERROR);
 else
 return ((int) xxDev);
 }

int xxRead (xxDev, buffer, nBytes)
 XXDEV * xxDev;
 char * buffer;
 int nBytes;
 ...
int xxWrite (xxDev, buffer, nBytes)
 ...
int xxIoctl (xxDev, requestCode, arg)
 ...

/***
* xxInterrupt - interrupt service routine
*
* Most drivers have routines that handle interrupts from the devices
* serviced by the driver. These routines are connected to the interrupts
* by calling intConnect (usually in xxDrv above). They can receive a
* single argument, specified in the call to intConnect (see intLib).
*/

VOID xxInterrupt (arg)
 ...

3.9.1 Drivers

A driver for a non-block device implements the seven basic I/O functions—

creat(), remove(), open(), close(), read(), write(), and ioctl()—for a particular

kind of device. In general, this type of driver has routines that implement each of

these functions, although some of the routines can be omitted if the functions are

not operative with that device.

Drivers can optionally allow tasks to wait for activity on multiple file descriptors.

This is implemented using the driver’s ioctl() routine; see Implementing select(),
p.163.

A driver for a block device interfaces with a file system, rather than directly with

the I/O system. The file system in turn implements most I/O functions. The driver
155

VxWorks 5.3.1
Programmer’s Guide
need only supply routines to read and write blocks, reset the device, perform I/O

control, and check device status. Drivers for block devices have a number of

special requirements that are discussed in 3.9.4 Block Devices, p.171.

When the user invokes one of the basic I/O functions, the I/O system routes the

request to the appropriate routine of a specific driver, as detailed in the following

sections. The driver’s routine runs in the calling task’s context, as though it were

called directly from the application. Thus, the driver is free to use any facilities

normally available to tasks, including I/O to other devices. This means that most

drivers have to use some mechanism to provide mutual exclusion to critical

regions of code. The usual mechanism is the semaphore facility provided in

semLib.

In addition to the routines that implement the seven basic I/O functions, drivers

also have three other routines:

■ An initialization routine that installs the driver in the I/O system, connects to

any interrupts used by the devices serviced by the driver, and performs any

necessary hardware initialization (typically named xxDrv()).

■ A routine to add devices that are to be serviced by the driver (typically named

xxDevCreate()) to the I/O system.

■ Interrupt-level routines that are connected to the interrupts of the devices

serviced by the driver.

The Driver Table and Installing Drivers

The function of the I/O system is to route user I/O requests to the appropriate

routine of the appropriate driver. The I/O system does this by maintaining a table

that contains the address of each routine for each driver. Drivers are installed

dynamically by calling the I/O system internal routine iosDrvInstall(). The

arguments to this routine are the addresses of the seven I/O routines for the new

driver. The iosDrvInstall() routine enters these addresses in a free slot in the

driver table and returns the index of this slot. This index is known as the driver
number and is used subsequently to associate particular devices with the driver.

Null (0) addresses can be specified for some of the seven routines. This indicates

that the driver does not process those functions. For non-file-system drivers,

close() and remove() often do nothing as far as the driver is concerned.

VxWorks file systems (dosFsLib, rt11FsLib, and rawFsLib) contain their own

entries in the driver table, which are created when the file system library is

initialized.
156

3

3
I/O System
Example of Installing a Driver

Figure 3-2 shows the actions taken by the example driver and by the I/O system

when the initialization routine xxDrv() runs.

[1] The driver calls iosDrvInstall(), specifying the addresses of the driver’s

routines for the seven basic I/O functions.

The I/O system:

[2] Locates the next available slot in the driver table, in this case slot 2.

[3] Enters the addresses of the driver routines in the driver table.

[4] Returns the slot number as the driver number of the newly installed driver.

Figure 3-2 Example – Driver Initialization for Non-Block Devices

I/O system enters driver
routines in driver table.

DRIVER TABLE:

DRIVER CALL:

drvnum = iosDrvInstall (xxCreat, 0, xxOpen, 0, xxRead, xxWrite, xxIoctl);

xxCreat 0 xxOpen 0 xxRead xxWrite xxIoctl

open

0
1
2
3
4

create remove close read write ioctl

I/O system returns
driver number
(drvnum = 2).

routines for seven I/O functions.

I/O system locates next

available slot in driver table.

Driver’s install routine specifies driver[1]

[2]

[3]

[4]
157

VxWorks 5.3.1
Programmer’s Guide
3.9.2 Devices

Some drivers are capable of servicing many instances of a particular kind of device.

For example, a single driver for a serial communications device can often handle

many separate channels that differ only in a few parameters, such as device

address.

In the VxWorks I/O system, devices are defined by a data structure called a device
header (DEV_HDR). This data structure contains the device name string and the

driver number for the driver that services this device. The device headers for all

the devices in the system are kept in a memory-resident linked list called the device
list. The device header is the initial part of a larger structure determined by the

individual drivers. This larger structure, called a device descriptor, contains

additional device-specific data such as device addresses, buffers, and semaphores.

The Device List and Adding Devices

Non-block devices are added to the I/O system dynamically by calling the internal

I/O routine iosDevAdd(). The arguments to iosDevAdd() are the address of the

device descriptor for the new device, the device’s name, and the driver number of

the driver that services the device. The device descriptor specified by the driver

can contain any necessary device-dependent information, as long as it begins with

a device header. The driver does not need to fill in the device header, only the

device-dependent information. The iosDevAdd() routine enters the specified

device name and the driver number in the device header and adds it to the system

device list.

To add a block device to the I/O system, call the device initialization routine for

the file system required on that device (dosFsDevInit(), rt11FsDevInit(), or

rawFsDevInit()). The device initialization routine then calls iosDevAdd()
automatically.

Example of Adding Devices

In Figure 3-3, the example driver’s device creation routine xxDevCreate() adds

devices to the I/O system by calling iosDevAdd().
158

3

3
I/O System
3.9.3 File Descriptors

Several fds can be open to a single device at one time. A device driver can maintain

additional information associated with an fd beyond the I/O system’s device

information. In particular, devices on which multiple files can be open at one time

have file-specific information (for example, file offset) associated with each fd. You

can also have several fds open to a non-block device, such as a tty; typically there

is no additional information, and thus writing on any of the fds produces identical

results.

Figure 3-3 Example – Addition of Devices to I/O System

DRIVER CALLS: status = iosDevAdd (dev0, "/xx0", drvnum);

status = iosDevAdd (dev1, "/xx1", drvnum);

DEVICE LIST:

DRIVER TABLE:

I/O system adds device descriptors
to device list. Each descriptor contains
device name and driver number (in this
case 2) and any device-specific data.

open

0
1
2
3
4

create remove close read write ioctl

"/dk0/"
1

"/xx0"
2

"/xx1"
2

device-
dependent

data

device-
dependent

data
159

VxWorks 5.3.1
Programmer’s Guide
The Fd Table

Files are opened with open() (or creat()). The I/O system searches the device list

for a device name that matches the file name (or an initial substring) specified by

the caller. If a match is found, the I/O system uses the driver number contained in

the corresponding device header to locate and call the driver’s open routine in the

driver table.

The I/O system must establish an association between the file descriptor used by

the caller in subsequent I/O calls, and the driver that services it. Additionally, the

driver must associate some data structure per descriptor. In the case of non-block

devices, this is usually the device descriptor that was located by the I/O system.

The I/O system maintains these associations in a table called the fd table. This table

contains the driver number and an additional driver-determined 4-byte value. The

driver value is the internal descriptor returned by the driver’s open routine, and

can be any nonnegative value the driver requires to identify the file. In subsequent

calls to the driver’s other I/O functions (read(), write(), ioctl(), and close()), this

value is supplied to the driver in place of the fd in the application-level I/O call.

Example of Opening a File

In Figure 3-4 and Figure 3-5, a user calls open() to open the file /xx0. The I/O

system takes the following series of actions:

[1] It searches the device list for a device name that matches the specified file name

(or an initial substring). In this case, a complete device name matches.

[2] It reserves a slot in the fd table, which is used if the open is successful.

[3] It then looks up the address of the driver’s open routine, xxOpen(), and calls

that routine. Note that the arguments to xxOpen() are transformed by the I/O

system from the user’s original arguments to open(). The first argument to

xxOpen() is a pointer to the device descriptor the I/O system located in the full

file name search. The next parameter is the remainder of the file name specified

by the user, after removing the initial substring that matched the device name.

In this case, because the device name matched the entire file name, the

remainder passed to the driver is a null string. The driver is free to interpret

this remainder in any way it wants. In the case of block devices, this remainder

is the name of a file on the device. In the case of non-block devices like this one,

it is usually an error for the remainder to be anything but the null string. The

last parameter is the file access flag, in this case O_RDONLY; that is, the file is

opened for reading only.
160

3

3
I/O System
Figure 3-4 Example: Call to I/O Routine open() [Part 1]

fd = open ("/xx0", O_RDONLY);

DEVICE LIST:

DRIVER TABLE:

USER CALL: DRIVER CALL:

xxdev = xxOpen (xxdev, "", O_RDONLY);

FD TABLE:

I/O system reserves
a slot in the fd table.

xxOpen

open

0
1
2
3
4

create remove close read write ioctl

"/dk0/"
1

"/xx0"
2

"/xx1"
2

I/O system calls
driver’s open routine
with pointer to
device descriptor.

device-
dependent

data

0
1
2
3

drvnum value

4

I/O system finds
name in device list.

[1] [2] [3]
161

VxWorks 5.3.1
Programmer’s Guide
Figure 3-5 Example: Call to I/O Routine open() [Part 2]

fd = open ("/xx0", O_RDONLY);

"/dk0/"
1

"/xx0"
2

"/xx1"
2

DEVICE LIST:

DRIVER TABLE:

USER CALL: DRIVER CALL:

xxdev = xxOpen (xxdev, "", O_RDONLY);

FD TABLE:

I/O system returns
index in fd table of
new open file (fd = 3).

I/O system enters
driver number and
identifying value in
reserved fd table slot.

Driver returns any
identifying value, in
this case the pointer to
the device descriptor.

0
1
2
3

drvnum value

xxdev2

device-
dependent

data

open

0
1
2
3
4

create remove close read write ioctl

4

[6] [5] [4]
162

3

3
I/O System
[4] It executes xxOpen(), which returns a value that subsequently identifies the

newly opened file. In this case, the value is the pointer to the device descriptor.

This value is supplied to the driver in subsequent I/O calls that refer to the file

being opened. Note that if the driver returns only the device descriptor, the

driver cannot distinguish multiple files opened to the same device. In the case

of non-block device drivers, this is usually appropriate.

[5] The I/O system then enters the driver number and the value returned by

xxOpen() in the reserved slot in the fd table. Again, the value entered in the fd
table has meaning only for the driver, and is arbitrary as far as the I/O system

is concerned.

[6] Finally, it returns to the user the index of the slot in the fd table, in this case 3.

Example of Reading Data from the File

In Figure 3-6, the user calls read() to obtain input data from the file. The specified

fd is the index into the fd table for this file. The I/O system uses the driver number

contained in the table to locate the driver’s read routine, xxRead(). The I/O system

calls xxRead(), passing it the identifying value in the fd table that was returned by

the driver’s open routine, xxOpen(). Again, in this case the value is the pointer to

the device descriptor. The driver’s read routine then does whatever is necessary to

read data from the device.

The process for user calls to write() and ioctl() follow the same procedure.

Example of Closing a File

The user terminates the use of a file by calling close(). As in the case of read(), the

I/O system uses the driver number contained in the fd table to locate the driver’s

close routine. In the example driver, no close routine is specified; thus no driver

routines are called. Instead, the I/O system marks the slot in the fd table as being

available. Any subsequent references to that fd cause an error. However,

subsequent calls to open() can reuse that slot.

Implementing select()

Supporting select() in your driver allows tasks to wait for input from multiple

devices or to specify a maximum time to wait for the device to become ready for

I/O. Writing a driver that supports select() is simple, because most of the
163

VxWorks 5.3.1
Programmer’s Guide
Figure 3-6 Example: Call to I/O Routine read()

n = read (fd, buf, len);

"/dk0/"
1

"/xx0"
2

"/xx1"
2

DEVICE LIST:

DRIVER TABLE:

USER CALL: DRIVER CALL:

n = xxRead (xxdev, buf, len);

FD TABLE:

xxRead

open

0
1
2
3
4

create remove close read write ioctl

0
1
2
3

drvnum value

xxdev2
4

device-
dependent

data

I/O system transforms the user’s I/O
routine calls into driver routine calls
replacing the fd with the value returned
by the driver’s open routine, xxOpen().
164

3

3
I/O System
functionality is provided in selectLib. You might want your driver to support

select() if any of the following is appropriate for the device:

■ The tasks want to specify a timeout to wait for I/O from the device. For

example, a task might want to time out on a UDP socket if the packet never

arrives.

■ The driver supports multiple devices, and the tasks want to wait

simultaneously for any number of them. For example, multiple pipes might be

used for different data priorities.

■ The tasks want to wait for I/O from the device while also waiting for I/O from

another device. For example, a server task might use both pipes and sockets.

To implement select(), the driver must keep a list of tasks waiting for device

activity. When the device becomes ready, the driver unblocks all the tasks waiting

on the device.

For a device driver to support select(), it must declare a SEL_WAKEUP_LIST
structure (typically declared as part of the device descriptor structure) and

initialize it by calling selWakeupListInit(). This is done in the driver’s

xxDevCreate() routine. When a task calls select(), selectLib calls the driver’s

ioctl() routine with the function FIOSELECT or FIOUNSELECT. If ioctl() is called

with FIOSELECT, the driver must do the following:

1. Add the SEL_WAKEUP_NODE (provided as the third argument of ioctl()) to
the SEL_WAKEUP_LIST by calling selNodeAdd().

2. Use the routine selWakeupType() to check whether the task is waiting for data

to read from the device (SELREAD) or if the device is ready to be written

(SELWRITE).

3. If the device is ready (for reading or writing as determined by

selWakeupType()), the driver calls the routine selWakeup() to make sure that

the select() call in the task does not pend. This avoids the situation where the

task is blocked but the device is ready.

If ioctl() is called with FIOUNSELECT, the driver calls selNodeDelete() to remove

the provided SEL_WAKEUP_NODE from the wakeup list.

When the device becomes available, selWakeupAll() is used to unblock all the

tasks waiting on this device. Although this typically occurs in the driver’s ISR, it

can also occur elsewhere. For example, a pipe driver might call selWakeupAll()
from its xxRead() routine to unblock all the tasks waiting to write, now that there

is room in the pipe to store the data. Similarly the pipe’s xxWrite() routine might

call selWakeupAll() to unblock all the tasks waiting to read, now that there is data

in the pipe.
165

VxWorks 5.3.1
Programmer’s Guide
Example 3-10 Driver Code Using the Select Facility

/* This code fragment shows how a driver might support select(). In this
 * example, the driver unblocks tasks waiting for the device to become ready
 * in its interrupt service routine.
 */

/* arkLib.h - header file for ark driver */

typedef struct /* ARK_DEV */
{
DEV_HDR devHdr; /* ark device header */
BOOL arkDataAvailable; /* data is available to read */
BOOL arkRdyForWriting; /* device is ready to write */
SEL_WAKEUP_LIST selWakeupList; /* list of tasks pended in select */
} ARK_DEV;

/* arkDrv.c - code fragments for supporting select() in a driver */

#include "vxWorks.h"
#include "selectLib.h"

STATUS arkDevCreate
(
char * name, /* name of ark to create */
int number, /* number of arks to create */
int aCount /* number of animals to live on ark */
)

{
ARK_DEV * pArkDev; /* pointer to ark device descriptor */

... your driver code ...

/* allocate memory for ARK_DEV */

pArkDev = (ARK_DEV *) malloc ((unsigned) sizeof (ARK_DEV + number * aCount));

... your driver code ...

/* initialize wakeup list */

selWakeupListInit (&pArkDev->selWakeupList);

... your driver code ...

}

STATUS arkIoctl
(
ARK_DEV * pArkDev, /* pointer to ark device descriptor */
int request, /* ioctl function */
int * arg /* where to send answer */
)

166

3

3
I/O System
{
... your driver code ...

switch (request)
{

... your driver code ...

case FIOSELECT:

/* add node to wakeup list */

selNodeAdd (&pArkDev->selWakeupList, (SEL_WAKEUP_NODE *) arg);

if (selWakeupType ((SEL_WAKEUP_NODE *) arg) == SELREAD
&& pArkDev->arkDataAvailable)

/* data available, make sure task does not pend */

selWakeup ((SEL_WAKEUP_NODE *) arg);

if (selWakeupType ((SEL_WAKEUP_NODE *) arg) == SELWRITE
&& pArkDev->arkRdyForWriting)

/* device ready for writing, make sure task does not pend */

selWakeup ((SEL_WAKEUP_NODE *) arg);

case FIOUNSELECT:

/* delete node from wakeup list */

selNodeDelete (&pArkDev->selWakeupList, (SEL_WAKEUP_NODE *) arg);

... your driver code ...
}

}

void arkISR
(
ARK_DEV *pArkDev;
)

{
 ... your driver code ...

/* if there is data available to read, wake up all pending tasks */

if (pArkDev->arkDataAvailable)
selWakeupAll (&pArkDev->selWakeupList, SELREAD);

/* if the device is ready to write, wake up all pending tasks */

if (pArkDev->arkRdyForWriting)
selWakeupAll (&pArkDev->selWakeupList, SELWRITE);

}

167

VxWorks 5.3.1
Programmer’s Guide
Cache Coherency

Drivers written for boards with caches must guarantee cache coherency. Cache

coherency means data in the cache must be in sync, or coherent, with data in RAM.

The data cache and RAM can get out of sync any time there is asynchronous access

to RAM (for example, DMA device access or VMEbus access). Data caches are used

to increase performance by reducing the number of memory accesses. Figure 3-7

shows the relationships between the CPU, data cache, RAM, and a DMA device.

Data caches can operate in one of two modes: writethrough and copyback. Write-

through mode writes data to both the cache and RAM; this guarantees cache

coherency on output but not input. Copyback mode writes the data only to the

cache; this makes cache coherency an issue for both input and output of data.

If a CPU writes data to RAM that is destined for a DMA device, the data can first

be written to the data cache. When the DMA device transfers the data from RAM,

there is no guarantee that the data in RAM was updated with the data in the cache.

Thus, the data output to the device may not be the most recent—the new data may

still be sitting in the cache. This data incoherency can be solved by making sure the

data cache is flushed to RAM before the data is transferred to the DMA device.

If a CPU reads data from RAM that originated from a DMA device, the data read

can be from the cache buffer (if the cache buffer for this data is not marked invalid)

and not the data just transferred from the device to RAM. The solution to this data

incoherency is to make sure that the cache buffer is marked invalid so that the data

is read from RAM and not from the cache.

Drivers can solve the cache coherency problem either by allocating cache-safe

buffers (buffers that are marked non-cacheable) or flushing and invalidating cache

Figure 3-7 Cache Coherency

CPU

Data Cache

RAM
DMA

Device
168

3

3
I/O System
entries any time the data is written to or read from the device. Allocating cache-

safe buffers is useful for static buffers; however, this typically requires MMU

support. Non-cacheable buffers that are allocated and freed frequently (dynamic

buffers) can result in large amounts of memory being marked non-cacheable. An

alternative to using non-cacheable buffers is to flush and invalidate cache entries

manually; this allows dynamic buffers to be kept coherent.

The routines cacheFlush() and cacheInvalidate() are used to manually flush and

invalidate cache buffers. Before a device reads the data, flush the data from the

cache to RAM using cacheFlush() to ensure the device reads current data. After the

device has written the data into RAM, invalidate the cache entry with

cacheInvalidate(). This guarantees that when the data is read by the CPU, the

cache is updated with the new data in RAM.

Example 3-11 DMA Transfer Routine

/* This a sample DMA transfer routine. Before programming the device to
 * output the data to the device, it flushes the cache by calling
 * cacheFlush(). On a read, after the device has transferred the data, the
 * cache entry must be invalidated using cacheInvalidate().
 */

#include "vxWorks.h"
#include "cacheLib.h"
#include "fcntl.h"
#include "example.h"
void exampleDmaTransfer /* 1 = READ, 0 = WRITE */

(
UINT8 *pExampleBuf,
int exampleBufLen,
int xferDirection
)
{
if (xferDirection == 1)

{
myDevToBuf (pExampleBuf);
cacheInvalidate (DATA_CACHE, pExampleBuf, exampleBufLen);
}

else
{
cacheFlush (DATA_CACHE, pExampleBuf, exampleBufLen);
myBufToDev (pExampleBuf);
}

}

It is possible to make a driver more efficient by combining cache-safe buffer

allocation and cache-entry flushing or invalidation. The idea is to flush or

invalidate a cache entry only when absolutely necessary. To address issues of cache

coherency for static buffers, use cacheDmaMalloc(). This routine initializes a

CACHE_FUNCS structure (defined in cacheLib.h) to point to flush and invalidate
169

VxWorks 5.3.1
Programmer’s Guide
routines that can be used to keep the cache coherent. The macros

CACHE_DMA_FLUSH and CACHE_DMA_INVALIDATE use this structure to

optimize the calling of the flush and invalidate routines. If the corresponding

function pointer in the CACHE_FUNCS structure is NULL, no unnecessary

flush/invalidate routines are called because it is assumed that the buffer is cache

coherent (hence it is not necessary to flush/invalidate the cache entry manually).

Some architectures allow the virtual address to be different from the physical

address seen by the device; see 7.3 Virtual Memory Configuration, p.407 in this

manual. In this situation, the driver code uses a virtual address and the device uses

a physical address. Whenever a device is given an address, it must be a physical

address. Whenever the driver accesses the memory, it uses the virtual address. The

driver translates the address using the following macros:

CACHE_DMA_PHYS_TO_VIRT (to translate a physical address to a virtual one) and

CACHE_DMA_VIRT_TO_PHYS (to translate a virtual address to a physical one).

Example 3-12 Address-Translation Driver

/* The following code is an example of a driver that performs address
 * translations. It attempts to allocate a cache-safe buffer, fill it, and
 * then write it out to the device. It uses CACHE_DMA_FLUSH to make sure
 * the data is current. The driver then reads in new data and uses
 * CACHE_DMA_INVALIDATE to guarantee cache coherency.
 */

#include "vxWorks.h"
#include "cacheLib.h"
#include "myExample.h"
STATUS myDmaExample (void)

{
void * pMyBuf;
void * pPhysAddr;

/* allocate cache safe buffers if possible */

if ((pMyBuf = cacheDmaMalloc (MY_BUF_SIZE)) == NULL)
return (ERROR);

… fill buffer with useful information …

/* flush cache entry before data is written to device */

CACHE_DMA_FLUSH (pMyBuf, MY_BUF_SIZE);

/* convert virtual address to physical */

pPhysAddr = CACHE_DMA_VIRT_TO_PHYS (pMyBuf);

/* program device to read data from RAM */

myBufToDev (pPhysAddr);
170

3

3
I/O System
… wait for DMA to complete …

… ready to read new data …

/* program device to write data to RAM */

myDevToBuf (pPhysAddr);

… wait for transfer to complete …

/* convert physical to virtual address */

pMyBuf = CACHE_DMA_PHYS_TO_VIRT (pPhysAddr);

/* invalidate buffer */

CACHE_DMA_INVALIDATE (pMyBuf, MY_BUF_SIZE);

… use data …

/* when done free memory */

if (cacheDmaFree (pMyBuf) == ERROR)
return (ERROR);

return (OK);
}

3.9.4 Block Devices

General Implementation

In VxWorks, block devices have a slightly different interface than other I/O

devices. Rather than interacting directly with the I/O system, block device drivers

interact with a file system. The file system, in turn, interacts with the I/O system.

Direct access block devices have been supported since SCSI-1 and are used

compatibly with dosFs, rt11Fs, and rawFs. In addition, VxWorks supports SCSI-2

sequential devices, which are organized so individual blocks of data are read and

written sequentially. When data blocks are written, they are added sequentially at

the end of the written medium; that is, data blocks cannot be replaced in the

middle of the medium. However, data blocks can be accessed individually for

reading throughout the medium. This process of accessing data on a sequential

medium differs from that of other block devices.

Figure 3-8 shows a layered model of I/O for both block and non-block (character)

devices. This layered arrangement allows the same block device driver to be used
171

VxWorks 5.3.1
Programmer’s Guide
with different file systems, and reduces the number of I/O functions that must be

supported in the driver.

A device driver for a block device must provide a means for creating a logical block

device structure, a BLK_DEV for direct access block devices or a SEQ_DEV for

sequential block devices. The BLK_DEV/SEQ_DEV structure describes the device

in a generic fashion, specifying only those common characteristics that must be

known to a file system being used with the device. Fields within the structures

specify various physical configuration variables for the device—for example, block

size, or total number of blocks. Other fields in the structures specify routines

within the device driver that are to be used for manipulating the device (reading

Figure 3-8 Non-Block Devices vs. Block Devices

I/O System

driver table

Device(s) Device(s)

File System
dosFs, rt11Fs, rawFs

Block
Device Driver

Non-Block
Device Driver

Application

or tapeFs
172

3

3
I/O System
blocks, writing blocks, doing I/O control functions, resetting the device, and

checking device status). The BLK_DEV/SEQ_DEV structures also contain fields

used by the driver to indicate certain conditions (for example, a disk change) to the

file system.

When the driver creates the block device, the device has no name or file system

associated with it. These are assigned during the device initialization routine for

the chosen file system (for example, dosFsDevInit(), rt11FsDevInit() or

tapeFsDevInit()).

The low-level device driver for a block device is not installed in the I/O system

driver table, unlike non-block device drivers. Instead, each file system in the

VxWorks system is installed in the driver table as a “driver.” Each file system has

only one entry in the table, even though several different low-level device drivers

can have devices served by that file system.

After a device is initialized for use with a particular file system, all I/O operations

for the device are routed through that file system. To perform specific device

operations, the file system in turn calls the routines in the specified BLK_DEV or

SEQ_DEV structure.

A driver for a block device must provide the interface between the device and

VxWorks. There is a specific set of functions required by VxWorks; individual

devices vary based on what additional functions must be provided. The user

manual for the device being used, as well as any other drivers for the device, is

invaluable in creating the VxWorks driver. The following sections describe the

components necessary to build low-level block device drivers that adhere to the

standard interface for VxWorks file systems.

Low-Level Driver Initialization Routine

The driver normally requires a general initialization routine. This routine performs

all operations that are done one time only, as opposed to operations that must be

performed for each device served by the driver. As a general guideline, the

operations in the initialization routine affect the whole device controller, while

later operations affect only specific devices.

Common operations in block device driver initialization routines include:

– initializing hardware

– allocating and initializing data structures

– creating semaphores

– initializing interrupt vectors

– enabling interrupts
173

VxWorks 5.3.1
Programmer’s Guide
The operations performed in the initialization routine are entirely specific to the

device (controller) being used; VxWorks has no requirements for a driver

initialization routine.

Unlike non-block device drivers, the driver initialization routine does not call

iosDrvInstall() to install the driver in the I/O system driver table. Instead, the file

system installs itself as a “driver” and routes calls to the actual driver using the

routine addresses placed in the block device structure, BLK_DEV or SEQ_DEV (see

Device Creation Routine, p.174).

Device Creation Routine

The driver must provide a routine to create (define) a logical disk or sequential

device. A logical disk device may be only a portion of a larger physical device. If

this is the case, the device driver must keep track of any block offset values or other

means of identifying the physical area corresponding to the logical device.

VxWorks file systems always use block numbers beginning with zero for the start

of a device. A sequential access device can be either of variable block size or fixed

block size. Most applications use devices of fixed block size.

The device creation routine generally allocates a device descriptor structure that

the driver uses to manage the device. The first item in this device descriptor must

be a VxWorks block device structure (BLK_DEV or SEQ_DEV). It must appear first

because its address is passed by the file system during calls to the driver; having

the BLK_DEV or SEQ_DEV as the first item permits also using this address to

identify the device descriptor.

The device creation routine must initialize the fields within the BLK_DEV or

SEQ_DEV structure. The BLK_DEV fields and their initialization values are shown

in Table 3-14. The SEQ_DEV fields and their initialization values are shown in

Table 3-15.

The device creation routine returns the address of the BLK_DEV or SEQ_DEV
structure. This address is then passed during the file system device initialization

call to identify the device.

Unlike non-block device drivers, the device creation routine for a block device

does not call iosDevAdd() to install the device in the I/O system device table.

Instead, this is done by the file system’s device initialization routine.
174

3

3
I/O System
Table 3-14 Fields in the BLK_DEV Structure

Field Value

bd_blkRd Address of the driver routine that reads blocks from the device.

bd_blkWrt Address of the driver routine that writes blocks to the device.

bd_ioctl Address of the driver routine that performs device I/O control.

bd_reset Address of the driver routine that resets the device (NULL if

none).

bd_statusChk Address of the driver routine that checks disk status (NULL if

none).

bd_removable TRUE if the device is removable (for example, a floppy disk);

FALSE otherwise.

bd_nBlocks Total number of blocks on the device.

bd_bytesPerBlk Number of bytes per block on the device.

bd_blksPerTrack Number of blocks per track on the device.

bd_nHeads Number of heads (surfaces).

bd_retry Number of times to retry failed reads or writes.

bd_mode Device mode (write-protect status); generally set to O_RDWR.

bd_readyChanged TRUE if the device ready status has changed; initialize to TRUE
to cause the disk to be mounted.

Table 3-15 Fields in the SEQ_DEV Structure

Field Value

sd_seqRd Address of the driver routine that reads blocks from the device.

sd_seqWrt Address of the driver routine that writes blocks to the device.

sd_ioctl Address of the driver routine that performs device I/O control.

sd_seqWrtFileMarks Address of the driver routine that writes file marks to the device.

sd_rewind Address of the driver routine that rewinds the sequential device.

sd_reserve Address of the driver routine that reserves a sequential device.

sd_release Address of the driver routine that releases a sequential device.

sd_readBlkLim Address of the driver routine that reads the data block limits

from the sequential device.

sd_load Address of the driver routine that either loads or unloads a

sequential device.

sd_space Address of the driver routine that moves (spaces) the medium

forward or backward to end-of-file or end-of-record markers.
175

VxWorks 5.3.1
Programmer’s Guide
Read Routine (Direct-Access Devices)

The driver must supply a routine to read one or more blocks from the device. For

a direct access device, the read-blocks routine must have the following arguments

and result:

STATUS xxBlkRd
(
DEVICE * pDev, /* pointer to device descriptor */
int startBlk, /* starting block to read */
int numBlks, /* number of blocks to read */
char * pBuf /* pointer to buffer to receive data */
)

In this and following examples, the routine names begin with xx. These names are

for illustration only, and do not have to be used by your device driver. VxWorks

references the routines by address only; the name can be anything.

pDev a pointer to the driver’s device descriptor structure, represented here

by the symbolic name DEVICE. (Actually, the file system passes the

address of the corresponding BLK_DEV structure; these are

equivalent, because the BLK_DEV is the first item in the device

descriptor.) This identifies the device.

startBlk the starting block number to be read from the device. The file system

always uses block numbers beginning with zero for the start of the

sd_erase Address of the driver routine that erases a sequential device.

sd_reset Address of the driver routine that resets the device (NULL if

none).

sd_statusChk Address of the driver routine that checks sequential device

status (NULL if none).

sd_blkSize Block size of sequential blocks for the device. A block size of 0

means that variable block sizes are used.

sd_mode Device mode (write protect status).

sd_readyChanged TRUE if the device ready status has changed; initialize to TRUE
to cause the sequential device to be mounted.

sd_maxVarBlockLimit Maximum block size for a variable block.

sd_density Density of sequential access media.

Table 3-15 Fields in the SEQ_DEV Structure (Continued)

Field Value
176

3

3
I/O System
device. Any offset value used for this logical device must be added in

by the driver.

numBlks the number of blocks to be read. If the underlying device hardware

does not support multiple-block reads, the driver routine must do the

necessary looping to emulate this ability.

pBuf the address where data read from the disk is to be copied.

The read routine returns OK if the transfer is successful, or ERROR if a problem

occurs.

Read Routine (Sequential Devices)

The driver must supply a routine to read a specified number of bytes from the

device. The bytes being read are always assumed to be read from the current

location of the read/write head on the media. The read routine must have the

following arguments and result:

STATUS xxSeqRd
(
DEVICE * pDev, /* pointer to device descriptor */
int numBytes, /* number of bytes to read */
char * buffer, /* pointer to buffer to receive data */
BOOL fixed /* TRUE => fixed block size */
)

pDev a pointer to the driver’s device descriptor structure, represented here

by the symbolic name DEVICE. (Actually, the file system passes the

address of the corresponding SEQ_DEV structure; these are

equivalent, because the SEQ_DEV structure is the first item in the

device descriptor.) This identifies the device.

numBytes the number of bytes to be read.

buffer the buffer into which numBytes of data are read.

fixed specifies whether the read routine reads fixed-sized blocks from the

sequential device or variable-sized blocks, as specified by the file

system. If fixed is TRUE, then fixed sized blocks are used.

The read routine returns OK if the transfer is completed successfully, or ERROR if

a problem occurs.
177

VxWorks 5.3.1
Programmer’s Guide
Write Routine (Direct-Access Devices)

The driver must supply a routine to write one or more blocks to the device. The

definition of this routine closely parallels that of the read routine. For direct-access

devices, the write routine is as follows:

STATUS xxBlkWrt
(
DEVICE * pDev, /* pointer to device descriptor */
int startBlk, /* starting block for write */
int numBlks, /* number of blocks to write */
char * pBuf /* ptr to buffer of data to write */
)

pDev a pointer to the driver’s device descriptor structure.

startBlk the starting block number to be written to the device.

numBlks the number of blocks to be written. If the underlying device hardware

does not support multiple-block writes, the driver routine must do the

necessary looping to emulate this ability.

pBuf the address of the data to be written to the disk.

The write routine returns OK if the transfer is successful, or ERROR if a problem

occurs.

Write Routine (Sequential Devices)

The driver must supply a routine to write a specified number of bytes to the device.

The bytes being written are always assumed to be written to the current location

of the read/write head on the media. For sequential devices, the write routine is as

follows:

STATUS xxWrtTape
(
DEVICE * pDev, /* ptr to SCSI sequential device info */
int numBytes, /* total bytes or blocks to be written */
char * buffer, /* ptr to input data buffer */
BOOL fixed /* TRUE => fixed block size */
)

pDev a pointer to the driver’s device descriptor structure.

numBytes the number of bytes to be written.

buffer the buffer from which numBytes of data are written.
178

3

3
I/O System
fixed specifies whether the write routine reads fixed-sized blocks from the

sequential device or variable-sized blocks, as specified by the file

system. If fixed is TRUE, then fixed sized blocks are used.

The write routine returns OK if the transfer is successful, or ERROR if a problem

occurs.

I/O Control Routine

The driver must provide a routine that can handle I/O control requests. In

VxWorks, most I/O operations beyond basic file handling are implemented

through ioctl() functions. The majority of these are handled directly by the file

system. However, if the file system does not recognize a request, that request is

passed to the driver’s I/O control routine.

Define the driver’s I/O control routine as follows:

STATUS xxIoctl
(
DEVICE * pDev, /* pointer to device descriptor */
int funcCode, /* ioctl() function code */
int arg /* function-specific argument */
)

pDev a pointer to the driver’s device descriptor structure.

funcCode the requested ioctl() function. Standard VxWorks I/O control

functions are defined in the include file ioLib.h. Other user-defined

function code values can be used as required by your device driver.

The I/O control functions supported by the dosFs, rt11Fs, rawFs, and

tapeFs are summarized in 4. Local File Systems in this manual.

arg specific to the particular ioctl() function requested. Not all ioctl()
functions use this argument.

The driver’s I/O control routine typically takes the form of a multi-way switch

statement, based on the function code. The driver’s I/O control routine must

supply a default case for function code requests it does not recognize. For such

requests, the I/O control routine sets errno to S_ioLib_UNKNOWN_REQUEST and

returns ERROR.

The driver’s I/O control routine returns OK if it handled the request successfully;

otherwise, it returns ERROR.
179

VxWorks 5.3.1
Programmer’s Guide
Device-Reset Routine

The driver usually supplies a routine to reset a specific device, but it is not

required. This routine is called when a VxWorks file system first mounts a disk or

tape, and again during retry operations when a read or write fails.

Declare the driver’s device-reset routine as follows:

STATUS xxReset
(
DEVICE * pDev
)

pDev a pointer to the driver’s device descriptor structure.

When called, this routine resets the device and controller. Do not reset other

devices, if it can be avoided. The routine returns OK if the driver succeeded in

resetting the device; otherwise, it returns ERROR.

If no reset operation is required for the device, this routine can be omitted. In this

case, the device-creation routine sets the xx_reset field in the BLK_DEV or

SEQ_DEV structure to NULL.

In this and following examples, the names of fields in the BLK_DEV and SEQ_DEV
structures are parallel except for the initial letters bd_ or sd_. In these cases, the

initial letters are represented by xx_, as in the xx_reset field to represent both the

bd_reset field and the sd_reset field.

Status-Check Routine

If the driver provides a routine to check device status or perform other preliminary

operations, the file system calls this routine at the beginning of each open() or

creat() on the device.

Define the status-check routine as follows:

STATUS xxStatusChk
(
DEVICE * pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

The routine returns OK if the open or create operation can continue. If it detects a

problem with the device, it sets errno to some value indicating the problem, and

returns ERROR. If ERROR is returned, the file system does not continue the

operation.
180

3

3
I/O System
A primary use of the status-check routine is to check for a disk change on devices

that do not detect the change until after a new disk is inserted. If the routine

determines that a new disk is present, it sets the bd_readyChanged field in the

BLK_DEV structure to TRUE and returns OK so that the open or create operation

can continue. The new disk is then mounted automatically by the file system. (See

Change in Ready Status, p.181.)

Similarly, the status check routine can be used to check for a tape change. This

routine determines whether a new tape has been inserted. If a new tape is present,

the routine sets the sd_readyChanged field in the SEQ_DEV structure to TRUE and

returns OK so that the open or create operation can continue. The device driver

should not be able to unload a tape, nor should you physically eject a tape, while

a file descriptor is open on the tape device.

If the device driver requires no status-check routine, the device-creation routine

sets the xx_statusChk field in the BLK_DEV or SEQ_DEV structure to NULL.

Write-Protected Media

The device driver may detect that the disk or tape in place is write-protected. If this

is the case, the driver sets the xx_mode field in the BLK_DEV or SEQ_DEV structure

to O_RDONLY. This can be done at any time (even after the device is initialized for

use with the file system). The file system checks this value and does not allow

writes to the device until the xx_mode field is changed (to O_RDWR or

O_WRONLY) or the file system’s mode change routine (for example,

dosFsModeChange()) is called to change the mode. (The xx_mode field is changed

automatically if the file system’s mode change routine is used.)

Change in Ready Status

The driver informs the file system whenever a change in the device’s ready status

is recognized. This can be the changing of a floppy disk, changing of the tape

medium, or any other situation that makes it advisable for the file system to

remount the disk.

To announce a change in ready status, the driver sets the xx_readyChanged field

in the BLK_DEV or SEQ_DEV structure to TRUE. This is recognized by the file

system, which remounts the disk during the next I/O initiated on the disk. The file

system then sets the xx_readyChanged field to FALSE. The xx_readyChanged
field is never cleared by the device driver.
181

VxWorks 5.3.1
Programmer’s Guide
Setting xx_readyChanged to TRUE has the same effect as calling the file system’s

ready-change routine (for example, dosFsReadyChange()) or calling ioctl() with

the FIODISKCHANGE function code.

An optional status-check routine (see Status-Check Routine, p.180) can provide a

convenient mechanism for asserting a ready-change, particularly for devices that

cannot detect a disk change until after the new disk is inserted. If the status-check

routine detects that a new disk is present, it sets xx_readyChanged to TRUE. This

routine is called by the file system at the beginning of each open or create

operation.

Write-File-Marks Routine (Sequential Devices)

The sequential driver must provide a routine that can write file marks onto the tape

device. The write file marks routine must have the following arguments

STATUS xxWrtFileMarks
(
DEVICE * pDev, /* pointer to device descriptor */
int numMarks, /* number of file marks to write */
BOOL shortMark /* short or long file marks */
)

pDev a pointer to the driver’s device descriptor structure.

numMarks the number of file marks to be written sequentially.

shortMark the type of file mark (short or long). If shortMark is TRUE, short marks

are written.

The write file marks routine returns OK if the file marks are written correctly on

the tape device; otherwise, it returns ERROR.

Rewind Routine (Sequential Devices)

The sequential driver must provide a rewind routine in order to rewind tapes in

the tape device. The rewind routine is defined as follows:

STATUS xxRewind
(
DEVICE * pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

When called, this routine rewinds the tape in the tape device. The routine returns

OK if completion is successful; otherwise, it returns ERROR.
182

3

3
I/O System
Reserve Routine (Sequential Devices)

The sequential driver can provide a reserve routine that reserves the physical tape

device for exclusive access by the host that is executing the reserve routine. The

tape device remains reserved until it is released by that host, using a release

routine, or by some external stimulus.

The reserve routine is defined as follows:

STATUS xxReserve
(
DEVICE * pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

If a tape device is reserved successfully, the reserve routine returns OK. However,

if the tape device cannot be reserved or an error occurs, it returns ERROR.

Release Routine (Sequential Devices)

This routine releases the exclusive access that a host has on a tape device. The tape

device is then free to be reserved again by the same host or some other host. This

routine is the opposite of the reserve routine and must be provided by the driver if

the reserve routine is provided.

The release routine is defined as follows:

STATUS xxReset
(
DEVICE * pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

If the tape device is released successfully, this routine returns OK. However, if the

tape device cannot be released or an error occurs, this routine returns ERROR.

Read-Block-Limits Routine (Sequential Devices)

The read-block-limits routine can poll a tape device for its physical block limits.

These block limits are then passed back to the file system so the file system can

decide the range of block sizes to be provided to a user.

The read-block-limits routine is defined as follows:
183

VxWorks 5.3.1
Programmer’s Guide
STATUS xxReadBlkLim
(
DEVICE * pDev, /* pointer to device descriptor */
int *maxBlkLimit, /* maximum block size for device */
int *minBlkLimit /* minimum block size for device */
)

pDev a pointer to the driver’s device descriptor structure.

maxBlkLimit
returns the maximum block size that the tape device can handle to the

calling tape file system.

minBlkLimit
returns the minimum block size that the tape device can handle.

The routine returns OK if no error occurred while acquiring the block limits;

otherwise, it returns ERROR.

Load/Unload Routine (Sequential Devices)

The sequential device driver must provide a load/unload routine in order to

mount or unmount tape volumes from a physical tape device. Loading means that

a volume is being mounted by the file system. This is usually done upon an open()
or a creat(). However, a device should be unloaded or unmounted only when the

file system wants to eject the tape volume from the tape device.

The load/unload routine is defined as follows:

STATUS xxLoad
(
DEVICE * pDev, /* pointer to device descriptor */
BOOL load /* load or unload device */
)

pDev a pointer to the driver’s device descriptor structure.

load a boolean variable that determines if the tape is loaded or unloaded. If

load is TRUE, the tape is loaded. If load is FALSE, the tape is unloaded.

The load/unload routine returns OK if the load or unload operation ends

successfully; otherwise, it returns ERROR.
184

3

3
I/O System
Space Routine (Sequential Devices)

The sequential device driver must provide a space routine that moves, or spaces,

the tape medium forward or backward. The amount of distance that the tape

spaces depends on the kind of search that must be performed. In general, tapes can

be searched by end-of-record marks, end-of-file marks, or other types of device-

specific markers.

The basic definition of the space routine is as follows; however, other arguments

can be added to the definition:

STATUS xxSpace
(
DEVICE * pDev, /* pointer to device descriptor */
int count, /* number of spaces */
int spaceCode /* type of space */
)

pDev a pointer to the driver’s device descriptor structure.

count specifies the direction of search. A positive count value represents

forward movement of the tape device from its current location

(forward space); a negative count value represents a reverse

movement (back space).

spaceCode defines the type of space mark that the tape device searches for on the

tape medium. The basic types of space marks are end-of-record and

end-of-file. However, different tape devices may support more

sophisticated kinds of space marks designed for more efficient

maneuvering of the medium by the tape device.

If the device is able to space in the specified direction by the specified count and

space code, the routine returns OK; if these conditions cannot be met, it returns

ERROR.

Erase Routine (Sequential Devices)

The sequential driver must provide a routine that allows a tape to be erased. The

erase routine is defined as follows:

STATUS xxErase
(
DEVICE * pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

The routine returns OK if the tape is erased; otherwise, it returns ERROR.
185

VxWorks 5.3.1
Programmer’s Guide
3.9.5 Driver Support Libraries

The subroutine libraries in Table 3-16 may assist in the writing of device drivers.

Using these libraries, drivers for most devices that follow standard protocols can

be written with only a few pages of device-dependent code. See the reference entry

for each library for details.

Table 3-16 VxWorks Driver Support Routines

Library Description

errnoLib Error status library

ftpLib ARPA File Transfer Protocol library

ioLib I/O interface library

iosLib I/O system library

intLib Interrupt support subroutine library

remLib Remote command library

rngLib Ring buffer subroutine library

ttyDrv Terminal driver

wdLib Watchdog timer subroutine library
186

4
Local File Systems
4.1 Introduction .. 191

4.2 MS-DOS-Compatible File System: dosFs .. 191

4.2.1 Disk Organization .. 192

Clusters .. 192

Boot Sector .. 193

File Allocation Table .. 194

Root Directory .. 195

Subdirectories ... 195

Files ... 196

Volume Label .. 196

4.2.2 Initializing the dosFs File System .. 197

4.2.3 Initializing a Device for Use with dosFs ... 197

4.2.4 Volume Configuration ... 199

DOS_VOL_CONFIG Fields .. 199

Calculating Configuration Values ... 201

Standard Disk Configurations ... 202

4.2.5 Changes In Volume Configuration .. 203

4.2.6 Using an Already Initialized Disk ... 204

4.2.7 Accessing Volume Configuration Information 205

4.2.8 Mounting Volumes .. 205

4.2.9 File I/O .. 206
187

VxWorks 5.3.1
Programmer’s Guide
4.2.10 Opening the Whole Device (Raw Mode) 206

4.2.11 Creating Subdirectories .. 207

4.2.12 Removing Subdirectories ... 207

4.2.13 Directory Entries .. 207

4.2.14 Reading Directory Entries .. 208

4.2.15 File Attributes ... 208

4.2.16 File Date and Time ... 210

4.2.17 Changing Disks .. 211

Unmounting Volumes ... 211

Announcing Disk Changes with Ready-Change 212

Disks with No Change Notification .. 213

Synchronizing Volumes .. 213

Auto-Sync Mode .. 214

4.2.18 Long Name Support .. 214

4.2.19 Contiguous File Support .. 215

4.2.20 I/O Control Functions Supported by dosFsLib 217

4.2.21 Booting from a Local dosFs File System Using SCSI 218

4.3 RT-11-Compatible File System: rt11Fs .. 220

4.3.1 Disk Organization ... 220

4.3.2 Initializing the rt11Fs File System ... 220

4.3.3 Initializing a Device for Use with rt11Fs .. 221

4.3.4 Mounting Volumes .. 222

4.3.5 File I/O .. 222

4.3.6 Opening the Whole Device (Raw Mode) 222

4.3.7 Reclaiming Fragmented Free Disk Space 223

4.3.8 Changing Disks .. 223

Disks with No Change Notification .. 224

4.3.9 I/O Control Functions Supported by rt11FsLib 224

4.4 Raw File System: rawFs .. 225
188

4

4
Local File Systems
4.4.1 Disk Organization .. 225

4.4.2 Initializing the rawFs File System ... 225

4.4.3 Initializing a Device for Use with the rawFs File System 226

4.4.4 Mounting Volumes .. 226

4.4.5 File I/O .. 227

4.4.6 Changing Disks .. 227

Unmounting Volumes ... 227

Announcing Disk Changes with Ready-Change 228

Disks with No Change Notification .. 228

Synchronizing Volumes .. 229

4.4.7 I/O Control Functions Supported by rawFsLib 229

4.5 Tape File System: tapeFs .. 230

4.5.1 Tape Organization .. 230

4.5.2 Using the tapeFs File System .. 231

Initializing the tapeFs File System ... 231

Initializing a Device for Use with the tapeFs File System 231

Mounting Volumes .. 233

Modes of Operation ... 233

File I/O .. 233

Changing Tapes .. 234

I/O Control Functions Supported by tapeFsLib 234
189

VxWorks 5.3.1
Programmer’s Guide
List of Tables

Table 4-1 DOS_VOL_CONFIG Fields ... 199

Table 4-2 dosFs Volume Options .. 200

Table 4-3 MS-DOS Floppy Disk Configurations 203

Table 4-4 Flags in the File-Attribute Byte ... 209

Table 4-5 I/O Control Functions Supported by dosFsLib 217

Table 4-6 I/O Control Functions Supported by rt11FsLib 224

Table 4-7 I/O Control Functions Supported by rawFsLib 229

Table 4-8 I/O Control Functions Supported by tapeFsLib 234

Table 4-9 MTIOCTOP Operations .. 235

List of Figures

Figure 4-1 MS-DOS Disk Organization ... 193

Figure 4-2 FAT Entries ... 195

List of Examples

Example 4-1 Setting DosFs File Attributes ... 210

Example 4-2 Creating a DosFs Contiguous File 215

Example 4-3 Finding the Maximum Contiguous Area on a DosFs Device

216

Example 4-4 Tape Device Configuration .. 232
190

4

4
Local File Systems
4.1 Introduction

This chapter discusses the organization, configuration, and use of VxWorks file

systems. VxWorks provides two local file systems appropriate for real-time use

with block devices (disks): one is compatible with MS-DOS file systems and the

other with the RT-11 file system. The support libraries for these file systems are

dosFsLib and rt11FsLib. VxWorks also provides a simple raw file system, which

treats an entire disk much like a single large file. The support library for this “file

system” is rawFsLib. In addition, VxWorks provides a file system for tape devices

that do not use a standard file or directory structure on tape. The tape volume is

treated much like a raw device where the entire volume is a large file. The support

library for this file system is tapeFsLib.

In VxWorks, the file system is not tied to a specific type of block device or its driver.

VxWorks block devices all use a standard interface so that file systems can be freely

mixed with device drivers. Alternatively, you can write your own file systems that

can be used by drivers in the same way, by following the same standard interfaces

between the file system, the driver, and the I/O system. VxWorks I/O architecture

makes it possible to have multiple file systems, even of different types, in a single

VxWorks system. The block device interface is discussed in 3.9.4 Block Devices,

p.171.

4.2 MS-DOS-Compatible File System: dosFs

Diskettes formatted using the dosFs file system are compatible with MS-DOS

diskettes up to and including release 6.2. Hard disks initialized by the two file

systems have slightly different formats. However, the data itself is compatible and

dosFs can be configured to use a disk formatted by MS-DOS.
191

VxWorks 5.3.1
Programmer’s Guide
The dosFs file system offers considerable flexibility appropriate to the varying

demands of real-time applications. Major features include:

■ A hierarchical arrangement of files and directories, allowing efficient

organization and permitting an arbitrary number of files to be created on a

volume.

■ A choice of contiguous or non-contiguous files on a per-file basis. Non-

contiguous files result in more efficient use of available disk space, while

contiguous files offer enhanced performance.

■ Compatibility with widely available storage and retrieval media. Diskettes

created with VxWorks (that do not use dosFs extended filenames) and MS-

DOS PCs and other systems can be freely interchanged. Hard disks are

compatible if the partition table is accounted for.

■ The ability to boot VxWorks from any local SCSI device that has a dosFs file

system.

■ The ability to use longer file names than the 8-character filename plus 3-

character extension (8.3) convention allowed by MS-DOS.

■ NFS (Network File System) support.

4.2.1 Disk Organization

The MS-DOS/dosFs file system provides the means for organizing disk data in a

flexible manner. It maintains a hierarchical set of named directories, each

containing files or other directories. Files can be appended; as they expand, new

disk space is allocated automatically. The disk space allocated to a file is not

necessarily contiguous, which results in a minimum of wasted space. However, to

enhance its real-time performance, the dosFs file system allows contiguous space

to be pre-allocated to files individually, thereby minimizing seek operations and

providing more deterministic behavior.

The general organization of an MS-DOS/dosFs file system is shown in Figure 4-1

and the various elements are discussed in the following sections.

Clusters

The disk space allocated to a file in an MS-DOS/dosFs file system consists of one

or more disk clusters. A cluster is a set of contiguous disk sectors.1 For floppy disks,

two sectors generally make up a cluster; for fixed disks, there can be more sectors
192

4

4
Local File Systems
per cluster. A cluster is the smallest amount of disk space the file system can

allocate at a time. A large number of sectors per cluster allows a larger disk to be

described in a fixed-size File Allocation Table (FAT; see File Allocation Table, p.194),

but can result in wasted disk space.

Boot Sector

The first sector on an MS-DOS/dosFs hard disk or diskette is called the boot sector.
This sector contains a variety of configuration data. Some of the data fields

1. In this and subsequent sections covering the dosFs file system, the term sector refers to the

minimum addressable unit on a disk, because this is the term used by most MS-DOS docu-

mentation. In VxWorks, the units are normally referred to as blocks, and a disk device is

called a block device.

Figure 4-1 MS-DOS Disk Organization

Sector 0Boot Sector

File Allocation Table (FAT)

(possibly multiple copies)

Root Directory

Files and Subdirectories

NOTE: If the number of reserved sectors (dosvc_nResrvd)
is greater than 1, the first FAT copy does not immediately
follow the boot sector.
193

VxWorks 5.3.1
Programmer’s Guide
describe the physical properties of the disk (such as the total number of sectors),

and other fields describe file system variables (such as the size of the root

directory).

The boot sector information is written to a disk when it is initialized. The dosFs file

system can use diskettes that are initialized on another system (for example, using

the FORMAT utility on an MS-DOS PC), or VxWorks can initialize the diskette,

using the FIODISKINIT function of the ioctl() call.

As the MS-DOS standard has evolved, various fields have been added to the boot

sector definition. Disks initialized under VxWorks use the boot sector fields

defined by MS-DOS version 5.0.

When MS-DOS initializes a hard disk, it writes a partition table in addition to the

boot sector. VxWorks does not create such a table. Therefore hard disks initialized

by the two systems are not identical. VxWorks can read files from a disk formatted

by MS-DOS if the block offset parameter in the device creation routine points

beyond the partition table to the first byte of the data area.

File Allocation Table

Each MS-DOS/dosFs volume contains a File Allocation Table (FAT). The FAT

contains an entry for each cluster on the disk that can be allocated to a file or

directory. When a cluster is unused (available for allocation), its entry is zero. If a

cluster is allocated to a file, its entry is the cluster number of the next portion of the

file. If a cluster is the last in a file, its entry is -1. Thus, the representation of a file

(or directory) consists of a linked list of FAT entries. In the example shown in

Figure 4-2, one file consists of clusters 2, 300, and 500. Cluster 3 is unused.

The FAT uses either 12 or 16 bits per entry. Disk volumes that contain up to 4085

clusters use 12-bit entries; disks with more than 4085 clusters use 16-bit entries. The

entries (particularly 12-bit entries) are encoded in a specific manner, done

originally to take advantage of the Intel 8088 architecture. However, all FAT

handling is done by the dosFs file system; thus the encoding and decoding is of no

concern to VxWorks applications.

A volume typically contains multiple copies of the FAT. This redundancy allows

data recovery in the event of a media error in the first FAT copy.

NOTE: The dosFs file system maintains multiple FAT copies if that is the specified

configuration; however, the copies are not automatically used in the event of an

error.

!

194

4

4
Local File Systems
The size of the FAT and the number of FAT copies are determined by fields in the

boot sector. For disks initialized using the dosFs file system, these parameters are

specified during the dosFsDevInit() call by setting fields in the volume

configuration structure, DOS_VOL_CONFIG.

Root Directory

Each MS-DOS/dosFs volume contains a root directory. The root directory always

occupies a set of contiguous disk sectors immediately following the FAT copies.

The disk area occupied by the root directory is not described by entries in the FAT.

The root directory is of a fixed size; this size is specified by a field in the boot sector

as the maximum allowed number of directory entries. For disks initialized using

the dosFs file system, this size is specified during the dosFsDevInit() call, by

setting a field in the volume configuration structure, DOS_VOL_CONFIG.

Because the root directory has a fixed size, an error is returned if the directory is

full and an attempt is made to add entries to it.

For more information on the contents of the directory entry, see 4.2.13 Directory
Entries, p.207.

Subdirectories

In addition to the root directory, MS-DOS/dosFs volumes sometimes contain a

hierarchy of subdirectories. Like the root directory, subdirectories contain entries

Figure 4-2 FAT Entries

1

FATcluster

2

3

300

500

.

..

.

..

-1

.

..

.

..

500

0

300

0

195

VxWorks 5.3.1
Programmer’s Guide
for files and other subdirectories; however, in other ways they differ from the root

directory and resemble files:

■ First, each subdirectory is described by an entry in another directory, as is a

file. Such a directory entry has a bit set in the file-attribute byte to indicate that

it describes a subdirectory. Also, subdirectories, unlike the root directory, have

user-assigned names.

■ Second, the disk space allocated to a subdirectory is composed of a set of disk

clusters, linked by FAT entries. This means that a subdirectory can grow as

entries are added to it, and that the subdirectory is not necessarily made up of

contiguous clusters. The root directory, unlike subdirectories, can be made up

of any number of sectors, not necessarily equal to a whole number of clusters.

■ Third, subdirectories always contain two special entries. The “.” entry refers to

the subdirectory itself, while the “..” entry refers to the subdirectory’s parent

directory. The root directory does not contain these special entries.

Files

The disk space allocated to a file in the MS-DOS/dosFs file system is a set of

clusters that are chained together through entries in the FAT. A file is not

necessarily made up of contiguous clusters; the various clusters can be located

anywhere on the disk and in any order.

Each file has a descriptive entry in the directory where it resides. This entry

contains the file’s name, size, last modification date and time, and a field giving

several important attributes (read-only, system, hidden, modified since last

archived). It also contains the starting cluster number for the file; subsequent

clusters are located using the FAT.

Volume Label

An MS-DOS/dosFs disk can have a volume label associated with it. The volume

label is a special entry in the root directory. Rather than containing the name of a

file or subdirectory, the volume label entry contains a string used to identify the

volume. This string can contain up to 11 characters. The volume label entry is

identified by a special value of the file-attribute byte in the directory entry.

Note that a volume label entry is not reported using ls(). However, it does occupy

one of the fixed number of entries in the root directory.
196

4

4
Local File Systems
The volume label can be added to a dosFs volume by using the ioctl() call with the

FIOLABELSET function. This adds a label entry to the volume’s root directory if

none exists or changes the label string in an existing volume label entry. The

volume label entry takes up one of the fixed number of root directory entries;

attempting to add an entry when the root directory is full results in an error.

The current volume label string for a volume can be obtained by calling the ioctl()
call with the FIOLABELGET function. If the volume has no label, this call returns

ERROR and sets errno to S_dosFsLib_NO_LABEL.

Disks initialized under VxWorks or under MS-DOS 5.0 (or later) also contain the

volume label string within a boot sector field.

4.2.2 Initializing the dosFs File System

Note that before any other operations can be performed, the dosFs file system

library, dosFsLib, must be initialized by calling dosFsInit(). This routine takes a

single parameter, the maximum number of dosFs file descriptors that can be open

at one time. That number of file descriptors is allocated during initialization; a

descriptor is used each time your application opens a file, directory, or the file

system device.

The dosFsInit() routine also makes an entry for the file system in the I/O system

driver table (with iosDrvInstall()). This entry specifies entry points for dosFs file

operations and is used for all devices that use the dosFs file system. The driver

number assigned to the dosFs file system is recorded in a global variable

dosFsDrvNum.

The dosFsInit() routine is normally called by the usrRoot() task after starting the

VxWorks system. To use this initialization, define INCLUDE_DOSFS in the

configuration file configAll.h, and set NUM_DOSFS_FILES to the desired

maximum open file count.

4.2.3 Initializing a Device for Use with dosFs

After the dosFs file system is initialized, the next step is to create one or more

devices. Devices are created by the device driver’s device creation routine

(xxDevCreate()). The driver routine returns a pointer to a block device descriptor

structure (BLK_DEV). The BLK_DEV structure describes the physical aspects of the

device and specifies the routines that the device driver provides to a file system.

For more information on block devices, see 3.9.4 Block Devices, p.171.
197

VxWorks 5.3.1
Programmer’s Guide
Immediately after its creation, the block device has neither a name nor a file system

associated with it. To initialize a block device for use with the dosFs file system, the

already-created block device must be associated with dosFs and a name must be

assigned to it. This is done with the dosFsDevInit() routine. Its parameters are the

name to be used to identify the device, a pointer to the block device descriptor

structure (BLK_DEV), and a pointer to the volume configuration structure

DOS_VOL_CONFIG (see 4.2.4 Volume Configuration, p.199). For example:

DOS_VOL_DESC *pVolDesc;
DOS_VOL_CONFIG configStruct;
pVolDesc = dosFsDevInit ("DEV1:", pBlkDev, &configStruct);

The dosFsDevInit() call performs the following tasks:

■ Assigns the specified name to the device and enters the device in the I/O

system device table (with iosDevAdd()).

■ Allocates and initializes the file system’s volume descriptor for the device.

■ Returns a pointer to the volume descriptor. This pointer is subsequently used

to identify the volume during certain file system calls.

Initializing the device for use with dosFs does not format the disk, nor does it

initialize the disk with MS-DOS structures (root directory, FAT, and so on). This

permits using dosFsDevInit() with disks that already have data in an existing MS-

DOS file system; see 4.2.6 Using an Already Initialized Disk, p.204. Formatting and

DOS disk initialization can be done using the ioctl() functions FIODISKFORMAT
and FIODISKINIT, respectively.

The dosFsMkfs() call provides an easier method of initializing a dosFs device; it

does the following:

■ Provides a set of default configuration values.

■ Calls dosFsDevInit().

■ Initializes the disk structures using ioctl() with the FIODISKINIT function.

The routine dosFsMkfs() by default does not enable any dosFs-specific volume

options (DOS_OPT_CHANGENOWARN, DOS_OPT_AUTOSYNC,

DOS_OPT_LONGNAMES, DOS_OPT_LOWERCASE, or DOS_OPT_EXPORT). To

enable any combination of these options, use dosFsMkfsOptionsSet() before

calling dosFsMkfs() to initialize the disk. For more information on the default

configuration values, see the manual entry for dosFsMkfs().
198

4

4
Local File Systems
4.2.4 Volume Configuration

The volume configuration structure, DOS_VOL_CONFIG, is used during the

dosFsDevInit() call. This structure contains various dosFs file system variables

describing the layout of data on the disk. Most of the fields in the structure

correspond to those in the boot sector. Table 4-1 lists the fields in the

DOS_VOL_CONFIG structure.

Calling dosFsConfigInit()is a convenient way to initialize DOS_VOL_CONFIG. It

takes the configuration variables as parameters and fills in the structure. This is

useful for initializing devices interactively from the Tornado shell (see the Tornado
User’s Guide: Shell). The DOS_VOL_CONFIG structure must be allocated before
dosFsConfigInit() is called.

DOS_VOL_CONFIG Fields

All but the last two DOS_VOL_CONFIG fields in Table 4-1 describe standard MS-

DOS characteristics. The field dosvc_options is specific to the dosFs file system.

Possible options for this field are shown in Table 4-2.

Table 4-1 DOS_VOL_CONFIG Fields

Field Description

dosvc_mediaByte Media-descriptor byte

dosvc_secPerClust Number of sectors per cluster

dosvc_nResrvd Number of reserved sectors that precede the first FAT copy; the

minimum is 1 (the boot sector)

dosvc_nFats Number of FAT copies

dosvc_secPerFat Number of sectors per FAT copy

dosvc_maxRootEnts Maximum number of entries in root directory

dosvc_nHidden Number of hidden sectors, normally 0

dosvc_options VxWorks-specific file system options

dosvc_reserved Reserved for future use by Wind River Systems
199

VxWorks 5.3.1
Programmer’s Guide
The first two options specify the action used to synchronize the disk buffers with

the physical device. The remaining options involve extensions to dosFs

capabilities.

DOS_OPT_CHANGENOWARN
Set this option if the device is a disk that can be replaced without being

unmounted or having its change in ready-status declared. In this situation,

check the disk regularly to determine whether it has changed. This causes

significant overhead; thus, we recommend that you provide a mechanism

that always synchronizes and unmounts a disk before it is removed, or at

least announces a change in ready-status. If such a mechanism is in place,

or if the disk is not removable, do not set this option. Auto-sync mode is

enabled automatically when DOS_OPT_CHANGENOWARN is set (see the

description for DOS_OPT_AUTOSYNC, next). For more information on

DOS_OPT_CHANGENOWARN, see 4.2.17 Changing Disks, p.211.

DOS_OPT_AUTOSYNC
Set this option to assure that directory and FAT data in the disk’s buffers

are written to the physical device as soon as possible after modification,

rather than only when the file is closed. This can be desirable in situations

where it is important that data be stored on the physical medium as soon

as possible so as to avoid loss in the event of a system crash. There is a

significant performance penalty incurred when using auto-sync mode;

limit its use, therefore, to circumstances where there is a threat to data

integrity.

However, DOS_OPT_AUTOSYNC does not make dosFs automatically

write data to disk immediately after every write(); doing so implies an

extreme performance penalty. If your application requires this effect, use

the ioctl() function FIOFLUSH after every call to write().

Table 4-2 dosFs Volume Options

Option Hex Value Description

DOS_OPT_CHANGENOWARN 0x1 Disk may be changed without warning.

DOS_OPT_AUTOSYNC 0x2 Synchronize disk during I/O.

DOS_OPT_LONGNAMES 0x4 Use case-sensitive file names not

restricted to 8.3 convention.

DOS_OPT_EXPORT 0x8 Allow exporting using NFS.

DOS_OPT_LOWERCASE 0x40 Use lower case filenames on disk.
200

4

4
Local File Systems
Note that auto-sync mode is automatically enabled whenever

DOS_OPT_CHANGENOWARN is set. For more information on auto-sync

mode, see 4.2.17 Changing Disks, p.211.

DOS_OPT_LONGNAMES
Set this option to allow the use of case-sensitive file names, with name

lengths not restricted to MS-DOS’s 8.3 convention. For more information

on this option, see 4.2.18 Long Name Support, p.214.

DOS_OPT_EXPORT
Set this option to initialize file systems that you intend to export using

NFS. With this option, dosFs initialization creates additional in-memory

data structures that are required to support the NFS protocol. While this

option is necessary to initialize a file system that can be exported, it does

not actually export the file system. See Allowing Remote Access to VxWorks
Files through NFS, p.288.

DOS_OPT_LOWERCASE
Set this option to force filenames created by dosFs to use lowercase

alphabetical characters. (Normally, filenames are created using uppercase

characters, unless the DOS_OPT_LONGNAMES option is enabled.) This

option may be required if the dosFs volume is mounted by a PC-based

NFS client. This option has no effect if DOS_OPT_LONGNAMES is also

specified.

Calculating Configuration Values

The values for dosvc_secPerClust and dosvc_secPerFat in the DOS_VOL_CONFIG
structure must be calculated based on the particular device being used.

dosvc_secPerClust
This field specifies how many contiguous disk sectors make up a single

cluster. Because a cluster is the smallest amount of disk space that can be

allocated at a time, the size of a cluster determines how finely the disk

allocation can be controlled. A large number of sectors per cluster causes

more sectors to be allocated at a time and reduces the overall efficiency of

disk space usage. For this reason, it is generally preferable to use the

smallest possible number of sectors per cluster, although having less than

two sectors per cluster is generally not necessary.

The maximum size of a FAT entry is 16 bits; thus, there is a maximum of

65,536 (64KB, or 0x10000) clusters that can be described. This is therefore

the maximum number of clusters for a device. To determine the
201

VxWorks 5.3.1
Programmer’s Guide
appropriate number of sectors per cluster, divide the total number of

sectors on the disk (the bd_nBlocks field in the device’s BLK_DEV
structure) by 0x10000 (64KB). Round up the resulting value to the next

whole number. The final result is the number of sectors per cluster; place

this value in the dosvc_secPerClust field in the DOS_VOL_CONFIG
structure.

dosvc_secPerFat
This field specifies the number of sectors required on the disk for each

copy of the FAT. To calculate this value, first determine the total number of

clusters on the disk. The total number of clusters is equal to the total

number of sectors (bd_nBlocks in the BLK_DEV structure) divided by the

number of sectors per cluster. As mentioned previously, the maximum

number of clusters on a disk is 64KB.

The cluster count must then be multiplied by the size of each FAT entry: if

the total number of clusters is 4085 or less, each FAT entry requires 12 bits

(11⁄2 bytes); if the number of clusters is greater than 4085, each FAT entry

requires 16 bits (2 bytes). The result of this multiplication is the total

number of bytes required by each copy of the FAT. This byte count is then

divided by the size of each sector (the bd_bytesPerBlk field in the

BLK_DEV structure) to determine the number of sectors required for each

FAT copy; if there is any remainder, add one (1) to the result. Place this

final value in the dosvc_secPerFat field.

Assuming 512-byte sectors, the largest possible FAT (with entries

describing 64KB clusters) occupies 256 sectors per copy, calculated as

follows:

Standard Disk Configurations

For floppy disks, a number of standard disk configurations are used in MS-DOS

systems. In general, these are uniquely identified by the media-descriptor byte

value (at least for a given size of floppy disk), although some manufacturers have

used duplicate values for different formats. Some widely used configurations are

summarized in Table 4-3.

Fixed disks do not use standard disk configurations because they are rerely

attached to a foreign system. Usually fixed disks use a media format byte of 0xF8.

64KB entries × 2 bytes/entry
= 256 sectors

512 bytes/sector
202

4

4
Local File Systems
4.2.5 Changes In Volume Configuration

As mentioned previously, various disk configuration parameters are specified

when the dosFs file system device is first initialized using dosFsDevInit(). These

parameters are kept in the volume descriptor, DOS_VOL_DESC, for the device.

However, it is possible for a disk with different parameter values to be placed in a

drive after the device is already initialized. If another disk is substituted for the one

with the configuration parameters that were last entered into the volume

descriptor, the configuration parameters of the new disk must be obtained before

it can be used.

When a disk is mounted, the boot sector information is read from the disk. This

data is used to update the configuration data in the volume descriptor. Note that

this happens the first time the disk is accessed, and again after the volume is

unmounted (using dosFsVolUnmount()) or a ready-change operation is

performed. For more information, see 4.2.17 Changing Disks, p.211.

This automatic re-initialization of the configuration data has an important

implication. The volume descriptor data is used when initializing a disk (with

Table 4-3 MS-DOS Floppy Disk Configurations

Capacity 160KB 180KB 320KB 360KB 1.2MB 720KB 1.44MB

Size 5.25" 5.25" 5.25" 5.25" 5.25" 3.5" 3.5"

Sides 1 1 2 2 2 2 2

Tracks 40 40 40 40 80 80 80

Sectors/Track 8 9 8 9 15 9 18

Bytes/Sector 512 512 512 512 512 512 512

secPerClust 1 1 2 2 1 2 1

nResrvd 1 1 1 1 1 1 1

nFats 2 2 2 2 2 2 2

maxRootEnts 64 64 112 112 224 112 224

mediaByte 0xFE 0xFC 0xFF 0xFD 0xF9 0xF9 0xF0

secPerFat 1 2 1 2 7 3 9

nHidden 0 0 0 0 0 0 0
203

VxWorks 5.3.1
Programmer’s Guide
FIODISKINIT); thus, the disk is initialized with the configuration of the most

recently mounted disk, regardless of the original specification during

dosFsDevInit(). Therefore, we recommend that you use FIODISKINIT
immediately after dosFsDevInit(), before any disk is mounted. (The device is

opened in raw mode, the FIODISKINIT ioctl() function is performed, and the

device is closed.)

4.2.6 Using an Already Initialized Disk

If you are using a disk that is already initialized with an MS-DOS boot sector, FAT,

and root directory (for example, by using the FORMAT utility in MS-DOS), it is not

necessary to provide the volume configuration data during dosFsDevInit().

You can omit the MS-DOS configuration data by specifying a NULL pointer instead

of the address of a DOS_VOL_CONFIG structure during dosFsDevInit(). However,

only use this method if you are sure that the first use of the volume is with a

properly formatted and initialized disk.

When mounting an already initialized disk, all standard MS-DOS configuration

values are obtained from the disk’s boot sector. However, the options that are

specific to dosFs must be determined differently.

Disks that are already initialized with the DOS_OPT_LONGNAMES (case-sensitive

file names not restricted to 8.3 convention) option are recognized automatically by

a specific volume ID string that is placed in the boot sector.

The DOS_OPT_CHANGENOWARN, DOS_OPT_AUTOSYNC,

DOS_OPT_LOWERCASE, and DOS_OPT_EXPORT options are recorded only in

memory, not on disk. Therefore they cannot be detected when you initialize a disk

with NULL in place of the DOS_VOL_CONFIG structure pointer; you must re-

enable them each time you mount a disk. You can set default values for these

options with the dosFsDevInitOptionsSet() routine: the defaults apply to any

dosFs file systems you initialize with dosFsDevInit() thereafter, unless you supply

explicit DOS_VOL_CONFIG information.

You can also enable the DOS_OPT_CHANGENOWARN and DOS_OPT_AUTOSYNC
options dynamically during disk operation, rather than during initialization, with

the dosFsVolOptionsSet() routine.
204

4

4
Local File Systems
4.2.7 Accessing Volume Configuration Information

Disk configuration information is available using dosFsConfigShow()2 and

dosFsConfigGet() from the Tornado shell. See the Tornado User’s Guide: Shell.

Use dosFsConfigShow() to display configuration information such as the largest

contiguous area and the device name. For example:

-> dosFsConfigShow "/RAM1/"
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

device name: /RAM1/
total number of sectors: 400
bytes per sector: 512
media byte: 0xf0
of sectors per cluster: 2
of reserved sectors: 1
of FAT tables: 2
of sectors per FAT: 1
max # of root dir entries: 112
of hidden sectors: 0
removable medium: FALSE
disk change w/out warning: not enabled
auto-sync mode: not enabled
long file names: not enabled
exportable file system: not enabled
volume mode: O_RDWR (read/write)
available space: 199680 bytes
max avail. contig space: 199680 bytes

The dosFsConfigGet() routine stores the disk configuration information in a

DOS_VOL_CONFIG structure. This can be useful if you have a pre-existing disk

and want to initialize a new disk with the same parameters, or if you initialized the

dosFs file system on the disk using dosFsMkfs() and need to obtain the actual

configuration values that were calculated.

4.2.8 Mounting Volumes

A disk volume is mounted automatically, generally during the first open() or

creat() operation for a file or directory on the disk. (Certain ioctl() calls also cause

the disk to be mounted.) If a NULL pointer is specified instead of the address of a

DOS_VOL_CONFIG structure during the dosFsDevInit() call, the disk is mounted

immediately to obtain the configuration values.

2. If INCLUDE_SHOW_ROUTINES is defined in the VxWorks configuration; see

8. Configuration.
205

VxWorks 5.3.1
Programmer’s Guide
When a disk is mounted, the boot sector, FAT, and directory data are read from the

disk. The volume descriptor, DOS_VOL_DESC, is updated to reflect the

configuration of the newly mounted disk.

Automatic mounting occurs on the first file access following dosFsVolUnmount()
or a ready-change operation (see 4.2.17 Changing Disks, p.211), or periodically if the

disk is defined during the dosFsDevInit() call with the option

DOS_OPT_CHANGENOWARN set. Automatic mounting does not occur when a

disk is opened in raw mode; see 4.2.10 Opening the Whole Device (Raw Mode), p.206.

4.2.9 File I/O

Files on a dosFs file system device are created, deleted, written, and read using the

standard VxWorks I/O routines: creat(), remove(), write(), and read(). See

3.3 Basic I/O, p.112 for more information.

4.2.10 Opening the Whole Device (Raw Mode)

It is possible to open an entire dosFs volume. This is done by specifying only the

device name during the open() or creat() call. A file descriptor is returned, as

when a regular file is opened; however, operations on that file descriptor affect the

entire device. Opening the entire volume in this manner is called raw mode.

The most common reason for opening the entire device is to obtain a file descriptor

for an ioctl() function that does not pertain to an individual file. An example is the

FIONFREE function, which returns the number of available bytes on the volume.

However, for many of these functions, the file descriptor can be any open file

descriptor to the volume, even one for a specific file.

When a disk is initialized with MS-DOS data structures (boot sector, empty root

directory, FAT), open the device in raw mode. The ioctl() function FIODISKINIT
performs the initialization.

You can both read and write data on a disk in raw mode. In this mode, the entire

disk data area (that is, the disk portion following the boot sector, root directory, and

FAT) is treated much like a single large file. No directory entry is made to describe

any data written using raw mode.

For low-level I/O to an entire device, including the area used by MS-DOS data

structures, see 4.4 Raw File System: rawFs, p.225 and the reference entry for

rawFsLib.
206

4

4
Local File Systems
4.2.11 Creating Subdirectories

Subdirectories can be created in any directory at any time, except in the root

directory if it has reached its maximum entry count. Subdirectories can be created

in two ways:

1. Using ioctl() with the FIOMKDIR function: The name of the directory to be

created is passed as a parameter to ioctl(). The file descriptor used for the

ioctl() call is acquired either through opening the entire volume (raw mode),

a regular file, or another directory on the volume.

2. Using open(): To create a directory, the O_CREAT option must be set in the flags
parameter to open, and the FSTAT_DIR option must be set in the mode
parameter. The open() call returns a file descriptor that describes the new

directory. Use this file descriptor for reading only and close it when it is no

longer needed.

When creating a directory using either method, the new directory name must be

specified. This name can be either a full path name or a path name relative to the

current working directory.

4.2.12 Removing Subdirectories

A directory that is to be deleted must be empty (except for the “.” and “..” entries).

The root directory can never be deleted. There are two methods for removing

directories:

1. Using ioctl() call with the FIORMDIR function, specifying the name of the

directory. Again, the file descriptor used can refer to any file or directory on the

volume, or to the entire volume itself.

2. Using the remove() function, specifying the name of the directory.

4.2.13 Directory Entries

Each dosFs directory contains a set of entries describing its files and immediate

subdirectories. Each entry contains the following information about a file or

subdirectory:

file name an 8-byte string (padded with spaces, if necessary) specifying the

base name of the file. (Names can be up to 40 characters; for details

see 4.2.18 Long Name Support, p.214.)
207

VxWorks 5.3.1
Programmer’s Guide
file extension a 3-byte string (space-padded) specifying an optional extension to

the file or subdirectory name. (If case-sensitive file names not

restricted to the 8.3 convention are selected, the extension concept

is not applicable.)

file attribute a one-byte field specifying file characteristics; see 4.2.15 File
Attributes, p.208.

time the encoded creation or modification time for the file.

date the encoded creation or modification date for the file.

cluster number the number of the starting cluster within the file. Subsequent

clusters are found by searching the FAT.

file size the size of the file, in bytes. This field is always 0 for entries

describing subdirectories.

4.2.14 Reading Directory Entries

Directories on dosFs volumes can be searched using the opendir(), readdir(),
rewinddir(), and closedir() routines. These calls can be used to determine the

names of files and subdirectories.

To obtain more detailed information about a specific file, use the fstat() or stat()
function. Along with standard file information, the structure used by these

routines also returns the file-attribute byte from a directory entry.

For more information, see the manual entry for dirLib.

4.2.15 File Attributes

The file-attribute byte in a dosFs directory entry consists of a set of flag bits, each

indicating a particular file characteristic. The characteristics described by the file-

attribute byte are shown in Table 4-4.

DOS_ATTR_RDONLY is checked when a file is opened for O_WRONLY or

O_RDWR. If the flag is set, open() returns ERROR and sets errno to

S_dosFsLib_READ_ONLY.
208

4

4
Local File Systems
NOTE: The MS-DOS hidden file and system file flags, DOS_ATTR_HIDDEN and

DOS_ATTR_SYSTEM, are ignored by dosFsLib. If present, they are kept intact, but

they produce no special handling (for example, entries with these flags are

reported when searching directories).

The volume label flag, DOS_ATTR_VOL_LABEL, indicates that a directory entry

contains the dosFs volume label for the disk. A label is not required. If used, there

can be only one volume label entry per volume, in the root directory. The volume

label entry is not reported when reading the contents of a directory (using

readdir()). It can only be determined using the ioctl() function FIOLABELGET. The

volume label can be set (or reset) to any string of 11 or fewer characters, using the

ioctl() function FIOLABELSET. Any file descriptor open to the volume can be used

during these ioctl() calls.

The directory flag, DOS_ATTR_DIRECTORY, indicates that this entry is not a

regular file, but a subdirectory.

The archive flag, DOS_ATTR_ARCHIVE, is set when a file is created or modified.

This flag is intended for use by other programs that search a volume for modified

files and selectively archive them. Such a program must clear the archive flag since

VxWorks does not.

All the flags in the attribute byte, except the directory and volume label flags, can

be set or cleared using the ioctl() function FIOATTRIBSET. This function is called

after the opening of the specific file with the attributes to be changed. The attribute-

byte value specified in the FIOATTRIBSET call is copied directly; to preserve

existing flag settings, determine the current attributes using stat() or fstat(), then

change them using bitwise and and or operations.

Table 4-4 Flags in the File-Attribute Byte

VxWorks Flag Name Hex value Description

DOS_ATTR_RDONLY 0x01 read-only file

DOS_ATTR_HIDDEN 0x02 hidden file

DOS_ATTR_SYSTEM 0x04 system file

DOS_ATTR_VOL_LABEL 0x08 volume label

DOS_ATTR_DIRECTORY 0x10 subdirectory

DOS_ATTR_ARCHIVE 0x20 file is subject to archiving

!

209

VxWorks 5.3.1
Programmer’s Guide
Example 4-1 Setting DosFs File Attributes

This example makes a dosFs file read-only, and leaves other attributes intact.

#include "vxWorks.h"
#include "ioLib.h"
#include "dosFsLib.h"
#include "sys/stat.h"
#include "fcntl.h"

STATUS changeAttributes (void)
{
int fd;
struct stat statStruct;

/* open file */

if ((fd = open ("file", O_RDONLY, 0)) == ERROR)
return (ERROR);

/* get directory entry data */

if (fstat (fd, &statStruct) == ERROR)
return (ERROR);

/* set read-only flag on file */

if (ioctl (fd, FIOATTRIBSET, (statStruct.st_attrib | DOS_ATTR_RDONLY))
== ERROR)
return (ERROR);

/* close file */

close (fd);
}

4.2.16 File Date and Time

Directory entries contain a time and date for each file or directory. This time is set

when the file is created, and it is updated when a file that was modified is closed.

Entries describing subdirectories are not updated—they always contain the

creation date and time for the subdirectory.

The dosFsLib library maintains the date and time in an internal structure. While

there is currently no mechanism for automatically advancing the date or time, two

different methods for setting the date and time are provided.

The first method involves using two routines, dosFsDateSet() and

dosFsTimeSet(). The following examples illustrate their use:

dosFsDateSet (1990, 12, 25); /* set date to Dec-25-1990 */
dosFsTimeSet (14, 30, 22); /* set time to 14:30:22 */

These routines must be called periodically to update the time and date values.
210

4

4
Local File Systems
The second method requires a user-supplied hook routine. If a time and date hook

routine is installed using dosFsDateTimeInstall(), that routine is called whenever

dosFsLib requires the current date and time. You can use this to take advantage of

hardware time-of-day clocks that can be read to obtain the current time. It can also

be used with other applications that maintain actual time and date.

Define the date/time hook routine as follows (the name dateTimeHook is an

example; the actual routine name can be anything):

void dateTimeHook
(
DOS_DATE_TIME * pDateTime /* ptr to dosFs date & time struct */
)

On entry to the hook routine, the DOS_DATE_TIME structure contains the last time

and date set in dosFsLib. Next, the hook routine fills the structure with the correct

values for the current time and date. Unchanged fields in the structure retain their

previous values.

The MS-DOS specification provides only for 2-second granularity in file time-

stamps. If the number of seconds in the time specified during dosFsTimeSet() or

the date/time hook routine is odd, it is rounded down to the next even number.

The date and time used by dosFsLib is initially Jan-01-1980, 00:00:00.

4.2.17 Changing Disks

To increase performance, the dosFs file system keeps in memory copies of

directory entries and the file allocation table (FAT) for each mounted volume.

While this greatly speeds up access to files, it requires that dosFsLib be notified

when removable disks are changed (for example, when floppies are swapped).

Two different notification methods are provided: (1) dosFsVolUnmount() and (2)

the ready-change mechanism. The following sections are not generally applicable

for non-removable media (although dosFsVolUnmount() can be useful in system

shutdown situations).

Unmounting Volumes

The preferred method of announcing a disk change is to call dosFsVolUnmount()
prior to removing the disk. This call flushes all modified data structures to disk if

possible (see Synchronizing Volumes, p.213) and also marks any open file

descriptors as obsolete. During the next I/O operation, the disk is remounted. The

ioctl() call can also be used to initiate dosFsVolUnmount(), by specifying the
211

VxWorks 5.3.1
Programmer’s Guide
FIOUNMOUNT function code. Any open file descriptor to the device can be used

in the ioctl() call.

Subsequent attempts to use obsolete file descriptors for I/O operations return an

S_dosFsLib_FD_OBSOLETE error. To free such file descriptors, use close(), as usual.

This returns S_dosFsLib_FD_OBSOLETE as well, but it successfully frees the

descriptor. File descriptors acquired when opening the entire volume (raw mode)

are not marked as obsolete during dosFsVolUnmount() and can still be used.

ISRs must not call dosFsVolUnmount() directly, because it is possible for the call

to pend while the device becomes available. The ISR can instead give a semaphore

that prompts a task to unmount the volume. (Note that dosFsReadyChange() can

be called directly from ISRs; see Announcing Disk Changes with Ready-Change,

p.212.)

When dosFsVolUnmount() is called, it attempts to write buffered data out to the

disk. Its use is therefore inappropriate for situations where the disk-change

notification does not occur until a new disk is inserted, because the old buffered

data would be written to the new disk. In this case, use dosFsReadyChange(),
which is described in Announcing Disk Changes with Ready-Change, p.212.

If dosFsVolUnmount() is called after the disk is physically removed, the data-

flushing portion of its operation fails. However, the file descriptors are still marked

as obsolete and the disk is marked as requiring remounting. In this situation,

dosFsVolUnmount() does not return an error. To avoid lost data, explicitly

synchronize the disk before removing it (see Synchronizing Volumes, p.213).

Announcing Disk Changes with Ready-Change

The second method of informing dosFsLib that a disk change is taking place is

with the ready-change mechanism. A change in the disk’s ready-status is

interpreted by dosFsLib as indicating that the disk must be remounted before the

next I/O operation.

There are three ways to announce a ready-change:

■ By calling dosFsReadyChange() directly.

■ By calling ioctl() with the FIODISKCHANGE function.

■ By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying dosFsLib directly.

The ready-change mechanism does not provide the ability to flush data structures

to the disk. It merely marks the volume as needing remounting. Thus, buffered
212

4

4
Local File Systems
data (data written to files, directory entries, or FAT changes) can be lost. This can

be avoided by synchronizing the disk before asserting ready-change (see

Synchronizing Volumes, p.213). The combination of synchronizing and asserting

ready-change provides all the functionality of dosFsVolUnmount(), except for

marking file descriptors as obsolete.

Ready-change can be used in ISRs, because it does not attempt to flush data or

perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field

in the BLK_DEV structure) can be useful for asserting ready-change for devices that

detect a disk change only after the new disk is inserted. This routine is called at the

beginning of each open() or creat() operation, before the file system checks for

ready-change. See 3.9.4 Block Devices, p.171.

Disks with No Change Notification

If it is not possible for dosFsVolUnmount() to be called or a ready-change to be

announced, then each time the disk is changed, the device must be specially

identified when it is initialized for use with the file system. This is done by setting

DOS_OPT_CHANGENOWARN in the dosvc_options field of the

DOS_VOL_CONFIG structure when calling dosFsDevInit(); see 4.2.4 Volume
Configuration, p.199.

This configuration option results in a significant performance penalty, because the

disk configuration data must be read in regularly from the physical disk (in case it

was removed and a new one inserted). In addition, setting

DOS_OPT_CHANGENOWARN also enables auto-sync mode; see Auto-Sync Mode,

p.214. Note that all that is required for disk change notification is that either the

dosFsVolUnmount() call or ready-change be issued each time the disk is changed.

It is not necessary that it be called from the device driver or an ISR. For example, if

your application provided a user interface through which an operator could enter

a command resulting in an dosFsVolUnmount() call before removing the disk, that

would be sufficient, and DOS_OPT_CHANGENOWARN does not need to be set.

However, it is important that the operator follow such a procedure strictly.

Synchronizing Volumes

When a disk is synchronized, all modified buffered data is physically written to the

disk, so that the disk is up to date. This includes data written to files, updated

directory information, and the FAT.
213

VxWorks 5.3.1
Programmer’s Guide
To avoid loss of data, synchronize a disk before removing it. You may need to

explicitly synchronize a disk, depending on when (or if) dosFsVolUnmount() is
called. If your application does not call this routine, or it is called after the disk is

removed, use ioctl() to explicitly write the data to the device.

When dosFsVolUnmount() is called, an attempt is made to synchronize the device

before unmounting. If the disk is still present and writable at the time of the call,

synchronization takes place, and no further action is required to protect the

integrity of the data written to it before it is dismounted. However, if the

dosFsVolUnmount() call is made after a disk is removed, it is obviously too late to

synchronize, and dosFsVolUnmount() discards the buffered data.

To explicitly synchronize a disk before it is removed, use ioctl() specifying the

FIOSYNC function. (This could be done in response to an operator command.) Do

this if the dosFsVolUnmount() call is made after a disk is removed or if the routine

dosFsVolUnmount() is never called. The file descriptor used during the ioctl() call

is obtained when the whole volume (raw mode) is opened.

Auto-Sync Mode

dosFsLib provides a modified mode of synchronization called auto-sync. When

this option is enabled, data for modified directories and the FAT are physically

written to these devices as soon as they are logically altered. (Otherwise, such

changes are not necessarily written out until the involved file is closed.)

Auto-sync mode is enabled by setting DOS_OPT_AUTOSYNC in the

dosvc_options field of the DOS_VOL_CONFIG structure when dosFsDevInit() is
called; see 4.2.4 Volume Configuration, p.199. Auto-sync mode is automatically

enabled if the volume does not have disk change notification (that is, if

DOS_OPT_CHANGENOWARN is set by dosFsDevInit()).

Auto-sync results in a performance penalty, but it provides the highest level of data

security, because it minimizes the period during which directory and FAT data are

not up to date on the disk. Auto-sync is often desirable for applications where data

integrity is threatened by events such as a system crash.

4.2.18 Long Name Support

The dosFs long name support allows the use of case-sensitive file names longer

than MS-DOS’s 8.3 convention. These names can be up to 40 characters long and

can be made up of any ASCII characters. In addition, a dot (.), which in MS-DOS

indicates a file-name extension, has no special significance.
214

4

4
Local File Systems
Long name support is enabled by setting DOS_OPT_LONGNAMES in the

dosvc_options field of the DOS_VOL_CONFIG structure when calling

dosFsDevInit().

WARNING: If you use this feature, the disk is no longer MS-DOS compatible. Use

long name support only for storing data local to VxWorks, on a disk that is

initialized on a VxWorks system using dosFsDevInit() or dosFsMkfs().

4.2.19 Contiguous File Support

The dosFs file system provides efficient handling of contiguous files. A contiguous

file is made up of a series of consecutive disk sectors. This capability includes both

the allocation of contiguous space to a specified file (or directory) and optimized

access to such a file.

To allocate a contiguous area to a file, first create the file in the normal fashion,

using open() or creat(). Then use the file descriptor returned during the creation

of the file to make the ioctl() call, specifying the FIOCONTIG function. The

parameter to ioctl() with the FIOCONTIG function is the size of the requested

contiguous area, in bytes. The FAT is searched for a suitable section of the disk, and

if found, it is assigned to the file. (If there is no contiguous area on the volume large

enough to satisfy the request, an error is returned.) The file can then be closed, or

it can be used for further I/O operations.

Example 4-2 Creating a DosFs Contiguous File

This example creates a dosFs file and allocates 0x10000 contiguous bytes to it.

#include "vxWorks.h"
#include "ioLib.h"
#include "fcntl.h"

STATUS fileContigTest (void)
{
int fd;
STATUS status;

/* open file */

if ((fd = creat ("file", O_RDWR)) == ERROR)
return (ERROR);

/* get contiguous area */

status = ioctl (fd, FIOCONTIG, 0x10000);
if (status != OK)

!

215

VxWorks 5.3.1
Programmer’s Guide
 /* do error handling */

printf ("ERROR");

/* use file */

/* close file */

close (fd);
}

It is also possible to request the largest available contiguous space. Use

CONTIG_MAX for the size of the contiguous area. For example:

status = ioctl (fd, FIOCONTIG, CONTIG_MAX);

It is important that the file descriptor used for the ioctl() call be the only descriptor

open to the file. Furthermore, because a file can be assigned a different area of the

disk than is originally allocated, perform the ioctl() FIOCONTIG operation before

any data is written to the file.

To deallocate unused reserved bytes, use the POSIX-compatible routine

ftruncate() or the ioctl() function FIOTRUNC.

Subdirectories can also be allocated a contiguous disk area in the same manner. If

the directory is created using the ioctl() function FIOMKDIR, it must be explicitly

opened to obtain a file descriptor to it; if the directory is created using options to

open(), the returned file descriptor from that call can be used. A directory must be

empty (except for the “.” and “..” entries) when it has contiguous space allocated

to it.

When any file is opened, it is checked for contiguity. If a file is recognized as

contiguous, a more efficient technique for locating specific sections of the file is

used, rather than following cluster chains in the FAT, as must be done for

fragmented files. This enhanced handling of contiguous files takes place regardless

of whether the space is explicitly allocated using FIOCONTIG.

To find the maximum contiguous area on a device, use the ioctl() function

FIONCONTIG. This information can also be displayed by dosFsConfigShow() if
INCLUDE_SHOW_ROUTINES is defined in the VxWorks configuration; see

8. Configuration.

Example 4-3 Finding the Maximum Contiguous Area on a DosFs Device

In this example, the size (in bytes) of the largest contiguous area is copied to the

integer pointed to by the third parameter to ioctl() (count).

#include "vxWorks.h"
#include "fcntl.h"
#include "ioLib.h"
216

4

4
Local File Systems
STATUS contigTest (void)
{
int count;
int fd;

/* open device in raw mode */
if ((fd = open ("/DEV1/", O_RDONLY, 0)) == ERROR)

return (ERROR);

/* find max contiguous area */
ioctl (fd, FIONCONTIG, &count);

/* close device and display size of largest contiguous area */
close (fd);
printf ("largest contiguous area = %d\n", count);
}

4.2.20 I/O Control Functions Supported by dosFsLib

The dosFs file system supports the ioctl() functions listed in Table 4-5. These

functions are defined in the header file ioLib.h. For more information, see the

manual entries for dosFsLib and for ioctl() in ioLib.

Table 4-5 I/O Control Functions Supported by dosFsLib

Function
Decimal

Value
Description

FIOATTRIBSET 35 Set the file-attribute byte in the dosFs directory entry.

FIOCONTIG 36 Allocate contiguous disk space for a file or directory.

FIODISKCHANGE 13 Announce a media change.

FIODISKFORMAT 5 Format the disk (device driver function).

FIODISKINIT 6 Initialize a dosFs file system on a disk volume.

FIOFLUSH 2 Flush the file output buffer.

FIOFSTATGET 38 Get file status information (directory entry data).

FIOGETNAME 18 Get the file name of the fd.

FIOLABELGET 33 Get the volume label.

FIOLABELSET 34 Set the volume label.

FIOMKDIR 31 Create a new directory.
217

VxWorks 5.3.1
Programmer’s Guide
4.2.21 Booting from a Local dosFs File System Using SCSI

VxWorks can be booted from a local SCSI device. Before you can boot from SCSI,

you must make new boot ROMs that contain the SCSI library. Define the constants

INCLUDE_SCSI and INCLUDE_SCSI_BOOT in config.h and rebuild bootrom.hex
(see the Tornado User’s Guide: Cross-Development).

After burning the SCSI boot ROMs, you can prepare the dosFs file system for use

as a boot device. The simplest way to do this is to partition the SCSI device so that

a dosFs file system starts at block 0. You can then make the new vxWorks image,

place it on your SCSI boot device, and boot the new VxWorks system. These steps

are shown in more detail below.

WARNING: For use as a boot device, the directory name for the dosFs file system

must begin and end with slashes (as with /sd0/ used in the following example).

This is an exception to the usual naming convention for dosFs file systems.

1. Create the SCSI device using scsiPhysDevCreate() (see SCSI Drivers, p.141),

and initialize the disk with a dosFs file system (see 4.2.2 Initializing the dosFs
File System, p.197). Modify the file src/config/usrScsiConfig.c to reflect your

FIONCONTIG 41 Get the size of the maximum contiguous area on a device.

FIONFREE 30 Get the number of free bytes on the volume.

FIONREAD 1 Get the number of unread bytes in a file.

FIOREADDIR 37 Read the next directory entry.

FIORENAME 10 Rename a file or directory.

FIORMDIR 32 Remove a directory.

FIOSEEK 7 Set the current byte offset in a file.

FIOSYNC 21 Same as FIOFLUSH, but also re-reads buffered file data.

FIOTRUNC 42 Truncate a file to a specified length.

FIOUNMOUNT 39 Unmount a disk volume.

FIOWHERE 8 Return the current byte position in a file.

Table 4-5 I/O Control Functions Supported by dosFsLib (Continued)

Function
Decimal

Value
Description

!

218

4

4
Local File Systems
SCSI configuration. The following example creates a SCSI device with a dosFs

file system spanning the full device:

pPhysDev = scsiPhysDevCreate (pSysScsiCtrl, 2, 0, 0, -1, 0, 0, 0);
pBlkDev = scsiBlkDevCreate (pPhysDev, 0, 0);
dosFsDevInit ("/sd0/", pBlkDev, 0);

2. Remake VxWorks and copy the new kernel to the drive:3

-> copy "unixHost:/usr/wind/target/config/ bspname/vxWorks", \
"/sd0/vxWorks"

3. Reboot the system, and then change the boot parameters. Boot device

parameters for SCSI devices follow this format:

scsi=id,lun

where id is the SCSI ID of the boot device, and lun is its Logical Unit Number

(LUN). To enable use of the network, include the on-board Ethernet device (for

example, ln for LANCE) in the other field. The following example boots from

a SCSI device with a SCSI ID of 2 and a LUN of 0.

[VxWorks Boot]: @
boot device : scsi=2,0
processor number : 0
host name : host
file name : /sd0/vxWorks
inet on ethernet (e) : 147.11.1.222:ffffff00
host inet (h) : 147.11.1.3
user (u) : jane
flags (f) : 0x0
target name (tn) : t222
other : ln
Attaching to scsi device... done.
Loading /sd0/vxWorks... 378060 + 27484 + 21544
Starting at 0x1000...

3. If you are using the target shell and INCLUDE_NET_SYM_TBL is defined in your

VxWorks configuration, you must also copy the symbol table to the drive, as follows:

-> copy "unixHost:/usr/wind/target/config/ bspname/vxWorks.sym", "/sd0/vxWorks.sym "
219

VxWorks 5.3.1
Programmer’s Guide
4.3 RT-11-Compatible File System: rt11Fs

VxWorks provides the file system rt11Fs, which is compatible with the RT-11 file

system. It is provided primarily for compatibility with earlier versions of

VxWorks. Normally, the dosFs file system is the preferred choice, because it offers

such enhancements as optional contiguous file allocation, flexible file naming, and

so on.

WARNING: The rt11Fs file system is considered obsolescent. In a future release of

VxWorks, rt11Fs may not be supported.

4.3.1 Disk Organization

The rtllFs file system uses a simple disk organization. Although this simplicity

results in some loss of flexibility, rt11Fs is suitable for many real-time applications.

The rt11Fs file system maintains only contiguous files. A contiguous file consists of

a series of disk sectors that are consecutive. Contiguous files are well-suited to real-

time applications because little time is spent locating specific portions of a file. The

disadvantage of using contiguous files exclusively is that a disk can gradually

become fragmented, reducing the efficiency of the disk space allocation.

The rt11Fs disk format uses a single directory to describe all files on the disk. The

size of this directory is limited to a fixed number of directory entries. Along with

regular files, unused areas of the disk are also described by special directory

entries. These special entries are used to keep track of individual sections of free

space on the disk.

4.3.2 Initializing the rt11Fs File System

Before any other operations can be performed, the rt11Fs file system library,

rt11FsLib, must be initialized by calling rt11FsInit(). This routine takes a single

parameter, the maximum number of rt11Fs file descriptors that can be open at one

time. This count is used to allocate a set of descriptors; a descriptor is used each

time a file or an rt11Fs device is opened.

The rt11FsInit() routine also makes an entry for the rt11Fs file system in the I/O

system driver table (with iosDrvInstall()). This entry specifies entry points for the

rt11Fs file operations and is used for all devices that use the rt11Fs file system. The

driver number assigned to the rt11Fs file systems is placed in a global variable

rt11FsDrvNum.

!

220

4

4
Local File Systems
The rt11FsInit() routine is normally called by the usrRoot() task after starting the

VxWorks system. To use this initialization, make sure the symbol

INCLUDE_RT11FS is defined in the configuration file configAll.h, and set

NUM_RT11FS_FILES to the desired maximum open file count.

4.3.3 Initializing a Device for Use with rt11Fs

After the rt11Fs file system is initialized, the next step is to create one or more

devices. Devices are created by the device driver’s device creation routine

(xxDevCreate()). The driver routine returns a pointer to a block device descriptor

structure (BLK_DEV). The BLK_DEV structure describes the physical aspects of the

device and specifies the routines in the device driver that a file system can call. For

more information about block devices, see 3.9.4 Block Devices, p.171.

Immediately after its creation, the block device has neither a name nor a file system

associated with it. To initialize a block device for use with rt11Fs, the already-

created block device must be associated with rt11Fs and must have a name

assigned to it. This is done with rt11FsDevInit(). Its parameters are:

– the name to be used to identify the device

– a pointer to the BLK_DEV structure

– a boolean value indicating whether the disk uses standard RT-11 skew and

interleave

– the number of entries to be used in the disk directory (in some cases, the actual

number used is greater than the number specified)

– a boolean value indicating whether this disk is subject to being changed

without notification to the file system

For example:

RT_VOL_DESC *pVolDesc;
pVolDesc = rt11FsDevInit ("DEV1:", pBlkDev, rtFmt, nEntries, changeNoWarn);

The rt11FsDevInit() call assigns the specified name to the device and enters the

device in the I/O system device table (with iosDevAdd()). It also allocates and

initializes the file system’s volume descriptor for the device. It returns a pointer to

the volume descriptor to the caller; this pointer is used to identify the volume

during some file system calls.

Note that initializing the device for use with the rt11Fs file system does not format

the disk, nor does it initialize the rt11Fs disk directory. These are done using ioctl()
with the functions FIODISKFORMAT and FIODISKINIT, respectively.
221

VxWorks 5.3.1
Programmer’s Guide
4.3.4 Mounting Volumes

A disk volume is mounted automatically, generally during the first open() or

creat() for a file or directory on the disk. (Certain ioctl() functions also cause the

disk to be mounted.) When a disk is mounted, the directory data is read it.

Automatic mounting reoccurs on the first file access following a ready-change

operation (see 4.3.8 Changing Disks, p.223) or periodically if the disk is defined

during the rt11FsDevInit() call with the changeNoWarn parameter set to TRUE.

Automatic mounting does not occur when a disk is opened in raw mode. For more

information, see 4.3.6 Opening the Whole Device (Raw Mode), p.222.

4.3.5 File I/O

Files on an rt11Fs file system device are created, deleted, written, and read using

the standard VxWorks I/O routines: creat(), remove(), write(), and read(). The

size of an rt11Fs file is determined during its initial open() or creat(). Once closed,

additional space cannot be allocated to the file. For more information, see 3.3 Basic
I/O, p.112.

4.3.6 Opening the Whole Device (Raw Mode)

It is possible to open an entire rt11Fs volume by specifying only the device name

during the open() or creat() call. A file descriptor is returned, as when opening a

regular file; however, operations on that file descriptor affect the entire device.

Opening the entire volume in this manner is called raw mode.

The most common reason for opening the entire device is to obtain a file descriptor

to perform an ioctl() function that does not pertain to an individual file. An

example is the FIOSQUEEZE function, which combines fragmented free space

across the entire volume.

When a disk is initialized with an rt11Fs directory, open the device in raw mode.

The ioctl() function FIODISKINIT performs the initialization.

A disk can be read or written in raw mode. In this case, the entire disk area is

treated much like a single large file. No directory entry is made to describe any

data written using raw mode, and care must be taken to avoid overwriting the

regular rt11Fs directory at the beginning of the disk. This type of I/O is also

provided by rawFsLib.
222

4

4
Local File Systems
4.3.7 Reclaiming Fragmented Free Disk Space

As previously mentioned, the contiguous file allocation scheme used by the rt11Fs

file system can gradually result in disk fragmentation. In this situation, the

available free space on the disk is scattered in a number of small chunks. This

reduces the ability of the system to create new files.

To correct this condition, rt11FsLib includes the ioctl() function FIOSQUEEZE.

This routine moves files so that the free space is combined at the end of the disk.

When you call ioctl() with FIOSQUEEZE, it is critical that there be no open files on

the device. With large disks, this call may require considerable time to execute.

4.3.8 Changing Disks

To increase performance, rt11Fs keeps copies of directory entries for each volume

in memory. While this greatly speeds up access to files, it requires that rt11FsLib
be notified when removable disks are changed (for example, when floppies are

swapped). This notification is provided by the ready-change mechanism.

Announcing Disk Changes with Ready-Change

A change in ready-status is interpreted by rt11FsLib to mean that the disk must be

remounted during the next I/O operation. There are three ways to announce a

ready-change:

■ By calling rt11FsReadyChange() directly.

■ By calling ioctl() with FIODISKCHANGE.

■ By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying rt11FsLib directly.

The ready-change announcement does not cause buffered data to be flushed to the

disk; it merely marks the volume as needing remounting. As a result, data written

to files or directory entry changes can be lost. To avoid this loss of data, close all

files on the volume before changing the disk.

Ready-change can be used in ISRs, because it does not attempt to flush data or

perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field

in the BLK_DEV structure) can be useful for asserting ready-change for devices that

only detect a disk change after the new disk is inserted. This routine is called at the

start of each open() or creat(), before the file system checks for ready-change.
223

VxWorks 5.3.1
Programmer’s Guide
Disks with No Change Notification

If it is not possible for a ready-change to be announced each time the disk is

changed, the device must be specially identified when it is initialized for use with

the file system. This is done by setting the changeNoWarn parameter to TRUE

when calling rt11FsDevInit().

When this parameter is defined as TRUE, the disk is checked regularly to obtain

the current directory information (in case the disk is removed and a new one

inserted). As a result, this option causes a significant loss in performance.

4.3.9 I/O Control Functions Supported by rt11FsLib

The rt11Fs file system supports the ioctl() functions shown in Table 4-6. The

functions listed are defined in the header file ioLib.h. For more information, see

the manual entries for rt11FsLib and for ioctl() in ioLib.

Table 4-6 I/O Control Functions Supported by rt11FsLib

Function
Decimal

Value
Description

FIODIRENTRY 9 Get information about specified device directory entries.

FIODISKCHANGE 13 Announce a media change.

FIODISKFORMAT 5 Format the disk.

FIODISKINIT 6 Initialize an rt11Fs file system on a disk volume.

FIOFLUSH 2 Flush the file output buffer.

FIOFSTATGET 38 Get file status information (directory entry data).

FIOGETNAME 18 Get the file name of the fd.

FIONREAD 1 Get the number of unread bytes in a file.

FIOREADDIR 37 Read the next directory entry.

FIORENAME 10 Rename a file.

FIOSEEK 7 Reset the current byte offset in a file.

FIOSQUEEZE 15 Coalesce fragmented free space on an rt11Fs volume.

FIOWHERE 8 Return the current byte position in a file.
224

4

4
Local File Systems
4.4 Raw File System: rawFs

VxWorks provides a minimal “file system,” rawFs, for use in systems that require

only the most basic disk I/O functions. The rawFs file system, implemented in

rawFsLib, treats the entire disk volume much like a single large file. Although the

dosFs and rt11Fs file systems do provide this ability to varying degrees, the rawFs

file system offers advantages in size and performance if more complex functions

are not required.

4.4.1 Disk Organization

As mentioned previously, rawFs imposes no organization of the data on the disk.

The rawFs file system maintains no directory information; thus there is no division

of the disk area into specific files, and no file names are used. All open() operations

on rawFs devices specify only the device name; no additional file names are

allowed.

The entire disk area is available to any file descriptor that is open for the device.

All read and write operations to the disk use a byte-offset relative to the start of the

first block on the disk.

4.4.2 Initializing the rawFs File System

Before any other operations can be performed, the rawFs library, rawFsLib, must

be initialized by calling rawFsInit(). This routine takes a single parameter, the

maximum number of rawFs file descriptors that can be open at one time. This

count is used to allocate a set of descriptors; a descriptor is used each time a rawFs

device is opened.

The rawFsInit() routine also makes an entry for the rawFs file system in the I/O

system driver table (with iosDrvInstall()). This entry specifies the entry points for

rawFs file operations and is for all devices that use the rawFs file system. The

driver number assigned to the rawFs file systems is placed in a global variable

rawFsDrvNum.

The rawFsInit() routine is normally called by the usrRoot() task after starting the

VxWorks system. To use this initialization, define the symbol INCLUDE_RAWFS in

configAll.h, and set NUM_RAWFS_FILES to the desired maximum open file

descriptor count.
225

VxWorks 5.3.1
Programmer’s Guide
4.4.3 Initializing a Device for Use with the rawFs File System

After the rawFs file system is initialized, the next step is to create one or more

devices. Devices are created by the device driver’s device creation routine

(xxDevCreate()). The driver routine returns a pointer to a block device descriptor

structure (BLK_DEV). The BLK_DEV structure describes the physical aspects of the

device and specifies the routines in the device driver that a file system can call. For

more information on block devices, see 3.9.4 Block Devices, p.171.

Immediately after its creation, the block device has neither a name nor a file system

associated with it. To initialize a block device for use with rawFs, the already-

created block device must be associated with rawFs and a name must be assigned

to it. This is done with the rawFsDevInit() routine. Its parameters are the name to

be used to identify the device and a pointer to the block device descriptor structure

(BLK_DEV):

RAW_VOL_DESC *pVolDesc;
BLK_DEV *pBlkDev;
pVolDesc = rawFsDevInit ("DEV1:", pBlkDev);

The rawFsDevInit() call assigns the specified name to the device and enters the

device in the I/O system device table (with iosDevAdd()). It also allocates and

initializes the file system’s volume descriptor for the device. It returns a pointer to

the volume descriptor to the caller; this pointer is used to identify the volume

during certain file system calls.

Note that initializing the device for use with rawFs does not format the disk. That

is done using an ioctl() call with the FIODISKFORMAT function.

No disk initialization (FIODISKINIT) is required, because there are no file system

structures on the disk. Note, however, that rawFs accepts that ioctl() function code

for compatibility with other file systems; in such cases, it performs no action and

always returns OK.

4.4.4 Mounting Volumes

A disk volume is mounted automatically, generally during the first open() or

creat() operation. (Certain ioctl() functions also cause the disk to be mounted.)

The volume is again mounted automatically on the first disk access following a

ready-change operation (see 4.4.6 Changing Disks, p.227).
226

4

4
Local File Systems
4.4.5 File I/O

To begin I/O to a rawFs device, first open the device using the standard open()
function. (The creat() function can be used instead, although nothing is actually

“created.”) Data on the rawFs device is written and read using the standard I/O

routines write() and read(). For more information, see 3.3 Basic I/O, p.112.

The character pointer associated with a file descriptor (that is, the byte offset where

reads and writes take place) can be set by using ioctl() with the FIOSEEK function.

Multiple file descriptors can be open simultaneously for a single device. These

must be carefully managed to avoid modifying data that is also being used by

another file descriptor. In most cases, such multiple open descriptors use FIOSEEK
to set their character pointers to separate disk areas.

4.4.6 Changing Disks

The rawFs file system must be notified when removable disks are changed (for

example, when floppies are swapped). Two different notification methods are

provided: (1) rawFsVolUnmount() and (2) the ready-change mechanism.

Unmounting Volumes

The first method of announcing a disk change is to call rawFsVolUnmount() prior

to removing the disk. This call flushes all modified file descriptor buffers if possible

(see Synchronizing Volumes, p.229) and also marks any open file descriptors as

obsolete. The next I/O operation remounts the disk. Calling ioctl() with

FIOUNMOUNT is equivalent to using rawFsVolUnmount(). Any open file

descriptor to the device can be used in the ioctl() call.

Attempts to use obsolete file descriptors for further I/O operations produce an

S_rawFsLib_FD_OBSOLETE error. To free an obsolete descriptor, use close(), as

usual. This frees the descriptor even though it produces the same error.

ISRs must not call rawFsVolUnmount() directly, because the call can pend while

the device becomes available. The ISR can instead give a semaphore that prompts

a task to unmount the volume. (Note that rawFsReadyChange() can be called

directly from ISRs; see Announcing Disk Changes with Ready-Change, p.228.)

When rawFsVolUnmount() is called, it attempts to write buffered data out to the

disk. Its use is therefore inappropriate for situations where the disk-change

notification does not occur until a new disk is inserted, because the old buffered
227

VxWorks 5.3.1
Programmer’s Guide
data would be written to the new disk. In this case, use rawFsReadyChange(),
which is described in Announcing Disk Changes with Ready-Change, p.228.

If rawFsVolUnmount() is called after the disk is physically removed, the data

flushing portion of its operation fails. However, the file descriptors are still marked

as obsolete, and the disk is marked as requiring remounting. An error is not
returned by rawFsVolUnmount(); to avoid lost data in this situation, explicitly

synchronize the disk before removing it (see Synchronizing Volumes, p.229).

Announcing Disk Changes with Ready-Change

The second method of announcing that a disk change is taking place is with the

ready-change mechanism. A change in the disk’s ready-status is interpreted by

rawFsLib to indicate that the disk must be remounted during the next I/O call.

There are three ways to announce a ready-change:

■ By calling rawFsReadyChange() directly.

■ By calling ioctl() with FIODISKCHANGE.

■ By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying rawFsLib directly.

The ready-change announcement does not cause buffered data to be flushed to the

disk. It merely marks the volume as needing remounting. As a result, data written

to files can be lost. This can be avoided by synchronizing the disk before asserting

ready-change. The combination of synchronizing and asserting ready-change

provides all the functionality of rawFsVolUnmount() except for marking file

descriptors as obsolete.

Ready-change can be used in ISRs, because it does not attempt to flush data or

perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field

in the BLK_DEV structure)is useful for asserting ready-change for devices that only

detect a disk change after the new disk is inserted. This routine is called at the

beginning of each open() or creat(), before the file system checks for ready-

change.

Disks with No Change Notification

If it is not possible for a ready-change to be announced each time the disk is

changed, close all file descriptors for the volume before changing the disk.
228

4

4
Local File Systems
Synchronizing Volumes

When a disk is synchronized, all buffered data that is modified is written to the

physical device so that the disk is up to date. For the rawFs file system, the only

such data is that contained in open file descriptor buffers.

To avoid loss of data, synchronize a disk before removing it. You may need to

explicitly synchronize a disk, depending on when (or if) the rawFsVolUnmount()
call is issued.

When rawFsVolUnmount() is called, an attempt is made to synchronize the device

before unmounting. If this disk is still present and writable at the time of the call,

synchronization takes place automatically; there is no need to synchronize the disk

explicitly.

However, if the rawFsVolUnmount() call is made after a disk is removed, it is

obviously too late to synchronize, and rawFsVolUnmount() discards the buffered

data. Therefore, make a separate ioctl() call with the FIOSYNC function before

removing the disk. (For example, this could be done in response to an operator

command.) Any open file descriptor to the device can be used during the ioctl()
call. This call writes all modified file descriptor buffers for the device out to the

disk.

4.4.7 I/O Control Functions Supported by rawFsLib

The rawFs file system supports the ioctl() functions shown in Table 4-7. The

functions listed are defined in the header file ioLib.h. For more information, see

the manual entries for rawFsLib and for ioctl() in ioLib.

Table 4-7 I/O Control Functions Supported by rawFsLib

Function
Decimal

Value
Description

FIODISKCHANGE 13 Announce a media change.

FIODISKFORMAT 5 Format the disk (device driver function).

FIODISKINIT 6 Initialize a rawFs file system on a disk volume (not required).

FIOFLUSH 2 Same as FIOSYNC.

FIOGETNAME 18 Get the file name of the fd.

FIONREAD 1 Get the number of unread bytes on the device.
229

VxWorks 5.3.1
Programmer’s Guide
4.5 Tape File System: tapeFs

The tapeFs library, tapeFsLib, provides basic services for tape devices that do not

use a standard file or directory structure on tape. The tape volume is treated much

like a raw device where the entire volume is a large file. Any data organization on

this large file is the responsibility of a higher-level layer.

4.5.1 Tape Organization

The tapeFs file system imposes no organization of the data on the tape volume. It

maintains no directory information; there is no division of the tape area into

specific files; and no file names are used. An open() operation on the tapeFs device

specifies only the device name; no additional file names are allowed.

The entire tape area is available to any file descriptor open for the device. All read

and write operations to the tape use a location offset relative to the current location

of the tape head. When a file is configured as a rewind device and first opened, tape

operations begin at the beginning-of-medium (BOM); see Initializing a Device for
Use with the tapeFs File System, p.231. Thereafter, all operations occur relative to

where the tape head is located at that instant of time. No location information, as

such, is maintained by tapeFs.

FIOSEEK 7 Set the current byte offset on the device.

FIOSYNC 21 Write out all modified file descriptor buffers.

FIOUNMOUNT 39 Unmount a disk volume.

FIOWHERE 8 Return the current byte position on the device.

Table 4-7 I/O Control Functions Supported by rawFsLib

Function
Decimal

Value
Description
230

4

4
Local File Systems
4.5.2 Using the tapeFs File System

Before tapeFs can be used, it must be configured by defining INCLUDE_TAPEFS in

the BSP file config.h. Note that the tape file system must be configured with SCSI-2

enabled. See Configuring SCSI Drivers, p.142 for configuration details.

Once the tape file system has been configured, you must initialize it and then

define a tape device. Once the device is initialized, the physical tape device is

available to the tape file system and normal I/O system operations can be

performed.

Initializing the tapeFs File System

The tapeFs library, tapeFsLib, is initialized by calling tapeFsInit(). Each tape file

system can handle multiple tape devices. However, each tape device is allowed

only one file descriptor. Thus you cannot open two files on the same tape device.

The tapeFsInit() routine also makes an entry for the tapeFs file system in the I/O

system driver table (with iosDrvInstall()). This entry specifies function pointers

to carry out tapeFs file operations on devices that use the tapeFs file system. The

driver number assigned to the tapeFs file system is placed in a global variable,

tapeFsDrvNum.

When initializing a tape device, tapeFsInit() is called automatically if

tapeFsDevInit() is called; thus, the tape file system does not require explicit

initialization.

Initializing a Device for Use with the tapeFs File System

Once the tapeFs file system has been initialized, the next step is to create one or

more devices that can be used with it. This is done using the sequential device

creation routine, scsiSeqDevCreate(). The driver routine returns a pointer to a

sequential device descriptor structure, SEQ_DEV. The SEQ_DEV structure

describes the physical aspects of the device and specifies the routines in the device

driver that tapeFs can call. For more information on sequential devices, see the

manual entry for scsiSeqDevCreate(), Configuring SCSI Drivers, p.142, 3.9.4 Block
Devices, p.171, and Example 3-6.

Immediately after its creation, the sequential device has neither a name nor a file

system associated with it. To initialize a sequential device for use with tapeFs, call

tapeFsDevInit() to assign a name and declare a file system. Its parameters are the

volume name, for identifying the device; a pointer to SEQ_DEV, the sequential
231

VxWorks 5.3.1
Programmer’s Guide
device descriptor structure; and a pointer to an initialized tape configuration

structure TAPE_CONFIG. This structure has the following form:

typedef struct /* TAPE_CONFIG tape device config structure */
{
int blkSize; /* block size; 0 => var. block size */
BOOL rewind; /* TRUE => a rewind device; FALSE => no rewind */
int numFileMarks; /* not used */
int density; /* not used */
} TAPE_CONFIG;

In the preceding definition of TAPE_CONFIG, only two fields, blkSize and rewind,

are currently in use. If rewind is TRUE, then a tape device is rewound to the

beginning-of-medium (BOM) upon closing a file with close(). However, if rewind
is FALSE, then closing a file has no effect on the position of the read/write head on

the tape medium.

For more information on initializing a tapeFs device, see the reference entry for

tapeFsDevInit().

The blkSize field specifies the block size of the physical tape device. Having set the

block size, each read or write operation has a transfer unit of blkSize. Tape devices

can perform fixed or variable block transfers, a distinction also captured in the

blkSize field.

Fixed Block and Variable Block Devices

A tape file system can be created for fixed block size transfers or variable block size

transfers, depending on the capabilities of the underlying physical device. The

type of data transfer (fixed block or variable block) is usually decided when the

tape device is being created in the file system, that is, before the call to

tapeFsDevInit(). A block size of zero represents variable block size data transfers.

Once the block size has been set for a particular tape device, it is usually not

modified. To modify the block size, use the ioctl() functions FIOBLKSIZESET and

FIOBLKSIZEGET to set and get the block size on the physical device.

Note that for fixed block transfers, the tape file system buffers a block of data. If the

block size of the physical device is changed after a file is opened, the file should

first be closed and then re-opened in order for the new block size to take effect.

Example 4-4 Tape Device Configuration

There are many ways to configure a tape device. In this code example, a tape

device is configured with a block size of 512 bytes and the option to rewind the

device at the end of operations.
232

4

4
Local File Systems
/* global variables assigned elsewhere */

SCSI_PHYS_DEV * pScsiPhysDev;

/* local variable declarations */

TAPE_VOL_DESC * pTapeVol;
SEQ_DEV * pSeqDev;
TAPE_CONFIG pTapeConfig;

/* initialization code */

pTapeConfig.blkSize = 512;
pTapeConfig.rewind = TRUE;
pSeqDev = scsiSeqDevCreate (pScsiPhysDev);
pTapeVol = tapeFsDevInit ("/tape1", pSeqDev, pTapeConfig);

The tapeFsDevInit() call assigns the specified name to the device and enters the

device in the I/O system device table (with iosDevAdd()). The return value of this

routine is a pointer to a volume descriptor structure that contains volume-specific

configuration and state information.

Mounting Volumes

A tape volume is mounted automatically during the open() operation. There is no

specific mount operation, that is, the mount is implicit in the open() operation.

Modes of Operation

The tapeFs tape volumes can be operated in only one of two modes: read-only

(O_RDONLY) or write-only (O_WRONLY). There is no read-write mode. The mode

of operation is defined when the file is opened using open().

File I/O

To begin I/O to a tapeFs device, the device is first opened using open(). Data on

the tapeFs device is written and read using the standard I/O routines write() and

read(). For more information, see 3.7.6 Block Devices, p.140.

End-of-file markers can be written using ioctl() with the MTWEOF function. For

more information, see I/O Control Functions Supported by tapeFsLib, p.234.
233

VxWorks 5.3.1
Programmer’s Guide
Changing Tapes

The tapeFs file system should be notified when removable media are changed (for

example, when tapes are swapped). The tapeFsVolUnmount() routine controls the

mechanism to unmount a tape volume.

A tape should be unmounted before it is removed. Prior to unmounting a tape

volume, an open file descriptor must be closed. Closing an open file flushes any

buffered data to the tape, thus synchronizing the file system with the data on the

tape. To flush or synchronize data, call ioctl() with the FIOFLUSH or FIOSYNC
functions, prior to closing the file descriptor.

After closing any open file, call tapeFsVolUnmount() before removing the tape.

Once a tape has been unmounted, the next I/O operation must remount the tape

using open().

Interrupt handlers must not call tapeFsVolUnmount() directly, because it is

possible for the call to pend while the device becomes available. The interrupt

handler can instead give a semaphore that prompts a task to unmount the volume.

I/O Control Functions Supported by tapeFsLib

The tapeFs file system supports the ioctl() functions shown in Table 4-8. The

functions listed are defined in the header files ioLib.h, seqIo.h, and tapeFsLib.h.
For more information, see the reference entries for tapeFsLib, ioLib, and ioctl().

Table 4-8 I/O Control Functions Supported by tapeFsLib

Function Value Meaning

FIOFLUSH 2 Write out all modified file descriptor buffers.

FIOSYNC 21 Same as FIOFLUSH.

FIOBLKSIZEGET 1001 Get the actual block size of the tape device by issuing a

driver command to it. Check this value with that set in

the SEQ_DEV data structure.

FIOBLKSIZESET 1000 Set the block size of the tape device on the device and in

the SEQ_DEV data structure.

MTIOCTOP 1005 Perform a UNIX-like MTIO operation to the tape

device. The type of operation and operation count is set

in an MTIO structure passed to the ioctl() routine. The

MTIO operations are defined in Table 4-9.
234

4

4
Local File Systems
The MTIOCTOP operation is compatible with the UNIX MTIOCTOP operation. The

argument passed to ioctl() with MTIOCTOP is a pointer to an MTOP structure that

contains the following two fields:

typedef struct mtop
{
short mt_op; /* operation */
int mt_count; /* number of operations */
} MTOP;

The mt_op field contains the type of MTIOCTOP operation to perform. These

operations are defined in Table 4-9. The mt_count field contains the number of

times the operation defined in mt_op should be performed.

Table 4-9 MTIOCTOP Operations

Function Value Meaning

MTWEOF 0 Write an end-of-file record or “file mark.”

MTFSF 1 Forward space over file mark.

MTBSF 2 Backward space over file mark.

MTFSR 3 Forward space over data block.

MTBSR 4 Backward space over data block.

MTREW 5 Rewind the tape device to the beginning-of-medium.

MTOFFL 6 Rewind and put the drive offline.

MTNOP 7 No operation, sets the status in the SEQ_DEV structure

only.

MTRETEN 8 Re-tension the tape (cartridge tape only).

MTERASE 9 Erase the entire tape.

MTEOM 10 Position tape to end-of-media.

MTNBSF 11 Backward space file to beginning-of-medium.
235

5
Network
5.1 Introduction .. 243

5.2 Network Components .. 243

5.2.1 Ethernet ... 244

5.2.2 Serial Line Interface Protocol (SLIP and CSLIP) 244

5.2.3 Point-to-Point Protocol (PPP) ... 246

5.2.4 Shared-Memory Network ... 246

5.2.5 TCP/IP Internet Protocols and Addresses 246

Protocols .. 246

Internet Addresses ... 247

Packet Routing ... 249

Network Byte Order .. 250

5.2.6 Sockets ... 251

Stream Sockets (TCP) .. 253

Datagram Sockets (UDP) .. 259

5.2.7 The Zbuf Socket Interface ... 264

Zbuf Calls to Send Existing Data Buffers 264

Manipulating the Zbuf Data Structure ... 265

Zbuf Socket Calls ... 273

5.2.8 Remote Procedure Calls .. 278

5.2.9 Remote File Access .. 278
237

VxWorks 5.3.1
Programmer’s Guide
5.2.10 Remote Command Execution .. 279

5.2.11 Simple Network Management Protocol (WindNet SNMPv1/v2c

Option) .. 279

5.3 Configuring the Network .. 280

5.3.1 Associating Internet Addresses with Network Interfaces 280

5.3.2 Associating Internet Addresses with Host Names 281

5.3.3 Transparent Remote File Access .. 282

Transparent Remote File Access with RSH and FTP 283

Transparent Remote File Access with NFS 286

Allowing Remote Access to VxWorks Files through NFS 288

5.3.4 Remote File Transfer Using TFTP ... 291

5.3.5 Remote Login from VxWorks to the Host: rlogin() 292

5.3.6 Adding Gateways to a Network ... 292

Adding a Route on Windows .. 293

Adding a Route on UNIX ... 293

Adding a Route on VxWorks ... 294

5.3.7 Testing Network Connections ... 295

5.3.8 Broadcast Addresses ... 296

5.3.9 Using Subnets ... 297

5.3.10 Configuration of Mbufs .. 298

5.4 Shared-Memory Networks .. 301

5.4.1 The Backplane Shared-Memory Pool ... 302

Backplane Processor Numbers .. 302

The Shared-Memory Network Master: Processor 0 303

The Shared-Memory Anchor ... 303

The Shared-Memory Heartbeat ... 304

Shared Memory Location ... 305

Shared Memory Size ... 306

On-Board and Off-Board Options ... 306

Test-and-Set to Shared Memory .. 307

5.4.2 Interprocessor Interrupts .. 307
238

5

5
Network
5.4.3 Sequential Addressing .. 309

5.4.4 Configuring the Host ... 311

5.4.5 Example Configuration ... 311

5.4.6 Troubleshooting ... 314

5.5 Proxy ARP .. 316

5.5.1 ARP Introduction ... 316

5.5.2 Proxy ARP Overview .. 318

5.5.3 Routing Issues on the Proxy Server ... 319

5.5.4 Proxy ARP Protocol ... 320

ARP Requests for Proxy Clients .. 320

ARP Requests from Proxy Clients for Non-proxy Clients 321

ARP Replies from the Main Network ... 321

5.5.5 Broadcast Datagrams ... 321

5.5.6 Multi-Homed Proxy Clients ... 323

Routing .. 323

Broadcasts ... 324

5.5.7 Single-Tier Support .. 324

5.5.8 Subnets .. 325

5.5.9 Configuration ... 326

Sequential and Default Addressing .. 327

VxWorks Images for Proxy ARP with Shared Memory and IP

Routing .. 329

Setting Up Boot Parameters and Booting 329

Creating Network Connections ... 330

Debugging the Network ... 330

5.6 Serial Line Internet Protocol (SLIP and CSLIP) .. 331

5.6.1 SLIP Configuration .. 331

5.6.2 Booting VxWorks and Accessing Files Using SLIP or CSLIP 332

5.7 Point-to-Point Protocol (PPP) ... 334

5.7.1 Introduction .. 334
239

VxWorks 5.3.1
Programmer’s Guide
PPP for Tornado Features ... 334

The Point-to-Point Protocol Compared to SLIP 335

5.7.2 Configuration ... 336

Selecting PPP Options by Using Configuration Constants in

configAll.h ... 337

Selecting PPP Options by Using an Options Structure 339

Setting PPP Options by Using an Options File 339

5.7.3 The Point-to-Point Protocol (PPP) ... 340

Encapsulation ... 341

Link Control Protocol (LCP) .. 341

Internet Protocol Control Protocol (IPCP) 342

Password Authentication Protocol (PAP) 342

Challenge-Handshake Authentication Protocol (CHAP) 342

5.7.4 Using PPP ... 343

Initializing a PPP Link .. 343

Deleting a PPP Link ... 344

Booting VxWorks Using PPP ... 345

PPP Options .. 347

PPP Authentication ... 347

Connect and Disconnect Hooks .. 355

5.7.5 PPP with Tornado .. 357

PPP Link as an Additional Network Interface 357

PPP Link as a Network Back End for the Target Server on the Host

357

5.7.6 Troubleshooting PPP ... 358

Link Establishment .. 359

Authentication ... 359

5.7.7 PPP Reference List ... 360

Requests for Comments (RFC) .. 360

PPP Newsgroup ... 360

5.8 Network Initialization on Startup ... 361

5.9 BOOTP (Bootstrap Protocol) .. 363

5.9.1 The BOOTP Server .. 363
240

5

5
Network
5.9.2 The BOOTP Database .. 364

Registering the VxWorks Target .. 365

Obtaining the Target Ethernet Address .. 365

5.9.3 The VxWorks Boot Parameters .. 366

5.9.4 Booting a VxWorks Target with BOOTP/TFTP 366

Booting Example .. 366

Troubleshooting ... 368

5.10 Using TFTP, BOOTP, Sequential Addressing, Proxy ARP 369

List of Tables

Table 5-1 Internet Address Ranges .. 249

Table 5-2 Network Address Conversion Macros 250

Table 5-3 Socket Routines .. 252

Table 5-4 I/O Control Functions Supported by Sockets 253

Table 5-5 TCP Analogy to Telephone Communication 253

Table 5-6 Zbuf Creation and Deletion Routines 266

Table 5-7 Zbuf Data Copying Routines ... 267

Table 5-8 Zbuf Operations ... 267

Table 5-9 Zbuf Segment Routines .. 269

Table 5-10 Zbuf Socket Library Routines .. 273

Table 5-11 Network Procedures Summary ... 299

Table 5-12 Backplane Interrupt Types ... 308

Table 5-13 Network Address Assignments .. 312

Table 5-14 Parameters in config.h .. 313

Table 5-15 PPP Configuration Constants .. 338

Table 5-16 PPP Configuration Options in configAll.h 338

Table 5-17 PPP Configuration Options .. 348

Table 5-18 Secrets File Format .. 352

Table 5-19 Specifying Boot Parameters ... 367
241

VxWorks 5.3.1
Programmer’s Guide
List of Figures

Figure 5-1 VxWorks Network Components 245

Figure 5-2 Internet Address Classes .. 248

Figure 5-3 Internet Routing .. 249

Figure 5-4 Zbuf Addressing Relative to First Segment (NULL) 265

Figure 5-5 Zbuf Addressing Relative to Second Segment 266

Figure 5-6 FTP Boot Example ... 283

Figure 5-7 Routing Example ... 294

Figure 5-8 Subnetting .. 297

Figure 5-9 Shared-Memory Network .. 301

Figure 5-10 Shared-Memory Heartbeat .. 305

Figure 5-11 Sequential Addressing .. 309

Figure 5-12 Example Shared-Memory Network 312

Figure 5-13 ARP Example ... 317

Figure 5-14 Subnets and ARP ... 318

Figure 5-15 Proxy ARP Example .. 319

Figure 5-16 Proxy Server Example .. 320

Figure 5-17 Broadcast Datagram Forwarding 322

Figure 5-18 Routing Example ... 323

Figure 5-19 Single-Tier Example Using Proxy ARP with Two Branches

325

Figure 5-20 Multi-Tier Configuration that CANNOT Be Used with Proxy

ARP ... 326

Figure 5-21 Another Single-Tier Example Using Proxy ARP 327

Figure 5-22 Multi-Tier Example Using Proxy ARP and IP Routing . 328

Figure 5-23 SLIP Configuration Example ... 333

Figure 5-24 Format of Standard PPP Frame Structure 341

Figure 5-25 PPP Configuration Example .. 346

List of Examples

Example 5-1 Stream Sockets (TCP) .. 254

Example 5-2 Datagram Sockets (UDP) ... 260

Example 5-3 Zbuf Display Routine ... 272

Example 5-4 The TCP Example Server Using Zbufs 274

Example 5-5 Using Connect and Disconnect Hooks 355
242

5

5
Network
5.1 Introduction

The VxWorks network is the link that connects VxWorks systems with other

VxWorks systems and many other kinds of hosts. The VxWorks network is fully

compatible with the 4.3 BSD Tahoe UNIX network facilities. VxWorks is also

compatible with the Network File System (NFS) designed by Sun Microsystems.

This link provides a seamless environment between development hosts and

VxWorks target systems. Remote file access allows VxWorks tasks to access files on

other systems across the network. Remote procedure calls allow a task on one

machine to invoke procedures that actually run on another machine. If you are

using the target shell, you can use rlogin and telnet to access the shell from your

host development system; see 9. Target Shell for information.

This chapter gives an overview of the components comprising the VxWorks

network, and of the procedures necessary to configure the network.

NOTE: This chapter addresses VxWorks networking facilities in a general way, but

it also describes some of the specific configuration information you must know if

you are using a UNIX development host. We can provide this information because

UNIX has a standard interface to a standard set of networking facilities. However,

Windows systems do not: the availability of networking facilities on a Windows

host depends on the version of Windows and on the networking software package

you are using. Thus, if you are using a Windows development host, consult your

Windows and networking software documentation for complete networking

information.

5.2 Network Components

The hierarchy of VxWorks network components is shown in Figure 5-1. At the

lowest level, VxWorks typically uses Ethernet as the basic transmission medium.

VxWorks can also use serial lines for long-distance connections or shared memory

!

243

VxWorks 5.3.1
Programmer’s Guide
on a common backplane in more closely coupled environments. On top of the

transmission media, VxWorks uses the Internet protocols TCP/IP and UDP/IP to

transport data between processes running under either VxWorks or the host

development system.

Using Internet protocols, VxWorks makes several types of network facilities

available:

■ Sockets allow communications between tasks, running either under VxWorks

or the host development system.

■ Remote Procedure Calls (RPC) allow a task on one machine to invoke

procedures that run on other machines. Both the calling task and called

procedure can run under either VxWorks or the remote development system.

■ Remote File Access allows VxWorks tasks to access host files remotely, with the

Network File System (NFS), remote shell (RSH), Internet File Transfer Protocol

(FTP), or Trivial File Transfer Protocol (TFTP).

■ File Export allows remote systems that have NFS clients to use files maintained

on VxWorks dosFs file systems.

■ Remote Command Execution allows VxWorks tasks to invoke commands on a

host development system over the network.

5.2.1 Ethernet

Ethernet is one medium among many over which the VxWorks network operates.

Ethernet is a local area network specification that is supported by numerous

vendors. It is ideal for most VxWorks applications, but there is nothing inherently

tied to Ethernet in either the VxWorks or host network systems.

5.2.2 Serial Line Interface Protocol (SLIP and CSLIP)

The VxWorks network can communicate with the host operating system over

serial connections using the Serial Line Interface Protocol (SLIP), or using a version

of SLIP with compressed headers (CSLIP). Using SLIP or CSLIP as a network

interface driver is a straightforward way to use TCP/IP software with point-to-

point configurations such as long-distance telephone lines or RS-232 serial

connections between machines.
244

5

5
Network
Figure 5-1 VxWorks Network Components

TCP

IP + ICMP

UDP

Sockets

Ethernet

SLIP/CSLIP

Custom
Interface

rlogin telnet Windows
X

Source
Debugger

Protocol

Remote File Access

Remote
Command

Remote Login

Execution

RPC

Backplane

NFS TFTP

netDrv

RSH FTP

zbuf
i’face

SNMP
v1/v2

PPP
245

VxWorks 5.3.1
Programmer’s Guide
5.2.3 Point-to-Point Protocol (PPP)

The Point-to-Point Protocol (PPP) is one method by which VxWorks can

communicate with other operating systems over a serial line connection. PPP

supports Internet Protocol (IP) layer networking software over point-to-point

configurations, such as long-distance telephone lines or RS-232 serial connections

between machines. If either end of a PPP connection has other network interfaces

(such as Ethernet) and is able to forward packets to other machines, a PPP

connection can serve as a gateway between networks.

The basic functionality provided by PPP is similar to that of the Serial Line Internet

Protocol (SLIP), with the advantage that PPP is extensible and offers various

configurable options.

5.2.4 Shared-Memory Network

The VxWorks network can also be used for communication among multiple

processors on a common backplane. In this case, data is passed through shared

memory. This is implemented in the form of a standard network driver so that all

the higher levels of network components are fully functional over this shared-

memory “network.” Thus, all the high-level network facilities provided over

Ethernet are also available over the shared-memory network.

5.2.5 TCP/IP Internet Protocols and Addresses

Protocols

On top of the raw Ethernet and backplane transmission mechanisms, VxWorks

uses the Internet protocol suite (often referred to as TCP/IP) to effect

communication across the network. Three main protocols are used:

■ Internet Protocol (IP) is the base network protocol of the Internet protocol

family. With IP, each host (computer) in the network has a unique 4-byte

Internet address (described in Internet Addresses, p.247). IP accepts packets

addressed to a particular host and tries to deliver them. If multiple networks

are connected by gateways, IP forwards a packet from gateway to gateway

until the packet reaches a network where it can be delivered directly. IP also

breaks up and reassembles packets to fit the packet size of the physical

network. However, IP makes no guarantees that packets are delivered to the
246

5

5
Network
destination correctly. Although it is possible to access IP directly, most

applications use one of the higher-level protocols such as UDP or TCP.

■ User Datagram Protocol (UDP) provides a simple datagram-based process-to-

process communication mechanism. UDP extends the message address to

include a port address in addition to the host Internet address, where a port

address identifies one of several distinct destinations within a single host.

Thus UDP accepts messages addressed to a particular port on a particular

host, and tries to deliver them, using IP to transport the messages between the

hosts. Like IP, UDP makes no guarantees that messages are delivered correctly

or even delivered at all.

■ Transmission Control Protocol (TCP) provides reliable, flow-controlled, two-

way, process-to-process transmission of data. TCP is a connection-based

communication mechanism. This means that before data can be exchanged

over TCP, the two communicating processes must first establish a connection

through a distinct connection phase. Data is then sent and received as a byte

stream at both ends. Like UDP, TCP extends the connection address to include

a port address in addition to the host Internet address. That is, a connection is

established between a particular port in one host and a particular port in

another host. TCP guarantees that the delivery of data is correct, in the proper

order, and without duplication.

The VxWorks network also fully supports the associated Internet Control Message

Protocol (ICMP) and the Ethernet Address Resolution Protocol (ARP), as

implemented in UNIX BSD 4.3.

Internet Addresses

Each host in an Internet network has a unique Internet address and an associated

address mask. An Internet address is 32 bits long, and begins with a Internet

address class, followed by a network identifier and host identifier. The address

mask is set to a default value according to class if subnets are not used. For more

information, see 5.3.9 Using Subnets, p.297.
247

VxWorks 5.3.1
Programmer’s Guide
There are three classes of Internet addresses to accommodate different network

configurations:

Class A addresses support a small number of networks, each with a large

number of hosts.

Class B addresses support a moderate number of networks, each with a

moderate number of hosts.

Class C addresses support a large number of networks, each with a small

number of hosts.

The three classes are distinguished by the high-order bits of an Internet address as

shown in Figure 5-2.

By convention, Internet addresses are usually represented as a character string

with a dot (.) notation. Dot notation lists the 32-bit number as a string of four 8-

bit values separated by dots. Internally, the Internet address is often kept as a

simple 32-bit value (for example, as an int, long, u_long, or struct in_addr). For

example, the Internet address 0x5a010203 is 90.1.2.3 in standard dot notation. Each

Internet address class has a unique address range determined by the high-order

bits and the default address mask (used for masking out the bits used for the

network portion of the address) as shown in Table 5-1.

VxWorks includes routines for manipulating Internet addresses. For instance,

there are routines for converting between dot notation and integer notation,

routines for extracting network and host portions of an address, and routines for

creating a new address from a network and host number. See the reference entry

for inetLib.

Figure 5-2 Internet Address Classes

network: 21 bits host: 8 bits

network: 14 bits host: 16 bits

network: 7 bits host: 24 bits 90.1.2.3

128.0.1.2

192.0.0.1

A

B

C 1 1 0

1 0

0

CLASS ADDRESS EXAMPLE
248

5

5
Network
Packet Routing

The IP layer software handles packet routing. For each device connected to the

network, internal routing tables contain information about possible destination

addresses. These routing tables contain two types of entries: host-specific route

entries and network-specific route entries. Host-specific route entries contain the

host destination address and the address of the gateway to use for packets

destined for this host. Network-specific route entries contain a network

destination address and the Internet address of the gateway to use for packets

destined for this network. Figure 5-3 shows an example.

Table 5-1 Internet Address Ranges

Class High Order Bits Default Address Mask Address Range

A 0 0xff000000 0.0.0.0 - 126.255.255.255

Reserved 127.0.0.0 - 127.255.255.255

B 10 0xffff0000 128.0.0.0 - 191.255.255.255

C 110 0xffffff00 192.0.0.0 - 223.255.255.255

Figure 5-3 Internet Routing

161.27.0.50

150.12.0.2

150.12.0.1

161.27.0.51

150.12.0.0

161.27.0.0

161.27.0.51 150.12.0.2

161.27.0.0 150.12.0.2

Destination Gateway

Host-Specific Entry

Network-Specific Entry

Internet Routing Table

host

host gateway
249

VxWorks 5.3.1
Programmer’s Guide
The host-specific route entries have precedence over network-specific route

entries. The IP layer software first compares the destination address against any

host-specific route entries in the table. If there is no match, the IP layer software

searches for an appropriate network-specific routing table entry. The appropriate

address mask is applied to the destination address to obtain the network identifier.

This network identifier is then compared against the network-specific entries in

the routing table.

The VxWorks routing table is edited explicitly using routeAdd() and

routeDelete():

/* To send to network 161.27.0.0 use 150.12.0.2 */
routeAdd ("161.27.0.0", "150.12.0.2");

/* Delete route to node 161.27.0.51 using gateway 150.12.0.2 */
routeDelete ("161.27.0.51", "150.12.0.2");

Another routing function, routeNetAdd(), is equivalent to routeAdd() except that

it always treats the destination address as a network.

Network Byte Order

Different CPU architectures can be present on a single network. The numeric

representation schemes of these architectures can differ: some use big-endian
numbers, and some use little-endian numbers. To permit exchanging numeric data

over a network, some overall convention is necessary. In VxWorks, network byte
order is the convention that governs exchange of numeric data related to the

network itself, such as socket addresses or shared-semaphore IDs. Numbers in

network byte order are big-endian.

The routines in Table 5-2 convert longs and shorts between host- and network byte

order. To minimize the overhead in calling them, macro implementations (which

have no effect on architectures where no conversion is needed) are also available,

in h/netinet/in.h.

Table 5-2 Network Address Conversion Macros

Macro Description

htonl Convert a long from host to network byte ordering.

htons Convert a short from host to network byte ordering.

ntohl Convert a long from network to host byte ordering.

ntohs Convert a short from network to host byte ordering.
250

5

5
Network
This example increments pBuf four times on little-endian architectures:

pBufHostLong = ntohl (*pBuf++); /* UNSAFE */

To avoid macro-expansion side effects, do not apply these macros directly to an

expression. Instead, increment separately from the macro call. The following

increments pBuf only once, whether the architecture is big- or little-endian:

pBuf++;
pBufHostLong = ntohl (*pBuf);

5.2.6 Sockets

In VxWorks, the direct interface to the Internet protocol suite is through sockets. A

socket is an end-point for communications that is bound to a UDP or TCP port

within the node. There are two types of sockets:

■ A process can create a datagram socket (which uses UDP) and bind it to a

particular port number. Other processes, on any host in the network, can then

send messages to that socket by specifying the host Internet address and the

port number.

■ Similarly, a process can create a stream socket (which uses TCP) and bind it to a

particular port number. Another process, on any host in the network, can then

create another stream socket and request that it be connected to the first socket

by specifying its host Internet address and port number. After the two TCP

sockets are connected, there is a virtual circuit set up between them, allowing

reliable socket-to-socket communications.

One of the biggest advantages of socket communication is that it is a

“homogeneous” mechanism: socket communications among processes are exactly

the same, regardless of the location of the processes in the network or the operating

system where they run. Processes can communicate within a single CPU, across a

backplane, across an Ethernet, or across any connected combination of networks.

Socket communications can occur between VxWorks tasks and host system

processes in any combination. In all cases, the communications appear identical to

the application—except, of course, for the speed of the communications.

VxWorks sockets are UNIX BSD 4.3 compatible. However, VxWorks does not

support signal functionality for sockets. There are a number of complex network

programming issues that are beyond the scope of this guide. For additional

information, consult a socket-programming book, such as one of the following:

– Internetworking with TCP/IP Volume III by Douglas Comer and David Stevens

– UNIX Network Programming by Richard Stevens
251

VxWorks 5.3.1
Programmer’s Guide
– The Design and Implementation of the 4.3 BSD UNIX Operating System by Leffler,

McKusick, Karels and Quarterman

– TCP/IP Illustrated, Vol. 1, by Richard Stevens

– TCP/IP Illustrated, Vol. 2, by Gary Wright and Richard Stevens

Table 5-3 shows the basic socket routines provided by sockLib. Table 5-4 lists

ioctl() functions supported by sockets. Applications must put socket port

numbers (the sin_port field in a struct sockaddr) in network- byte order, with

htons(); see Network Byte Order, p.250.

Table 5-3 Socket Routines

Call Description

socket() Create a socket.

bind() Bind a name to a socket.

listen() Enable connections to a TCP socket.

accept() Accept a connection on a TCP socket.

connect() Initiate a connection on a socket.

connectWithTimeout() Attempt a connection over a socket for a fixed duration.

shutdown() Shut down a socket connection.

send() Send data to a TCP socket.

sendto() Send a message to a UDP socket.

sendmsg() Send a message to a UDP socket.

recv() Receive data from a TCP socket.

recvfrom() Receive a message from a UDP socket.

recvmsg() Receive a message from a UDP socket.

setsockopt() Set socket options.

getsockopt() Get socket options.

getsockname() Get the name of a socket.

getpeername() Get the name of a connected peer socket.

select() Perform synchronous I/O multiplexing on a socket.

read() Read from a socket.

write() Write to a socket.

ioctl() Perform control functions on a socket.

close() Close a socket.
252

5

5
Network
Stream Sockets (TCP)

The Transmission Control Protocol (TCP) provides reliable, two-way transmission

of data. In a TCP communication, two sockets are connected, allowing a reliable

byte-stream to flow between them in either direction. TCP is referred to as a virtual
circuit protocol, because it acts as though a circuit existed between the two sockets.

A good analogy for TCP communications is a telephone system. Connecting two

sockets is similar to calling from one phone to another. After the connection is

established, you can write and read data (talk and listen).

Table 5-5 shows the steps in establishing socket communications with TCP, and the

analogy of each step with telephone communications.

Table 5-4 I/O Control Functions Supported by Sockets

Function Description

FIONBIO Turn non-blocking I/O on/off.

FIONREAD Report the number of bytes available to read on a socket.

SIOCATMARK Report whether there is out-of-band data to be read on a socket.

Table 5-5 TCP Analogy to Telephone Communication

Task 1
Waits

Task 2
Calls

Function Analogy

socket() socket() Create sockets. Hook up telephones.

bind() Assign address to socket. Assign phone numbers.

listen() Allow others to connect to socket. Allow others to call.

connect() Request connection to another socket. Dial another phone’s number.

accept() Complete connection between

sockets.

Answer phone and establish

connection.

write() write() Send data to other socket. Talk.

read() read() Receive data from other socket. Listen.

close() close() Close sockets. Hang up.
253

VxWorks 5.3.1
Programmer’s Guide
Example 5-1 Stream Sockets (TCP)

The following code example uses a client-server communication model. The server

communicates with clients using stream-oriented (TCP) sockets. The main server

loop, in tcpServerWorkTask(), reads requests, prints the client’s message to the

console, and, if requested, sends a reply back to the client. The client builds the

request by prompting for input. It sends a message to the server and, optionally,

waits for a reply to be sent back. To simplify the example, we assume that the code

is executed on machines that have the same data sizes and alignment.

/* tcpExample.h - header used by both TCP server and client examples */

/* defines */

#define SERVER_PORT_NUM 5001 /* server's port number for bind() */
#define SERVER_WORK_PRIORITY 100 /* priority of server's work task */
#define SERVER_STACK_SIZE 10000 /* stack size of server's work task */
#define SERVER_MAX_CONNECTIONS 4 /* max clients connected at a time */

#define REQUEST_MSG_SIZE 1024 /* max size of request message */
#define REPLY_MSG_SIZE 500 /* max size of reply message */

/* structure for requests from clients to server */

struct request
{
int reply; /* TRUE = request reply from server */
int msgLen; /* length of message text */
char message[REQUEST_MSG_SIZE]; /* message buffer */
};

/* tcpClient.c - TCP client example */

/*
DESCRIPTION
This file contains the client-side of the VxWorks TCP example code.
The example code demonstrates the usage of several BSD 4.3-style
socket routine calls.
*/

/* includes */

#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "hostLib.h"
#include "ioLib.h"
#include "tcpExample.h"
254

5

5
Network
/**
*
* tcpClient - send requests to server over a TCP socket
*
* This routine connects over a TCP socket to a server, and sends a
* user-provided message to the server. Optionally, this routine
* waits for the server's reply message.
*
* This routine may be invoked as follows:
* -> tcpClient "remoteSystem"
* Message to send:
* Hello out there
* Would you like a reply (Y or N):
* y
* value = 0 = 0x0
* -> MESSAGE FROM SERVER:
* Server received your message
*
* RETURNS: OK, or ERROR if the message could not be sent to the server.
*/

STATUS tcpClient
(
char * serverName /* name or IP address of server */
)
{
struct request myRequest; /* request to send to server */
struct sockaddr_in serverAddr; /* server's socket address */
char replyBuf[REPLY_MSG_SIZE]; /* buffer for reply */
char reply; /* if TRUE, expect reply back */
int sockAddrSize; /* size of socket address structure */
int sFd; /* socket file descriptor */
int mlen; /* length of message */

/* create client's socket */

if ((sFd = socket (AF_INET, SOCK_STREAM, 0)) == ERROR)
{
perror ("socket");
return (ERROR);
}

/* bind not required - port number is dynamic */

/* build server socket address */

sockAddrSize = sizeof (struct sockaddr_in);
bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT_NUM);

if (((serverAddr.sin_addr.s_addr = inet_addr (serverName)) == ERROR) &&
((serverAddr.sin_addr.s_addr = hostGetByName (serverName)) == ERROR))
{
perror ("unknown server name");
close (sFd);
return (ERROR);
}

255

VxWorks 5.3.1
Programmer’s Guide
/* connect to server */

if (connect (sFd, (struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)
{
perror ("connect");
close (sFd);
return (ERROR);
}

/* build request, prompting user for message */

printf ("Message to send: \n");
mlen = read (STD_IN, myRequest.message, REQUEST_MSG_SIZE);
myRequest.msgLen = mlen;
myRequest.message[mlen - 1] = '\0';

printf ("Would you like a reply (Y or N): \n");
read (STD_IN, &reply, 1);
switch (reply)

{
case 'y':
case 'Y': myRequest.reply = TRUE;

break;
default: myRequest.reply = FALSE;

break;
}

/* send request to server */

if (write (sFd, (char *) &myRequest, sizeof (myRequest)) == ERROR)
{
perror ("write");
close (sFd);
return (ERROR);
}

if (myRequest.reply) /* if expecting reply, read and display it */
{
if (read (sFd, replyBuf, REPLY_MSG_SIZE) < 0)

{
perror ("read");
close (sFd);
return (ERROR);
}

printf ("MESSAGE FROM SERVER:\n%s\n", replyBuf);
}

close (sFd);
return (OK);
}

256

5

5
Network
/* tcpServer.c - TCP server example */

/*
DESCRIPTION
This file contains the server-side of the VxWorks TCP example code.
The example code demonstrates the useage of several BSD 4.3-style
socket routine calls.
*/

/* includes */

#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "taskLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "ioLib.h"
#include "fioLib.h"
#include "tcpExample.h"

/* function declarations */

VOID tcpServerWorkTask (int sFd, char * address, u_short port);

/**
*
* tcpServer - accept and process requests over a TCP socket
*
* This routine creates a TCP socket, and accepts connections over the socket
* from clients. Each client connection is handled by spawning a separate
* task to handle client requests.
*
* This routine may be invoked as follows:
* -> sp tcpServer
* task spawned: id = 0x3a6f1c, name = t1
* value = 3829532 = 0x3a6f1c
* -> MESSAGE FROM CLIENT (Internet Address 150.12.0.10, port 1027):
* Hello out there
*
* RETURNS: Never, or ERROR if a resources could not be allocated.
*/

STATUS tcpServer (void)
{
struct sockaddr_in serverAddr; /* server's socket address */
struct sockaddr_in clientAddr; /* client's socket address */
int sockAddrSize; /* size of socket address structure */
int sFd; /* socket file descriptor */
int newFd; /* socket descriptor from accept */
int ix = 0; /* counter for work task names */
char workName[16]; /* name of work task */
257

VxWorks 5.3.1
Programmer’s Guide
/* set up the local address */

sockAddrSize = sizeof (struct sockaddr_in);
bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT_NUM);
serverAddr.sin_addr.s_addr = htonl (INADDR_ANY);

/* create a TCP-based socket */

if ((sFd = socket (AF_INET, SOCK_STREAM, 0)) == ERROR)
{
perror ("socket");
return (ERROR);
}

/* bind socket to local address */

if (bind (sFd, (struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)
{
perror ("bind");
close (sFd);
return (ERROR);
}

/* create queue for client connection requests */

if (listen (sFd, SERVER_MAX_CONNECTIONS) == ERROR)
{
perror ("listen");
close (sFd);
return (ERROR);
}

/* accept new connect requests and spawn tasks to process them */

FOREVER
{
if ((newFd = accept (sFd, (struct sockaddr *) &clientAddr,

&sockAddrSize)) == ERROR)
{
perror ("accept");
close (sFd);
return (ERROR);
}

sprintf (workName, "tTcpWork%d", ix++);
if (taskSpawn(workName, SERVER_WORK_PRIORITY, 0, SERVER_STACK_SIZE,

(FUNCPTR) tcpServerWorkTask, newFd,
(int) inet_ntoa (clientAddr.sin_addr), ntohs (clientAddr.sin_port),
0, 0, 0, 0, 0, 0, 0) == ERROR)
{
/* if taskSpawn fails, close fd and return to top of loop */

perror ("taskSpawn");
close (newFd);
}

}
}

258

5

5
Network
/**
*
* tcpServerWorkTask - process client requests
*
* This routine reads from the server's socket, and processes client
* requests. If the client requests a reply message, this routine
* will send a reply to the client.
*
* RETURNS: N/A.
*/

VOID tcpServerWorkTask
(
int sFd, /* server's socket fd */
char * address, /* client's socket address */
u_short port /* client's socket port */
)
{
struct request clientRequest; /* request/message from client */
int nRead; /* number of bytes read */
static char replyMsg[] = "Server received your message";

/* read client request, display message */

while ((nRead = fioRead (sFd, (char *) &clientRequest,
sizeof (clientRequest))) > 0)
{
printf ("MESSAGE FROM CLIENT (Internet Address %s, port %d):\n%s\n",

 address, port, clientRequest.message);

free (address); /* free malloc from inet_ntoa() */

if (clientRequest.reply)
if (write (sFd, replyMsg, sizeof (replyMsg)) == ERROR)

perror ("write");
}

if (nRead == ERROR) /* error from read() */
perror ("read");

close (sFd); /* close server socket connection */
}

Datagram Sockets (UDP)

The User Datagram Protocol (UDP) provides a simpler but less robust

communication method. In a UDP communication, data is sent between sockets in

separate, unconnected, individually addressed packets called datagrams.

As TCP is analogous to telephone communications, UDP is analogous to sending

mail. Each UDP packet is like a letter. Each packet carries the address of both the

destination and the sender. Like the mail, UDP is unreliable: packets that are lost

or out-of-sequence are not reported.
259

VxWorks 5.3.1
Programmer’s Guide
Example 5-2 Datagram Sockets (UDP)

The following code example uses a client-server communication model. The server

communicates with clients using datagram-oriented (UDP) sockets. The main

server loop, in udpServer(), reads requests and optionally displays the client’s

message. The client builds the request by prompting the user for input. Note that

this code assumes that it executes on machines that have the same data sizes and

alignment.

/* udpExample.h - header used by both UDP server and client examples */

#define SERVER_PORT_NUM 5002 /* server's port number for bind() */
#define REQUEST_MSG_SIZE 1024 /* max size of request message */

/* structure used for client's request */

struct request
{
int display; /* TRUE = display message */
char message[REQUEST_MSG_SIZE]; /* message buffer */
};

/* udpClient.c - UDP client example */

/*
DESCRIPTION
This file contains the client-side of the VxWorks UDP example code.
The example code demonstrates the useage of several BSD 4.3-style
socket routine calls.
*/

/* includes */

#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "hostLib.h"
#include "ioLib.h"
#include "udpExample.h"

/**
*
* udpClient - send a message to a server over a UDP socket
*
* This routine sends a user-provided message to a server over a UDP socket.
* Optionally, this routine can request that the server display the message.
* This routine may be invoked as follows:
260

5

5
Network
* -> udpClient "remoteSystem"
* Message to send:
* Greetings from UDP client
* Would you like server to display your message (Y or N):
* y
* value = 0 = 0x0
*
* RETURNS: OK, or ERROR if the message could not be sent to the server.
*/

STATUS udpClient
(
char * serverName /* name or IP address of server */
)
{
struct request myRequest; /* request to send to server */
struct sockaddr_in serverAddr; /* server's socket address */
char display; /* if TRUE, server prints message */
int sockAddrSize; /* size of socket address structure */
int sFd; /* socket file descriptor */
int mlen; /* length of message */

/* create client's socket */

if ((sFd = socket (AF_INET, SOCK_DGRAM, 0)) == ERROR)
{
perror ("socket");
return (ERROR);
}

/* bind not required - port number is dynamic */

/* build server socket address */

sockAddrSize = sizeof (struct sockaddr_in);
bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT_NUM);

if (((serverAddr.sin_addr.s_addr = inet_addr (serverName)) == ERROR) &&
((serverAddr.sin_addr.s_addr = hostGetByName (serverName)) == ERROR))
{
perror ("unknown server name");
close (sFd);
return (ERROR);
}

/* build request, prompting user for message */

printf ("Message to send: \n");
mlen = read (STD_IN, myRequest.message, REQUEST_MSG_SIZE);
myRequest.message[mlen - 1] = '\0';

printf ("Would you like the server to display your message (Y or N): \n");
read (STD_IN, &display, 1);
switch (display)
261

VxWorks 5.3.1
Programmer’s Guide
{
case 'y':
case 'Y': myRequest.display = TRUE;

break;
default: myRequest.display = FALSE;

break;
}

/* send request to server */

if (sendto (sFd, (caddr_t) &myRequest, sizeof (myRequest), 0,
(struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)
{
perror ("sendto");
close (sFd);
return (ERROR);
}

close (sFd);
return (OK);
}

/* udpServer.c - UDP server example */

/*
DESCRIPTION
This file contains the server-side of the VxWorks UDP example code.
The example code demonstrates the useage of several BSD 4.3-style
socket routine calls.
*/

/* includes */

#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "ioLib.h"
#include "fioLib.h"
#include "udpExample.h"

/***
*
* udpServer - read from UDP socket and display client's message if requested
*
* Example of VxWorks UDP server:
* -> sp udpServer
* task spawned: id = 0x3a1f6c, name = t2
* value = 3809132 = 0x3a1f6c
* -> MESSAGE FROM CLIENT (Internet Address 150.12.0.11, port 1028):
* Greetings from UDP client
*
* RETURNS: Never, or ERROR if a resources could not be allocated.
*/
262

5

5
Network
STATUS udpServer (void)
{
struct sockaddr_in serverAddr; /* server's socket address */
struct sockaddr_in clientAddr; /* client's socket address */
struct request clientRequest; /* request/Message from client */
int sockAddrSize; /* size of socket address structure */
int sFd; /* socket file descriptor */
char inetAddr[INET_ADDR_LEN];

 /* buffer for client's inet addr */

/* set up the local address */

sockAddrSize = sizeof (struct sockaddr_in);
bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT_NUM);
serverAddr.sin_addr.s_addr = htonl (INADDR_ANY);

/* create a UDP-based socket */

if ((sFd = socket (AF_INET, SOCK_DGRAM, 0)) == ERROR)
{
perror ("socket");
return (ERROR);
}

/* bind socket to local address */

if (bind (sFd, (struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)
{
perror ("bind");
close (sFd);
return (ERROR);
}

/* read data from a socket and satisfy requests */

FOREVER
{
if (recvfrom (sFd, (char *) &clientRequest, sizeof (clientRequest), 0,

(struct sockaddr *) &clientAddr, &sockAddrSize) == ERROR)
{
perror ("recvfrom");
close (sFd);
return (ERROR);
}

/* if client requested that message be displayed, print it */

if (clientRequest.display)
{
/* convert inet address to dot notation */

inet_ntoa_b (clientAddr.sin_addr, inetAddr);
printf ("MSG FROM CLIENT (Internet Address %s, port %d):\n%s\n",

inetAddr, ntohs (clientAddr.sin_port), clientRequest.message);
}

}
}

263

VxWorks 5.3.1
Programmer’s Guide
5.2.7 The Zbuf Socket Interface

VxWorks includes an alternative set of socket calls based on a data abstraction

called a zbuf, which permits sharing data buffers (or portions of data buffers)

between separate software modules. The zbuf socket interface allows applications to

read and write UNIX BSD 4.3 sockets without copying data between application

and network buffers. You can use zbufs with either UDP or TCP applications. The

TCP subset of this new interface is sometimes called “zero-copy TCP.”

Zbuf-based socket calls are interoperable with the standard BSD socket interface: the

other end of a socket has no way of telling whether your end is using zbuf-based

calls or traditional calls.

However, zbuf-based socket calls are not source-compatible with the standard BSD

socket interface: you must call different socket routines to use the zbuf interface.

Applications that use the zbuf interface are thus less portable.

WARNING: The send socket buffer size must exceed that of any zbufs sent over the

socket.

To link in (and initialize) the zbuf socket interface, define INCLUDE_ZBUF_SOCK
in configAll.h.

Zbuf Calls to Send Existing Data Buffers

The simplest way to use zbuf sockets is to call either zbufSockBufSend() (in place

of send() for a TCP connection) or zbufSockBufSendto() (in place of sendto() for

a UDP datagram). In either case, you supply a pointer to your application’s data

buffer containing the data or message to send, and the network protocol uses that

same buffer rather than copying the data out of it.

WARNING: The speedups based on using zbufs depend on allowing different

modules to share the same buffers. To work, your application must neither modify

nor free the data buffer while network software is still using it. Instead of freeing a

buffer explicitly, supply a free-routine callback: a pointer to a routine that knows

how to free the buffer. The zbuf library keeps track of how many zbufs point to a

data buffer, and calls the free routine when the data buffer is no longer in use.

To receive socket data using zbufs, see the following sections. Manipulating the Zbuf
Data Structure, p.265 describes the routines to create and manage zbufs, and Zbuf
Socket Calls, p.273 introduces the remaining zbuf-specific socket routines. See also

the reference entries for zbufLib and zbufSockLib.

!

!

264

5

5
Network
Manipulating the Zbuf Data Structure

A zbuf has three essential properties:

■ A zbuf holds a sequence of bytes.

■ The data in a zbuf is organized into one or more segments of contiguous data.

Successive zbuf segments are not usually contiguous to each other.

■ Zbuf segments refer to data buffers through pointers. The underlying data

buffers can be shared by more than one zbuf segment.

Zbuf segments are at the heart of how zbufs minimize data copying: if you have a

data buffer, you can incorporate it (by reference, so that only pointers and lengths

move around) into a new zbuf segment. Conversely, you can get pointers to the

data in zbuf segments, and examine the data there directly.

Zbuf Byte Locations

You can address the contents of a zbuf by byte locations. A zbuf byte location has

two parts, an offset and a segment ID.

An offset is a signed integer (type int): the distance in bytes to a portion of data in

the zbuf, relative to the beginning of a particular segment. Zero refers to the first

byte in a segment; negative integers refer to bytes in previous segments; and

positive integers refer to bytes after the start of the current segment.

A segment ID is an arbitrary integer (type ZBUF_SEG) that identifies a particular

segment of a zbuf. You can always use NULL to refer to the first segment of a zbuf.

Figure 5-4 shows a simple zbuf with data organized into two segments, with

offsets relative to the first segment. This is the most efficient addressing scheme to

refer to bytes a, b, or c in the figure.

Figure 5-4 Zbuf Addressing Relative to First Segment (NULL)

a b c

gfe

0 1 2

d

3 4 5 6
265

VxWorks 5.3.1
Programmer’s Guide
Figure 5-5 shows the same zbuf, but labelled with offsets relative to the second

segment. This is the most efficient addressing scheme to refer to bytes d, e, f, or g

in the figure.

Two special shortcuts give the fastest access to either the beginning or the end of a

zbuf. The constant ZBUF_END refers to the position after all existing bytes in the

zbuf. Similarly, ZBUF_BEGIN refers to the position before all existing bytes. These

constants are the only offsets with meanings not relative to a particular segment.

When you insert data in a zbuf, the new data is always inserted before the byte

location you specify in the call to an insertion routine. That is, the byte location you

specify becomes the address of the newly inserted data.

Creating and Destroying Zbufs

To create a new zbuf, call zbufCreate(). The routine takes no arguments, and

returns a zbuf identifier (type ZBUF_ID) for a zbuf containing no segments. After

you have the zbuf ID, you can attach segments or otherwise insert data. While the

zbuf is empty, NULL is the only valid segment ID, and 0 the only valid offset.

When you no longer need a particular zbuf, call zbufDelete(). Its single argument

is the ID for the zbuf to delete. The zbufDelete() routine calls the free routine

associated with each segment in the zbuf, for segments that are not shared by other

zbufs. After you delete a zbuf, its zbuf ID is meaningless; any reference to a deleted

zbuf ID is an error.

Figure 5-5 Zbuf Addressing Relative to Second Segment

Table 5-6 Zbuf Creation and Deletion Routines

Call Description

zbufCreate() Create an empty zbuf.

zbufDelete() Delete a zbuf and free any associated segments.

a b c

gfe

321

d

0

–1–2–3
266

5

5
Network
Getting Data In and Out of Zbufs

The usual way to place data in a zbuf is to call zbufInsertBuf(). This routine builds

a zbuf segment pointing to an existing data buffer, and inserts the new segment at

whatever byte location you specify in a zbuf. You can also supply a callback

pointer to a free routine, which the zbuf library calls when no zbuf segments point

to that data buffer.

Because the purpose of the zbuf socket interface is to avoid data copying, the need

to actually copy data into a zbuf (rather than designating its location as a shareable

buffer) occurs much less frequently. When that need does arise, however, the

routine zbufInsertCopy() is available. This routine does not require a callback

pointer to a free routine, because the original source of the data is not shared.

Similarly, the most efficient way to examine data in zbufs is to read it in place,

rather than to copy it to another location. However, if you must copy a portion of

data out of a zbuf (for example, to guarantee the data is contiguous, or to place it

in a data structure required by another interface), call zbufExtractCopy()
specifying what to copy (zbuf ID, byte location, and the number of bytes) and

where to put it (an application buffer).

Operations on Zbufs

The routines listed in Table 5-8 perform several fundamental operations on zbufs.

Table 5-7 Zbuf Data Copying Routines

Call Description

zbufInsertBuf() Create a zbuf segment from a buffer and insert into a zbuf.

zbufInsertCopy() Copy buffer data into a zbuf.

zbufExtractCopy() Copy data from a zbuf to a buffer.

Table 5-8 Zbuf Operations

Call Description

zbufLength() Determine the length of a zbuf, in bytes.

zbufDup() Duplicate a zbuf.

zbufInsert() Insert a zbuf into another zbuf.

zbufSplit() Split a zbuf into two separate zbufs.

zbufCut() Delete bytes from a zbuf.
267

VxWorks 5.3.1
Programmer’s Guide
The routine zbufLength() reports how many bytes are in a zbuf.

The routine zbufDup() provides the simplest mechanism for sharing segments

between zbufs: it produces a new zbuf ID that refers to some or all of the data in

the original zbuf. You can exploit this sort of sharing to get two different views of

the same data. For example, after duplicating a zbuf, you can insert another zbuf

into one of the two duplicates, with zbufInsert(). None of the data in the original

zbuf segments moves, yet after some byte location (the byte location where you

inserted data) addressing the two zbufs gives completely different data.

The zbufSplit() routine divides one zbuf into two; you specify the byte location for

the split, and the result of the routine is a new zbuf ID. The new zbuf’s data begins

after the specified byte location. The original zbuf ID also has a modified view of

the data: it is truncated to the byte location of the split. However, none of the data

in the underlying segments moves through all this: if you duplicate the original

zbuf before splitting it, three zbuf IDs share segments—the duplicate permits you

to view the entire original range of data, another zbuf contains a leading fragment,

and the third zbuf holds the trailing fragment.

Similarly, if you call zbufCut() to remove some range of bytes from within a zbuf,

the effects are visible only to callers who view the data through the same zbuf ID

you used for the deletion; other zbuf segments can still address the original data

through a shared buffer.

For the most part, these routines do not free data buffers or delete zbufs, but there

are two exceptions:

■ zbufInsert() deletes the zbuf ID it inserts. No segments are freed, because they

now form part of the larger zbuf.

■ If the bytes you remove with zbufCut() span one or more complete segments,

the free routines for those segments can be called (if no other zbuf segment

refers to the same data).

The data-buffer free routine runs only when none of the data in a segment is part

of any zbuf; to avoid data copying, zbuf manipulation routines such as zbufCut()
record which parts of a segment are currently in a zbuf, postponing the deletion of

a segment until no part of its data is in use.

Segments of Zbufs

The routines in Table 5-9 give your applications access to the underlying segments

in a zbuf.

By specifying a NULL segment ID, you can address the entire contents of a zbuf as

offsets from its very first data byte. However, it is always more efficient to address
268

5

5
Network
data in a zbuf relative to the closest segment. Use zbufSegFind() to translate any

zbuf byte location into the most local form.

The pair zbufSegNext() and zbufSegPrev() are useful for going through the

segments of a zbuf in order, perhaps in conjunction with zbufSegLength().

Finally, zbufSegData() allows the most direct access to the data in zbufs: it gives

your application the address where a segment’s data begins. If you manage

segment data directly using this pointer, bear the following restrictions in mind:

■ Do not change data if any other zbuf segment is sharing it.

■ As with any other direct memory access, it is up to your own code to restrict

itself to meaningful data: remember that the next segment in a zbuf is usually

not contiguous. Use zbufSegLength() as a limit, and zbufSegNext() when you

exceed that limit.

Example: Manipulating Zbuf Structure

The following interaction illustrates the use of some of the previously described

zbufLib routines, and their effect on zbuf segments and data sharing. To keep the

example manageable, the zbuf data used is artificially small, and the execution

environment is the Tornado shell (for details on this shell, see the Tornado User’s
Guide: Shell).

To begin with, we create a zbuf, and use its ID zId to verify that a newly created

zbuf contains no data; zbufLength() returns a result of 0.

-> zId = zbufCreate()
new symbol "zId" added to symbol table.
zId = 0x3b58e8: value = 3886816 = 0x3b4ee0
-> zbufLength (zId)
value = 0 = 0x0

Table 5-9 Zbuf Segment Routines

Call Description

zbufSegFind() Find the zbuf segment containing a specified byte location.

zbufSegNext() Get the next segment in a zbuf.

zbufSegPrev() Get the previous segment in a zbuf.

zbufSegData() Determine the location of data in a zbuf segment.

zbufSegLength() Determine the length of a zbuf segment.
269

VxWorks 5.3.1
Programmer’s Guide
Next, we create a data buffer buf1, insert it into zbuf zId, and verify that

zbufLength() now reports a positive length. To keep the example simple, buf1 is a

literal string, and therefore we do not supply a free-routine callback argument to

zbufInsertBuf().

-> buf1 = "I cannot repeat enough!"
new symbol "buf1" added to symbol table.
buf1 = 0x3b5898: value = 3889320 = 0x3b58a8 = buf1 + 0x10
-> zbufInsertBuf (zId, 0, 0, buf1, strlen(buf1), 0, 0)
value = 3850240 = 0x3ac000
-> zbufLength (zId)
value = 23 = 0x17

To examine the effect of other zbuf operations, it is useful to have a zbuf-display

routine. The remainder of this example uses a routine called zbufDisplay() for that

purpose; for the complete source code, see Example 5-3.

For each zbuf segment, zbufDisplay() shows the segment ID, the start-of-data

address, the offset from that address, the length of the segment, and the data in the

segment as a character string. The following display of zId illustrates that the

underlying data in its only segment is still at the buf1 address (0x3b58a8), because

zbufInsertBuf() incorporates its buffer argument into the zbuf without copying

data.

-> ld </usr/jane/zbuf-examples/zbufDisplay.o
value = 3890416 = 0x3b5cf0 = zbufDisplay.o_bss + 0x8
-> zbufDisplay zId
segID 0x3ac000 at 0x3b58a8 + 0x0 (23 bytes): I cannot repeat enough!
value = 0 = 0x0

When we copy the zbuf, the copy has its own IDs, but still uses the same data

address:

-> zId2 = zbufDup (zId,0,0,23)
new symbol "zId2" added to symbol table.
zId2 = 0x3b5ff0: value = 3886824 = 0x3b4ee8
-> zbufDisplay zId2
segID 0x3abf80 at 0x3b58a8 + 0x0 (23 bytes): I cannot repeat enough!
value = 0 = 0x0

If we insert a second buffer into the middle of the existing data in zId, there is still

no data copying. Inserting the new buffer gives us a zbuf made up of three

segments—but notice that the address of the first segment is still the start of buf1,

and the third segment points into the middle of buf1:

-> buf2 = " this"
new symbol "buf2" added to symbol table.
buf2 = 0x3b5fb0: value = 3891136 = 0x3b5fc0 = buf2 + 0x10
-> zbufInsertBuf (zId, 0, 15, buf2, strlen(buf2), 0, 0)
value = 3849984 = 0x3abf00
270

5

5
Network
-> zbufDisplay zId
segID 0x3ac000 at 0x3b58a8 + 0x0 (15 bytes): I cannot repeat
segID 0x3abf00 at 0x3b5fc0 + 0x0 (5 bytes): this
segID 0x3abe80 at 0x3b58b7 + 0x0 (8 bytes): enough!
value = 0 = 0x0

Because the underlying buffer is not modified, both buf1 and the duplicate zbuf

zId2 still contain the original string, rather than the modified one now in zId:

-> printf ("%s\n", buf1)
I cannot repeat enough!
value = 24 = 0x18
-> zbufDisplay zId2
segID 0x3abf80 at 0x3b58a8 + 0x0 (23 bytes): I cannot repeat enough!
value = 0 = 0x0

The zbufDup() routine can also select part of a zbuf without copying, for instance

to incorporate some of the same data into another zbuf—or even into the same

zbuf, as in the following example:

-> zTmp = zbufDup (zId, 0, 15, 5)
new symbol "zTmp" added to symbol table.
zTmp = 0x3b5f70: value = 3886832 = 0x3b4ef0
-> zbufInsert (zId, 0, 15, zTmp)
value = 3849728 = 0x3abe00
-> zbufDisplay zId
segID 0x3ac000 at 0x3b58a8 + 0x0 (15 bytes): I cannot repeat
segID 0x3abe00 at 0x3b5fc0 + 0x0 (5 bytes): this
segID 0x3abf00 at 0x3b5fc0 + 0x0 (5 bytes): this
segID 0x3abe80 at 0x3b58b7 + 0x0 (8 bytes): enough!
value = 0 = 0x0

After zbufInsert() combines two zbufs, the second zbuf ID (zTmp in this example)

is automatically deleted. Thus, zTmp is no longer a valid zbuf ID—for example,

zbufLength() returns ERROR:

-> zbufLength (zTmp)
value = -1 = 0xffffffff = zId2 + 0xffc4a00f

However, you must still delete the remaining two zbuf IDs explicitly when they are

no longer needed. This releases all associated zbuf-structure storage. In a real

application, with free-routine callbacks filled in, it also calls the specified free

routine on the data buffers, as follows:

-> zbufDelete (zId)
value = 0 = 0x0
-> zbufDelete (zId2)
value = 0 = 0x0
271

VxWorks 5.3.1
Programmer’s Guide
Example 5-3 Zbuf Display Routine

The following is the complete source code for the zbufDisplay() utility used in the

preceding example:

/* zbufDisplay.c - zbuf example display routine */

/* includes */

#include "vxWorks.h"
#include "zbufLib.h"
#include "ioLib.h"
#include "stdio.h"

/**
*
* zbufDisplay - display contents of a zbuf
*
* RETURNS: OK, or ERROR if the specified data could not be displayed.
*/

STATUS zbufDisplay
(
ZBUF_ID zbufId, /* zbuf to display */
ZBUF_SEG zbufSeg, /* zbuf segment base for <offset> */
int offset, /* relative byte offset */
int len, /* number of bytes to display */
BOOL silent /* do not print out debug info */
)
{
int lenData;
char * pData;

/* find the most-local byte location */

if ((zbufSeg = zbufSegFind (zbufId, zbufSeg, &offset)) == NULL)
return (ERROR);

if (len <= 0)
len = ZBUF_END;

while ((len != 0) && (zbufSeg != NULL))
{
/* find location and data length of zbuf segment */

pData = zbufSegData (zbufId, zbufSeg) + offset;
lenData = zbufSegLength (zbufId, zbufSeg) - offset;
lenData = min (len, lenData); /* print all of seg ? */

if (!silent)
printf ("segID 0x%x at 0x%x + 0x%x (%2d bytes): ",

(int) zbufSeg, (int) pData, offset, lenData);
write (STD_OUT, pData, lenData); /* display data */
if (!silent)

printf ("\n");
272

5

5
Network
zbufSeg = zbufSegNext (zbufId, zbufSeg); /* update segment */
len -= lenData; /* update length */
offset = 0; /* no more offset */
}

return (OK);
}

Limitations of the Zbuf Implementation

The following zbuf limitations are due to the current implementation; they are not

inherent to the data abstraction. They are described because they can have an

impact on application performance.

– References to data in zbuf segments before a particular location (whether with

zbufSegPrev(), or with a negative offset in a byte location) are significantly

slower than references to data after a particular location.

– The data in small zbuf segments (less than 512 bytes) is sometimes copied,

rather than propagating references to it.

Zbuf Socket Calls

The zbuf socket calls listed in Table 5-10 are named to emphasize parallels with the

standard BSD socket calls: thus, zbufSockSend() is the zbuf version of send(), and

zbufSockRecvfrom() is the zbuf version of recvfrom(). The arguments also

correspond directly to those of the standard socket calls.

For a detailed description of each routine, see the corresponding reference entry.

Table 5-10 Zbuf Socket Library Routines

Call Description

zbufSockLibInit() Initialize socket libraries (called automatically with

INCLUDE_SOCK_ZBUF).

zbufSockSend() Send zbuf data to a TCP socket.

zbufSockSendto() Send a zbuf message to a UDP socket.

zbufSockBufSend() Create a zbuf and send it as TCP socket data.

zbufSockBufSendto() Create a zbuf and send it as a UDP socket message.

zbufSockRecv() Receive data in a zbuf from a TCP socket.

zbufSockRecvfrom() Receive a message in a zbuf from a UDP socket.
273

VxWorks 5.3.1
Programmer’s Guide
Standard Socket Calls and Zbuf Socket Calls

The zbuf socket calls are particularly useful when large data transfer is a significant

part of your socket application. For example, many socket applications contain

sections of code like the following fragment:

pBuffer = malloc (BUFLEN);
while ((readLen = read (fdDevice, pBuffer, BUFLEN)) > 0)

write (fdSock, pBuffer, readLen);

You can eliminate the overhead of copying from the application buffer pBuffer
into the internal socket buffers by recoding to use zbuf socket calls. For example,

the following fragment is a zbuf version of the preceding loop:

pBuffer = malloc (BUFLEN * BUFNUM); /* allocate memory */
for (ix = 0; ix < (BUFNUM - 1); ix++, pBuffer += BUFLEN)

appBufRetn (pBuffer); /* fill list of free bufs */

while ((readLen = read (fdDevice, pBuffer, BUFLEN)) > 0)
{
zId = zbufCreate (); /* insert into new zbuf */
zbufInsertBuf (zId, NULL, 0, pBuffer, readLen, appBufRetn, 0);
zbufSockSend (fdSock, zId, readLen, 0); /* send zbuf */

pBuffer = appBufGet (WAIT_FOREVER); /* get a fresh buffer */
}

The appBufGet() and appBufRetn() references in the preceding code fragment

stand for application-specific buffer management routines, analogous to malloc()
and free(). In many applications, these routines do nothing more than manipulate

a linked list of free fixed-length buffers.

Example 5-4 The TCP Example Server Using Zbufs

For a small but complete example that illustrates the mechanics of using the zbuf

socket library, consider the conversion of the client-server example in Example 5-1

to use zbuf socket calls.

No conversion is needed for the client side of the example; the client operates the

same regardless of whether or not the server uses zbufs. The next example

illustrates the following changes to convert the server side to use zbufs:

– Instead of including the header file sockLib.h, include zbufSockLib.h.

– The data processing component must be capable of dealing with potentially

non-contiguous data in successive zbuf segments. In the TCP example, this

component displays a message using printf(); we can use the zbufDisplay()
routine from Example 5-3 instead.
274

5

5
Network
– The original TCP example exploits fioRead() to collect the complete message,

rather than calling recv() directly. To achieve the same end while avoiding

data copying by using zbufs, the following example defines a

zbufFioSockRecv() subroutine to call zbufSockRecv() repeatedly until the

complete message is received.

– A new version of the worker routine tcpServerWorkTask() must tie together

these separate modifications, and must explicitly extract the reply and

msgLen fields from the client’s transmission to do so. When using zbufs, these

fields cannot be extracted by reference to the C structure in tcpExample.h
because of the possibility that the data is not contiguous.

The following example shows the auxiliary zbufFioSockRecv() routine and the

zbuf version of tcpServerWorkTask(). To run this code:

1. Start with tcpServer.c as defined in Example 5-1.

2. Include the header file zbufSockLib.h.

3. Insert the zbufDisplay() routine from Example 5-3.

4. Replace the tcpServerWorkTask() definition with the following two routines:

/**
*
* zbufFioSockRecv - receive <len> bytes from a socket into a zbuf
*
* This routine receives a specified amount of data from a socket into a
* zbuf, by repeatedly calling zbufSockRecv() until <len> bytes
* are read.
*
* RETURNS:
* The ID of the zbuf containing <len> bytes of data,
* or NULL if there is an error during the zbufSockRecv() operation.
*
* SEE ALSO: zbufSockRecv()
*/

ZBUF_ID zbufFioSockRecv
(
int fd, /* file descriptor of file to read */
int len /* maximum number of bytes to read */
)
{
BOOL first = TRUE; /* first time thru ? */
ZBUF_ID zRecvTotal = NULL; /* zbuf to return */
ZBUF_ID zRecv; /* zbuf read from sock */
int nbytes; /* number of recv bytes */

for (; len > 0; len -= nbytes)
{
nbytes = len; /* set number of bytes wanted */
275

VxWorks 5.3.1
Programmer’s Guide
/* read a zbuf from the socket */

if (((zRecv = zbufSockRecv (fd, 0, &nbytes)) == NULL) ||
(nbytes <= 0))
{
if (zRecvTotal != NULL)

zbufDelete (zRecvTotal);
return (NULL);
}

/* append recv'ed zbuf onto end of zRecvTotal */

if (first)
zRecvTotal = zRecv; /* cannot append to empty zbuf */

else if (zbufInsert (zRecvTotal, NULL, ZBUF_END, zRecv) == NULL)
{
zbufDelete (zRecv);
zbufDelete (zRecvTotal);
return (NULL);
}

first = FALSE; /* can append now... */
}

return (zRecvTotal);
}

/**
*
* tcpServerWorkTask - process client requests
*
* This routine reads from the server's socket, and processes client
* requests. If the client requests a reply message, this routine
* sends a reply to the client.
*
* RETURNS: N/A.
*/

VOID tcpServerWorkTask
(
int sFd, /* server's socket fd */
char * address, /* client's socket address */
u_short port /* client's socket port */
)
{
static char replyMsg[] = "Server received your message";
ZBUF_ID zReplyOrig; /* original reply msg */
ZBUF_ID zReplyDup; /* duplicate reply msg */
ZBUF_ID zRequest; /* request msg from client */
int msgLen; /* request msg length */
int reply; /* reply requested ? */

/* create original reply message zbuf */
276

5

5
Network
if ((zReplyOrig = zbufCreate ()) == NULL)
{
perror ("zbuf create");
free (address); /* free malloc from inet_ntoa() */
return;
}

/* insert reply message into zbuf */

if (zbufInsertBuf (zReplyOrig, NULL, 0, replyMsg,
sizeof (replyMsg), NULL, 0) == NULL)
{
perror ("zbuf insert");
zbufDelete (zReplyOrig);
free (address); /* free malloc from inet_ntoa() */
return;
}

/* read client request, display message */

while ((zRequest = zbufFioSockRecv (sFd, sizeof(struct request))) != NULL)
{
/* extract reply field into <reply> */

(void) zbufExtractCopy (zRequest, NULL, 0,
(char *) &reply, sizeof (reply));

(void) zbufCut (zRequest, NULL, 0, sizeof (reply));

/* extract msgLen field into <msgLen> */

(void) zbufExtractCopy (zRequest, NULL, 0,
(char *) &msgLen, sizeof (msgLen));

(void) zbufCut (zRequest, NULL, 0, sizeof (msgLen));

/* duplicate reply message zbuf, preserving original */

if ((zReplyDup = zbufDup (zReplyOrig, NULL, 0, ZBUF_END)) == NULL)
{
perror ("zbuf duplicate");
zbufDelete (zRequest);
break;
}

printf ("MESSAGE FROM CLIENT (Internet Address %s, port %d):\n",
 address, port);

/* display request message zbuf */

(void) zbufDisplay (zRequest, NULL, 0, msgLen, TRUE);
printf ("\n");
if (reply)

{
if (zbufSockSend (sFd, zReplyDup, sizeof (replyMsg), 0) < 0)

perror ("zbufSockSend");
}

277

VxWorks 5.3.1
Programmer’s Guide
/* finished with request message zbuf */

zbufDelete (zRequest);
}

free (address); /* free malloc from inet_ntoa() */
zbufDelete (zReplyOrig);
close (sFd);
}

NOTE: In the interests of brevity, the STATUS return values for several zbuf socket

calls are discarded with casts to void. In a real application, check these return

values for possible errors.

5.2.8 Remote Procedure Calls

Remote Procedure Call (RPC) implements a client-server model of task interaction.

In this model, client tasks request services of server tasks, and then wait for their

reply. RPC formalizes this model and provides a standard protocol for passing

requests and returning replies. Thus, a VxWorks or host system client task can

request services from VxWorks or the host servers in any combination.

Internally, RPC uses sockets as the underlying communication mechanism. RPC,

in turn, is used in the implementation of several higher-level facilities, including

the Network File System (NFS) and remote source-level debugging. Also, RPC

utilities help generate the client interface routines and the server skeleton.

VxWorks implementation of RPC is task-specific. Each task must call rpcTaskInit()
before making any RPC-related calls.

The VxWorks implementation of RPC was originally designed by Sun

Microsystems and is in the public domain. For more information, see the public

domain RPC documentation (supplied in source form in the directories

unsupported/rpc4.0/doc and unsupported/rpc4.0/man), and the reference entry

for rpcLib.

5.2.9 Remote File Access

Files on a remote machine can be accessed from a VxWorks target transparently

with a remote file transfer protocol.

Transparent remote file access allows files on remote systems to be accessed as if they

were local. Applications running under VxWorks can access files on any host

development system, over the network, exactly as if they were local to the

!

278

5

5
Network
VxWorks system. For example, /dk0/file might be a file local to the VxWorks

system, while /host/file might be located on another machine entirely. To VxWorks

applications, the files operate in exactly the same way; only the name is different.

Transparent file access is available with any of three different protocols:

■ Remote Shell (RSH) is serviced by the remote shell daemon rshd on the host

system. See the reference entry for remLib.

■ Internet File Transfer Protocol (FTP) client and server functions are provided by

routines in ftpLib to transfer files between FTP servers on the network and

invoke other FTP functions. See the reference entries for ftpLib and ftpdLib.

■ Network File System (NFS) client protocol is implemented in the I/O driver

nfsDrv to access files on any NFS server on the network. This I/O driver was

tested with many different implementations of NFS file servers on various

operating systems. The NFS server protocol is implemented (for dosFs file

systems) in two libraries, mountLib and nfsdLib.

An alternative remote file transfer protocol that is not transparent is the Trivial File
Transfer Protocol (TFTP) . The VxWorks implementation provides both client and

server functions, and is typically used only for booting. See the reference entries

for tftpLib and tftpdLib.

5.2.10 Remote Command Execution

The VxWorks remote command execution facilities allow applications running

under VxWorks to invoke commands on a remote system and have the results

returned on standard output and standard error over socket connections. This is

accomplished using the remote shell protocol, which on UNIX systems is serviced

by the remote shell daemon rshd. See the reference entry for remLib.

5.2.11 Simple Network Management Protocol (WindNet SNMPv1/v2c Option)

WindNet SNMPv1/v2c is an optional component that provides VxWorks with

SNMP (Simple Network Management Protocol) capabilities. It is a “bilingual”

product, supporting both SNMP version 1 and version 2c. SNMP enables network

devices, called agents, to be monitored, controlled, and configured remotely from

a network management station.

With this component, a VxWorks target can become an SNMP agent, allowing the

target to be managed and configured remotely with SNMP. WindNet

SNMPv1/v2c supports the Management Information Base-II (MIB-II) definitions.
279

VxWorks 5.3.1
Programmer’s Guide
WindNet SNMPv1/v2c is extensible. In addition to the base functionality, you can

make extensions to the SNMP agent’s MIB to include information that is specific

to your application and environment.

For detailed information about WindNet SNMPv1/v2c, see the WindNet
SNMPv1/v2c VxWorks Component Release Supplement.

5.3 Configuring the Network

Before the VxWorks network can be used, both the VxWorks and host

development systems must be configured properly. There are two main concerns

in configuring the network: establishing system names and addresses and

establishing appropriate access permissions for each system.

On Windows, your networking software must be compatible with the Microsoft

Windows Sockets (Winsock 1.1) specification. Consult your Windows and

networking software documentation for specific information on configuring your

host system.

On UNIX, most of the configuration procedures consist of setting up various

network “database” files and the system startup files. In VxWorks, most of the

configuration information necessary for access to a single host is contained in the

boot line. Further initialization can either be added to src/config/usrNetwork.c,

handled by application code, or done interactively from the Tornado shell.

The network configuration procedures for VxWorks and a UNIX host are

discussed in this section and summarized in Table 5-11.

5.3.1 Associating Internet Addresses with Network Interfaces

A system’s physical connection to a network is called a network interface. Each

network interface must be assigned a unique Internet (inet) address. Because a

system can be connected to several networks (or can even have several connections

to the same network), it can have several network interfaces.

On a UNIX system, the Internet address of a network interface is specified using

the ifconfig command. For example, to associate the Internet address 150.12.0.1

with the interface ln0, enter:

% ifconfig ln0 150.12.0.1
280

5

5
Network
This is usually done in the UNIX startup file /etc/rc.boot. For more information, see

the UNIX reference entry for ifconfig.

In VxWorks, the Internet address of a network interface is specified by ifAddrSet().
(See the reference entry for ifLib.) To associate the Internet address 150.12.0.2 with

the interface ln0, enter:

ifAddrSet ("ln0", "150.12.0.2");

The VxWorks network startup routine, usrNetInit() in usrNetwork.c,

automatically sets the address of the interface used to boot VxWorks to the Internet

address specified in the VxWorks boot parameters.

5.3.2 Associating Internet Addresses with Host Names

The underlying Internet protocol uses the 32-bit Internet addresses of systems on

the network. People, however, prefer to use system names that are more

meaningful to them. Thus VxWorks and most host development systems maintain

their own maps between system names and Internet addresses.

On UNIX, /etc/hosts contains the map between system names and Internet

addresses. Each line consists of an Internet address and the computer name(s) at

that address:

150.12.0.2 vx1

There must be a line in this file for each UNIX system and for each VxWorks system

in the network. For more information on /etc/hosts, see your UNIX system

reference entry hosts(5).

In VxWorks, calls to hostAdd() are used to associate system names with Internet

addresses. Make one call to hostAdd() for each system the VxWorks target

communicates with, as follows:

hostAdd ("host", "150.12.0.1");

To associate more than one name with an Internet address, hostAdd() can be called

several times with different host names and the same Internet address. The routine

hostShow() displays the current system name and Internet address associations.1

In the following example, 150.12.0.1 can be accessed with the names host, myHost,
and widget.

-> hostShow
value = 0 = 0x0

1. This routine is not built in to the Tornado shell. To use it from the Tornado shell, you must

define INCLUDE_NET_SHOW in your VxWorks configuration; see 8. Configuration.
281

VxWorks 5.3.1
Programmer’s Guide
The output is sent to the standard output device, and looks like the following:

hostname inet address aliases
-------- ----------- -------
localhost 127.0.0.1
host 150.12.0.1

-> hostAdd "myHost", "150.12.0.1"
value = 0 = 0x0
-> hostAdd "widget", "150.12.0.1"
value = 0 = 0x0
-> hostShow
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

hostname inet address aliases
-------- ----------- -------
localhost 127.0.0.1
host 150.12.0.1 myHost widget
value = 0 = 0x0

The VxWorks network startup routine, usrNetInit() in usrNetwork.c,

automatically adds the name of the host VxWorks was booted from, using the host

name specified in the VxWorks boot parameters.

5.3.3 Transparent Remote File Access

As mentioned previously, VxWorks can use any of three different underlying

protocols to provide transparent remote file access: remote shell (RSH), the

Internet File Transfer Protocol (FTP), or the Network File System (NFS).2

The VxWorks I/O driver netDrv implements remote file access using either of the

first two protocols, RSH or FTP. The netDrv driver uses these protocols to read the

entire remote file into local memory when the file is opened, and to write the file

back when it is closed (if it was modified).

The VxWorks I/O driver nfsDrv implements remote file access using NFS. This

protocol transfers only the data actually read or written to the file and thus gains

considerable efficiency, both in terms of memory utilization and throughput.

However, initial setup is somewhat more cumbersome than the other protocols.

The following sections describe the implementation and configuration of these

protocols.

2. If you are developing on a Windows host, check your Windows and networking software

documentation for information on which of these protocols is available and how to use

them.
282

5

5
Network
Transparent Remote File Access with RSH and FTP

A separate VxWorks I/O device is created for every host that services remote file

accesses. When a file on one of these devices is accessed, netDrv uses either RSH

or FTP to transfer the file to or from VxWorks.

■ Using RSH, netDrv remotely executes the cat command to copy the entire

requested file to and from the target. The RSH protocol is serviced by the

remote shell daemon rshd. See the reference entry for remLib.

■ Using FTP, netDrv uses the RETR and STOR commands to retrieve and store

the entire requested file. The netDrv driver uses a library of routines, in ftpLib,

that implements the client side for the Internet File Transfer Protocol. VxWorks

tasks can transfer files to and from FTP servers on the network and invoke

other FTP functions. See the reference entry for ftpLib.

VxWorks can also function as an FTP server (see Figure 5-6). The FTP daemon

running on a VxWorks server handles calls from host system and VxWorks clients,

and can also boot another VxWorks system. To boot from the VxWorks server with

a local disk, specify the Internet address of the VxWorks server in the host inet
field of the boot parameters, supply a password in the ftp password field, and

specify the shared-memory network as the boot device.

In the following example, a slave on the shared-memory network boots from the

master CPU’s local SCSI disk. (For more information on shared-memory networks,

see 5.4 Shared-Memory Networks, p.301.) Note that although VxWorks requires that

Figure 5-6 FTP Boot Example

CPU 1CPU 0

vxServer

161.27.0.2161.27.0.1

/sd0/vx2

Shared-Memory Network

SCSI Disk

vxSlave
283

VxWorks 5.3.1
Programmer’s Guide
the ftp password field not be blank, the password itself is ignored. The following

boot parameters are for the slave processor (vxSlave):

boot device : sm=0x800000
processor number : 1
host name : vxServer
file name : /sd0/vx2
inet on backplane (b) : 161.27.0.2
host inet (h) : 161.27.0.1
user (u) : jane
ftp password (pw) (blank=use rsh) : ignored

The FTP server daemon is initialized on the VxWorks server by default when

INCLUDE_FTP_SERVER is defined in configAll.h. See the reference entry for

ftpdLib.

Allowing Remote File Access with RSH

An RSH request includes the name of the requesting user. The request is treated

like a remote login by that user.

For Windows hosts, the availability and functionality of this facility is determined

by your version of Windows and the networking software you are using. See that

documentation for details.

For UNIX hosts, such remote logins are restricted by means of the host file .rhosts
in the user’s home directory, and more globally with the host file /etc/hosts.equiv.

The .rhosts file contains a list of system names (as defined in /etc/hosts) that have

access to that user’s login. Therefore, make sure that the user’s home directory has

a .rhosts file listing the VxWorks systems, each on a separate line, that are allowed

to access files remotely using the user’s name.

The /etc/hosts.equiv file provides a less selective mechanism. Systems listed in this

file are allowed login access to any user defined on the local system (except the

super-user root). Thus, adding VxWorks system names to /etc/hosts.equiv allows

those VxWorks systems to access files using any user name on the UNIX system.

The FTP protocol, unlike RSH, specifies both the user name and password on every

request. Therefore, when using FTP, the UNIX system does not use the .rhosts or

/etc/hosts.equiv files to authorize remote access.

Creating VxWorks Network Devices that use RSH or FTP

The routine netDevCreate() is used to create a VxWorks I/O device for a particular

remote host system:

netDevCreate (" devName", " host", protocol)
284

5

5
Network
Its arguments are:

devName the name of the device to be created.

host the Internet address of the host in dot notation, or the name of the

remote system as specified in a previous call to hostAdd(). It is
traditional to use as the device name the host name followed by a

colon.

protocol the file transfer protocol: 0 for RSH or 1 for FTP.

For example, the following call creates a new I/O device on VxWorks called mars:,
which accesses files on the host system mars using RSH:

-> netDevCreate "mars:", "mars", 0

After a network device is created, files on that host can be accessed by appending

the host path name to the device name. For example, the file name

mars:/usr/fred/myfile refers to the file /usr/fred/myfile on the mars system. This

file can be read and/or written exactly like a local file. The following Tornado shell

command opens that file for I/O access:

-> fd = open ("mars:/usr/fred/myfile", 2)

The VxWorks network startup routine, usrNetInit() in usrNetwork.c,

automatically creates a network device for the host name specified in the VxWorks

boot parameters. If no FTP password was specified in the boot parameters, the

network device is specified with the RSH protocol. If a password was specified,

FTP is used.

Setting the User ID for Remote File Access with RSH or FTP

All FTP and RSH requests to a remote system include the user name. All FTP

requests include a password as well as a user name. From VxWorks you can

specify the user name and password for remote requests by calling iam():

iam (" username", " password")

The first argument to iam() is the user name that identifies you when you access

remote systems. The second argument is the FTP password. This is ignored if RSH

is being used, and can be specified as NULL or 0 (zero).

For example, the following command tells VxWorks that all accesses to remote

systems with RSH or FTP are through user fred, and if FTP is used, the password

is flintstone:

-> iam "fred", "flintstone"

The VxWorks network startup routine, usrNetInit() in usrNetwork.c, initially sets

the user name and password to those specified in the boot parameters.
285

VxWorks 5.3.1
Programmer’s Guide
File Permissions

For a VxWorks system to have access to a particular file on a host, permissions on

the host system must be set up so that the user name that VxWorks is using has

permission to read that file (and write it, if necessary). This means that it must have

permission to access all directories in the path, as well as the file itself.

The easiest way to check this is to log in to the host with the user name VxWorks

uses, and try to read or write the file in question. If you cannot do this, neither can

the VxWorks system.

Transparent Remote File Access with NFS

The I/O driver nfsDrv, which provides NFS client support, uses the client routines

in the library nfsLib to access files on an NFS file server.

VxWorks also allows you to run an NFS server to export files to other systems. The

server task mountd allows other systems on the network to mount VxWorks file

systems (dosFs only); then the server task nfsd allows them to read and write to

those files. The VxWorks NFS server facilities are implemented in the following

libraries:

mountLib Mount Protocol library. Provides routines to manage exporting file

systems.

nfsdLib NFS server library. Provides routines to manage requests from remote

NFS clients.

The VxWorks NFS library routines are implemented using RPC. See the library

reference entries and 5.2.8 Remote Procedure Calls, p.278.

Allowing Remote File Access with NFS

On Windows, most networking packages that support NFS also supply a

mechanism for exporting files so that they are visible on the network. See your

Windows and networking software documentation for information on this facility.

To access files on UNIX, NFS clients mount file systems from NFS servers. On a

UNIX NFS server, the file /etc/exports specifies which of the server’s file systems

can be mounted by NFS clients. For example, if /etc/exports contains the following

line:

/usr

then the file system /usr can be mounted by NFS clients such as VxWorks. If a file

system is not listed in this file, it cannot be mounted by other machines. Other
286

5

5
Network
optional fields in /etc/exports allow the exported file system to be restricted to

certain machines or users.

Creating VxWorks Network Devices that use NFS

Access to a remote NFS file system is established by mounting that file system

locally and creating an I/O device for it using the routine nfsMount():

nfsMount (" host", " hostFileSys", " localName")

Its arguments are:

host the host name of the NFS server where the file system resides

hostFileSys the name of the desired host file system or subdirectory

localName the local name to assign to the file system

For example, the following call mounts /usr of the host mars as /vwusr locally:

-> nfsMount "mars", "/usr", "/vwusr"

The host name mars must already be in VxWorks’s list of hosts (added with the

routine hostAdd()). VxWorks then creates a local I/O device /vwusr that refers to

the mounted file system. A reference on VxWorks to a file with the name

/vwusr/fred/myfile refers to the file /usr/fred/myfile on the host mars as if it were

local to the VxWorks system.

If INCLUDE_NFS_MOUNT_ALL is defined in the VxWorks configuration file

configAll.h, VxWorks mounts all exported NFS file systems. Otherwise, the

network startup routine, usrNetInit() in usrNetwork.c, tries to mount the file

system from which VxWorks was booted—as long as NFS is included in the

VxWorks configuration and the VxWorks boot file begins with a slash (/). For

example, if NFS is included and you boot config/ bspname/vxWorks, then VxWorks

attempts to mount /usr from the boot host with NFS.

Setting the User ID for Remote File Access with NFS

When making an NFS request to a host system, the NFS server expects more

information than the user’s name. NFS is built on top of Remote Procedure Call

(RPC) and uses a type of RPC authentication known as AUTH_UNIX. This

mechanism requires the user ID and a list of group IDs that the user belongs to.

These parameters can be set on VxWorks using nfsAuthUnixSet(). For example, to

set the user ID to 1000 and the group ID to 200 for the machine mars, use:

-> nfsAuthUnixSet "mars", 1000, 200, 0
287

VxWorks 5.3.1
Programmer’s Guide
The routine nfsAuthUnixPrompt() provides a more interactive way of setting the

NFS authentication parameters from the Tornado shell.

On UNIX systems, a user ID is specified in the file /etc/passwd. A list of groups that

a user belongs to is specified in the file /etc/group.

A default user ID and group ID is specified in the header file configAll.h by

defining the values of NFS_USER_ID (default user ID is 2001) and NFS_GROUP_ID
(default group ID is 100) respectively. The NFS authentication parameters are set

to these values at system startup. If NFS file access is unsuccessful, make sure that

NFS_USER_ID and NFS_GROUP_ID are correct.

Allowing Remote Access to VxWorks Files through NFS

To export a dosFs file system with NFS, carry out the following steps:

■ Initialize a dosFs file system, with the option that makes it NFS-exportable.

■ Register the file system for export, with a call to nfsExport().

To use the file system from another machine after you export it, you must also:

■ Mount the remote VxWorks file system using local host facilities.

To include NFS server support in your VxWorks configuration, define the constant

INCLUDE_NFS_SERVER in configAll.h. If you wish, you can run a VxWorks

system with only NFS server support (and no client support) by including

INCLUDE_NFS_SERVER but not INCLUDE_NFS in configAll.h.

Initializing an NFS-Exportable File System

To export a dosFs file system with NFS, you must initialize that file system with the

DOS_OPT_EXPORT option (see 4.2.4 Volume Configuration, p.199 in this manual).

With this option, the dosFs initialization code creates some small additional in-

memory data structures; these structures make the file system exportable.

The following steps initialize a DOS file system called /export on a SCSI drive. You

can use any block device instead of SCSI; to use a RAM disk, see RAM Disk Drivers,

p.140. Your BSP can also support other suitable device drivers; see your BSP

documentation.

1. Initialize the block device containing your file system. For example, you can

use a SCSI drive as follows:

scsiAutoConfig (NULL);
pPhysDev = scsiPhysDevIdGet (NULL, 1, 0);
pBlkDev = scsiBlkDevCreate (pPhysDev, 0, 0);
288

5

5
Network
Calling scsiAutoConfig() configures all SCSI devices connected to the default

system controller. (Real applications often use scsiPhysDevCreate() instead,

to specify an explicit configuration for particular devices.) The

scsiPhysDevIdGet() call identifies the SCSI drive by specifying the SCSI

controller (NULL specifies the default controller), the bus ID (1), and the

Logical Unit Number (0). The call to scsiBlkDevCreate() initializes the data

structures to manage that particular drive.

2. Initialize the file system with the usual dosFs facilities, but also specify the

option DOS_OPT_EXPORT. If your NFS client is PC-based, it may also require

the DOS_OPT_LOWERCASE option. For example, if the device already has a

valid dosFs file system on it (see 4.2.6 Using an Already Initialized Disk, p.204 in

this manual), initialize it as follows:

dosFsDevInitOptionsSet (DOS_OPT_EXPORT);
dosFsDevInit ("/export", pBlkDev, NULL);

Otherwise, specify a pointer to a DOS_VOL_CONFIG structure as the third

argument to dosFsDevInit() (see the dosFsLib reference entry).

NOTE: For NFS-exportable file systems, the device name must not end in a slash.

Exporting a File System through NFS

After you have an exportable file system, call nfsExport() to make it available to

NFS clients on your network. Then mount the file system from the remote NFS

client, using the facilities of that system. The following example shows how to

export the new dosFs file system from a VxWorks platform called vxTarget, and

how to mount it from a typical UNIX system.

1. After the file system (/export in this example) is initialized, the following

function call specifies it as a file system to be exported with NFS:

nfsExport ("/export", 0, FALSE, 0);

The first three arguments specify the name of the file system to export; the

VxWorks NFS export ID (0 means to assign one automatically); and whether

to export the file system as read-only. The last argument is a place-holder for

future extensions.

2. To mount the file system from another machine, see the system documentation

for that machine. Specify the name of the VxWorks system that exports the file

system, and the name of the desired file system. You can also specify a different

name for the file system as seen on the NFS client.

NOTE: On UNIX systems, you normally need root access to mount file systems.

!

!

289

VxWorks 5.3.1
Programmer’s Guide
For example, on a typical UNIX system, the following command (executed

with root privilege) mounts the /export file system from the VxWorks system

vxTarget, using the name /mnt for it on UNIX:

/etc/mount vxTarget:/export /mnt

Properties of NFS-Exported File Systems

Several global variables allow you to specify dosFs facilities related to NFS

support. Because these facilities use global variables, you can export previously

existing dosFs file systems without altering the existing configuration stored with

the file system data on disk.

However, because these are global variables, you must take care to avoid race

conditions if more than one task initializes dosFs file systems. If your application

initializes file systems for NFS on the fly, you may need mutual exclusion

surrounding these global variable settings and the corresponding file system

initialization.

You can specify a single user ID, group ID, and mode (permissions) for all files

within a dosFs file system. To specify these values, define the following global

variables before initializing a dosFs file system with either dosFsDevInit() or

dosFsMkfs():

dosFsUserId Numeric user ID. Default: 65534.

dosFsGroupId Numeric group ID. Default: 65534.

dosFsFileMode Numeric file access mode (that is, permissions with UNIX

encoding). Default: 511 (octal, 777).

These settings remain in effect for the file system until you reboot.

WARNING: dosFsFileMode controls only how the file access mode is reported to

NFS clients; it does not override local access restrictions on the DOS file system. In

particular, if any file in an exported file system has DOS_ATTR_RDONLY set in its

file-attribute byte, no modifications to that file are permitted regardless of what

dosFsFileMode says.

You can also set the current date and time for the DOS file system using

dosFsDateSet() and dosFsTimeSet(). For a discussion of these routines and other

standard dosFs facilities, see 4.2 MS-DOS-Compatible File System: dosFs, p.191 in

this manual.

!

290

5

5
Network
Limitations of the VxWorks NFS Server

The VxWorks NFS server can export only dosFs file systems, which leads to the

following DOS limitations:

– File names in dosFs normally share the DOS limit of 8 characters with a three-

character extension. An optional dosFs feature allows (at the expense of DOS

compatibility) file names up to forty characters long. To enable this extension,

create the file system with the DOS_OPT_LONGNAMES option (defined in

dosFsLib.h).

– DOS file systems do not provide for permissions, user IDs, and group IDs on

individual files. You can provide a single user ID, a single group ID, and a

single set of permissions for all files on an entire DOS file system by defining

the global variables dosFsUserId, dosFsGroupId, and dosFsFileMode,

described in the reference entry for dosFsLib.

– Because the DOS file system does not provide file permissions, VxWorks does

not normally provide authentication services for NFS requests. To authenticate

incoming requests, write your own authentication routines and arrange to call

them when needed. See the reference entries for nfsdInit() and mountdInit()
for information on authorization hooks.

5.3.4 Remote File Transfer Using TFTP

The Trivial File Transfer Protocol (TFTP) is implemented on top of the Internet

User Datagram Protocol (UDP). VxWorks provides both a TFTP client and a TFTP

server. Typically the TFTP client side is used at boot time to download the

VxWorks from the boot host to the target. The VxWorks TFTP server can be used

to boot an X-Terminal from VxWorks or boot another VxWorks system from a local

disk.

Unlike FTP and RSH, TFTP requires no authentication; that is, the remote system

does not require an account or password. The TFTP server allows only publicly

readable files to be accessed. Files can be written only if they already exist and are

publicly writable.

Host TFTP Server

The TFTP server is typically started by the Internet daemon on the host. For added

security, some hosts (for example, Sun hosts) start the TFTP server with the secure

(-s) option enabled by default. If this option is specified, the server roots all TFTP

requests in the directory specified (for example, /tftpboot) to restrict access to the

host.
291

VxWorks 5.3.1
Programmer’s Guide
For example, if the secure option was set with -s /tftpboot, a TFTP request for the

file /vxBoot/vxWorks is satisfied by the file /tftpboot/vxBoot/vxWorks rather than

the expected file /vxBoot/vxWorks.

To disable the secure option on the TFTP server, edit /etc/inetd.conf and remove

the -s option from the tftpd entry.

VxWorks TFTP Server

The TFTP server daemon is initialized by default when INCLUDE_TFTP_SERVER
is defined in configAll.h. See the reference entry for tftpdLib.

VxWorks TFTP Client

Include the VxWorks TFTP client side by defining INCLUDE_TFTP_CLIENT in

configAll.h. To boot using TFTP, specify 0x80 in the boot flags parameters. To

transfer files from the TFTP host and the VxWorks client, two high-level interfaces

are provided, tftpXfer() and tftpCopy(). See the reference entry for tftpLib.

5.3.5 Remote Login from VxWorks to the Host: rlogin()

You can log in to a host system from a VxWorks terminal using rlogin().

For a Windows host system, VxWorks’s ability to remotely log in depends on your

version of Windows and the networking software you are using. See that

documentation for details.

For a UNIX host system, access permission must be granted to the VxWorks

system by entering its system name either in the .rhosts file (in your home

directory) or in the /etc/hosts.equiv file. For more information, see Allowing Remote
File Access with RSH, p.284.

5.3.6 Adding Gateways to a Network

The Internet protocols allow hosts on different but connected networks to

communicate. If a machine on one network sends a packet to a machine on another

network, then a gateway is sought that can forward the message from the sender’s

network to the destination network. If a system has interfaces to more than one

network, it can be a gateway between those networks. One of the primary

functions of IP (the lower-level protocol of TCP/IP) is to perform this routing and

forwarding among interconnected networks.
292

5

5
Network
Many systems have a routing daemon (routed) that exchanges routing

information with other systems to determine network connectivity. VxWorks,

however, has no routing daemon, and must instead be told explicitly about any

gateways it requires. Similarly, if a VxWorks system is a gateway, other systems

must be told about it explicitly, because VxWorks does not broadcast routing

information.

Adding a Route on Windows

Again, this procedure varies with your version of Windows and your networking

software package. See the documentation for your system for details.

Adding a Route on UNIX

A UNIX system can be told explicitly about a gateway in one of two ways: by

editing /etc/gateways or using the route command.

When the UNIX route daemon routed is started (usually at boot time), it reads a

static routing configuration from /etc/gateways. Each line in /etc/gateways
specifies a network gateway in the following format:

net destinationAddr gateway gatewayAddr metric n passive

where n is the hop count from the host system to the destination network (the

number of gateways between the host and the destination network) and “passive”

indicates the entry is to remain in the routing tables.

For example, consider a system on network 150. The following line in

/etc/gateways describes a gateway between networks 150 and 161, with an Internet

address 150.12.0.1 on network 150; a hop count (metric) of 1 specifies that the

gateway is a direct connection between the two networks:

net 161.27.0.0 gateway 150.12.0.1 metric 1 passive

After editing /etc/gateways, you must kill the route daemon and restart it, because

it only reads /etc/gateways when it starts. After the route daemon is running, it is

not aware of subsequent changes to the file.

You can also use the route command to add routing information explicitly:

route add destination-network gatewayAddr [metric]

For example, the following command configures the gateway in the same way as

did the previous example, which used the /etc/gateways file:

route add net 161.27.0.0 150.12.0.1 1
293

VxWorks 5.3.1
Programmer’s Guide
Note, however, that routes added with this manual method are lost the next time

the system boots.

You can confirm that a route is in the routing table by using the UNIX command

netstat -r.

Adding a Route on VxWorks

To add gateways to the VxWorks network routing tables, use routeAdd():

routeAdd (" destinationAddr", " gatewayAddr")

Both addresses can be specified either by dot notation or by the host names defined

by the routine hostAdd(). If destinationAddr is a subnet, you can use

routeNetAdd() instead.

For example, consider two VxWorks machines vx2 and vx3 (shown in Figure 5-7),

both interfaced to network 161. Suppose that vx3 is a gateway between networks

150 and 161 and that its Internet address on network 161 is 161.27.0.3.

The following calls can then be made on vx2 to establish vx3 as a gateway to

network 150:

-> routeAdd ("150.12.0.0", "vx3");

Figure 5-7 Routing Example

161.27.0.2

vx2

150.12.0.2

h1

Network 161

Network 150

161.27.0.3

vx3

150.12.0.1
294

5

5
Network
or:

-> routeAdd ("150.12.0.0", "161.27.0.3");

You can confirm that a route is in the routing table with the routeShow() routine.3

Other routing functions are available in the library routeLib.

The VxWorks network startup routine, usrNetInit() in usrNetwork.c,

automatically adds the gateway specified in the boot parameters (if any) to the

routing tables. In this case, the address specified in the gateway field (g =) is added

as the gateway to the network of the boot host.

5.3.7 Testing Network Connections

You can use the ping() utility from VxWorks to test whether a particular system is

accessible over the network. Like the UNIX command of the same name, ping()
sends one or more packets to another system and waits for a response. You can

identify the other system either by name or by its numeric Internet address. This is

useful for testing routing tables and host tables, or whether another machine is

responding to network requests.

The following example shows ping() output for an address that cannot be reached:

-> ping "150.12.0.1",1
no answer from 150.12.0.1
value = -1 = 0xffffffff = _end + 0xfff91c4f

If the first argument does not have the form of a numeric Internet address, ping()
uses the host table to look it up, as in the following example:

-> ping "caspian",1
caspian is alive
value = 0 = 0x0

The numeric argument specifies how many packets to expect back (typically, when

an address is reachable, that is also how many packets are sent). If you specify

more than one packet, ping() displays more elaborate output, including summary

statistics. For example, the following test sends packets to a remote network

address until it receives ten acknowledgments, and reports on the time it takes to

get replies:

-> ping "198.41.0.5",10
PING 198.41.0.5: 56 data bytes
64 bytes from 198.41.0.5: icmp_seq=0. time=176. ms

3. This routine is not built into the Tornado shell. To use it from the Tornado shell, define

INCLUDE_NET_SHOW in your VxWorks configuration; see 8. Configuration in this

manual.
295

VxWorks 5.3.1
Programmer’s Guide
64 bytes from 198.41.0.5: icmp_seq=1. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=2. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=3. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=4. time=80. ms
64 bytes from 198.41.0.5: icmp_seq=5. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=6. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=7. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=8. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=9. time=64. ms

----198.41.0.5 PING Statistics----
10 packets transmitted, 10 packets received, 0% packet loss
round-trip (ms) min/avg/max = 64/76/176
value = 0 = 0x0

The report format matches the format used by the UNIX ping utility. Timings are

based on the system clock; its resolution may be too coarse to show any elapsed

time when communicating with targets on a local network.

Applications can use ping() periodically to test whether another network node is

available. To support this use, the ping() routine returns a STATUS value and

accepts a PING_OPT_SILENT flag as a bit in its third argument to suppress printed

output, as in the following code fragment:

...
/* Check whether other system still there */

if (ping (partnerName, 1, PING_OPT_SILENT) == ERROR)
{
meDownShut(); /* clean up and exit */
}

...

You can set one other flag in the third ping() argument: PING_OPT_DONTROUTE
restricts ping() to hosts that are directly connected, without going through a

gateway.

5.3.8 Broadcast Addresses

Many physical networks support the notion of broadcasting a packet to all hosts on

the network. A special Internet broadcast address is interpreted by the network

subsystem to mean “all systems” when specified as the destination address of a

datagram message (UDP). This is shown in the demo program

src/demo/dg/dgTest.c.

Unfortunately, there is some ambiguity about what address is to be interpreted as

the broadcast address. The Internet specification now states that the broadcast

address is an Internet address with a host part of all ones. However, some older

systems use an Internet address with a host part of all zeros.
296

5

5
Network
Most newer systems, including VxWorks, accept either address on incoming

packets as being a broadcast packet. But when an application sends a broadcast

packet, it must use the correct broadcast address for its system.

VxWorks normally uses a host part of all ones as the broadcast address. Thus a

datagram sent to Internet address 150.255.255.255 (0x5affffff) is broadcast to all

systems on network 150. However, to allow compatibility with other systems,

VxWorks allows the broadcast address to be reassigned for each network interface

by calling the routine ifBroadcastSet(). For more information, see the reference

entry for ifBroadcastSet().

5.3.9 Using Subnets

An Internet address consists of a network address portion and a host address

portion. As described previously, there are different classes of Internet addresses

in which different parts of the 32-bit address are assigned to each portion. This

provides a great deal of flexibility in network addressing. Even so, in some

environments network addresses are a scarce resource—an organization can be

limited to a certain number of network addresses by a higher authority.

A single network address can be subdivided into multiple sub-networks using a

technique called subnet addressing. This technique involves extending the network

portion of the addresses used on a particular set of physical networks. The

interpretation of the Internet address is altered to include more bits in the network

portion and fewer in host portion. For example, if a network uses a type B address

(131.1.0.0), the third byte can be used for the subnet and the fourth byte for the host

address, as shown in Figure 5-8. Internal to the subnet, the Internet address is

interpreted as 131.1.7 for the network portion and 81 for the host portion.

The specification of which bits are to be interpreted as the network address is

called the net mask. A net mask is a 32-bit value with 1’s in all bit positions to be

interpreted as the network portion. In the example in Figure 5-8, the netmask is

0xffffff00. In VxWorks, use ifMaskSet() to specify the net mask for a particular

network interface. For more information, see the reference entry for ifMaskSet().

Figure 5-8 Subnetting

131.1.7.81

subnetnetwork host
297

VxWorks 5.3.1
Programmer’s Guide
Specify a net mask during booting if you must correctly access the host from which

you are booting. This can be done by appending :mask to the Internet address

specifications for the Ethernet and/or backplane interfaces in the boot parameters,

where mask is the desired net mask in hexadecimal. For example, when entering

boot parameters interactively, it might look as follows:

inet on ethernet (e) : 131.1.7.81:ffffff00
inet on backplane (b) : 131.1.81.1:ffffff00

When specifying the boot parameters in a boot string, the same Internet address

specification looks as follows:

e=131.1.7.81:ffffff00 b=131.1.81.1:ffffff00

5.3.10 Configuration of Mbufs

You can control the number of buffers (mbufs) that can be assigned to the Internet

software by modifying the structures mbufConfig and clusterConfig in

usrNetwork.c (in src/config). These structures allow you to specify the size and

location of a memory pool from which the network buffers are allocated. The

following structure is used to configure mbufs or mbuf clusters:

typedef struct
{
int initialAlloc;
int incrementAlloc;
int maxAlloc;
int memPartition;
int memPartitionSize;
} MBUF_CONFIG;

The fields in this structure are:

initialAlloc the number of mbufs or clusters to allocate at boot time.

incrementAlloc the number of mbufs or clusters that are allocated, each time

an “out of buffers” condition exits. After these buffers are

allocated, they remain permanently in the mbufs pool.

maxAlloc the maximum number of mbufs or clusters that can be

allocated.

memPartition the default is the system memory pool, which is indicated by

passing the value NULL. If an address is specified, the system

attempts to create a memory partition using this address. If

the partition cannot be created, the root task suspends itself

and prints an error message on the console.
298

5

5
Network
memPartitionSize
ignored when memPartition is NULL. If memPartition is not

NULL, memPartitionSize specifies the size of the memory

pool to be used for mbufs or clusters. It must be large enough

to allocate the number of buffers specified in initialAlloc. If

this field is not large enough to accommodate the number of

buffers specified in initialAlloc, the root task suspends itself

and prints an error message on the console.

Changes to the configuration of mbufs or clusters reflects the network traffic

requirements of your system. If your network needs are small and your

application performs a lot of memory allocation, you can decrease the default

values to recover the additional memory. If your network needs are larger, the

default values can be increased to help avoid lost packets or increase network

performance.

NOTE: Perform the configuration of mbufs and mbuf clusters only after some data

about the behavior of the system is collected and the desired behavior determined.

The defines for the default configuration are in the file h/net/mbuf.h.

Table 5-11 Network Procedures Summary

Function On UNIX On VxWorks

Associate

Internet

addresses with

network

interfaces.

Use ifconfig in /etc/rc.local:
ifconfig ln0 150.12.0.1

or:
ifconfig ln0 host

Call ifAddrSet():
-> ifAddrSet "ln0", "150.12.0.2"

Associate

Internet

addresses with

system names.

Add address-name pairs to /etc/hosts:
150.12.0.1 host

or:
150.12.0.2 vw1 sonny

Call hostAdd():
-> hostAdd "host", "150.12.0.1"
-> hostAdd "vw1", "150.12.0.2"
-> hostAdd "sonny", "150.12.0.2"

Examine host

names.

Look at /etc/hosts. Call hostShow() if INCLUDE_NET_SHOW is

defined in your VxWorks configuration.

Transparent

remote file

access with

RSH.

Add remote system names to

/etc/hosts.equiv or /userhome/.rhosts:
vw1
vw2

Create network devices to remote systems using

RSH:
-> netDevCreate "host:", "host", 0

Set user name using iam():
-> iam "fred", 0

Access files with created device name:
-> copy < /host:/usr/myfile

!

299

VxWorks 5.3.1
Programmer’s Guide
Transparent

remote file

access with

FTP.

No action necessary. Create network devices to remote systems using

FTP:
-> netDevCreate "host:", "host", 1

Set user name and password using iam():
-> iam "fred", "flintstone"

Access files with created device name:
-> copy < /host:/usr/fred/myfile

Transparent

remote file

access with

NFS.

Add the names of mountable file

systems and a list of groups that have

access to them in /etc/exports.

Create NFS device:
-> nfsMount "host", "/usr", "/hostUsr"

Set NFS authentication with nfsAuthUnixSet()
or nfsAuthUnixPrompt():

-> nfsAuthUnixSet "host", uid, gid, 0

Access files with mounted name:
-> copy < /hostUsr/fred/myfile

Exporting

dosFs file

system with

NFS.

Use mount (as root):
/etc/mount vw:/export /mnt

Initialize the file system using

DOS_OPT_EXPORT (0x8):
-> dosFsDevInitOptionsSet (0x8)
-> dosFsDevInit "/export", pBlkDev, 0

Register with NFS server for export:
-> nfsExport "/export", 0, 0, 0

Remote login

from VxWorks

to host with

rlogin().

Add remote system names to

/etc/hosts.equiv or /userhome/.rhosts:
vw1

Set the user name with iam():
-> iam ("fred")

Use rlogin():
-> rlogin "host"

Add gateways

to a network.

Add gateway to /etc/gateways and

restart routed:
net 161.27.0.0 gateway \

150.12.0.3 metric 1 passive

or use route:
route add 161.27.0.0

150.12.0.3

Call routeAdd():
-> routeAdd "150.12.0.0", "vx3"
-> routeAdd "150.12.0.0", "161.27.0.3"

Examine

routing tables.

Use netstat:
% netstat -r

Call routeShow() if INCLUDE_NET_SHOW is

defined in your VxWorks configuration.

Examine

network

interfaces.

Use ifconfig:
% ifconfig ln0

Call ifShow() if INCLUDE_NET_SHOW is

defined in your VxWorks configuration:
-> ifShow ("ln0")

Table 5-11 Network Procedures Summary (Continued)

Function On UNIX On VxWorks
300

5

5
Network
5.4 Shared-Memory Networks

The VxWorks network subsystem has many layers of protocols. At the bottom

layer are the network interface drivers; their job is to transmit and receive packets

on the physical network medium. In addition to supplying drivers for traditional

network media such as Ethernet, VxWorks also supplies a shared-memory network
driver, sm, which provides communication over a backplane bus.

The advantage of a shared-memory network driver compatible with the rest of the

network subsystem is that all higher-level protocols are immediately available

over the backplane, as they are over Ethernet. Facilities like socket

communications, remote login, remote file access, and NFS are all available to and

from any processor on the backplane, simultaneously. Use of the network facilities

over the backplane is indistinguishable from their use over any other medium.

A multiprocessor backplane bus becomes an Internet network of its own. Each

shared-memory network has its own network/subnet number. As usual, each

processor on the shared-memory network has a unique Internet address.

NOTE: This is different if you are using proxy ARP; see 5.5 Proxy ARP, p.316 for

additional information.

In the example shown in Figure 5-9, two CPUs are on the backplane. The shared-

memory network’s Internet address is 161.27.0.0. Each CPU on the shared-memory

network has a unique Internet address, 161.27.0.1 for vx1 and 161.27.0.2 for vx2.

The routing capabilities of the VxWorks Internet protocols allow the processors on

the shared-memory network to reach systems on other networks over a gateway
processor on the shared-memory network. The gateway processor has connections

to both the shared-memory network and an external network, typically an

Ethernet network. This makes all levels of network communications available

Figure 5-9 Shared-Memory Network

!

Backplane

161.27.0.1 161.27.0.2

161.27.0.0

vx1 vx2
301

VxWorks 5.3.1
Programmer’s Guide
between any processor on the shared-memory network and any other host or

target system on the external network.

Finally, the low-level packet passing mechanism of the shared-memory network

driver is also available directly. This allows alternative protocols to be run over the

shared-memory network in parallel with the standard ones.

The VxWorks shared-memory network driver uses the following techniques to

send network packets from one processor on the backplane to another:

■ Packets are transferred across the backplane through a pool of shared memory
that can be accessed by all processors on the backplane.

■ Access to the shared-memory pool is interlocked by use of a test-and-set

instruction.

■ Processors can either poll the shared-memory data structures for input packets

periodically, or be notified of input packets by interrupts.

The shared-memory network is configured by constants in the header file config.h
and by parameters specified to the VxWorks boot ROMs. The following sections

give the details of the backplane network operation and configuration.

5.4.1 The Backplane Shared-Memory Pool

The basis of the VxWorks shared-memory network is the shared-memory pool. This

is a contiguous block of memory that must be accessible to all processors on the

backplane. Typically this memory is either part of one of the processors’ on-board,

dual-ported memory, or on a separate memory board.

Backplane Processor Numbers

The processors on the backplane are each assigned a unique backplane processor
number starting with 0. The assignment of numbers is arbitrary, except for

processor 0, which by convention is the shared-memory network master, described

in the next section.

The processor numbers are established by the parameters supplied to the boot

ROMs when the system is booted. These parameters can be burned into ROM, set

in the processor’s NVRAM (if available), or entered interactively.
302

5

5
Network
The Shared-Memory Network Master: Processor 0

One of the processors on the backplane is the shared-memory network master. The

shared-memory network master has the following responsibilities:

■ Initializing the shared-memory pool and the shared-memory anchor.

■ Maintaining the shared-memory heartbeat.

■ Functioning (usually) as the gateway to the external (Ethernet) network.

■ Allocating the shared-memory pool itself from its dual-ported memory (in

some configurations).

No processor can use the shared-memory network until the master has initialized

it. However, the master processor is not involved in the actual transmission of

packets on the backplane between other processors. After the shared-memory pool

is initialized, the processors, including the master, are all peers.

The configuration module src/config/usrNetwork.c is set up to establish processor

0 as the master. The master usually boots from the external (Ethernet) network

directly. The master has two Internet addresses in the system: its Internet address

on the Ethernet, and its address on the shared-memory network. See the reference

entry for usrConfig.

The other processors on the backplane boot indirectly over the shared-memory

network, using the master as the gateway. They have only an Internet address on

the shared-memory network. These processors specify the shared-memory

network interface, sm, as the boot device in the boot parameters.

The Shared-Memory Anchor

In various configurations, the shared-memory pool is located at different locations.

In many situations, it is desirable to allocate the shared memory at run-time, rather

than fixing its location at the time the system is built.

All processors on the shared-memory network must be able to locate the shared-

memory pool, even when its location is not known at the time the system is built.

The shared-memory anchor serves as a common point of reference for all

processors. The anchor is a small data structure placed at a fixed location when the

system is built. This is usually either in low memory of the dual-ported memory of

one of the processors, or at some fixed address on the separate memory board.

The anchor contains a pointer to the actual shared-memory pool. This is set up by

the master when the shared-memory network is initialized. The anchor’s
303

VxWorks 5.3.1
Programmer’s Guide
“pointer” to the shared-memory pool is actually an offset from the anchor itself;

thus the anchor and pool must be in the same address space so that this offset is

the same for all processors.

The backplane anchor address is established in one of two ways: either by

parameters in config.h, or by boot parameters. For the shared-memory network

master, the anchor address is established in the master’s configuration header file

config.h at the time the system image is built. Set the value of

SM_ANCHOR_ADRS, in config.h of the master, to the address of the anchor as seen
by the master.

For the other processors on the shared-memory network, a default anchor address

can be established in the same way, by the setting of SM_ANCHOR_ADRS in

config.h. However, this requires burning boot ROMs with that configuration,

because the other processors must boot from the shared-memory network to begin

with. For this reason, the anchor address can also be specified in the boot

parameters if the shared-memory network is the boot device. This is done by

appending the address to the shared-memory network boot device code sm,

separated by an equal sign (=). Thus the following boot parameter establishes the

anchor address at 0x800000:

boot device: sm=0x800000

In this case, this is the address of the anchor as seen by the processor being booted.

The Shared-Memory Heartbeat

The processors on the shared-memory network cannot communicate over that

network until the shared-memory pool initialization is finished. To let the other

processors know when the backplane is “alive,” the master maintains a shared-
memory heartbeat. This heartbeat is a counter that is incremented by the master once

per second. Processors on the shared-memory network determine that the shared-

memory network is alive by watching the heartbeat for a few seconds.

The shared-memory heartbeat is located in the first 4-byte word of the shared-

memory packet header. The offset of the shared-memory packet header is the fifth

4-byte word in the anchor, as shown in Figure 5-10.

Thus, if the anchor were located at 0x800000:

[VxWorks Boot]: d 0x800000
800000: 8765 4321 0000 0001 0000 0000 0000 002c *.eC!...........,*
800010: 0000 0170 0000 0000 0000 0000 0000 0000 *...p............*
800020: 0000 0000 0000 0000 0000 0000 0000 0000 *................*
304

5

5
Network
The offset to the shared-memory packet header is 0x170. To view the shared-

memory packet header, display 0x800170:

[VxWorks Boot]: d 0x800170
800170: 0000 0050 0000 0000 0000 0bfc 0000 0350 *...P...........P*

In this example, the value of the shared-memory heartbeat is 0x50. Display this

location again to ensure that the heartbeat is alive; if its value has changed, the

network is alive.

Shared Memory Location

As mentioned previously, the shared memory can either be put at a fixed location

at the time the system is built, or be allocated dynamically at run-time. The location

is determined by the value of SM_MEM_ADRS in config.h. This constant can be

specified as follows:

■ NONE (-1) means that the shared-memory pool is to be dynamically allocated

from the master’s on-board dual-ported memory.

■ An absolute address that is different from the anchor address

SM_ANCHOR_ADRS means that the shared-memory pool starts at that fixed

address.

■ For convenience, an absolute address that is the same as the anchor address

means the shared-memory pool starts immediately after the anchor data

structure; the size of that structure need not be known in advance.

Figure 5-10 Shared-Memory Heartbeat

~~ ~~

1. ready value
2. .
3. .
4. .
5. Offset for smPktHeader

heartbeat

Shared-Memory
Anchor

smPktHeader
(anchor + offset)
305

VxWorks 5.3.1
Programmer’s Guide
Shared Memory Size

The size of the shared-memory pool is determined by the value of SM_MEM_SIZE
in the header file config.h.

The size required for the shared-memory pool depends on the number of

processors and the expected traffic. There is less than 2KB of overhead for data

structures. After that, the shared-memory pool is divided into 2KB packets. Thus,

the maximum number of packets that can be outstanding on the backplane

network is (poolsize – 2KB) / 2KB. A reasonable minimum is 64KB. A configuration

with a large number of processors on one backplane and many simultaneous

connections can require as much as 512KB. Having too small a pool slows down

communications.

On-Board and Off-Board Options

The config.h files delivered with VxWorks contain a conditional compilation that

makes it easy to select a pair of typical configurations. The constant

SM_OFF_BOARD can be defined TRUE to select a typical off-board shared-memory

pool, or FALSE to select a typical on-board shared-memory pool.

A typical off-board configuration establishes the backplane anchor and pool to be

located at an absolute address of 0x800000 on a separate memory board with a size

of 512KB.

The on-board configuration establishes the shared-memory anchor at a low address

in the master processor’s dual-ported memory. The shared-memory pool is

configured to be malloc’ed from the master’s own memory at run time. The size of

the pool allocated is set to 64KB.

These configurations are provided as examples; change them to suit your

configuration.

Additional configuring may be required to make the shared memory non-

cacheable, because the shared-memory pool is accessed by all processors on the

backplane. By default, boards with an MMU have the MMU turned on. With the

MMU on, memory that is off-board must be made non-cacheable. This is done

using the sysPhysMemDesc[] table in sysLib.c. The VME address space used for

the shared-memory pool must have a virtual-to-physical mapping in this data

structure, as well as mark the memory as non-cacheable (done by default). For the

MC680x0 family of processors, virtual addresses must equal physical addresses.

For the 68030, if the MMU is off, caching must be turned off globally; see the
306

5

5
Network
reference entry for cacheLib. Note that the default for all BSPs is to have their VME

bus access set to non-cacheable in sysPhysMemDesc[]. See 7.3 Virtual Memory
Configuration, p.407 in this manual for additional information.

Test-and-Set to Shared Memory

Unless some form of mutual exclusion is provided, multiple processors can

simultaneously access certain critical data structures of the shared-memory pool

and cause fatal errors. The VxWorks shared-memory network uses an indivisible

test-and-set instruction to obtain exclusive use of a shared-memory data structure.

This translates into a read-modify-write (RMW) cycle on the backplane bus.

It is important that the selected shared memory support the RMW cycle on the bus

and guarantee the indivisibility of such cycles. This is especially problematic if the

memory is dual-ported, as the memory must then also lock out one port during a

RMW cycle on the other.

Some processors do not support RMW indivisibly in hardware, but do have

software hooks to allow this. For example, some processor boards have a flag that

can be set to prevent the board from releasing the backplane bus, after it is

acquired, until that flag is cleared. These techniques can be implemented in the

system-dependent library sysLib.c for the processor, in the routine sysBusTas().
The shared-memory network driver calls this routine to effect the mutual

exclusion on shared-memory data structures.

NOTE: Define the constant SM_TAS_TYPE in configAll.h to either SM_TAS_SOFT
or SM_TAS_HARD. If even one processor on the backplane lacks hardware test and

set, all processors in the backplane must use the software test and set

(SM_TAS_SOFT).

5.4.2 Interprocessor Interrupts

Each processor on the backplane has a single input queue of packets sent to it from

other processors. There are three methods processors use to determine when to

examine their input queues: polling, bus interrupts, and mailbox interrupts.

When using polling, the processor examines its input queue periodically. When

using interrupts, the processor receives an interrupt from the sending processor

when its input queue has packets. Of course, interrupt-driven communication is

much more efficient than polling.

!

307

VxWorks 5.3.1
Programmer’s Guide
Most backplane buses have a limited number of bus-interrupt lines available on

the backplane (for example, VMEbus has seven). A processor can use one of these

interrupt lines as its input interrupt. However, each processor must have its own

interrupt line. Furthermore, not all processor boards are capable of generating bus

interrupts. Thus, bus interrupts are difficult to use.

A much better interrupt mechanism is mailbox interrupts, also called location
monitors because they monitor the access to specific memory locations. A mailbox

interrupt is a bus address that, when written to or read from, causes a specific

interrupt on the processor board. Each board can be set, with hardware jumpers or

software registers, to use a different address for its mailbox interrupt.

To generate a mailbox interrupt, a processor writes to that location. There is

effectively no limit to the number of processors that can use mailbox interrupts,

because each processor takes up only a single address on the bus. Most modern

processor boards include some kind of mailbox interrupt.

Each processor must tell the other processors what method to use to notify it when

its input queue has packets. In the shared-memory data structures, each processor

enters its interrupt type and up to three parameters about that type. This

information is used by the shared-memory network driver of the other processors

when sending packets to that processor.

The interrupt type and parameters for each processor are specified in config.h by

the constants SM_INT_TYPE and SM_INT_ARGn. The possible values of

SM_INT_TYPE and the corresponding parameters are defined in the header file

smNetLib.h. Table 5-12 summarizes interrupt types and parameters.

Table 5-12 Backplane Interrupt Types

Type Arg 1 Arg 2 Arg 3 Description

SM_INT_NONE - - - Polling

SM_INT_BUS level vector - Bus interrupt

SM_INT_MAILBOX_1 address space address value 1-byte write mailbox

SM_INT_MAILBOX_2 address space address value 2-byte write mailbox

SM_INT_MAILBOX_4 address space address value 4-byte write mailbox

SM_INT_MAILBOX_R1 address space address - 1-byte read mailbox

SM_INT_MAILBOX_R2 address space address - 2-byte read mailbox

SM_INT_MAILBOX_R4 address space address - 4-byte read mailbox
308

5

5
Network
5.4.3 Sequential Addressing

Sequential addressing is a method of addressing a target on the network with

respect to its location on the backplane. Targets are addressed in sequential

ascending order; the master has the lowest address, as shown in Figure 5-11.

With sequential addressing, a target on the shared-memory network can self-

configure its IP address. Only the master must know an IP address (the starting

address). All other targets on the network determine their IP address by adding the

starting IP address to the local target’s processor number.

Sequential addressing provides a more tightly coupled environment for the

shared-memory network. Because a target can determine its own Internet address

as well as the Internet addresses of all other targets on the shared-memory

network, hardware-to-IP translation (ARP) is unnecessary over the VxWorks

shared-memory network, and is therefore eliminated.

When setting up a shared-memory network, allocate a sequential block of valid IP

addresses to a shared-memory network. The master for this network is assigned

the lowest address in this block. When the shared-memory network driver is

initialized by the master (with smNetInit()), the starting IP address is passed in as

a parameter and is stored in the shared-memory packet header.

Each target sets its interface address with ifAddrSet(). This routine checks that the

address to which the interface is being set is the expected address for its location

on the backplane, based on the processor number from the boot parameters. If any

other address is specified, the operation fails. To determine the starting address on

an active shared-memory network, use smNetShow().4

4. This routine is not built in to the Tornado shell. To use it from the Tornado shell, define

INCLUDE_SHOW_ROUTINES in your VxWorks configuration; see 8. Configuration.

Figure 5-11 Sequential Addressing

150.12.17.1 150.12.17.2 150.12.17.3

(Shared-Memory Network)
sm0

CPU 0 CPU 1 CPU 2
309

VxWorks 5.3.1
Programmer’s Guide
 In the following example, the master’s IP address is 150.12.17.1.

-> smNetShow
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Anchor Local Addr: 0x800000, SOFT TAS
Sequential addressing enabled. Master address: 150.12.17.1
heartbeat = 453, header at 0x800170, free pkts = 235.
cpu int type arg1 arg2 arg3 queued pkts
----- ----------- --------- --------- --------- --------------
 0 mbox-1 0x2d 0x803f 0x10 0
 1 mbox-1 0x2d 0x813f 0x10 0
input packets = 366 output packets = 376
input errors = 0 output errors = 1
collisions = 0

With sequential addressing, when booting a slave, the backplane IP address and

gateway IP boot parameters are no longer necessary. The default gateway address

is the address of the master. Another address can be specified if this is not the

desired configuration.

[VxWorks Boot]: p
boot device : sm=0x800000
processor number : 1
file name : /folk/fred/wind/target/config/ bspname/vxWorks
host inet (h) : 150.12.1.159
user (u) : fred
flags (f) : 0x0

[VxWorks Boot] : @
boot device : sm=0x800000
processor number : 1
file name : /folk/fred/wind/target/config/ bspname/vxWorks
host inet (h) : 150.12.1.159
user (u) : fred
flags (f) : 0x0

Backplane anchor at 0x800000... Attaching network interface sm0...
done.
Backplane inet address: 150.12.17.2
Subnet Mask: 0xffffff00
Gateway inet address: 150.12.17.1
Attaching network interface lo0... done.
Loading... 364512 + 27976 + 20128
Starting at 0x1000...

Sequential addressing is enabled when INCLUDE_SM_SEQ_ADDR is defined in

configAll.h.
310

5

5
Network
5.4.4 Configuring the Host

For UNIX, configuring the host to support the shared-memory network is done by

using the procedures outlined earlier in this chapter for non-shared-memory

networks. In particular, a shared-memory network requires that:

■ All shared-memory network host names and addresses must be entered in

/etc/hosts.

■ All shared-memory network host names must be entered in .rhosts in your

home directory or in /etc/hosts.equiv (only if you are using RSH).

■ A gateway entry must specify the master’s Internet address on the Ethernet as

the gateway to the shared-memory network. (The gateway entry is not needed

if you are using proxy ARP; for more information see 5.5 Proxy ARP, p.316.)

For Windows hosts, the steps required to configure the host are determined by

your version of Windows and the networking software you are using. See that

documentation for details.

5.4.5 Example Configuration

This section illustrates the foregoing discussion with an example of a simple

shared-memory network. The configuration consists of a single host and two

target processors on a single backplane. In addition to the two processors, the

backplane also has a separate memory board for the shared-memory pool, and an

Ethernet controller board. The additional memory board is not essential, but

makes for a configuration that is easier to describe.

The configuration shown in Figure 5-12 has two networks: the Ethernet and the

shared-memory network. The Ethernet is assigned network number 150, and the

shared-memory network is assigned 161. The host is h1, and is assigned the

Internet address 150.12.0.1.

The master is vx1, and functions as the gateway between the Ethernet and shared-

memory networks. It therefore has two Internet addresses: 150.12.0.2 on the

Ethernet network and 161.27.0.1 on the shared-memory network.

The other backplane processor is vx2; it is assigned the shared-memory network

address 161.27.0.2. It has no address on the Ethernet because it is not, in fact, on the

Ethernet. However, it can communicate with h1 over the shared-memory network,

using vx1 as a gateway. Of course, gateway use is handled by the Internet protocol

and is completely transparent to the user.

The example network address assignments are shown in Table 5-13.
311

VxWorks 5.3.1
Programmer’s Guide
To configure the UNIX system for our example, the /etc/hosts file must contain the

Internet address and name of each system. Note that the backplane master has two

entries. The second entry, vx1.sm, is not actually necessary, because the host

system never accesses that system with that address—but it is useful to include it

in the file to ensure that the address is not used for some other purpose.

The entries in /etc/hosts are as follows:

150.12.0.1 h1
150.12.0.2 vx1
161.27.0.1 vx1.sm
161.27.0.2 vx2

Figure 5-12 Example Shared-Memory Network

Table 5-13 Network Address Assignments

Name Inet on Ethernet Inet on Backplane

h1 150.12.0.1 -

vx1 150.12.0.2 161.27.0.1

vx2 - 161.27.0.2

Ethernet

h1

vx1vx2

host

sm master
& gateway

150.12.0.0

150.12.0.1

150.12.0.2

161.27.0.1161.27.0.2

161.27.0.0

Shared-Memory
Network
312

5

5
Network
To allow remote access from the target systems to the UNIX host, the .rhosts file in

your home directory, or the file /etc/hosts.equiv, must contain the target systems’

names:

vx1
vx2

To inform the UNIX system of the existence of the Ethernet-to-shared-memory

network gateway, make sure the following line is in the file /etc/gateways at the
time the route daemon routed is started.

net 161.27.0.0 gateway 150.12.0.2 metric 1 passive

Alternatively, you can add the route manually (effective until the next reboot) with

the following UNIX command:

% route add net 161.27.0.0 150.12.0.2 1

The target systems are configured in part by the parameters shown in Table 5-14.

The backplane master, vx1, has the following boot parameters:

boot device : ln
processor number : 0
host name† : h1
file name : /usr/wind/target/config/bspname/vxWorks
inet on ethernet (e) : 150.12.0.2
inet on backplane (b) : 161.27.0.1

Table 5-14 Parameters in config.h

Parameter Value Comment

SM_ANCHOR_ADRS 0x800000 Address of anchor as seen by vx1.

SM_MEM_ADRS 0x800000 Address of shared-memory pool

as seen by vx1.

SM_MEM_SIZE 0x80000 Size of shared-memory pool, in

bytes.

SM_INT_TYPE SM_INT_MAILBOX_1 Interrupt targets with 1-byte write

mailbox.

SM_INT_ARG1 VME_AM_SUP_SHORT_IO Mailbox in short I/O space.

SM_INT_ARG2 (0xc000|(sysProcNum * 2)) Mailbox at:

0xc000 for vx1
0xc002 for vx2

SM_INT_ARG3 0 Write 0 value to mailbox.
313

VxWorks 5.3.1
Programmer’s Guide
host inet (h) : 150.12.0.1
gateway inet (g) :
user (u) : fred
ftp password (pw) (blank=use rsh) :
flags (f) : 0

NOTE: For more information on boot devices, see the Tornado User’s Guide: Getting
Started. To determine which boot device you should use, see your BSP

documentation.

The other target, vx2, has the following boot parameters:

boot device : sm=0x800000
processor number : 1
host name : h1
file name : /usr/wind/target/config/bspname/vxWorks
inet on ethernet (e) :
inet on backplane (b) : 161.27.0.2
host inet (h) : 150.12.0.1
gateway inet (g) : 161.27.0.1
user (u) : fred
ftp password (pw) (blank=use rsh)†:
flags (f) : 0

The parameters inet on backplane (b) and gateway inet (g) are optional with

sequential addressing.

5.4.6 Troubleshooting

Getting a shared-memory network configured for the first time can be tricky. If you

have trouble, here are a few troubleshooting procedures you can use. Take one step

at a time.

1. To begin with, boot a single processor in the backplane without any additional

memory or processor cards. Omit the inet on backplane parameter to prevent

the processor from trying to initialize the shared-memory network.

2. Now power off and add the memory board, if you are using one. Power on and

boot the system again. Using the VxWorks boot ROM commands for display

memory (d) and modify memory (m), verify that you can access the shared

memory at the address you expect, with the size you expect.

3. Next, reboot the system, filling in the inet on backplane parameter. This

initializes the shared-memory network. The following message appears

during the reboot:

Backplane anchor at anchor-addrs...Attaching network interface sm0...done.

!

314

5

5
Network
4. When VxWorks is up, you can display the state of the shared-memory network

with the smNetShow() routine,5 as follows:

-> smNetShow [" interface"] [, 1]
value = 0 = 0x0

The interface parameter is sm0 by default. Normally, smNetShow() displays

cumulative activity statistics to the standard output device; specifying 1 (one)

as the second argument resets totals to zero.

5. Now power off and add the second processor board. Remember that the

second processor must not be configured to be the system controller board.

Power on and stop the second processor from booting by typing any key to the

boot ROM program. Boot the first processor as you did before.

6. If you have trouble booting the first processor with the second processor

plugged in, you have some hardware conflict. Check that only the first

processor board is the system controller. Check that there are no conflicts in the

position of the various boards’ memory addresses.

7. With the d and m boot ROM commands, verify that you can see the shared

memory from the second processor. This is either the memory of the separate

memory board (if you are using the off-board configuration) or the dual-

ported memory of the first processor (if you are using the on-board

configuration).

8. Using the d command on the second processor, look for the shared-memory

anchor. The anchor begins with the ready value of 0x8765 (see Figure 5-10).

You can also look for the shared-memory heartbeat; see The Shared-Memory
Heartbeat, p.304.

9. When you have found the anchor from the second processor, enter the boot

parameter for the boot device with that address as the anchor address:

boot device: sm=0x800000

Enter the other boot parameters and try booting the second processor.

10. If the second processor does not boot, you can use smNetShow() on the first

processor to see if the second processor is attaching correctly to the shared-

memory network. If not, then you have probably specified the anchor address

incorrectly on the second processor. If the second processor is attached, then

the problem is more likely to be with the gateway or with the host system

configuration.

5. This routine is not built in to the Tornado shell. To use it from the Tornado shell, define

INCLUDE_SHOW_ROUTINES in your VxWorks configuration; see 8. Configuration.
315

VxWorks 5.3.1
Programmer’s Guide
11. You can use host system utilities, such as arp, netstat, etherfind, and ping, to

study the state of the network from the host side; see the Tornado User’s Guide:
Getting Started.

12. If all else fails, call your technical support organization.

5.5 Proxy ARP

Proxy ARP provides transparent network access by using the Address Resolution

Protocol (ARP) to make distinct networks appear as one logical network (that is,

the networks share the same address space). The proxy ARP scheme implemented

in VxWorks provides an alternative to the use of explicit subnets for accessing the

shared-memory network. See 5.4 Shared-Memory Networks, p.301. 6

Previously, the shared-memory network (backplane) had to be partitioned as a

separate subnet, and routes to that subnet had to be added to each host that

required access to the shared-memory network. Each shared-memory network

took up an individual subnet number; therefore, if a large number of shared-

memory networks were present on a network, precious subnet numbers were

rapidly consumed. However, with proxy ARP, the shared-memory network is the

same subnet/network as the Ethernet; therefore, subnet numbers are not assigned.

If the shared-memory network is attached to a large network with many networks

and subnets, network configuration becomes difficult. Proxy ARP simplifies

network configuration because there is only one network to deal with and

additional configuration on the host is unnecessary.

5.5.1 ARP Introduction

ARP is used to resolve a host’s IP address into a hardware address. This is done by

broadcasting an ARP request on the physical medium (typically Ethernet). The

6. Proxy ARP is described in Request For Comments (RFC) 925 “Multi LAN Address Resolu-

tion,” and an implementation is discussed in RFC 1027 “Using ARP to Implement Trans-

parent Subnet Gateways.” The ARP protocol is described in RFC 826 “Ethernet Address

Resolution Protocol: Or converting network protocol addresses to 48-bit Ethernet address

for transmission on Ethernet hardware.” This implementation is based on RFC 925;

however, it is a limited subset of that proposal.
316

5

5
Network
destination host sees the request and recognizes the destination IP address as its

own. It then sends a reply with its hardware address.

In the example in Figure 5-13, host h1 wants to communicate with host h4. It needs

h4’s hardware address, so it broadcasts an ARP request. Host h4 sees the ARP

request and replies with its hardware address. h1 records h4’s IP-to-hardware

mapping and proceeds to communicate with it.

For a host to communicate with another host on a different subnet or network (as

indicated by the IP addresses and the subnet mask), it must use a gateway. In

Figure 5-14, vx3 acts as a gateway between Network A and Network B. Each host

must have a routing entry for the gateway in its routing table. The routing table for

vx1 to communicate with Network B includes entries like the following:

node destination gateway
vx1 150.12.2.0 150.12.1.1 (network)

The routing table for h1 to communicate with Network A includes entries like the

following:

node destination gateway
h1 150.12.1.0 150.12.2.1 (network)

Figure 5-13 ARP Example

ARP BROADCAST: Who is 161.27.0.4?

ARP REPLY: 161.27.0.4 is 8:0:52:9:e7:3

h1

161.27.0.1

h2

161.27.0.2

h3

161.27.0.3

h4

161.27.0.4

h1 h2

161.27.0.2

h3

161.27.0.3

h4

161.27.0.4161.27.0.1
317

VxWorks 5.3.1
Programmer’s Guide
A sender cannot send an ARP request for a host on another subnet or network.

Instead, if it does not know the hardware address for the gateway listed in its

routing table, it sends an ARP request for the gateway’s hardware address.

5.5.2 Proxy ARP Overview

With proxy ARP, nodes on different subnetworks are assigned addresses with the

same subnet number. Because they appear to reside on the same network, they can

communicate directly and can use ARP to resolve each other’s hardware address.

The gateway node provides this network transparency by watching for and

answering ARP requests. The node providing this transparency is the proxy server.

The example configuration shown in Figure 5-14 looks different when proxy ARP

is used. As shown in Figure 5-15, the nodes vx1 and h1 now look as if they are on

the same subnet. Nodes h1 and vx1 are fooled by vx3 into thinking they can send

directly to each other, when they are actually sending to vx3. The gateway node,

vx3, ensures that the packets get to the correct destination.

Figure 5-14 Subnets and ARP

150.12.1.20

Network A

Network B
150.12.2.34

gateway
vx1

150.12.1.1

150.12.2.1

vx3

h1
318

5

5
Network
5.5.3 Routing Issues on the Proxy Server

The proxy server provides network transparency by listening to and answering

ARP messages, and by manipulating its routing tables. Suppose the proxy server

had two interfaces: shared-memory network and Ethernet. Nodes residing on

different interfaces can have the same network address if host-specific routes were

used on one interface (shared-memory network) and network routing was done on

the other (Ethernet).

In the example in Figure 5-16, vx1 and h1 have the same network address,

150.12.1.0. The proxy server, vx3, has a routing table like the following example:

Destination Gateway
150.12.1.6 (host) 150.12.1.8
150.12.1.7 (host) 150.12.1.8
150.12.1.0 (network) 150.12.1.60

The network on which the proxy server performs host-specific routing (or for

which it is acting as a proxy) is referred to as the proxy network. The proxy server

has a host-specific route to each node on the proxy network. The network interface

on which the proxy server performs network routing is called the main network. In

the example in Figure 5-16, the shared-memory network is the proxy network and

the Ethernet is the main network. The routing table of vx3 has host-specific routes

for both vx1 and vx2. To send to nodes h1 and h2, it uses the network route

Figure 5-15 Proxy ARP Example

150.12.1.20

Network A

Network B
150.12.1.34

vx1

150.12.1.1

150.12.1.2

vx3

h1

proxy
server
319

VxWorks 5.3.1
Programmer’s Guide
(150.12.1.0). There can be multiple proxy networks per main network. However,

there can only be one main network per network/subnet number.

Although host-specific routes can be used on all interfaces for complete generality,

a VxWorks shared-memory network usually is configured so that one side of the

proxy server contains the majority of nodes (the Ethernet side). Therefore, in this

case it is reasonable to use this network as the main network. Also, it is best to keep

the host-specific routes to a minimum, because when resolving routes, the proxy

server first searches all host-specific routes, and then all network routes.

5.5.4 Proxy ARP Protocol

ARP Requests for Proxy Clients

If the proxy server receives an ARP request for which the destination is a node on

a proxy network (proxy client), the proxy server generates an ARP reply with its

own hardware address as the source hardware address. This happens only if the

node that generated the ARP request does not reside on the same proxy network

as the destination proxy client because if they are on the same network, the

destination proxy client answers for itself.

Figure 5-16 Proxy Server Example

150.12.1.62

150.12.1.6 150.12.1.8150.12.1.7

Shared-Memory

Ethernet
150.12.1.60

150.12.1.61

vx1 vx2 vx3

h2 h1

Network
320

5

5
Network
In the example in Figure 5-16, if vx1 broadcasts an ARP request for 150.12.1.7, vx2
replies to the request, not the proxy server vx3. However, if h1 broadcasts an ARP

request for 150.12.1.7, the proxy server (vx3) replies with its own hardware

address.

ARP Requests from Proxy Clients for Non-proxy Clients

If an ARP request comes from a proxy network and the destination address is not

a proxy client, the proxy server tries to resolve the request. If the destination of the

ARP request is known, the server generates and sends an ARP reply to the source

proxy client. If the destination was not resolved previously, the server forwards the

ARP request to the proxy network’s corresponding main network (replacing the

source hardware address in the ARP message with its own outgoing interface

hardware address). For example, in Figure 5-16, vx1 sends an ARP request for

150.12.1.62. If vx3 knows the destination, it sends an ARP reply to vx1. Otherwise

it forwards the request to the Ethernet.

ARP Replies from the Main Network

If the proxy server gets an ARP reply, the server checks to see if the destination is

a proxy client. If it is, and the server previously forwarded this request, then the

server forwards the ARP reply back to the proxy client (replacing the source

hardware address in the ARP reply message with its own). In the previous

example, if h2 replies to the request for the Ethernet address of 150.12.1.62, the

proxy server (vx3) records the address for itself and then forwards the reply to vx1
(with vx3’s own hardware address substituted for h2’s).

5.5.5 Broadcast Datagrams

All nodes on a logical network are expected to receive an IP broadcast for that

network (for example, 150.12.1.255). Thus, broadcasts must be passed through the

proxy server so that nodes on both the proxy network and the main network

receive them. Because most broadcast traffic is extraneous, it is desirable to

minimize the number of forwarded shared-memory network broadcasts, thus

keeping shared-memory network traffic to a minimum.

To minimize and control shared-memory network broadcast traffic, the proxy

server must be configured to forward broadcasts only to a specified set of

destination UDP ports. Ports are enabled using the routine proxyPortFwdOn(),
321

VxWorks 5.3.1
Programmer’s Guide
and are disabled with proxyPortFwdOff(). Only the BOOTP server port (67) is

enabled by default.

If a broadcast datagram originates from a proxy network (and the port is enabled),

the server forwards the broadcast to the main network, and to all other proxy

networks that have the same main network. For example, in Figure 5-17, if a

datagram comes from sm1, it gets forwarded to ln0 and sm0.

If the datagram originates from a main network (and the port is enabled), the

server forwards the broadcasts to all the main network’s proxy networks. For

example, in Figure 5-17, a datagram from ln0 is forwarded to both sm0 and sm1.

To prevent forwarding loops, broadcasts forwarded onto proxy networks are given

a time-to-live value of 1.

Although forwarding broadcasts between interfaces is potentially dangerous (due

to broadcast storms and forwarding loops), the restrictions put on the

configuration make these situations unlikely. Even so, forwarding broadcasts

between proxy and main interfaces is not recommended. Therefore, forward

broadcasts only on necessary ports.

Figure 5-17 Broadcast Datagram Forwarding

proxy network 1 (sm1)

proxy network 0 (sm0)

m
ai

n
ne

tw
or

k
(ln

0)

vx1
322

5

5
Network
5.5.6 Multi-Homed Proxy Clients

Routing

If a proxy client has an interface to the main network, some additional

configuration is required for optimal communications. The proxy client’s routing

tables must have host-specific routes for nodes on the proxy network, and a

network-specific route for the main network. Otherwise traffic travels an extra

unnecessary hop through the proxy server. In the example shown in Figure 5-18,

vx1 is the proxy server and vx2 is a proxy client with an interface on the main

network. vx2 must be configured to have host-specific routes to each of the other

proxy clients (vx4 and vx5), and a network-specific route to the main network.

Otherwise any traffic from vx2 to vx4 (or vx5) unnecessarily travels over the main

network through the proxy server (vx1).

Figure 5-18 Routing Example

150.12.0.4 150.12.0.5

150.12.0.1

150.12.0.7150.12.0.2

150.12.0.3 150.12.0.6

vx1 vx2

vx4 vx5

h1

Main
Network

Proxy
Network

Proxy
Client

Proxy
Server
323

VxWorks 5.3.1
Programmer’s Guide
The following is an example of vx2’s routing table. The routing table is

manipulated using routeAdd() and routeDelete(). For more information, see the

reference entry for routeLib.

Destination Gateway
150.12.0.4 (host) 150.12.0.6
150.12.0.5 (host) 150.12.0.6
150.12.0.0 (network) 150.12.0.7

Broadcasts

A proxy client that also has an interface connected to the main network must

disable broadcast packets from the proxy interface. Otherwise, it receives duplicate

copies of broadcast datagrams (one from Ethernet and one from the shared-

memory network). Broadcasts can be disabled on an interface using

ifFlagChange(). (See the reference entry.)

5.5.7 Single-Tier Support

Proxy ARP works only for a single tier of shared-memory networks. That is, only

interfaces directly attached to the proxy server can be proxied. Example

configurations that work are shown in Figure 5-19 and Figure 5-21. However, the

configuration shown in Figure 5-20 does not work because ARP requests are not

forwarded over proxy networks, and there can be only one proxy server per

shared-memory network. This single-tier restriction means that problems such as

network circles, broadcast storms, and continually forwarded ARP requests are

avoided.

To work, the configuration in Figure 5-20 requires a combination of proxy ARP and

IP routing (or standard subnet routing). The modified configuration is shown in

Figure 5-22, where Proxy Network 1 has become an IP routing network with a

different network address. For vx6 to send to h2 in the modified configuration, it

requires the following entry in its routing table:

Destination Gateway
150.12.0.0 (network) 161.27.0.1

For h2 to send to vx6, it requires the following entry in its routing table:

Destination Gateway
161.27.0.0 (network) 150.12.0.6
324

5

5
Network
5.5.8 Subnets

If the main network on which the proxy server is connected is subnetted, then all

the interfaces (both proxy and main) must reside on the same subnet as the main

network. That is, the main network interface and the proxy network interface on

the proxy server and all the proxy clients must have the same subnet mask.

To enable proxy ARP for the shared-memory network, define

INCLUDE_PROXY_SERVER in configAll.h and rebuild VxWorks for the proxy

server. If the target is processor zero (the shared-memory network master), the

proxy server is enabled using the boot parameters inet on ethernet (e) for the main

network, and inet on backplane (b) for the proxy network. From the example in

Figure 5-21, vx1’s corresponding boot parameters are as follows:

inet on ethernet (e) : 150.12.7.3:ffffff00
inet on backplane (b) : 150.12.7.4

Figure 5-19 Single-Tier Example Using Proxy ARP with Two Branches

150.12.0.3

150.12.0.1

150.12.0.4

150.12.0.6150.12.0.5

Proxy Network 0 (sm0)

150.12.0.8150.12.0.7

Proxy Network 1 (sm1)150.12.0.9

150.12.0.2

vx1

h1 h2

vx4 vx5 vx6 vx7

Main
Network
325

VxWorks 5.3.1
Programmer’s Guide
5.5.9 Configuration

The proxy server for the shared-memory network must be the master board. As

previously mentioned, the server is configured by defining

INCLUDE_PROXY_SERVER in configAll.h. If only INCLUDE_PROXY_SERVER is

defined, then the master backplane inet address must be specified as well as the

slaves’ backplane and gateway inet addresses. This configuration gives you

greater control over the addresses that are assigned to the target boards.

Figure 5-20 Multi-Tier Configuration that CANNOT Be Used with Proxy ARP

150.12.0.1Main Network

150.12.0.6 150.12.0.7150.12.0.5

Proxy Network 0

150.12.0.10150.12.0.9

Proxy Network 1

150.12.0.2

150.12.0.4

150.12.0.3

150.12.0.8

vx1

h1 h2

vx2 vx3 vx4

vx5 vx6

Proxy
Server

Proxy
Server
326

5

5
Network
Sequential and Default Addressing

If such control is not required, it is possible to have the proxy server assign the inet

addresses to the proxy clients. When INCLUDE_SM_SEQ_ADDR is defined, the

proxy server assigns incremental inet addresses to the slave boards based on the

proxy server’s backplane inet address. For example, if the proxy server has a

backplane inet address of 150.12.0.4, the inet address assigned to the first slave is

150.12.0.5, to the second slave 150.12.0.6, and so on. (See Figure 5-22.)

Using sequential addressing frees you from having to specify a backplane or a

gateway inet address for each proxy client. All the addresses are assigned by the

proxy server at boot time.

It is also possible to have the proxy server’s backplane address configured by

default. This allows for greater flexibility in the assignment of backplane inet

addresses. You are only required to assign the inet address to the proxy server’s

Figure 5-21 Another Single-Tier Example Using Proxy ARP

150.12.7.6 150.12.7.7150.12.7.5

150.12.7.3

150.12.7.1 150.12.7.2

150.12.7.4

vx3

vx1

vx2 vx4

h1 h2

Main
Network

Proxy
Network
327

VxWorks 5.3.1
Programmer’s Guide
network interface. The backplane address is assigned automatically by adding 1

(one) to the network interface address. To have the proxy server’s backplane

address configured by default, sequential addressing must also be used; both

INCLUDE_PROXY_DEFAULT_ADDR and INCLUDE_SM_SEQ_ADDR must be

defined in configAll.h. This frees you from having to specify the backplane inet

address of the proxy server and the proxy clients, and the gateway address of the

proxy clients.

Figure 5-22 Multi-Tier Example Using Proxy ARP and IP Routing

150.12.0.1
Main Network

150.12.0.6 150.12.0.7150.12.0.5

Proxy Network

161.27.0.3161.27.0.2

Network 161

150.12.0.2

150.12.0.4

150.12.0.3

161.27.0.1

vx1

h1 h2

vx2 vx3 vx4

vx5 vx6

(Ethernet)

(Shared Memory Network)

(IP Routing Network)

Proxy
Server

Proxy
Clients

(master)

(slaves)
328

5

5
Network
For example, assume that both INCLUDE_PROXY_DEFAULT_ADDR and

INCLUDE_SM_SEQ_ADDR are defined: if the proxy server is given the inet

network address of 150.12.0.3, its backplane address is 150.12.0.4. The first proxy

client is assigned the inet address 150.12.0.5, the second 150.12.0.6, and so on.

Note that with proxy ARP it is no longer necessary to specify the gateway. Each

target on the shared-memory network (except the proxy server) can register itself

as a proxy client by specifying the 0x100 flag in the boot flags instead of specifying

the gateway. For additional information on booting with proxy ARP, see 5.10 Using
TFTP, BOOTP, Sequential Addressing, Proxy ARP, p.369.

VxWorks Images for Proxy ARP with Shared Memory and IP Routing

Even if you are using the same board for the master and the slaves, the master and

slaves need separate BSP directories since they have different config.h files.

■ Proxy ARP and Shared Memory Definition in configAll.h

INCLUDE_PING
INCLUDE_SM_NET
INCLUDE_PROXY_SERVER
INCLUDE_SM_SEQ_ADDR /* required only for default addressing */
INCLUDE_PROXY_DEFAULT_ADDR /* required only for default addressing */

■ Master Definition in config.h

#define PROXY_ARP_MASTER
#define SM_OFF_BOARD=FALSE

■ Slave definition in config.h

#define PROXY_ARP_SLAVE
#define SM_OFF_BOARD=TRUE

Setting Up Boot Parameters and Booting

For information on booting shared memory networks, see 5.4 Shared-Memory
Networks, p.301. After booting vx1 (the master), use smNetShow() to find the

shared memory anchor, which is used as the slave boot device (for vx2, vx3, and

vx4). Run sysLocalToBusAddr() on the master and sysBusToLocalAddr() on each

type of target to get the correct bus address for the anchor. For general information

on boot parameters, see the Tornado User’s Guide: Getting Started.
329

VxWorks 5.3.1
Programmer’s Guide
Creating Network Connections

From vx1 (the master): Use routeAdd() to tell the master (the proxy server) about

the IP routing network by running the following:

-> routeAdd ("161.27.0.0", "150.12.0.6")
value = 0 = 0x0

From vx3: Since vx3 boots from the shared memory network, it needs to have its

connection to the IP routing network brought up explicitly. The following example

shows how to do this for vx3 in Figure 5-22:

-> userNetIfAttach ("ln", "161.27.0.1")
Attaching network interface ln0...done.
value = 0 = 0x0
-> userNetIfConfig ("ln", "161.27.0.1", "t0-1", 0xffffff00)
value = 0 = 0x

Substitute the appropriate network boot device for “ln”. The correct boot device is

the first one given by ifShow().

Debugging the Network

Diagnosing Shared Memory Booting Problems

For information on debugging the shared memory network, see

5.4.6 Troubleshooting, p.314.

Diagnosing Routing Problems

The following routines can be useful in locating the source of routing problems:

ping() Starting from vx1, ping other processors in turn to see if you

get the expected result. The routine returns OK if it reaches the

other machine, or ERROR if the connection fails.

smNetShow() This routine displays cumulative activity statistics for all

attached processors.

arpShow() This routine displays the current Internet-to-Ethernet address

mappings in the system ARP table.

arptabShow() This routine displays the known Internet-to-Ethernet address

mappings in the ARP table

routeShow() This routine displays the current routing information

contained in the routing table.
330

5

5
Network
ifShow() This routine displays the attached network interfaces for

debugging and diagnostic purposes.

proxyNetShow() This routine displays the proxy networks and their clients.

proxyPortShow() This routine displays the ports currently enabled.

5.6 Serial Line Internet Protocol (SLIP and CSLIP)

VxWorks can communicate with the host operating system over serial connections

as well as over networks and backplanes. The Serial Line Internet Protocol (SLIP)

supports IP layer software with point-to-point configurations such as RS-232 serial

connections or long-distance telephone lines. If either end of a SLIP connection has

other network interfaces (such as Ethernet) and can forward packets to other

machines, a SLIP connection can serve as a gateway between networks.

Optionally, you can use compressed TCP/IP headers over SLIP; this variant of the

protocol is known as CSLIP (compressed SLIP). Only the TCP/IP headers are

compressed, not the data itself; this implies that CSLIP improves the

responsiveness of interactive communications (such as remote shells), where the

ratio of header size to data is large, but makes little difference for large data

transfers (such as downloading object code). Because compression applies only to

TCP/IP headers, not to other forms of IP, CSLIP has no impact on applications that

use UDP rather than TCP (for example, CSLIP has no effect on NFS).7

5.6.1 SLIP Configuration

Configuring your system for SLIP requires both target and host system

configuration. See your host development system’s manual for information on

configuring your host.

WARNING: If you choose to use CSLIP, remember to make sure your host is also

using CSLIP. If your host is configured for SLIP, the VxWorks target will receive

7. If your host operating system does not include SLIP or CSLIP facilities, you may be able to

use a publicly available implementation. One popular implementation for SunOS 4.1.x, the

Van Jacobson CSLIP 2.7 release, is provided in unsupported/cslip-2.7. This code is publicly

available, and is not supported by Wind River Systems; we include it only as a convenience.

!

331

VxWorks 5.3.1
Programmer’s Guide
packets from the host, but CSLIP packets from the target will not be correctly

decoded by the host. Eventually TCP will resend the packets as SLIP packets, at

which time the host will receive and acknowledge them. However, the whole

process will be very slow. To avoid this, configure the host and target to use the

same protocol.

To configure your VxWorks target to use SLIP, define the following in configAll.h:

1. To include SLIP, define INCLUDE_SLIP. By default this constant is part of the

excluded facilities; move it to the INCLUDED SOFTWARE FACILITIES section.

2. To specify the tty to be used for the SLIP connection, define SLIP_TTY. By

default SLIP_TTY is set to 1, which sets the serial device to /tyCo/1.

3. To specify the baud rate, optionally define SLIP_BAUDRATE. If this constant is

not defined, SLIP uses the baud rate defined by your serial driver.

4. To specify the use of CSLIP, define either of the following:

(a) To always use CSLIP to communicate with the host, define

CSLIP_ENABLE.

(b) To use plain SLIP unless the VxWorks target receives a CSLIP packet (in

which case the target also uses CSLIP), define CSLIP_ALLOW.

5.6.2 Booting VxWorks and Accessing Files Using SLIP or CSLIP

When booting using SLIP (or its CSLIP variant), specify the boot device as follows:

boot device: sl

or:

sl= device

Using the form sl=device allows you to specify the SLIP tty, overriding the constant

SLIP_TTY. The following is a boot example for the configuration shown in

Figure 5-23:

boot device : sl=/tyCo/1
processor number : 0
host name : phobos
file name : /usr/wind/target/config/ads302/vxWorks
inet on ethernet (e) : 150.12.1.2
host inet (h) : 150.12.1.1
user (u) : jane
target name (tn) : vxJane

When the boot device is SLIP, the SLIP interface is configured by usrSlipInit() in
src/config/usrNetwork.c. This sets up the SLIP tty, and configures the point-to-
332

5

5
Network
point connection using the target and host IP addresses specified in the boot

parameters. If a gateway address is specified, the SLIP driver adds a routing entry

from the gateway address to the host address. If a gateway address is not specified,

the SLIP driver assumes that the point-to-point peer address is on the other end of

the serial line and enters the appropriate routing entry.

If you do not have a console device:

■ Set the constant CONSOLE_TTY to NONE and define the tty port number using

the constant SLIP_TTY in config.h.

#define CONSOLE_TTY NONE
#define SLIP_TTY 0 /* use port number 0 for slip */

■ Specify the boot parameters using the constant DEFAULT_BOOT_LINE in

config.h before making your boot ROMs. For example:

#define DEFAULT_BOOT_LINE \
"sl(0,0)phobos:/usr/wind/target/config/ads302/vxWorks h=150.12.1.1
e=150.12.1.2 u=jane"

For the boot device, sl(0,0), the first number is the unit number for the boot

device and the second is the processor number. You can determine which unit

number was used for the boot device by calling ifShow() from the shell.

■ If your system has nonvolatile RAM (NVRAM), edit sysLib.c and change

sysNvRamGet() to return ERROR. This forces the use of the constant

DEFAULT_BOOT_LINE instead of using the value stored in NVRAM.

Remake VxWorks and burn new boot ROMs before booting.

To access a UNIX file system, the Internet addresses specified in the target boot

parameters must be consistent with those specified when the host connection is

created.

Figure 5-23 SLIP Configuration Example

150.12.1.1150.12.1.2

Serial Line

/tyCo/1

tty

target host
333

VxWorks 5.3.1
Programmer’s Guide
5.7 Point-to-Point Protocol (PPP)

5.7.1 Introduction

PPP for Tornado Features

The following features are supported by PPP:

■ PPP client and server connection support (either active or passive mode). In

active mode (default), the PPP software attempts to initiate a PPP link with the

peer. In passive mode, the PPP software waits for a peer to try to open a link.

■ Multiple unit support . Up to 16 PPP interfaces can be active at any one time.

■ Asynchronous character mapping . Users can specify control characters that

should be escaped by the peer upon transmission to avoid misinterpretation

by the serial driver library or by lower-level modem software.

■ Van Jacobsen (VJ) compression . This feature reduces the regular 40-byte

TCP/IP header to 3 or 8 bytes, thereby saving valuable link bandwidth.

■ Address, control, and protocol field compression . These types of compression

allow the PPP network interface driver to reduce the transmission of

extraneous PPP header information, thereby saving valuable link bandwidth.

■ Link state and link statistics querying . Internal PPP counters and protocol state

information may be obtained through query routines. This enables

applications to monitor and manage the PPP link.

■ IP address negotiation . Using IP address negotiation, one peer may assign the

other peer an IP address once the PPP link is established.

■ Echo request and reply . One peer may request that the other peer respond to

link-layer echoes. This allows for an automatic monitoring of the link’s

physical status.

■ Connect and disconnect hooks . Use of connect and disconnect hooks allows

applications to implement routines supporting modem control, dialing

software, connection scripting, etc.

■ Challenge-Handshake Authentication Protocol (CHAP) and Password
Authentication Protocol (PAP) . These authentication protocols ensure that the

remote peer is authorized to establish a PPP link and that the correct IP address

is used.
334

5

5
Network
■ Proxy ARP routing . Use of this feature allows the proxy-server peer’s connected

network to “see” the proxy-client peer without manually adding routing

entries.

The Point-to-Point Protocol Compared to SLIP

For many years, networking Internet Protocol (IP) packets over serial lines was

almost exclusively accomplished with the Serial Line Internet Protocol (SLIP). SLIP

is a simple link-layer driver that is installed between IP stack code and a serial

driver. While SLIP uses a smaller amount of object code than PPP and processes

packets more efficiently (using compressed headers in CSLIP), it can carry only IP

packets and it is not extensible. Furthermore, SLIP has several different protocol

implementations that do not always communicate smoothly with each other.

Nevertheless, its general ease of use and large installed base has made it the de facto
standard for networking IP over point-to-point serial lines.

The Point-to-Point Protocol (PPP) was developed to address the shortcomings of

SLIP. Unlike SLIP, PPP is being defined and tracked by the Internet Engineering

Task Force (IETF), and the protocol specifications have been published in multiple

Request For Comments (RFC) documents. Although SLIP is still an attractive

choice for systems that only require basic IP-packet networking, PPP advantages

are prompting the rapid growth of its installed base.

PPP supports several features that make it more suitable than SLIP for certain

applications:

■ Multi-Protocol Support . PPP packet framing includes a protocol field in the

header. This allows for communication of different network protocols over

each link. At present, the only protocols supported by PPP for Tornado are IP

and the basic PPP protocols (LCP, IPCP, PAP, and CHAP).

■ Extensibility . The protocol field in the frame header makes PPP able to

accommodate new protocols (both public and proprietary). The Internet

Assigned Numbers Authority (IANA) tracks the allocation of protocol field

values.

■ Error Detection . PPP framing also includes a Frame Check Sequence (FCS).

This field serves to automatically ensure the data integrity of every packet

received by the PPP network interface driver. If an error is detected, the

received packet is dropped and an input error is recorded.

■ Link Management . The entire structure of PPP is based around the concept of a

point-to-point link which is established between peers (the local and remote

systems on either end of the serial connection). The link has several phases and
335

VxWorks 5.3.1
Programmer’s Guide
states associated with its life and is managed by its own separate protocol, the

Link Control Protocol (LCP). This concept of a link creates an environment that

can support features like option negotiation, link-layer user authentication,

link quality management, and loopback detection.

■ Option Negotiation . PPP allows for the dynamic negotiation of options between

peers. To some extent, this allows one end of the link to configure the peer. This

is especially useful in heterogeneous environments where a PPP server may

need to assign certain properties to the peer, such as the Maximum Receive

Unit (MRU).

■ Authentication . PPP supports link-layer authentication through two widely

used authentication protocols: PAP and CHAP. Both of these protocols check

that the peer is authorized to establish a link with the local host by sending

and/or receiving password information.

■ IP Address Negotiation . Built into the PPP control protocol for IP is the ability

to assign an IP address to a peer. This feature allows one peer to act as a PPP

server and assign addresses as clients dial in. The IP address can be re-used

when the PPP link is terminated.

While many applications do not require any of the features above, they may need

to interact with other systems that are using PPP and not SLIP. These two protocols

can not communicate with each other; this is perhaps the most compelling reason

of all for using PPP.

5.7.2 Configuration

Configuring your environment for PPP requires both host and target software

installation and configuration. See your host’s operating system manual for

information on installing and configuring PPP on your host.8

Including PPP in VxWorks may cause the loading of the VxWorks system image to

fail. This failure is due to the static maximum size of the VxWorks image allowed

by the loader. This problem can be fixed by either reducing the size of the VxWorks

image (by removing unneeded options), or by burning new boot ROMs. If you

receive a warning from vxsize when building VxWorks, or if the size of your image

8. If your host operating system does not provide PPP facilities, you may be able to use a

publicly available implementation. One popular implementation for SunOS 4.1.x (and

several other hosts) is version ppp-2.1.2, which is provided in the unsupported/ppp-2.1.2
directory. This code is publicly available and is included with the PPP for Tornado only as

a convenience. This code is not supported by Wind River Systems.
336

5

5
Network
becomes greater than that supported by the current setting of RAM_HIGH_ADRS,

see Creating Bootable Applications in the Tornado User’s Guide: Cross-Development for

information on how to resolve the problem.

PPP facilities can be configured into VxWorks by defining the appropriate

configuration constants. For general information on configuring VxWorks, see

8. Configuration.

To include the default PPP configuration in VxWorks, define INCLUDE_PPP in the

INCLUDED FACILITIES section of configAll.h, or define it in config.h in your BSP

directory.

To include the optional DES cryptographic package for use with the Password

Authentication Protocol (PAP), define INCLUDE_PPP_CRYPT. It is not included in

the standard Tornado Release tape; contact your WRS Sales Representative to

inquire about the availability of this optional package. The DES package allows

user passwords to be stored in encrypted form on the VxWorks target. If the

package is installed, then it is useful only when the VxWorks target is acting as a

PAP server, that is, when VxWorks is authenticating the PPP peer. Its absence does

not preclude the use of PAP. For detailed information about using the DES package

with PAP, see Using PAP, p.353).

PPP for Tornado has many optional features (approximately 50 in all) that can be

configured in to enable the PPP capabilities listed in 5.7.1 Introduction, p.334. There

are three methods of configuration:

■ At compile-time, by setting configuration constants in configAll.h. Use this

method with usrPPPInit(). (See Initializing a PPP Link, p.343.)

■ At run-time, by filling in a PPP options structure. Use this method with

pppInit(). (See Initializing a PPP Link, p.343.)

■ At run-time, by setting options in a PPP options file. This method is used with

either usrPPPInit() or pppInit(), and can be used to change the selection of

PPP options previously configured by one of the other two configuration

methods, provided that the PPP options file can be read without using the PPP

link (for example, an options file located on a target’s local disk).

Each of these methods is described in a section that follows. For brief descriptions

of the various PPP options, see Table 5-17 on Page 348.

Selecting PPP Options by Using Configuration Constants in configAll.h

The various configuration options offered by PPP for Tornado can be initialized at

compile-time by defining a number of configuration constants in configAll.h.
337

VxWorks 5.3.1
Programmer’s Guide
First, make sure the PPP_OPTIONS_STRUCT constant is defined in configAll.h (it

is defined by default). Unless PPP_OPTIONS_STRUCT is defined, configuration

options cannot be enabled.

Then, specify the default serial interface that will be used by usrPPPInit() by

defining the PPP_TTY constant. Configuration options can be selected using

configuration constants only when usrPPPInit() is invoked to initialize PPP.

Specify the number of seconds usrPPPInit() will wait for a PPP link to be

established between a target and peer by defining the PPP_CONNECT_DELAY
constant. Table 5-15 lists the principal configuration constants used with PPP for

Tornado.

Table 5-16 shows the two basic formats used for configuration options in

configAll.h. The full array of options available with PPP for Tornado appear with

their definitions in column 1 of Table 5-17 on page 348. By default, all of these

constants are turned off. To enable any PPP_OPT_option constant, define its value

to be 1 (these option constants are boolean values). To set any PPP_STR_optionstring
option, define it by representing the desired value as a string. For example, to set

PPP_STR_MTU to 1000, enter:

#define PPP_STR_MTU "1000"

Setting PPP_OPTIONS_STRUCT, PPP_TTY, and PPP_CONNECT_DELAY in

configAll.h, as well as any configuration options, is a modification to the

Table 5-15 PPP Configuration Constants

Constant Facility Included

INCLUDE_PPP Include PPP.

INCLUDE_PPP_CRYPT Include DES cryptographic package.

PPP_OPTIONS_STRUCT Enable configuration options set in configAll.h.

PPP_TTY Define default serial interface.

PPP_CONNECT_DELAY Define initialization delay for link establishment.

Table 5-16 PPP Configuration Options in configAll.h

Configuration Option Option Included

PPP_OPT_option Specify a PPP configuration option.

PPP_STR_optionstring Specify a PPP configuration option string.
338

5

5
Network
configuration file; thus, to realize the changes and enable the configuration

options, first recompile VxWorks, then initialize PPP by invoking usrPPPInit()
manually (see Initializing a PPP Link, p.343) or by having it called automatically by

the boot code (see Booting VxWorks Using PPP, p.345).

Selecting PPP Options by Using an Options Structure

PPP options may be set at run-time by filling in a PPP options structure and

passing the structure location to the pppInit() routine. This routine is the standard

entry point for initializing a PPP link (see Initializing a PPP Link, p.343).

The PPP options structure is typedef’ed to PPP_OPTIONS, and its definition is

located in h/netinet/ppp/options.h, which is included indirectly through

h/pppLib.h.

The first field of the structure is an integer, flags, which is a bit field that holds the

or’ed value of the OPT_option macros displayed in column 2 of Table 5-17, page

348. Definitions for OPT_option are located in h/netinet/ppp/options.h. The

remaining structure fields in column 2 are character pointers to the various PPP

options specified by a string.

The following code fragment is one way to set configuration options using the PPP

options structure. It also initializes a PPP interface that uses the target’s second

serial port (/tyCo/1). The local IP address is 90.0.0.1; the IP address of the remote

peer is 90.0.0.10. The baud rate is the default rate for the tty device. The

VJ compression and authentication options have been disabled, and LCP (Link

Control Protocol) echo requests have been enabled.

PPP_OPTIONS pppOpt; /* PPP configuration options */

void routine ()
{
pppOpt.flags = OPT_PASSIVE_MODE | OPT_NO_PAP | OPT_NO_CHAP |

OPT_NO_VJ;
pppOpt.lcp_echo_interval = "30";
pppOpt.lcp_echo_failure = "10";

pppInit (0, "/tyCo/1", "90.0.0.1", "90.0.0.10", 0, &pppOpt, NULL);
}

Setting PPP Options by Using an Options File

PPP options are most conveniently set using an options file. There is one

restriction: the options file must be readable by the target without there being an

active PPP link. Therefore the target must either have a local disk or RAM disk or
339

VxWorks 5.3.1
Programmer’s Guide
an additional network connection. For more information about using file systems,

see Local File Systems, p.187.

This configuration method can be used with either usrPPPInit() or pppInit(). It
also can be used to modify the selection of PPP options previously configured

using configuration constants in configAll.h or the option structure PPP_OPTION.

When using usrPPPInit() to initialize PPP, define the configuration constant

PPP_OPTIONS_FILE to be the absolute path name of the options file (NULL by

default). When using pppInit(), pass in a character string that specifies the

absolute path name of the options file.

The options file format is one option per line; comment lines begin with #. For a

description of option syntax, see the manual entry for pppInit().

The following code fragment generates the same results as the code example in

Selecting PPP Options by Using an Options Structure, p.339. The difference is that the

configuration options are obtained from a file rather than a structure.

pppFile = "mars:/tmp/ppp_options"; /* PPP config. options file */

void routine ()
{
pppInit (0, "/tyCo/1", "90.0.0.1", "90.0.0.10", 0, NULL, pppFile);
}

In this example, mars:/tmp/ppp_options is a file that contains the following:

passive
no_pap
no_chap
no_vj
lcp_echo_interval 30
lcp_echo_failure 10

5.7.3 The Point-to-Point Protocol (PPP)

The Point-to-Point Protocol (PPP) is comprised of several different protocols that

work together with the PPP network interface driver to support a variety of

network stacks. PPP for Tornado presently supports only the TCP/IP stack.

PPP provides a standard method for transporting multi-protocol datagrams over

point-to-point links. It is designed for simple links which transport packets

between two peers. These links provide full-duplex, simultaneous operation and

are assumed to deliver packets in the order in which they are issued. It is intended

that PPP provide a common solution for easy connecting among a variety of hosts,

bridges, and routers.
340

5

5
Network
PPP is comprised of three main components:

■ A method for encapsulating multi-protocol datagrams.

■ A Link Control Protocol (LCP) for establishing, configuring, and testing the

data-link connection.

■ A family of Network Control Protocols (NCPs) for establishing and

configuring different network-layer protocols.

Encapsulation

PPP encapsulation provides for simultaneous multiplexing of different network-

layer protocols over the same link. The PPP encapsulation has been carefully

designed to retain compatibility with most commonly used supporting hardware.

The frame format of a standard PPP frame structure is shown in Figure 5-24.

Link Control Protocol (LCP)

In order to promote versatility and be portable to a wide variety of environments,

PPP provides a Link Control Protocol (LCP). LCP is used when establishing links

and negotiating a variety of configuration options. It is also used to create

automatic agreement on encapsulation format options, to handle variable size

limits placed on packets, to detect looped-back links and other common

configuration errors, and to terminate links. Other optional facilities provided by

LCP include: authentication of the peer on the link by using authentication

protocols such as PAP or CHAP, and determination when a link is functioning

properly and when it is failing. After the link has been established, PPP provides

for an optional authentication. For more information, see RFC 1548 (for more

information, see Requests for Comments (RFC), p.360).

Figure 5-24 Format of Standard PPP Frame Structure

Flag
01111110

Information

Address
11111111

Control
00000011

Protocol
8/16 bits

FCS
16/32 bits

Flag
01111110

Inter-frame
or Next Address
341

VxWorks 5.3.1
Programmer’s Guide
Internet Protocol Control Protocol (IPCP)

The IP Control Protocol (IPCP) is the Network Control Protocol (NCP) for IP. IPCP

is responsible for configuring, enabling, and disabling the IP protocol modules on

both ends of the point-to-point link. It uses the same packet exchange mechanism

as LCP. IPCP packets are not exchanged until PPP has completed link

establishment. IPCP is also responsible for IP address negotiation between peers.

For more information, see RFC 1332 (see Requests for Comments (RFC), p.360).

Password Authentication Protocol (PAP)

The Password Authentication Protocol (PAP) provides a simple method by which

the peer establishes its identity using a two-way handshake. This is done only

upon the initial establishment of a link. Once a link is established, an ID/password

pair is sent repeatedly by the peer to the authenticator until authentication is

acknowledged or the connection is terminated. PAP is not a robust authentication

method. Passwords are sent over the circuit “in the clear,” without protection from

playback or repeated trial-and-error attacks. The peer is in control of the frequency

and timing of the attempts. This authentication method is most appropriately used

when a plain-text password must be available to simulate a login at a remote host.

For information about using PAP, see Using PAP, p.353, or refer to RFC 1334 (see

Requests for Comments (RFC), p.360).

Challenge-Handshake Authentication Protocol (CHAP)

Challenge-Handshake Authentication Protocol (CHAP) is a more robust

authentication protocol offering better security. CHAP periodically verifies the

identity of a peer using a three-way handshake. This is done after an initial link is

established, and can be repeated anytime afterward.

After a link is established, the authenticator sends a “challenge” message to the

peer. The peer responds with a value calculated by a one-way hash function. The

authenticator checks the response against its own calculation of the expected hash

value. If the values match, the authentication is acknowledged; otherwise the

connection is terminated.

CHAP provides protection against playback attack by issuing ever-changing

challenges at specified time intervals. The use of repeated challenges is intended to

limit the time of exposure to any single attack. The authenticator is in control of the

frequency and timing of the challenges.
342

5

5
Network
CHAP authentication for any particular link relies on the use of a “secret” known

only to the authenticator and the peer. The secret is not sent over the link; therefore

the server and its peer must both have access to it. In Tornado, this is achieved

using various methods explained in Using CHAP, p.354. For further technical

details, refer to RFC 1334 (see Requests for Comments (RFC), p.360).

5.7.4 Using PPP

Once configured and initialized, PPP for Tornado attaches itself into the VxWorks

TCP/IP stack at the driver (link) layer. After a PPP link has been established with

the remote peer, all normal VxWorks IP networking facilities are available; the PPP

connection is transparent to the user.

Initializing a PPP Link

A PPP link is initialized by calls to either usrPPPInit() or pppInit(). When either

of these routines is invoked, the remote peer should be initialized. When a peer is

running in passive mode, it must be initialized first (see PPP Options, p.347.)

usrPPPInit()

The usrPPPInit() routine is in config/all/bootConfig.c and

src/config/usrNetwork.c. There are four ways it can be called:

If the boot device is set to ppp, usrPPPInit() is called as follows:

– From bootConfig.c when booting from boot ROMs.

– From usrNetwork.c when booting from VxWorks boot code.

The PPP interface can also be initialized by calling usrPPPInit() as follows:

– From the VxWorks shell.

– By user application code.

Use either syntax when calling usrPPPInit():

usrPPPInit ("bootdevice", "local IP address", "remote IP address")
usrPPPInit ("bootdevice", "local host name", "remote host name")

You can use host names in usrPPPInit() provided the hosts have been previously

added to the host database by making calls to hostAdd() as follows:

hostAdd ("hostname", "host IP address")

For example, you can call usrPPPInit() in the following way:
343

VxWorks 5.3.1
Programmer’s Guide
usrPPPInit ("ppp=/tyCo/1,38400", "147.11.90.1", "147.11.90.199")

The usrPPPInit() routine calls pppInit(), which initializes PPP with the

configuration options that were specified at compile-time (see Selecting PPP
Options by Using Configuration Constants in configAll.h, p.337). The pppInit()
routine can be called multiple times to initialize multiple channels. Note that

usrPPPInit() is hard-coded to initialize a single channel, PPP unit 0, and that the

connection timeout is specified by PPP_CONNECT_DELAY. The return value of this

routine indicates whether the link has been successfully established—if the return

value is OK, the network connection should be fully operational.

pppInit()

The pppInit() routine is the standard entry point for initializing a PPP link. All

available PPP options can be set using parameters specified for this routine (see

Selecting PPP Options by Using an Options Structure, p.339). Unlike usrPPPInit(),
the return value of pppInit() does not indicate the status of the PPP link; it merely

reports whether the link could be initialized. To check whether the link is actually

established, call pppInfoGet() and make sure that the state of IPCP is OPENED.

The following code fragment demonstrates use of this mechanism for PPP unit 2:

PPP_INFO pppInfo;

if ((pppInfoGet (2, &pppInfo) == OK) &&
(pppInfo.ipcp_fsm.state == OPENED))
return (OK); /* link established */

else
return (ERROR); /* link down */

Deleting a PPP Link

There are two ways to delete a PPP link:

■ When a terminate request packet is received from the peer.

■ By calling pppDelete() to terminate the link.

Merely deleting the VxWorks tasks that control PPP or rebooting the target severs

the link only at the TCP/IP stack, but does not delete the link on the remote peer

end.

The return value of pppDelete() does not indicate the status of the PPP link. To

check whether the link is actually terminated, call pppInfoGet() and make sure the

return value is ERROR. The following code fragment demonstrates the usage of

this mechanism for PPP unit 4:
344

5

5
Network
PPP_INFO pppInfo;

if (pppInfoGet (4, &pppInfo) == ERROR)
return (OK); /* link terminated */

else
return (ERROR); /* link still up */

Booting VxWorks Using PPP

To boot VxWorks using PPP, first configure PPP into the system (see

5.7.2 Configuration, p.336) and remake the VxWorks and boot ROM images. After

a new boot ROM image has been built, burned into ROM, and installed in the

target board, bootstrap the target board to the VxWorks boot ROM prompt.

When booting using PPP, specify the boot device with one of the following options:

– boot device: ppp
– ppp=device
– ppp=device,baudrate
– ppp,baudrate

If using boot device: ppp, then the serial channel is set to PPP_TTY in configAll.h
and the baud rate is set to the default baud rate of the channel. Specifying

ppp=device allows you to choose the PPP tty (serial channel), overriding the

PPP_TTY constant. Specifying ppp=device,baudrate allows you to choose the PPP tty
(serial channel) and the baud rate of the channel. The default baud rate used by the

PPP tty (serial channel) can be configured into the system by defining the constant

PPP_BAUDRATE (in configAll.h) as the required baud rate, and remaking

VxWorks and the boot ROM images. However, the baud rate supplied as a part of

the boot device overrides any default settings. The following is a boot example for

the configuration shown in Figure 5-25:

boot device : ppp=/tyCo/2,38400
processor number : 0
host name : mars
file name : /usr/vw/config/mv167/vxWorks
inet on ethernet (e) : 90.0.0.10
host inet (h) : 90.0.0.1
user (u) : jane
target name (tn) : vxJane

When the boot device is ppp, the PPP interface is initialized by usrPPPInit(). This

configures the point-to-point connection using the serial device, target, and host IP

addresses specified in the boot parameters. And it configures in the configuration

options defined at compile-time in configAll.h (see Selecting PPP Options by Using
Configuration Constants in configAll.h, p.337). If a gateway address is specified, the

PPP driver adds a routing entry from the gateway address to the host address. If a
345

VxWorks 5.3.1
Programmer’s Guide
gateway address is not specified, the PPP software assumes that the point-to-point

peer address is on the other end of the serial line and enters the appropriate routing

entry.

If you want to boot VxWorks over a PPP link but do not have a console device, the

following additional modifications must be made:

1. Set the constant CONSOLE_TTY to NONE and define the tty port number using

the constant PPP_TTY in configAll.h.

#define CONSOLE_TTY NONE
#define PPP_TTY 0 /* use port number 0 for PPP */

2. Specify the boot parameters using DEFAULT_BOOT_LINE in config.h before

making your boot ROMs. Changing any of the default PPP settings requires

new boot ROMs. For example:

#define DEFAULT_BOOT_LINE \
"ppp(0,0)mars:/usr/vw/config/mv167/vxWorks h=90.0.0.1 e=90.0.0.10 u=jane"

3. If your system has nonvolatile RAM (NVRAM), edit sysLib.c and change

sysNvRamGet() to return ERROR. This forces the use of

DEFAULT_BOOT_LINE, instead of the value stored in NVRAM.

4. Initialize PPP on the remote peer.

5. Boot VxWorks with the new boot ROMs.

Figure 5-25 PPP Configuration Example

90.0.0.190.0.0.10

Serial Line

/tyCo/2
tty

target host
346

5

5
Network
PPP Options

Table 5-17 lists all the configuration options supported by PPP for Tornado. Each

configuration option is shown in its three forms, corresponding to the

configuration methods explained in the following sections:

Column 1: Selecting PPP Options by Using Configuration Constants in
configAll.h, p.337

Column 2: Selecting PPP Options by Using an Options Structure, p.339

Column 3: Setting PPP Options by Using an Options File, p.339.

A brief description of each option follows the three formats.

Configuration options specified in the options file PPP_OPTIONS_FILE take

precedence over any previously set in configAll.h or set by passing the structure

PPP_OPTIONS to pppInit(). For example:

■ If PPP_OPT_NO_PAP is activated in configAll.h (negating the use of PAP), a

subsequent setting of require_pap in PPP_OPTIONS_FILE overrides the earlier

setting enabling PAP authentication.

■ If char * netmask has been passed in the options structure PPP_OPTIONS to

pppInit() with a value of FFFF0000, and netmask FFFFFF00 is passed in

PPP_OPTIONS_FILE to usrPPPInit(), the network mask value is reset to

FFFFFF00.

PPP Authentication

PPP for Tornado provides security through two authentication protocols: PAP (see

Password Authentication Protocol (PAP), p.342) and CHAP (see Challenge-Handshake
Authentication Protocol (CHAP), p.342). This section introduces the use of PPP link-

layer authentication (introduced in Link Control Protocol (LCP), p.341), and

describes the format of the secrets files.

In VxWorks, the default behavior of PPP is to authenticate itself when requested

by a peer but not to require authentication from a peer. If additional security is

required, choose PAP or CHAP by turning on the corresponding option. PPP in

VxWorks can act as a client (the peer authenticating itself) or a server (the

authenticator).

Authentication for both PAP and CHAP is based on secrets, selected from a secrets
file or from the secrets database built by the user (which can hold both PAP and

CHAP secrets). A secret is represented by a record, which itself is composed of
347

V
xW

orks 5.3.1
P

rogram
m

er’s G
uide

348

Table 5-17 PPP Configuration Options

Options Description

 any options.

de so it waits for the

an initial attempt to

e. PPP does not

 to initiate a connec-

 packet is received

on is successfully

fault route to the

, using the peer as

ry is removed when

 broken.

ystem’s ARP (Ad-

ocol) table with IP

d the Ethernet ad-

peer’s idea of the

ss, even if the local

ied.

peer’s idea of its (re-

n if the remote IP

.

gotiation in IPCP.

rol compression.

 compression.

son) compression.
Set in configAll.h Set using options structure Set using options file

PPP_OPT_NO_ALL OPT_NO_ALL no_all Do not request/allow

PPP_OPT_PASSIVE_MODE OPT_PASSIVE_MODE passive_mode Set PPP in passive mo

peer to connect, after

connect.

PPP_OPT_SILENT_MODE OPT_SILENT_MODE silent_mode Set PPP in silent mod

transmit LCP packets

tion until a valid LCP

from the peer.

PPP_OPT_DEFAULT_ROUTE OPT_DEFAULT_ROUTE default_route When IPCP negotiati

completed. Add a de

system routing tables

the gateway. This ent

the PPP connection is

PPP_OPT_PROXY_ARP OPT_PROXY_ARP proxy_arp Add an entry to this s

dress Resolution Prot

address of the peer an

dress of this system.

PPP_OPT_IPCP_ACCEPT_LOCAL OPT_IPCP_ACCEPT_LOCAL ipcp_accept_local Set PPP to accept the

target’s local IP addre

IP address was specif

PPP_OPT_IPCP_ACCEPT_REMOTE OPT_IPCP_ACCEPT_REMOTE ipcp_accept_remote Set PPP to accept the

mote) IP address, eve

address was specified

PPP_OPT_NO_IP OPT_NO_IP no_ip Disable IP address ne

PPP_OPT_NO_ACC OPT_NO_ACC no_acc Disable address/cont

PPP_OPT_NO_PC OPT_NO_PC no_pc Disable protocol field

PPP_OPT_NO_VJ OPT_NO_VJ no_vj Disable VJ (Van Jacob

5
N

etw
ork

349

onnection ID

ion.

tiation.

eceive Unit)

ation with

tication with

 with peer.

on with peer.

base for PAP

 mode.

ode.

 the specified

 on transmis-

f VJ compres-

ified value.

 for negotia-

Table 5-17 PPP Configuration Options (Continued)
5

PPP_OPT_NO_VJCCOMP OPT_NO_VJCCOMP no_vjccomp Disable VJ (Van Jacobson) c

compression.

PPP_OPT_NO_VJCCOM OPT_NO_ASYNCMAP no_asyncmap Disable async map negotiat

PPP_OPT_NO_MN OPT_NO_MN no_mn Disable magic number nego

PPP_OPT_NO_MRU OPT_NO_MRU no_mru Disable MRU (Maximum R

negotiation.

PPP_OPT_NO_PAP OPT_NO_PAP no_pap Do not allow PAP authentic

peer.

PPP_OPT_NO_CHAP OPT_NO_CHAP no_chap Do not allow CHAP authen

peer.

PPP_OPT_REQUIRE_PAP OPT_REQUIRE_PAP require_pap Require PAP authentication

PPP_OPT_REQUIRE_CHAP OPT_REQUIRE_CHAP require_chap Require CHAP authenticati

PPP_OPT_LOGIN OPT_LOGIN login Use the login password data

authentication of peer.

PPP_OPT_DEBUG OPT_DEBUG debug Enable PPP daemon debug

PPP_OPT_DRIVER_DEBUG OPT_DRIVER_DEBUG driver_debug Enable PPP driver debug m

PPP_STR_ASYNCMAP char * asyncmap asyncmap value Set the desired async map to

value.

PPP_STR_ESACAPE_CHARS char * escape_chars escape_chars value Set the characters to escape

sion to the specified values.

PPP_STR_VJ_MAX_SLOTS char * vj_max_slots vj_max_slots value Set the maximum number o

sion header slots to the spec

PPP_STR_NETMASK char * netmask netmask value Set the network mask value

tion to the specified value.

Options Description

Set in configAll.h Set using options structure Set using options file

V
xW

orks 5.3.1
P

rogram
m

er’s G
uide

350

Receive Unit) for

cified value.

Transmission Unit)

 specified value.

secutive LCP echo

d value.

nds for the LCP ne-

ied value.

nds for the LCP ne-

ied value.

ber of transmis-

tion requests to the

ber of transmis-

ration requests to

ber of LCP config-

specified value.

onds for the IPCP

cified value.

ber of transmis-

ation requests to the

ber of transmis-

uration requests to

ber of IPCP config-

specified value.

Table 5-17 PPP Configuration Options (Continued)

Options Description
PPP_STR_MRU char * mru mru value Set MRU (Maximum

negotiation to the spe

PPP_STR_MTU char * mtu mtu value Set MTU (Maximum

for negotiation to the

PPP_STR_LCP_ECHO_FAILURE char * lcp_echo_failure lcp_echo_failure value Set the maximum con

failures to the specifie

PPP_STR_LCP_ECHO_INTERVAL char * lcp_echo_interval lcp_echo_interval value Set the interval in seco

gotiation to the specif

PPP_STR_LCP_RESTART char * lcp_restart lcp_restart value Set the timeout in seco

gotiation to the specif

PPP_STR_LCP_MAX_TERMINATE char * lcp_max_terminate lcp_max_terminate value Set the maximum num

sions for LCP termina

specified value.

PPP_STR_LCP_MAX_CONFIGURE char * lcp_max_configure lcp_max_configure value Set the maximum num

sions for LCP configu

the specified value.

PPP_STR_LCP_MAX_FAILURE char * lcp_max_failure lcp_max_failure value Set the maximum num

uration NAKs to the

PPP_STR_IPCP_RESTART char * ipcp_restart ipcp_restart value Set the timeout in sec

negotiation to the spe

PPP_STR_IPCP_MAX_TERMINATE char * ipcp_max_terminate ipcp_max_terminate
value

Set the maximum num

sions for IPCP termin

specified value.

PPP_STR_IIPCP_MAX_CONFIGURE char * ipcp_max_configure ipcp_max_configure
value

Set the maximum num

sions for IPCP config

the specified value.

PPP_STR_IPCP_MAX_FAILURE char * ipcp_max_failure ipcp_max_failure value Set the maximum num

uration NAKs to the

Set in configAll.h Set using options structure Set using options file

5
N

etw
ork

351

ntication to

entication to

ecified file.

ither peer re-

uthentication

d name.

uthentication

d password.

r the PAP ne-

lue.

f transmis-

n requests to

specified file.

ither peer re-

n.

or the CHAP

 value.

or CHAP re-

alue.

f transmis-

quests to the

Table 5-17 PPP Configuration Options (Continued)
5

PPP_STR_LOCAL_AUTH_NAME char * local_auth_name local_auth_name name Set the local name for authe

the specified name.

PPP_STR_REMOTE_AUTH_NAME char * remote_auth_name remote_auth_name name Set the remote name for auth

the specified name.

PPP_STR_PAP_FILE char * pap_file pap_file file Get PAP secrets from the sp

This option is necessary if e

quires PAP authentication.

PPP_STR_PAP_USER_NAME char * pap_user_name pap_user_name name Set the user name for PAP a

with the peer to the specifie

PPP_STR_PAP_PASSWD char * pap_passwd pap_passwd passwd Set the password for PAP a

with the peer to the specifie

PPP_STR_PAP_RESTART char * pap_restart pap_restart value Set the timeout in seconds fo

gotiation to the specified va

PPP_STR_PAP_MAX_AUTHREQ char * pap_max_authreq pap_max_authreq value Set the maximum number o

sions for PAP authenticatio

the specified value.

PPP_STR_CHAP_FILE char * chap_file chap_file file Get CHAP secrets from the

This option is necessary if e

quires CHAP authenticatio

PPP_STR_CHAP_RESTART char * chap_restart chap_restart value Set the timeout in seconds f

negotiation to the specified

PPP_STR_CHAP_INTERVAL char * chap_interval chap_interval value Set the interval in seconds f

challenge to the specified v

PPP_STR_MAX_CHALLENGE char * max_challenge max_challenge value Set the maximum number o

sions for CHAP challenge re

specified value.

Options Description

Set in configAll.h Set using options structure Set using options file

VxWorks 5.3.1
Programmer’s Guide
fields. The secrets file and the secrets database contain secrets that authenticate

other clients, as well as secrets used to authenticate the VxWorks client to its peer.

In the case that a VxWorks target cannot access the secrets file through the file

system, use pppSecretAdd() to build a secrets database.

Secrets files for PAP and CHAP use identical formats. A secrets record is specified

in a file by a line containing at least three words: the fields client, server, and secret,
in that order. For PAP, secret is a password which must match the password entered

by the client seeking PAP authentication. For CHAP, both client and server must

have identical secrets records in their secrets files; the secret consists of a string of

one or more words (for example, “an unguessable secret”).

Table 5-18 is an example of a secrets file. It could be either a PAP or CHAP secrets

file, since their formats are identical.

At the time of authentication, for a given record, PPP interprets any words

following client, server, and secret as acceptable IP addresses for the client and secret
specified. If there are only three words on the line, it is assumed that any IP address

is acceptable; to disallow all IP addresses, use a dash (-). If the secret starts with an

@, what follows is assumed to be the name of a file from which to read a secret. An

asterisk (*) as the client or server name matches any name. When authentication is

initiated, a best-match algorithm is used to find a match to the secret, meaning that,

given a client and server name, the secret returned is for the closest match found.

On receiving an authentication request, PPP checks for the existence of secrets

either in an internal secrets database or in a secrets file. If PPP does not find the

secrets information, the connection is terminated.

The secrets file contains secrets records used to authenticate the peer, and those

used to authenticate the VxWorks client to the peer. Selection of a record is based

on the local and remote names. By default, the local name is the host name of the

VxWorks target, unless otherwise set to a different name by the option

Table 5-18 Secrets File Format

client server secret IP address

vxTarget mars "vxTargetSECRET"

venus vxTarget "venusSECRET" 147.11.44.5

* mars "an unguessable secret"

venus vxTarget "venusSECRET" -

vxTarget mars @host:/etc/passwd
352

5

5
Network
local_auth_name in the options file. The remote name is set to a NULL string by

default, unless otherwise set to a name specified by the option remote_auth_name
in the options file. (Both local_auth_name and remote_auth_name can be

specified in two other forms, as can other configuration options listed in Table 5-17,

Page 348.)

Using PAP

The default behavior of PPP is to authenticate itself if requested by a peer but not

to require authentication from a peer. For PPP to authenticate itself in response to

a server’s PAP authentication request, it only requires access to the secrets. For PPP

to act as an authenticator, you must turn on the PAP configuration option.

Secrets can be declared in a file or built into a database. The secrets file for PAP can

be specified in one of the following ways:

■ By defining PPP_STR_PAP_FILE in configAll.h with the path name of the PAP

secrets file.

■ By setting the pap_file member of the PPP_OPTIONS structure passed to

pppInit().

■ By adding the following line entry in the options file specified by

PPP_OPTIONS_FILE in configAll.h:

pap_file /xxx/papSecrets

If the VxWorks target is unable to access the secrets file, call pppSecretAdd() to

build a secrets database.

If PPP requires the peer to authenticate itself using PAP, the necessary

configuration option can be set in one of the following ways:

1. By defining PPP_OPT_REQUIRE_PAP as 1 in configAll.h.

2. By setting the flag OPT_REQUIRE_PAP in the flags bitfield of the PPP_OPTIONS
structure passed to pppInit();

3. By adding the following line entry in the options file specified by

PPP_OPTIONS_FILE in configAll.h.

require_pap

Secrets records are first searched in the secrets database; if none are found there,

then the PAP secrets file is searched. The search proceeds as follows:

■ VxWorks as an authenticator: PPP looks for a secrets record with a client field

that matches the user name specified in the PAP authentication request packet

and a server field matching the local name. If the password does not match the
353

VxWorks 5.3.1
Programmer’s Guide
secrets record supplied by the secrets file or the secrets database, it is

encrypted, provided the optional DES cryptographic package is installed.

Then it is checked against the secrets record again. Secrets records for

authenticating the peer can be stored in encrypted form if the optional DES

package is used. If the login option was specified, the user name and the

password specified in the PAP packet sent by the peer are checked against the

system password database. This enables restricted access to certain users.

■ VxWorks as a client: When authenticating the VxWorks target to the peer, PPP

looks for the secrets record with a client field that matches the user name (the

local name unless otherwise set by the PAP user name option in the options

file) and a server field matching the remote name.

Using CHAP

The default behavior of PPP is to authenticate itself if requested by a peer but not

to require authentication from a peer. For PPP to authenticate itself in response to

a server’s CHAP authentication request, it only requires access to the secrets. For

PPP to act as an authenticator, you must turn on the CHAP configuration option.

CHAP authentication is instigated when the authenticator sends a challenge

request packet to the peer which responds with a challenge response. Upon receipt

of the challenge response from the peer, the authenticator compares it with the

expected response and thereby authenticates the peer by sending the required

acknowledgment. CHAP uses the MD5 algorithm for evaluation of secrets.

The secrets file for CHAP can be specified in any of the following ways:

■ By defining PPP_STR_CHAP_FILE in configAll.h with the path name of the

CHAP secrets file.

■ By setting the chap_file member of the PPP_OPTIONS structure passed to

pppInit().

■ By adding the following line entry in the options file specified by

PPP_OPTIONS_FILE in configAll.h:

chap_file /xxx/chapSecrets

If PPP requires the peer to authenticate itself using CHAP, the necessary

configuration option can be set in one of the following ways:

■ By defining PPP_OPT_REQUIRE_CHAP to 1 in configAll.h.

■ By setting the flag OPT_REQUIRE_CHAP in the flags bitfield of the

PPP_OPTIONS structure passed to pppInit().
354

5

5
Network
■ By adding the following line entry in the options file specified by

PPP_OPTIONS_FILE in configAll.h:

require_chap

Secrets are first searched in the secrets database; if none are found there, then the

CHAP secrets file is searched. The search proceeds as follows:

■ VxWorks as an authenticator: When authenticating the peer, PPP looks for a

secrets record with a client field that matches the name specified in the CHAP

response packet and a server field matching the local name.

■ VxWorks as a client: When authenticating the VxWorks target to the peer, PPP

looks for the secrets record with a client field that matches the local name and

a server field that matches the remote name.

Connect and Disconnect Hooks

PPP provides connect and disconnect hooks for use with user-specific software.

Use the pppHookAdd() routine to add a connect hook that executes software

before initializing and establishing the PPP connection or a disconnect hook that

executes software after the PPP connection has been terminated. The

pppHookDelete() routine deletes connect and disconnect hooks.

The routine pppHookAdd() takes three arguments: the unit number, a pointer to

the hook routine, and the hook type (PPP_HOOK_CONNECT or

PPP_HOOK_DISCONNECT). The routine pppHookDelete() takes two arguments:

the unit number and the hook type. The hook type distinguishes between the

connect hook and disconnect hook routines.

Two arguments are used to call the connect and disconnect hooks: unit, which is

the unit number of the PPP connection, and fd, the file descriptor associated with

the PPP channel. If the user hook routines return ERROR, then the link is gracefully

terminated and an error message is logged.

The following code example demonstrates how to hook the example routines,

connectRoutine() and disconnectRoutine(), into the PPP connection

establishment mechanism and termination mechanism, respectively:

Example 5-5 Using Connect and Disconnect Hooks

#include <vxWorks.h>
#include <pppLib.h>

/* type declarations */
355

VxWorks 5.3.1
Programmer’s Guide
void attachRoutine (void);
STATIC int connectRoutine(int unit, int fd);
STATIC int disconnectRoutine(int unit, int fd);

void attachRoutine (void)
{
/* add connect hook to unit 0 */

pppHookAdd (0, connectRoutine, PPP_CONNECT_HOOK);

/* add disconnect hook to unit 0 */

pppHookAdd (0 , disconnectRoutine, PPP_DISCONNECT_HOOK);
}

STATIC int connectRoutine
(
int unit,
int fd
)
{
BOOL connectOk = FALSE;

/* user specfic connection code */
{
..........
connectOk = TRUE;
}

if (connectOk)
return (OK);

else
return (ERROR);

}

STATIC int disconnectRoutine
(
int unit,
int fd
)
{
BOOL disconnectOk = FALSE;
/* user specific code */

{
..........
disconnectOk = TRUE;
}

if (disconnectOk)
return (OK);

else
return (ERROR);

}

356

5

5
Network
5.7.5 PPP with Tornado

PPP can be used in two ways in the Tornado environment. The PPP link can serve

as an additional network interface apart from the existing default network

interface, or it can be the default network interface on the target, causing PPP to

serve as a network back end for the target server on the host.

PPP Link as an Additional Network Interface

1. To use this option, rebuild the VxWorks image with PPP included. For more

information on how to include PPP, see 5.7.2 Configuration, p.336.

2. Boot the image from the regular Tornado boot ROM.

3. Start the Tornado target server and launch Tornado.

4. Start the Tornado shell, and invoke usrPPPInit() from the shell. You can also

use pppInit() from an application to configure the PPP link. For more

information on these routines, see Initializing a PPP Link, p.343.

The additional PPP link is now ready for use.

PPP Link as a Network Back End for the Target Server on the Host

1. Define the constant INCLUDE_PPP in configAll.h and make new boot ROMs

for the target. For more information, see 5.7.2 Configuration, p.336.

2. Rebuild a new VxWorks image for the target.

3. Configure and start the pppd daemon on the host. For example on a Sun host

using the SUN OS the following command can be run to start the daemon:

% pppd passive /dev/ttyb 38400

4. Change the boot configuration parameters to use the PPP link. For example:

[VxWorks Boot}: c
boot device : ppp,38400
processor number : 0
host name : host
file name : /usr/wind/target/config/mv177/vxWorks
inet on ethernet (e) : 90.0.0.165:ffffff00
host inet (h) : 90.0.0.5
gateway inet (g) : 90.0.0.5
user (u) : thardy
flags (f) : 0x4
target name (tn) : luna
357

VxWorks 5.3.1
Programmer’s Guide
5. After booting you should see messages similar to the following:

Attaching network interface ppp0...
ppp0: ppp 2.1.2 started by
ppp0: Connect: ppp0 <--> /tyCo/1
ppp0: local IP address 90.0.0.165
ppp0: remote IP address 90.0.0.5
done.
Attaching network interface lo0... done.
Loading... 361620 + 70448 + 34350
Starting at 0x1000...

Attaching network interface ppp0...
ppp0: ppp 2.1.2 started by
ppp0: Connect: ppp0 <--> /tyCo/1
ppp0: local IP address 90.0.0.165
ppp0: remote IP address 90.0.0.5
done.
Attaching network interface lo0... done.
NFS client support not included.

VxWorks

Copyright 1984-1995 Wind River Systems, Inc.
CPU: Motorola MVME177

VxWorks: 5.3
BSP version: 1.1/0

Creation date: Jan 26 1996
WDB: Ready.

You are now ready to start the target server and run Tornado. For more information

on starting Tornado refer to the Tornado User’s Guide.

The PPP connection is like a network back end except that the connection is

established on a serial link. When using the PPP link to communicate with the

target, all the Tornado tools work in the same way as on a regular network back

end. (See the Tornado User’s Guide.)

NOTE: System-level debugging is not available when using the PPP link. To

perform system-level debugging, use the regular serial back end described in the

Tornado User’s Guide.

5.7.6 Troubleshooting PPP

Because of the complex nature of PPP, you may encounter problems using it in

conjunction with VxWorks. Give yourself the opportunity to get familiar with

running VxWorks configured with PPP by starting out using a default

configuration. Additional options for the peer should be turned off. (These can

always be configured later.)

!

358

5

5
Network
Problems with PPP generally occur in either of two areas: when establishing links

and when pursuing authentication. The following sections offer checklists for

troubleshooting errors that have occurred during these processes. If, however,

difficulties using PPP with VxWorks persist, contact the Wind River Systems

technical support organization.

Link Establishment

The link is the basic operating element of PPP; a proper connection ensures the

smooth functioning of PPP, as well as VxWorks. The following steps should help

resolve simple problems encountered when establishing a link.

1. Make sure that the serial port is connected properly to the peer. A null modem

may be required.

2. Make sure that the serial driver is correctly configured for the default baud rate

of 9600, no parity, 8 DATA bits, and 1 STOP bit.

3. Make sure that there are no problems with the serial driver. PPP may not work

if there is a hang up in the serial driver.

4. Start the PPP daemon on the peer in the passive mode.

5. Boot the VxWorks target and start the PPP daemon by typing:

% usrPPPInit

If no arguments are supplied, the target configures the default settings. If a

timeout error occurs, increase the value of PPP_CONNECT_DELAY in

configAll.h. By default, PPP_CONNECT_DELAY is set to 15 seconds, which

may not be sufficient in some environments.

6. Once the connection is established, add and test additional options.

Authentication

Authentication is one of the more robust features of PPP for VxWorks. The

following steps may help you troubleshoot basic authentication problems.

1. Turn on the debug option for PPP. (Select PPP_OPT_DEBUG in configAll.h, or

use the alternative options in Table 5-17, page 348.) By turning on the debug

option, you can witness various stages of authentication.

2. If the VxWorks target has no access to a file system, use pppSecretAdd() to

build the secrets database.
359

VxWorks 5.3.1
Programmer’s Guide
3. Make sure the secrets file is accessible and readable.

4. Make sure the format of the secrets file is correct.

5. PPP uses the MD5 algorithm for CHAP authentication of secrets. If the peer

tries to use a different algorithm for CHAP, then the CHAP option should be

turned off.

6. Turn off the VJ compression. It can be turned on after you get authentication

working.

5.7.7 PPP Reference List

Requests for Comments (RFC)

The following is a list of relevant Requests for Comments (RFC) associated with

the VxWorks PPP implementation:

RFC 1332 The PPP Internet Protocol Control Protocol (IPCP)

RFC 1334 PPP Authentication Protocols

RFC 1548 The Point-to-Point Protocol (PPP)

RFC 1549 PPP in HDLC Framing

PPP Newsgroup

The comp.protocols.ppp USENET newsgroup is dedicated to the discussion of

PPP-related issues. Information presented in this forum is often of a general nature

(such as equipment, setup, or troubleshooting), but technical details concerning

specific PPP implementations are discussed as well.)
360

5

5
Network
5.8 Network Initialization on Startup

Most of the information that VxWorks uses to set up its network and access its boot

host is taken from the boot parameters you supply to the VxWorks boot ROMs

with the boot line or the boot menu commands. This section summarizes the

network configuration performed automatically by VxWorks, based on these

parameters. Most of this configuration is done by usrNetInit() in
src/config/usrNetwork.c. VxWorks startup procedures configure the network

based on the following boot parameters:

boot device The network device to boot from; for example, ln for a Lance

Ethernet controller. This device is attached and configured

automatically with the correct Internet address.

host name The name of the host to boot from. This need not be the same

name used internally by that system. VxWorks adds the host

name to the host table and creates a device by that name.

host inet The Internet address of the host to boot from.

inet on ethernet The Internet address of this target on the Ethernet, if any. If the

target has no Ethernet controller (perhaps because it boots

from a backplane network through a gateway), leave this field

blank (unless the target is being booted using SLIP). A subnet

mask can also be specified as described in 5.3.9 Using Subnets,

p.297.

inet on backplane The Internet address of this target on the backplane network.

This field can be blank if no shared-memory network is

required. Again, a subnet mask can be specified as described

previously.

gateway inet The Internet address of the gateway through which to boot, if

the host is not on the same network as the target.

file name The full path name of the VxWorks object module to be

booted.

processor number The backplane processor number of the target CPU. The first

CPU must be processor number 0 (zero).

See 5.9.3 The VxWorks Boot Parameters, p.366 for more boot parameter information.

The preceding parameters configure the following network elements:
361

VxWorks 5.3.1
Programmer’s Guide
Ethernet interface If inet on ethernet is specified, the Ethernet interface is

attached; the Internet address and the optional net mask are

set using ifAddrSet() and ifMaskSet().

Backplane interface

If inet on backplane is specified, the backplane interface is

attached; the Internet address and the optional net mask are

set using ifAddrSet() and ifMaskSet().

Host names Host name entries are added using hostAdd() for the

specified boot host and for loop-back (“localhost”).

Routing If a gateway address is specified, a routing entry is added

indicating that the address is a gateway to the network of the

specified boot host.

Remote file access device

This device is created with the name “boothost:”. If a password

is specified, FTP is used; otherwise RSH is used.

Network File System

If the NFS client is included and INCLUDE_NFS_MOUNT_ALL
is defined, VxWorks mounts all file systems that are exported

by the boot host. You must set the NFS user ID and group ID

correctly: either dynamically by calling nfsAuthUnixSet(), or

in the configuration file config/all/configAll.h.

Remote login rlogin is initialized if no password is specified; otherwise

telnet is initialized.

User name and password

These are initialized as specified in the boot parameters.

Current working directory

This is set to the remote file access device called boothost:.
362

5

5
Network
5.9 BOOTP (Bootstrap Protocol)

BOOTP is a basic bootstrap protocol implemented over the Internet User

Datagram Protocol (UDP). It allows a booting target to configure itself dynamically

by obtaining its IP address, the boot file name, and the boot host’s IP address over

the network, instead of the more traditional method of using the information

encoded in the target’s non-volatile RAM or ROM. BOOTP retrieves these target

parameters. The actual transfer of the boot image is performed by a file transfer

program (TFTP, FTP, or RSH). BOOTP and TFTP are commonly used together for

network booting. 9

BOOTP offers centralized management of target boot parameters on the host

system. Using BOOTP, the VxWorks target can have the boot parameters specified

by the host system, and VxWorks systems can be set up so that configuration on

the target is unnecessary; see 5.9.3 The VxWorks Boot Parameters, p.366.

A BOOTP server must be running or set up (with inetd) to run on the boot host,

and the boot parameters for the target must be entered into the BOOTP database

(bootptab). The format of this database is server specific. An example bootptab
format is described in 5.9.2 The BOOTP Database, p.364.

BOOTP is a simple protocol based on single-packet exchanges. The client transmits

a BOOTP request message on the network. The server gets the message, and looks

up the client in the database. It searches on the client’s IP address if that field is

specified; if not, it searches on the client’s hardware address.

After the server finds the client’s entry in the database, it performs name

translation on the boot file, and checks for the presence (and accessibility) of that

file. If the file exists and is readable, the server sends a reply message to the client.

5.9.1 The BOOTP Server

The BOOTP server resides on the UNIX host and is therefore host-specific. Many

hosts provide a server as part of the standard operating system. Refer to the

manuals for your host for information about the BOOTP server and the structure

of the BOOTP database file (bootptab).

If the host does not provide a BOOTP server as part of the operating system, a copy

of the publicly available CMU BOOTP server is provided in

unsupported/bootp2.1.

9. For the complete BOOTP protocol specification, refer to RFC 951 “Bootstrap Protocol

(BOOTP)” and RFC 1048 “BOOTP Vendor Information Extensions.”
363

VxWorks 5.3.1
Programmer’s Guide
5.9.2 The BOOTP Database

To register a VxWorks target with the BOOTP server, enter the target parameters

in the host’s BOOTP database (/etc/bootptab). The following is an example

bootptab for the CMU version of the BOOTP server:

/etc/bootptab: database for bootp server (/etc/bootpd)
Last update Mon 11/7/88 18:03
Blank lines and lines beginning with '#' are ignored.
#
Legend:
#
first field -- hostname
(may be full domain name and probably should be)
#
hd -- home directory
bf -- boot file
cs -- cookie servers
ds -- domain name servers
gw -- gateways
ha -- hardware address
ht -- hardware type
im -- impress servers
ip -- host IP address
lg -- log servers
lp -- LPR servers
ns -- IEN-116 name servers
rl -- resource location protocol servers
sm -- subnet mask
tc -- template host (points to similar host entry)
to -- time offset (seconds)
ts -- time servers
#
Be careful to include backslashes where they are needed. Weird (bad)
things can happen when a backslash is omitted where one is intended.
#
First, we define a global entry which specifies what every host uses.

global.dummy:\
:sm=255.255.255.0:\
:hd=/usr/wind/target/vxBoot:\
:bf=vxWorks:

vx240:ht=ethernet:ha=00DD00CB1E05:ip=150.12.1.240:tc=global.dummy
vx241:ht=ethernet:ha=00DD00FE2D01:ip=150.12.1.241:tc=global.dummy
vx242:ht=ethernet:ha=00DD00CB1E02:ip=150.12.1.242:tc=global.dummy
vx243:ht=ethernet:ha=00DD00CB1E03:ip=150.12.1.243:tc=global.dummy
vx244:ht=ethernet:ha=0000530e0018:ip=150.12.1.244:tc=global.dummy

Note that common data is described in the entry global.dummy. Any target entries

that want to use the common data use tc=global.dummy. Any target-specific

information is listed separately on the target line. For example, in the previous file,

the entry target vx244 specifies its Ethernet address (0000530e0018) and IP address
364

5

5
Network
(150.12.1.244). The subnet mask (255.255.255.0), home directory

(/usr/wind/target/vxBoot), and boot file (vxWorks) are taken from the common

entry global.dummy.

Registering the VxWorks Target

Log onto the boot server and add an entry to the database that corresponds to the

target by entering the target address (ha=), IP address (ip=), and boot file (bf=).

To add a target called vx245, with Ethernet address 00:00:4B:0B:B3:A8, IP address

150.12.1.245, and boot file vxBoot/vxWorks, add the following to the end of the file:

vx245:ht=ethernet:ha=00004B0BB3A8:ip=150.12.1.245:tc=global.dummy

The boot file name does not need to be added explicitly, because the home

directory (hd) and the boot file (bf) are taken from global.dummy.

When performing the boot file name translation, the BOOTP server uses the value

specified in the boot file field of the client request message as well as the bf (boot

file) and the hd (home directory) field in the database. If the form of the file name

calls for it (for example, if it is relative), the server prefixes the home directory to

the file name. The server checks for the existence of the file; if the file is not found,

it sends no reply. For more information, see bootpd in the manual for your host.

When the server checks for the existence of the file, it also checks whether its read-

access bit is set to public, because this is required by tftpd(8) to permit the file

transfer. All file names are first tried as filename.hostname and then as filename, thus

providing for individual per-host boot files.

In the previous example, the server first searches for vxBoot/vxWorks.vx245. If the

file does not exist, the server looks for vxBoot/vxWorks.

Obtaining the Target Ethernet Address

Use the ifShow() routine10 to determine the hardware address of a particular

VxWorks target. In the following example, the target’s Ethernet address is

00:00:4b:0b:b3:a8.

-> ifShow "ln0"
value = 0 = 0x0

10. This routine is not built in to the Tornado shell. To use it from the Tornado shell, you must

define INCLUDE_NET_SHOW in your VxWorks configuration; see 8. Configuration.
365

VxWorks 5.3.1
Programmer’s Guide
The output is sent to the standard output device, and looks like the following:

ln (unit number 0):
Flags: (0x63) UP BROADCAST ARP RUNNING
Internet address: 150.12.1.240
Broadcast address: 150.12.1.255
Netmask 0xffff0000 Subnetmask 0xffffff00
Ethernet address is 00:00:4b:0b:b3:a8
Metric is 0
Maximum Transfer Unit size is 1500
5 packets received; 6 packets sent
0 input errors; 0 output errors
6 collisions

From the VxWorks boot ROMs, obtain the hardware address with the n command:

[VxWorks Boot]: n ln
Attaching network interface enp0... done
Address for device "ln" == 02:cf:1f:e0:20:24

5.9.3 The VxWorks Boot Parameters

The boot device, processor number, and flags (f) parameters must be specified in

the boot ROMs. The inet on ethernet (e), file name, and host inet (h) parameters

can be obtained with BOOTP. The rest of the parameters can be specified by a

default in configAll.h. The current defaults in configAll.h are:

/* Default Boot Parameters */
#define HOST_NAME_DEFAULT "bootHost" /* host name */
#define TARGET_NAME_DEFAULT "vxTarget" /* target name (tn) */
#define HOST_USER_DEFAULT "target" /* user (u) */
#define HOST_PASSWORD_DEFAULT "" /* password */
#define SCRIPT_DEFAULT "" /* startup script (s) */
#define OTHER_DEFAULT "" /* other (o) */

Table 5-13 shows where the various boot parameters can be specified.

5.9.4 Booting a VxWorks Target with BOOTP/TFTP

Booting Example

To boot a VxWorks target with BOOTP/TFTP:

1. Copy the VxWorks boot image to the boot directory on the boot host. For a

standalone version of VxWorks, enter:

% cp vxWorks.st /usr/wind/target/vxBoot/vxWorks.vx245
366

5

5
Network
2. Make sure the boot file permissions are accessible by all:

% chmod 644 vxWorks.vx245
% ls -l
total 609
drwxrwxrwx 2 root 512 Jul 6 15:58 ./
drwxrwxrwx 3 root 512 Jul 6 14:28 ../
-rw-r--r-- 1 target 519880 Jul 6 19:36 vxWorks.vx245

3. If the symbol table is required (for example, if you are using the target shell),

copy it to the boot directory on the boot host:

% cp vxWorks /usr/wind/target/vxBoot/vxWorks.vx245
% cp vxWorks.sym /usr/wind/target/vxBoot/vxWorks.vx245.sym

NOTE: Although the boot file is retrieved with TFTP (and no authentication is

required; see 5.3.4 Remote File Transfer Using TFTP, p.291), the symbol table is not

retrieved with TFTP. If the table is needed, netDrv file access is required. (For

example, if you are using the target shell, see 9. Target Shell in this manual.) For

netDrv file access, either the user/password must be specified in the boot

parameters, or a default user/password must be specified in configAll.h.

4. Enable BOOTP/TFTP in the VxWorks target boot parameters by specifying

0xc0 in the boot flags (0x40 specifies BOOTP, 0x80 is TFTP).

[VxWorks Boot]: p
boot device : ln
processor number : 0
flags (f) : 0xc0

5. Boot the target:

[VxWorks Boot]: @
boot device : ln
processor number : 0
flags (f) : 0xc0

Table 5-19 Specifying Boot Parameters

Only in boot ROMs In BOOTP Message In configAll.h

boot device inet on ethernet (e) host name

processor number file name target name (tn)

flags (f) host inet (h) user (u)

ftp password (pw)

startup script (s)

other (o)

!

367

VxWorks 5.3.1
Programmer’s Guide
Attaching network interface ln0... done.
Getting boot parameters via network interface ln0.
Bootp Server:150.12.1.159
Boot file: /usr/wind/target/vxBoot/vxWorks.vx245
Boot host: 150.12.1.159
Boot device Addr (ln0): 150.12.1.245
Subnet mask: 0xffffff00
Attaching network interface lo0... done.
Loading... 374624 + 57008 + 20036
Starting at 0x1000...

Host Name: bootHost
Target Name: vxTarget
User: target
Attaching network interface ln0... done.
Attaching network interface lo0... done.
Mounting NFS file systems from host bootHost for target vxTarget:
/usr
/home

Troubleshooting

If debugging mode is supported, put the BOOTP server in that mode.

No BOOTP Reply

If there is no BOOTP reply:

■ Make sure a BOOTP server is running on the host.

■ Verify that the target address is correct.

■ Be sure the boot file for the target exists and is accessible. If the TFTP server is

started with the -s option, it roots its requests in the specified directory. This

can cause a conflict with BOOTP. For example, suppose the boot file is

specified in bootptab as /tftpboot/vxBoot/vxWorks.vx245. After getting the

request, the BOOTP server checks for the existence of this file, and then sends

a reply. Next, the target sends a TFTP request to get the file

/tftpboot/vxBoot/vxWorks.vx245. If the TFTP server was started with the -s
/tftpboot option, the request fails because the server looks for the file in

/tftpboot/tftpboot/vxBoot rather than in /tftpboot/vxBoot. If this is a problem,

link /tftpboot/tftpboot to /tftpboot. The following commands can be used to

do this:

% cd /tftpboot
% ln -s . tftpboot
368

5

5
Network
Multiple BOOTP Servers

If there are multiple BOOTP servers on the network, the target uses the parameters

specified in the first reply message it receives. In the previous example, the server

from which the reply message came is specified in an output line like the

following:

Bootp Server:150.12.1.159

5.10 Using TFTP, BOOTP, Sequential Addressing, Proxy ARP

Targets on the shared-memory network can boot with BOOTP only if proxy ARP

is enabled (see 5.5.2 Proxy ARP Overview, p.318). A target on the shared-memory

network keys its entry in the BOOTP database by its IP address. A shared-memory

network target’s entry in the BOOTP database looks something like:

vx232:ip=150.12.1.232:tc=global.dummy

A shared-memory network’s master entry in the BOOTP database looks

something like:

vx230:ht=ethernet:ha=0000530e0018:ip=150.12.1.230:tc=global.dummy

The following example is a master processor that uses a combination of BOOTP,

TFTP, proxy ARP, sequential addressing, and proxy default addressing for booting:

[VxWorks Boot]: @
boot device : ln
processor number : 0
flags (f) : 0xc0

Attaching network interface ln0... done.
Getting boot parameters via network interface ln0.
Bootp Server:150.12.1.159

[1] Boot file: /usr/wind/target/vxBoot/vxWorks.vx230
[1] Boot host: 150.12.1.159
[1] Boot device Addr (ln0): 150.12.1.230
[1] Subnet mask: 0xffffff00

Attaching network interface lo0... done.
Loading... 370356 + 28040 + 20196
Starting at 0x1000...

[2] Host Name: bootHost
[2] Target Name: vxTarget
[2] User: target

Attaching network interface ln0... done.
Initializing backplane net with anchor at 0x800000... done.
369

VxWorks 5.3.1
Programmer’s Guide
Backplane anchor at 0x800000... Attaching network interface sm0...
done.

[3] Backplane address: 150.12.1.231
Creating proxy network: 150.12.1.231
Attaching network interface lo0... done.

The parameters from the preceding output came from the following sources:

[1] The BOOTP database

[2] configAll.h (defaults)

[3] The definition of INCLUDE_PROXY_SERVER, INCLUDE_SM_SEQ_ADDR, and

INCLUDE_PROXY_DEFAULT_ADDR in configAll.h. (Note that the address is

one more than that of parameter inet on ethernet, in this case 150.12.1.230.)

The following example shows booting a slave processor using a combination of

BOOTP, TFTP, and sequential addressing:

[VxWorks Boot]: @
boot device : sm=0x800000
processor number : 1
flags (f) : 0x1c0

Backplane anchor at 0x800000... Attaching network interface sm0...
done.

[1] Backplane inet address: 150.12.1.232
registering proxy client: 150.12.1.232.done.
Getting boot parameters via network interface sm0.
Bootp Server:150.12.1.159

[2] Boot file: /usr/wind/target/vxBoot/vxWorks.vx232
[2] Boot host: 150.12.1.159
[2] Subnet mask: 0xffffff00

Attaching network interface lo0... done.
Loading... 370356 + 28040 + 20196
Starting at 0x1000...

[3] Host Name: bootHost
[3] Target Name: vxTarget
[3] User: target

Backplane anchor at 0x800000... Attaching network interface sm0...
done.
Attaching network interface lo0... done.

The parameters from the preceding output came from the following sources:

[1] The definition of INCLUDE_PROXY_CLIENT and INCLUDE_SM_SEQ_ADDR in

configAll.h. (Note that the address is equal to the master CPU’s backplane

address plus the client’s processor number.)

[2] The BOOTP database

[3] configAll.h (defaults)
370

6
Shared-Memory Objects

Optional Component VxMP
6.1 Introduction .. 373

6.2 Using Shared-Memory Objects .. 374

6.2.1 Name Database .. 375

6.2.2 Shared Semaphores .. 376

6.2.3 Shared Message Queues ... 381

6.2.4 Shared-Memory Allocator .. 386

Shared-Memory System Partition ... 386

User-Created Partitions ... 387

Using the Shared-Memory System Partition 387

Using User-Created Partitions ... 391

Side Effects of Shared-Memory Partition Options 394

6.3 Internal Considerations ... 394

6.3.1 System Requirements .. 394

6.3.2 Spin-lock Mechanism .. 395

6.3.3 Interrupt Latency ... 395

6.3.4 Restrictions .. 395

6.3.5 Cache Coherency .. 396

6.4 Configuration ... 396

6.4.1 Shared-Memory Objects and Shared-Memory Network Driver 397
371

VxWorks 5.3.1
Programmer’s Guide
6.4.2 Shared-Memory Region .. 398

6.4.3 Initializing the Shared-Memory Objects Package 398

6.4.4 Configuration Example ... 401

6.4.5 Initialization Steps ... 402

6.5 Troubleshooting .. 403

6.5.1 Configuration Problems ... 403

6.5.2 Troubleshooting Techniques .. 404

List of Tables

Table 6-1 Name Service Routines .. 375

Table 6-2 Shared-Memory Object Types ... 376

Table 6-3 Shared Semaphore Create Routines 378

Table 6-4 Shared-Memory System Partition Routines 388

Table 6-5 Configuration Constants for Shared-Memory Objects .. 401

List of Figures

Figure 6-1 Shared Semaphore Queues .. 378

Figure 6-2 Shared Message Queues ... 382

Figure 6-3 Shared-Memory Layout ... 398

Figure 6-4 Example Configuration: Dual-Ported Memory 399

Figure 6-5 Example Configuration: an External Memory Board 400

List of Examples

Example 6-1 Shared Semaphores ... 379

Example 6-2 Shared Message Queues ... 383

Example 6-3 Shared-Memory System Partition 388

Example 6-4 User-Created Partition .. 391
372

6

6
Shared-Memory Objects
6.1 Introduction

VxMP is an optional VxWorks component that provides shared-memory objects

dedicated to high-speed synchronization and communication between tasks

running on separate CPUs. For information on how to install VxMP, see the Wind
River Products Installation Guide.

Shared-memory objects are a class of system objects that can be accessed by tasks

running on different processors. They are called shared-memory objects because the

object’s data structures must reside in memory accessible by all processors.

Shared-memory objects are an extension of local VxWorks objects. Local objects are

only available to tasks on a single processor. VxMP supplies three kinds of shared-

memory objects:

■ shared semaphores (binary and counting)

■ shared message queues

■ shared-memory partitions (system- and user-created partitions)

Shared-memory objects provide the following advantages:

■ A transparent interface that allows shared-memory objects to be manipulated

with the same routines that are used for manipulating local objects.

■ High-speed inter-processor communication—no unnecessary packet passing

is required.

■ The shared memory can reside either in dual-ported RAM or on a separate

memory board.

The components of VxMP consist of the following: a name database

(smNameLib), shared semaphores (semSmLib), shared message queues

(msgQSmLib), and a shared-memory allocator (smMemLib).

This chapter presents a detailed description of each shared-memory object and

internal considerations. It then describes configuration and troubleshooting.
373

VxWorks 5.3.1
Programmer’s Guide
6.2 Using Shared-Memory Objects

VxMP provides a transparent interface that makes it easy to execute code using

shared-memory objects on both a multiprocessor system and a single-processor

system. After an object is created, tasks can operate on shared objects with the

same routines used to operate on their corresponding local objects. For example,

shared semaphores, shared message queues, and shared-memory partitions have

the same syntax and interface as their local counterparts. Routines such as

semGive() , semTake(), msgQSend(), msgQReceive(), memPartAlloc() , and

memPartFree() operate on both local and shared objects. Only the create routines

are different. This allows an application to run in either a single-processor or a

multiprocessor environment with only minor changes to system configuration,

initialization, and object creation.

All shared-memory objects can be used on a single-processor system. This is useful

for testing an application before porting it to a multiprocessor configuration.

However, for objects that are used only locally, local objects always provide the

best performance.

After the shared-memory facilities are initialized (see 6.4 Configuration, p.396 for

initialization differences), all processors are treated alike. Tasks on any CPU can

create and use shared-memory objects. No processor has priority over another

from a shared-memory object’s point of view.1

Systems making use of shared memory can include a combination of supported

architectures. This enables applications to take advantage of different processor

types and still have them communicate. However, on systems where the

processors have different byte ordering, you must call the macros ntohl and htonl
to byte-swap the application’s shared data (see Network Byte Order, p.250 in this

manual).

When an object is created, an object ID is returned to identify it. For tasks on

different CPUs to access shared-memory objects, they must be able to obtain this

ID. An object’s ID is the same regardless of the CPU. This allows IDs to be passed

using shared message queues, data structures in shared memory, or the name

database.

Throughout the remainder of this chapter, system objects under discussion refer to

shared objects unless otherwise indicated.

1. Do not confuse this type of priority with the CPU priorities associated with VMEbus access.
374

6

6
Shared-Memory Objects
6.2.1 Name Database

The name database allows the association of any value to any name, such as a

shared-memory object’s ID with a unique name. It can communicate or advertise a

shared-memory block’s address and object type. The name database provides

name-to-value and value-to-name translation, allowing objects in the database to

be accessed either by name or by value. While other methods exist for advertising

an object’s ID, the name database is a convenient method for doing this.

Typically the task that creates an object also advertises the object’s ID by means of

the name database. By adding the new object to the database, the task associates

the object’s ID with a name. Tasks on other processors can look up the name in the

database to get the object’s ID. After the task has the ID, it can use it to access the

object.

For example, task t1 on CPU 1 creates an object. The object ID is returned by the

creation routine and entered in the name database with the name myObj. For task

t2 on CPU 0 to operate on this object, it first finds the ID by looking up the name

myObj in the name database.

This same technique can be used to advertise a shared-memory address. For

example, task t1 on CPU 0 allocates a chunk of memory and adds the address to

the database with the name mySharedMem. Task t2 on CPU 1 can find the address

of this shared memory by looking up the address in the name database using

mySharedMem.

Tasks on different processors can use an agreed-upon name to get a newly created

object’s value. See Table 6-1 for a list of name service routines. Note that retrieving

an ID from the name database need occur only one time for each task, and usually

occurs during application initialization.

Table 6-1 Name Service Routines

Routine Functionality

smNameAdd() Add a name to the name database.

smNameRemove() Remove a name from the name database.

smNameFind() Find a shared symbol by name.

smNameFindByValue() Find a shared symbol by value.

smNameShow() Display the name database to the standard output device if

INCLUDE_SHOW_ROUTINES is defined.
375

VxWorks 5.3.1
Programmer’s Guide
The name database service routines automatically convert to or from network-byte

order; do not call htonl() or ntohl() explicitly for values from the name database.

The object types listed in Table 6-2 are defined in smNameLib.h.

The following example shows the name database as displayed by smNameShow()
if INCLUDE_SHOW_ROUTINES is defined. The parameter to smNameShow()
specifies the level of information displayed; in this case, 1 indicates that all

information is shown. For additional information on smNameShow(), see its

reference entry.

-> smNameShow 1
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Name in Database Max : 100 Current : 5 Free : 95
Name Value Type
----------------- ------------- -------------
myMemory 0x3835a0 SM_BLOCK
myMemPart 0x3659f9 SM_PART_ID
myBuff 0x383564 SM_BLOCK
mySmSemaphore 0x36431d SM_SEM_B
myMsgQ 0x365899 SM_MSG_Q

6.2.2 Shared Semaphores

Like local semaphores, shared semaphores provide synchronization by means of

atomic updates of semaphore state information. See 2. Basic OS in this manual and

the reference entry for semLib for a complete discussion of semaphores. Shared

semaphores can be given and taken by tasks executing on any CPU with access to

the shared memory. They can be used for either synchronization of tasks running

on different CPUs or mutual exclusion for shared resources.

Table 6-2 Shared-Memory Object Types

Constant Hex Value

T_SM_SEM_B 0

T_SM_SEM_C 1

T_SM_MSG_Q 2

T_SM_PART_ID 3

T_SM_BLOCK 4
376

6

6
Shared-Memory Objects
To use a shared semaphore, a task creates the semaphore and advertises its ID. This

can be done by adding it to the name database. A task on any CPU in the system

can use the semaphore by first getting the semaphore ID (for example, from the

name database). When it has the ID, it can then take or give the semaphore.

In the case of employing shared semaphores for mutual exclusion, typically there

is a system resource that is shared between tasks on different CPUs and the

semaphore is used to prevent concurrent access. Any time a task requires exclusive

access to the resource, it takes the semaphore. When the task is finished with the

resource, it gives the semaphore.

For example, there are two tasks, t1 on CPU 0 and t2 on CPU 1. Task t1 creates the

semaphore and advertises the semaphore’s ID by adding it to the database and

assigning the name myMutexSem. Task t2 looks up the name myMutexSem in the

database to get the semaphore’s ID. Whenever a task wants to access the resource,

it first takes the semaphore by using the semaphore ID. When a task is done using

the resource, it gives the semaphore.

In the case of employing shared semaphores for synchronization, assume a task on

one CPU must notify a task on another CPU that some event has occurred. The task

being synchronized pends on the semaphore waiting for the event to occur. When

the event occurs, the task doing the synchronizing gives the semaphore.

For example, there are two tasks, t1 on CPU 0 and t2 on CPU 1. Both t1 and t2 are

monitoring robotic arms. The robotic arm that is controlled by t1 is passing a

physical object to the robotic arm controlled by t2. Task t2 moves the arm into

position but must then wait until t1 indicates that it is ready for t2 to take the object.

Task t1 creates the shared semaphore and advertises the semaphore’s ID by adding

it to the database and assigning the name objReadySem. Task t2 looks up the name

objReadySem in the database to get the semaphore’s ID. It then takes the

semaphore by using the semaphore ID. If the semaphore is unavailable, t2 pends,

waiting for t1 to indicate that the object is ready for t2. When t1 is ready to transfer

control of the object to t2, it gives the semaphore, readying t2 on CPU1.

There are two types of shared semaphores, binary and counting. Shared

semaphores have their own create routines and return a SEM_ID. Table 6-3 lists the

create routines. All other semaphore routines, except semDelete(), operate

transparently on the created shared semaphore.

The use of shared semaphores and local semaphores differs in several ways:

■ The shared semaphore queuing order specified when the semaphore is created

must be FIFO. Figure 6-1 shows two tasks executing on different CPUs, both

trying to take the same semaphore. Task 1 executes first, and is put at the front

of the queue because the semaphore is unavailable (empty). Task 2 (executing
377

VxWorks 5.3.1
Programmer’s Guide
on a different CPU) tries to take the semaphore after task 1’s attempt and is put

on the queue behind task 1.

■ Shared semaphores cannot be given from interrupt level.

■ Shared semaphores cannot be deleted. Attempts to delete a shared semaphore

return ERROR and set errno to S_smObjLib_NO_OBJECT_DESTROY.

Use semInfo() to get the shared task control block of tasks pended on a shared

semaphore. Use semShow(), if INCLUDE_SHOW_ROUTINES is defined, to display

the status of the shared semaphore and a list of pended tasks. The following

example displays detailed information on the shared semaphore

mySmSemaphoreId as indicated by the second argument (0 = summary, 1 =

details):

Table 6-3 Shared Semaphore Create Routines

Create Routine Description

semBSmCreate() Create a shared binary semaphore.

semCSmCreate() Create a shared counting semaphore.

Figure 6-1 Shared Semaphore Queues

SHARED MEMORY

task2

task1

Pended Queue Semaphore

EMPTY

Executes on CPU 1
before task2:

Executes on CPU 2 after
task1 is put on queue:

State

Binary Shared Semaphore

task2 ()
{
...
semTake (semSmId,t);
...
}

task1 ()
{
...
semTake (semSmId,t);
...
}

378

6

6
Shared-Memory Objects
-> semShow mySmSemaphoreId, 1
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Semaphore Id : 0x36431d
Semaphore Type : SHARED BINARY
Task Queuing : FIFO
Pended Tasks : 2
State : EMPTY
TID CPU Number Shared TCB
------------- ------------- --------------
0xd0618 1 0x364204
0x3be924 0 0x36421c

Example 6-1 Shared Semaphores

The following code example depicts two tasks executing on different CPUs and

using shared semaphores. The routine semTask1() creates the shared semaphore,

initializing the state to full. It adds the semaphore to the name database (to enable

the task on the other CPU to access it), takes the semaphore, does some processing,

and gives the semaphore. The routine semTask2() gets the semaphore ID from the

database, takes the semaphore, does some processing, and gives the semaphore.

/* semExample.h - shared semaphore example header file */

#define SEM_NAME "mySmSemaphore"

/* semTask1.c - shared semaphore example */

/* This code is executed by a task on CPU #1 */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "stdio.h"
#include "taskLib.h"
#include "semExample.h"

/**
*
* semTask1 - shared semaphore user
*/

STATUS semTask1 (void)
{
SEM_ID semSmId;
379

VxWorks 5.3.1
Programmer’s Guide
/* create shared semaphore */

if ((semSmId = semBSmCreate (SEM_Q_FIFO, SEM_FULL)) == NULL)
return (ERROR);

/* add object to name database */

if (smNameAdd (SEM_NAME, semSmId, T_SM_SEM_B) == ERROR)
return (ERROR);

/* grab shared semaphore and hold it for awhile */

semTake (semSmId, WAIT_FOREVER);

/* normally do something useful */

printf ("Task1 has the shared semaphore\n");
taskDelay (sysClkRateGet () * 5);
printf ("Task1 is releasing the shared semaphore\n");

/* release shared semaphore */

semGive (semSmId);

return (OK);
}

/* semTask2.c - shared semaphore example */

/* This code is executed by a task on CPU #2. */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "stdio.h"
#include "semExample.h"

/**
*
* semTask2 - shared semaphore user
*/

STATUS semTask2 (void)
{
SEM_ID semSmId;
int objType;

/* find object in name database */

if (smNameFind (SEM_NAME, (void **) &semSmId, &objType, WAIT_FOREVER)
== ERROR)
return (ERROR);
380

6

6
Shared-Memory Objects
/* take the shared semaphore */

printf ("semTask2 is now going to take the shared semaphore\n");
semTake (semSmId, WAIT_FOREVER);

/* normally do something useful */

printf ("Task2 got the shared semaphore!!\n");

/* release shared semaphore */

semGive (semSmId);

printf ("Task2 has released the shared semaphore\n");

return (OK);
}

6.2.3 Shared Message Queues

Shared message queues are FIFO queues used by tasks to send and receive variable-

length messages on any of the CPUs that have access to the shared memory. They

can be used either to synchronize tasks or to exchange data between tasks running

on different CPUs. See 2. Basic OS in this manual and the reference entry for

msgQLib for a complete discussion of message queues.

To use a shared message queue, a task creates the message queue and advertises

its ID. A task that wants to send or receive a message with this message queue first

gets the message queue’s ID. It then uses this ID to access the message queue.

For example, consider a typical server/client scenario where a server task t1 (on

CPU 1) reads requests from one message queue and replies to these requests with

a different message queue. Task t1 creates the request queue and advertises its ID

by adding it to the name database assigning the name requestQue. If task t2 (on

CPU 0) wants to send a request to t1, it first gets the message queue ID by looking

up the name requestQue in the name database. Before sending its first request,

task t2 creates a reply message queue. Instead of adding its ID to the database, it

advertises the ID by sending it as part of the request message. When t1 receives the

request from the client, it finds in the message the ID of the queue to use when

replying to that client. Task t1 then sends the reply to the client by using this ID.

To pass messages between tasks on different CPUs, first create the message queue

by calling msgQSmCreate(). This routine returns a MSG_Q_ID. This ID is used for

sending and receiving messages on the shared message queue.
381

VxWorks 5.3.1
Programmer’s Guide
Like their local counterparts, shared message queues can send both urgent or

normal priority messages.

The use of shared message queues and local message queues differs in several

ways:

■ The shared message queue task queueing order specified when a message

queue is created must be FIFO. Figure 6-2 shows two tasks executing on

different CPUs, both trying to receive a message from the same shared

message queue. Task 1 executes first, and is put at the front of the queue

because there are no messages in the message queue. Task 2 (executing on a

different CPU) tries to receive a message from the message queue after task 1’s

attempt and is put on the queue behind task 1.

■ Messages cannot be sent on a shared message queue at interrupt level. (This is

true even in NO_WAIT mode.)

■ Shared message queues cannot be deleted. Attempts to delete a shared

message queue return ERROR and sets errno to

S_smObjLib_NO_OBJECT_DESTROY.

To achieve optimum performance with shared message queues, align send and

receive buffers on 4-byte boundaries.

Figure 6-2 Shared Message Queues

Pended Queue
Message

Executes on CPU 1 before task2:

Executes on CPU 2 after task1:

task2

task1

Queue

Shared Message Queue

SHARED MEMORY

EMPTY

task2 ()
{
...
msgQReceive (smMsgQId,...);
...
}

task1 ()
{
...
msgQReceive (smMsgQId,...);
...
}

382

6

6
Shared-Memory Objects
To display the status of the shared message queue as well as a list of tasks pended

on the queue, define INCLUDE_SHOW_ROUTINES and call msgQShow(). The

following example displays detailed information on the shared message queue

0x7f8c21 as indicated by the second argument (0 = summary display, 1 = detailed

display).

-> msgQShow 0x7f8c21, 1
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Message Queue Id : 0x7f8c21
Task Queuing : FIFO
Message Byte Len : 128
Messages Max : 10
Messages Queued : 0
Receivers Blocked : 1
Send timeouts : 0
Receive timeouts : 0
Receivers blocked :
TID CPU Number Shared TCB
---------- -------------------- --------------
0xd0618 1 0x1364204

Example 6-2 Shared Message Queues

In the following code example, two tasks executing on different CPUs use shared

message queues to pass data to each other. The server task creates the request

message queue, adds it to the name database, and reads a message from the queue.

The client task gets the smRequestQId from the name database, creates a reply

message queue, bundles the ID of the reply queue as part of the message, and

sends the message to the server. The server gets the ID of the reply queue and uses

it to send a message back to the client. This technique requires the use of the

network byte-order conversion macros htonl() and ntohl(), because the numeric

queue ID is passed over the network in a data field.

/* msgExample.h - shared message queue example header file */

#define MAX_MSG (10)
#define MAX_MSG_LEN (100)
#define REQUEST_Q "requestQue"

typedef struct message
{
MSG_Q_ID replyQId;
char clientRequest[MAX_MSG_LEN];
} REQUEST_MSG;
383

VxWorks 5.3.1
Programmer’s Guide
/* server.c - shared message queue example server */

/* This file contains the code for the message queue server task. */

#include "vxWorks.h"
#include "msgQLib.h"
#include "msgQSmLib.h"
#include "stdio.h"
#include "smNameLib.h"
#include "msgExample.h"
#include "netinet/in.h"

#define REPLY_TEXT "Server received your request"

/**
*
* serverTask - receive and process a request from a shared message queue
*/

STATUS serverTask (void)
{
MSG_Q_ID smRequestQId; /* request shared message queue */
REQUEST_MSG request; /* request text */

/* create a shared message queue to handle requests */

if ((smRequestQId = msgQSmCreate (MAX_MSG, sizeof (REQUEST_MSG),
MSG_Q_FIFO)) == NULL)
return (ERROR);

/* add newly created request message queue to name database */

if (smNameAdd (REQUEST_Q, smRequestQId, T_SM_MSG_Q) == ERROR)
return (ERROR);

/* read messages from request queue */

FOREVER
{
if (msgQReceive (smRequestQId, (char *) &request, sizeof (REQUEST_MSG),

WAIT_FOREVER) == ERROR)
return (ERROR);

/* process request - in this case simply print it */

printf ("Server received the following message:\n%s\n",
request.clientRequest);

/* send a reply using ID specified in client’s request message */

if (msgQSend ((MSG_Q_ID) ntohl ((int) request.replyQId),
REPLY_TEXT, sizeof (REPLY_TEXT),
WAIT_FOREVER, MSG_PRI_NORMAL) == ERROR)
384

6

6
Shared-Memory Objects
return (ERROR);
}

}

/* client.c - shared message queue example client */

/* This file contains the code for the message queue client task. */

#include "vxWorks.h"
#include "msgQLib.h"
#include "msgQSmLib.h"
#include "smNameLib.h"
#include "stdio.h"
#include "msgExample.h"
#include "netinet/in.h"

/**
*
* clientTask - sends request to server and reads reply
*/

STATUS clientTask
(
char * pRequestToServer /* request to send to the server */

/* limited to 100 chars */
)

{
MSG_Q_ID smRequestQId; /* request message queue */
MSG_Q_ID smReplyQId; /* reply message queue */
REQUEST_MSG request; /* request text */
int objType; /* dummy variable for smNameFind */
char serverReply[MAX_MSG_LEN]; /*buffer for server’s reply */

/* get request queue ID using its name */

if (smNameFind (REQUEST_Q, (void **) &smRequestQId, &objType,
WAIT_FOREVER) == ERROR)
return (ERROR);

/* create reply queue, build request and send it to server */

if ((smReplyQId = msgQSmCreate (MAX_MSG, MAX_MSG_LEN,
MSG_Q_FIFO)) == NULL)
return (ERROR);

request.replyQId = (MSG_Q_ID) htonl ((int) smReplyQId);

strcpy (request.clientRequest, pRequestToServer);

if (msgQSend (smRequestQId, (char *) &request, sizeof (REQUEST_MSG),
WAIT_FOREVER, MSG_PRI_NORMAL) == ERROR)
return (ERROR);
385

VxWorks 5.3.1
Programmer’s Guide
/* read reply and print it */

if (msgQReceive (request.replyQId, serverReply, MAX_MSG_LEN,
WAIT_FOREVER) == ERROR)
return (ERROR);

printf ("Client received the following message:\n%s\n", serverReply);

return (OK);
}

6.2.4 Shared-Memory Allocator

The shared-memory allocator allows tasks on different CPUs to allocate and release

variable size chunks of memory that are accessible from all CPUs with access to the

shared-memory system. Two sets of routines are provided: low-level routines for

manipulating user-created shared-memory partitions, and high-level routines for

manipulating a shared-memory partition dedicated to the shared-memory system

pool. (This organization is similar to that used by the local-memory manager,

memPartLib.)

Shared-memory blocks can be allocated from different partitions. Both a shared-

memory system partition and user-created partitions are available. User-created

partitions can be created and used for allocating data blocks of a particular size.

Memory fragmentation is avoided when fixed-sized blocks are allocated from

user-created partitions dedicated to a particular block size.

Shared-Memory System Partition

To use the shared-memory system partition, a task allocates a shared-memory

block and advertises its address. One way of advertising the ID is to add the

address to the name database. The routine used to allocate a block from the shared-

memory system partition returns a local address. Before the address is advertised

to tasks on other CPUs, this local address must be converted to a global address.

Any task that must use the shared memory must first get the address of the

memory block and convert the global address to a local address. When the task has

the address, it can use the memory.

However, to address issues of mutual exclusion, typically a shared semaphore is

used to protect the data in the shared memory. Thus in a more common scenario,

the task that creates the shared memory (and adds it to the database) also creates a

shared semaphore. The shared semaphore ID is typically advertised by storing it
386

6

6
Shared-Memory Objects
in a field in the shared data structure residing in the shared-memory block. The

first time a task must access the shared data structure, it looks up the address of the

memory in the database and gets the semaphore ID from a field in the shared data

structure. Whenever a task must access the shared data, it must first take the

semaphore. Whenever a task is finished with the shared data, it must give the

semaphore.

For example, assume two tasks executing on two different CPUs must share data.

Task t1 executing on CPU 1 allocates a memory block from the shared-memory

system partition and converts the local address to a global address. It then adds the

global address of the shared data to the name database with the name

mySharedData. Task t1 also creates a shared semaphore and stores the ID in the

first field of the data structure residing in the shared memory. Task t2 executing on

CPU 2 looks up the name mySharedData in the name database to get the address

of the shared memory. It then converts this address to a local address. Before

accessing the data in the shared memory, t2 gets the shared semaphore ID from the

first field of the data structure residing in the shared-memory block. It then takes

the semaphore before using the data and gives the semaphore when it is done

using the data.

User-Created Partitions

To make use of user-created shared-memory partitions, a task creates a shared-

memory partition and adds it to the name database. Before a task can use the

shared-memory partition, it must first look in the name database to get the

partition ID. When the task has the partition ID, it can access the memory in the

shared-memory partition.

For example, task t1 creates a shared-memory partition and adds it to the name

database using the name myMemPartition. Task t2 executing on another CPU

wants to allocate memory from the new partition. Task t2 first looks up

myMemPartition in the name database to get the partition ID. It can then allocate

memory from it, using the ID.

Using the Shared-Memory System Partition

The shared-memory system partition is analogous to the system partition for local

memory. Table 6-4 lists routines for manipulating the shared-memory system

partition.
387

VxWorks 5.3.1
Programmer’s Guide
Routines that return a pointer to allocated memory return a local address (that is,

an address suitable for use from the local CPU). To share this memory across

processors, this address must be converted to a global address before it is

advertised to tasks on other CPUs. Before a task on another CPU uses the memory,

it must convert the global address to a local address. Macros and routines are

provided to convert between local addresses and global addresses; see the header

file smObjLib.h and the reference entry for smObjLib.

Example 6-3 Shared-Memory System Partition

The following code example uses memory from the shared-memory system

partition to share data between tasks on different CPUs. The first member of the

data structure is a shared semaphore that is used for mutual exclusion. The send

task creates and initializes the structure, then the receive task accesses the data and

displays it.

/* buffProtocol.h - simple buffer exchange protocol header file */

#define BUFFER_SIZE 200 /* shared data buffer size */
#define BUFF_NAME "myMemory" /* name of data buffer in database */

typedef struct shared_buff

Table 6-4 Shared-Memory System Partition Routines

Routine Functionality

smMemMalloc() Allocate a block of shared system memory.

smMemCalloc() Allocate a block of shared system memory for an array.

smMemRealloc() Resize a block of shared system memory.

smMemFree() Free a block of shared system memory.

smMemShow() Display usage statistics of the shared-memory system

partition on the standard output device if

INCLUDE_SHOW_ROUTINES is defined.

smMemOptionsSet() Set the debugging options for the shared-memory system

partition.

smMemAddToPool() Add memory to the shared-memory system pool.

smMemFindMax() Find the size of the largest free block in the shared-memory

system partition.
388

6

6
Shared-Memory Objects
{
SEM_ID semSmId;
char buff [BUFFER_SIZE];
} SHARED_BUFF;

/* buffSend.c - simple buffer exchange protocol send side */

/* This file writes to the shared memory. */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "smObjLib.h"
#include "stdio.h"
#include "buffProtocol.h"

/**
*
* buffSend - write to shared semaphore protected buffer
*
*/

STATUS buffSend (void)
{
SHARED_BUFF * pSharedBuff;
SEM_ID mySemSmId;

/* grab shared system memory */

pSharedBuff = (SHARED_BUFF *) smMemMalloc (sizeof (SHARED_BUFF));

/*
* Initialize shared buffer structure before adding to database. The
* protection semaphore is initially unavailable and the receiver blocks.

 */

if ((mySemSmId = semBSmCreate (SEM_Q_FIFO, SEM_EMPTY)) == NULL)
return (ERROR);

pSharedBuff->semSmId = (SEM_ID) htonl ((int) mySemSmId);

/*
 * Convert address of shared buffer to a global address and add to
 * database.
 */

if (smNameAdd (BUFF_NAME, (void *) smObjLocalToGlobal (pSharedBuff),
T_SM_BLOCK) == ERROR)

return (ERROR);

/* put data into shared buffer */

sprintf (pSharedBuff->buff,"Hello from sender\n");
389

VxWorks 5.3.1
Programmer’s Guide
/* allow receiver to read data by giving protection semaphore */

if (semGive (mySemSmId) != OK)
return (ERROR);

return (OK);
}

/* buffReceive.c - simple buffer exchange protocol receive side */

/* This file reads the shared memory. */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "smObjLib.h"
#include "stdio.h"
#include "buffProtocol.h"

/**
*
* buffReceive - receive shared semaphore protected buffer
*/

STATUS buffReceive (void)
{
SHARED_BUFF * pSharedBuff;
SEM_ID mySemSmId;
int objType;

/* get shared buffer address from name database */

if (smNameFind (BUFF_NAME, (void **) &pSharedBuff,
&objType, WAIT_FOREVER) == ERROR)

return (ERROR);

/* convert global address of buff to its local value */

pSharedBuff = (SHARED_BUFF *) smObjGlobalToLocal (pSharedBuff);

/* convert shared semaphore ID to host (local) byte order */

mySemSmId = (SEM_ID) ntohl ((int) pSharedBuff->semSmId);

/* take shared semaphore before reading the data buffer */

if (semTake (mySemSmId,WAIT_FOREVER) != OK)
return (ERROR);

/* read data buffer and print it */

printf ("Receiver reading from shared memory: %s\n", pSharedBuff->buff);
390

6

6
Shared-Memory Objects
/* give back the data buffer semaphore */

if (semGive (mySemSmId) != OK)
return (ERROR);

return (OK);
}

Using User-Created Partitions

Shared-memory partitions have a separate create routine, memPartSmCreate(),
that returns a MEM_PART_ID. After a user-defined shared-memory partition is

created, routines in memPartLib operate on it transparently. Note that the address

of the shared-memory area passed to memPartSmCreate() (or

memPartAddToPool()) must be the global address.

Example 6-4 User-Created Partition

This example is similar to Example 6-3, which uses the shared-memory system

partition. This example creates a user-defined partition and stores the shared data

in this new partition. A shared semaphore is used to protect the data.

/* memPartExample.h - shared memory partition example header file */

#define CHUNK_SIZE (2400)
#define MEM_PART_NAME "myMemPart"
#define PART_BUFF_NAME "myBuff"
#define BUFFER_SIZE (40)

typedef struct shared_buff
{
SEM_ID semSmId;
char buff [BUFFER_SIZE];
} SHARED_BUFF;

/* memPartSend.c - shared memory partition example send side */

/* This file writes to the user-defined shared memory partition. */

#include "vxWorks.h"
#include "memLib.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "smObjLib.h"
#include "smMemLib.h"
391

VxWorks 5.3.1
Programmer’s Guide
#include "stdio.h"
#include "memPartExample.h"

/***
*
* memPartSend - send shared memory partition buffer
*/

STATUS memPartSend (void)
{
char * pMem;
PART_ID smMemPartId;
SEM_ID mySemSmId;
SHARED_BUFF * pSharedBuff;

/* allocate shared system memory to use for partition */

pMem = smMemMalloc (CHUNK_SIZE);

/* Create user defined partition using the previously allocated
 * block of memory.
 * WARNING: memPartSmCreate uses the global address of a memory
 * pool as first parameter.
 */

if ((smMemPartId = memPartSmCreate (smObjLocalToGlobal (pMem), CHUNK_SIZE))
 == NULL)

return (ERROR);

/* allocate memory from partition */

pSharedBuff = (SHARED_BUFF *) memPartAlloc (smMemPartId,
sizeof (SHARED_BUFF));

if (pSharedBuff == 0)
return (ERROR);

/* initialize structure before adding to database */

if ((mySemSmId = semBSmCreate (SEM_Q_FIFO, SEM_EMPTY)) == NULL)
return (ERROR);

pSharedBuff->semSmId = (SEM_ID) htonl ((int) mySemSmId);

/* enter shared partition ID in name database */

if (smNameAdd (MEM_PART_NAME, (void *) smMemPartId, T_SM_PART_ID) == ERROR)
return (ERROR);

/* convert shared buffer address to a global address and add to database */

if (smNameAdd (PART_BUFF_NAME, (void *) smObjLocalToGlobal(pSharedBuff),
T_SM_BLOCK) == ERROR)

return (ERROR);

/* send data using shared buffer */

sprintf (pSharedBuff->buff,"Hello from sender\n");
392

6

6
Shared-Memory Objects
if (semGive (mySemSmId) != OK)
return (ERROR);

return (OK);
}

/* memPartReceive.c - shared memory partition example receive side */

/* This file reads from the user-defined shared memory partition. */

#include "vxWorks.h"
#include "memLib.h"
#include "stdio.h"
#include "semLib.h"
#include "semSmLib.h"
#include "stdio.h"
#include "memPartExample.h"

/***
*
* memPartReceive - receive shared memory partition buffer
*
* execute on CPU 1 - use a shared semaphore to protect shared memory
*
*/

STATUS memPartReceive (void)
{
SHARED_BUFF * pBuff;
SEM_ID mySemSmId;
int objType;

/* get shared buffer address from name database */

if (smNameFind (PART_BUFF_NAME, (void **) &pBuff, &objType,
WAIT_FOREVER) == ERROR)

return (ERROR);

/* convert global address of buffer to its local value */

pBuff = (SHARED_BUFF *) smObjGlobalToLocal (pBuff);

/* Grab shared semaphore before using the shared memory */

mySemSmId = (SEM_ID) ntohl ((int) pBuff->semSmId);
semTake (mySemSmId,WAIT_FOREVER);
printf ("Receiver reading from shared memory: %s\n", pBuff->buff);
semGive (mySemSmId);

return (OK);
}

393

VxWorks 5.3.1
Programmer’s Guide
Side Effects of Shared-Memory Partition Options

Like their local counterparts, shared-memory partitions (both system- and user-

created) can have different options set for error handling; see the reference entries

for memPartOptionsSet() and smMemOptionsSet().

If the MEM_BLOCK_CHECK option is used in the following situation, the system

can get into a state where the memory partition is no longer available. If a task

attempts to free a bad block and a bus error occurs, the task is suspended. Because

shared semaphores are used internally for mutual exclusion, the suspended task

still has the semaphore, and no other task has access to the memory partition. By

default, shared-memory partitions are created without the MEM_BLOCK_CHECK
option.

6.3 Internal Considerations

6.3.1 System Requirements

The shared-memory region used by shared-memory objects must be visible to all

CPUs in the system. Either dual-ported memory on the master CPU (CPU 0) or a

separate memory board can be used. The shared-memory objects’ anchor must be

in the same address space as the shared-memory region. Note that the memory

does not have to appear at the same address for all CPUs.

NOTE: Boards that make use of VxMP must support hardware test-and-set

(indivisible read-modify-write cycle). PowerPC is an exception; see F. PowerPC.

All CPUs in the system must support indivisible read-modify-write cycle across

the (VME) bus. The indivisible RMW is used by the spin-lock mechanism to gain

exclusive access to internal shared data structures; see 6.3.2 Spin-lock Mechanism,

p.395 for details. Because all the boards must support a hardware test-and-set, the

constant SM_TAS_HARD must be defined in configAll.h (this is the default).

CPUs must be notified of any event that affects them. The preferred method is for

the CPU initiating the event to interrupt the affected CPU. The use of interrupts is

dependent on the capabilities of the hardware. If interrupts cannot be used, a

polling scheme can be employed, although this generally results in a significant

performance penalty.

!

394

6

6
Shared-Memory Objects
The maximum number of CPUs that can use shared-memory objects is 20 (CPUs

numbered 0 through 19). The practical maximum is usually a smaller number that

depends on the CPU, bus bandwidth, and application.

6.3.2 Spin-lock Mechanism

Internal shared-memory object data structures are protected against concurrent

access by a spin-lock mechanism. The spin-lock mechanism is a loop where an

attempt is made to gain exclusive access to a resource (in this case an internal data

structure). An indivisible hardware read-modify-write cycle (hardware test-and-

set) is used for this mutual exclusion. If the first attempt to take the lock fails,

multiple attempts are made, each with a decreasing random delay between one

attempt and the next. The average time it takes between the original attempt to

take the lock and the first retry is 70 microseconds on an MC68030 at 20MHz.

Comment: It has been suggested to create a table of microprocessor spin-lock

times. A table is inappropriate for the reason expressed in the following sentence.

(VPG5.3)Operating time for the spin-lock cycle varies greatly because it is affected

by the processor cache, access time to shared memory, and bus traffic. If the lock is

not obtained after the maximum number of tries specified by SM_OBJ_MAX_TRIES
(defined in configAll.h), errno is set to S_smObjLib_LOCK_TIMEOUT. If this error

occurs, set the maximum number of tries to a higher value. Note that any failure

to take a spin-lock prevents proper functioning of shared-memory objects. In most

cases, this is due to problems with the shared-memory configuration; see

6.5.2 Troubleshooting Techniques, p.404.

6.3.3 Interrupt Latency

For the duration of the spin-lock, interrupts are disabled to avoid the possibility of

a task being preempted while holding the spin-lock. As a result, the interrupt

latency of each processor in the system is increased. However, the interrupt latency

added by shared-memory objects is constant for a particular CPU.

6.3.4 Restrictions

Unlike local semaphores and message queues, shared-memory objects cannot be

used at interrupt level. No routines that use shared-memory objects can be called

from ISRs. An ISR is dedicated to handle time-critical processing associated with

an external event; therefore, using shared-memory objects at interrupt time is not
395

VxWorks 5.3.1
Programmer’s Guide
appropriate. On a multiprocessor system, run event-related time-critical

processing on the CPU where the time-related interrupt occurred.

Note that shared-memory objects are allocated from dedicated shared-memory

pools, and cannot be deleted.

When using shared-memory objects, the maximum number of each object type

must be specified in configAll.h; see 6.4.3 Initializing the Shared-Memory Objects
Package, p.398. If applications are creating more than the specified maximum

number of objects, it is possible to run out of memory. If this happens, the shared

object creation routine returns an error and errno is set to

S_memLib_NOT_ENOUGH_MEM. To solve this problem, first increase the

maximum number of shared-memory objects of corresponding type (in

configAll.h); see Table 6-5 for a list of the applicable configuration constants. This

decreases the size of the shared-memory system pool because the shared-memory

pool uses the remainder of the shared memory. If this is undesirable, increase both

the number of the corresponding shared-memory objects (in configAll.h) and the

size of the overall shared-memory region, SM_OBJ_MEM_SIZE (in config.h). See

6.4 Configuration, p.396 for a discussion of the constants used for configuration.

6.3.5 Cache Coherency

When dual-ported memory is used on some boards without MMU or bus

snooping mechanisms, the data cache must be disabled for the shared-memory

region on the master CPU. If you see the following error message, make sure that

the constant USER_D_CACHE_ENABLE is #undef’ed in config.h:

usrSmObjInit - cache coherent buffer not available. Giving up.

6.4 Configuration

To include shared-memory objects in VxWorks, define INCLUDE_SM_OBJ in the

configuration file configAll.h. Most of the configuration is already done

automatically from usrSmObjInit() in usrConfig.c. However, you may also need

to modify some values in configAll.h and config.h to reflect your configuration;

these are described in this section.
396

6

6
Shared-Memory Objects
6.4.1 Shared-Memory Objects and Shared-Memory Network Driver

Shared-memory objects and the shared-memory network2 use the same memory

region, anchor address, and interrupt mechanism. Configuring the system to use

shared-memory objects is similar to configuring the shared-memory network

driver. For a more detailed description of configuring and using the shared-

memory network, see 5.4 Shared-Memory Networks, p.301 in this manual. If the

default value for the shared-memory anchor address is modified, the anchor must

be on a 256-byte boundary.

One of the most important aspects of configuring shared-memory objects is

computing the address of the shared-memory anchor. The shared-memory anchor

is a location accessible to all CPUs on the system, and is used by both VxMP and

the shared-memory network driver. The anchor stores a pointer to the shared-

memory header, a pointer to the shared-memory packet header (used by the

shared-memory network driver), and a pointer to the shared-memory object

header.

The address of the anchor is defined in config.h with the constant

SM_ANCHOR_ADRS. If the processor is booted with the shared-memory network

driver, the anchor address is the same value as the boot device (sm=anchorAddress).

The shared-memory object initialization code uses the value from the boot line

instead of the constant. If the shared-memory network driver is not used, modify

the definition of SM_ANCHOR_ADRS as appropriate to reflect your system.

Two types of interrupts are supported and defined by SM_INT_TYPE: mailbox

interrupts and bus interrupts (see 5.4.2 Interprocessor Interrupts, p.307 in this

manual). Mailbox interrupts (SM_INT_MAILBOX) are the preferred method, and

bus interrupts (SM_INT_BUS) are the second choice. If interrupts cannot be used,

a polling scheme can be employed (SM_INT_NONE), but this is much less efficient.

When a CPU initializes its shared-memory objects, it defines the interrupt type as

well as three interrupt arguments. These describe how the CPU is notified of

events. These values can be obtained for any attached CPU by calling

smCpuInfoGet().

The default interrupt method for a target is defined by SM_INT_TYPE,

SM_INT_ARG1, SM_INT_ARG2, and SM_INT_ARG3 in config.h.

2. Also known as the backplane network.
397

VxWorks 5.3.1
Programmer’s Guide
6.4.2 Shared-Memory Region

Shared-memory objects rely on a shared-memory region that is visible to all

processors. This region is used to store internal shared-memory object data

structures and the shared-memory system partition.

The shared-memory region is usually in dual-ported RAM on the master, but it can

also be located on a separate memory card. The shared-memory region address is

defined when configuring the system as an offset from the shared-memory anchor

address, SM_ANCHOR_ADRS, as shown in Figure 6-3.

6.4.3 Initializing the Shared-Memory Objects Package

Shared-memory objects are initialized by default in the routine usrSmObjInit() in
src/config/usrSmObj.c. The configuration steps taken for the master CPU differ

slightly from those taken for the slaves.

The address for the shared-memory pool must be defined. If the memory on the

master CPU is used, it can be malloc’ed at run-time by setting

SM_OBJ_MEM_ADRS in config.h to NONE. If the memory is off-board, the value

must be calculated (see Figure 6-5).

The example configuration in Figure 6-4 uses the shared memory in the master

CPU’s dual-ported RAM. In config.h for the master, SM_OFF_BOARD is FALSE

Figure 6-3 Shared-Memory Layout

SHARED MEMORY

SM_ANCHOR_ADRS .
.
.

pointer to shared-memory
objects’ shared-memory region

shared-memory objects

~~ ~~

0x600 (default) Shared-Memory
Anchor

Shared-Memory
Region
398

6

6
Shared-Memory Objects
and SM_ANCHOR_ADRS is 0x600. SM_OBJ_MEM_ADRS is set to NONE, because

on-board memory is used; SM_OBJ_MEM_SIZE is set to 0x20000. For the slave, the

board maps the base of the VME bus to the address 0x1000000. SM_OFF_BOARD is

TRUE and the anchor address is 0x1800600. This is calculated by taking the

VMEbus address (0x800000) and adding it to the anchor address (0x600). Many

boards require further address translation, depending on where the board maps

VME memory. In this example, the anchor address for the slave is 0x1800600,

because the board maps the base of the VME bus to the address 0x1000000.

In the example configuration in Figure 6-5, the shared memory is on a separate

memory board. In config.h for the master, SM_OFF_BOARD is TRUE,

SM_ANCHOR_ADRS is 0x3000000, SM_OBJ_MEM_ADRS is set to

SM_ANCHOR_ADRS, and SM_OBJ_MEM_SIZE is set to 0x100000. For the slave

board, SM_OFF_BOARD is TRUE and the anchor address is 0x2100000. This is

calculated by taking the VMEbus address of the memory board (0x2000000) and

adding it to the local VMEbus address (0x100000).

Some additional configuration are sometimes required to make the shared

memory non-cacheable, because the shared-memory pool is accessed by all

processors on the backplane. By default, boards with an MMU have the MMU

turned on. With the MMU on, memory that is off-board must be made

non-cacheable. This is done using the data structure sysPhysMemDesc in

Figure 6-4 Example Configuration: Dual-Ported Memory

CPU 0 CPU 1

RAM

0x600anchor

allocated
pool

VMEbus address
of dual ported

RAM = 0x800000

Local address of
VMEbus address 0

is 0x1000000

sm=0x1800600
399

VxWorks 5.3.1
Programmer’s Guide
sysLib.c. This data structure must contain a virtual-to-physical mapping for the

VME address space used for the shared-memory pool, and mark the memory as

non-cacheable. (Most BSPs include this mapping by default.) See 7.3 Virtual
Memory Configuration, p.407 in this manual for additional information.

NOTE: For the MC68030, if the MMU is off, data caching must be turned off

globally; see the reference entry for cacheLib.

When shared-memory objects are initialized, the memory size as well as the

maximum number of each object type must be specified. The master processor

specifies the size of memory using the constant SM_OBJ_MEM_SIZE in config.h.

Symbolic constants in configAll.h are used to set the maximum number of

different objects. See Table 6-5 for a list of these constants.

If the size of the objects created exceeds the shared-memory region, an error

message is displayed on CPU 0 during initialization. After shared memory is

configured for the shared objects, the remainder of shared memory is used for the

shared-memory system partition.

If INCLUDE_SHOW_ROUTINES is defined, the routine smObjShow() displays the

current number of used shared-memory objects and other statistics, as follows:

-> smObjShow
value = 0 = 0x0

Figure 6-5 Example Configuration: an External Memory Board

CPU 1

VMEbus address
of RAM on external
board = 0x2000000

Local address of
VMEbus address 0

is 0x100000

sm=0x2100000

External RAM
Board (1MB)

anchor

shared-memory
pool

anchor = 0x3000000

CPU 0

Local address of
VMEbus address 0

is 0x1000000

!

400

6

6
Shared-Memory Objects
The output is sent to the standard output device, and looks like the following:

Shared Mem Anchor Local Addr : 0x600
Shared Mem Hdr Local Addr : 0x363ed0
Attached CPU : 2
Max Tries to Take Lock : 0
Shared Object Type Current Maximum Available
------------------ ------- ------- ---------
Tasks 1 40 39
Binary Semaphores 3 30 27
Counting Semaphores 0 30 27
Messages Queues 1 10 9
Memory Partitions 1 4 3
Names in Database 5 100 95

NOTE: If the master CPU is rebooted, it is necessary to reboot all the slaves. If a

slave CPU is to be rebooted, it must not have tasks pended on a shared-memory

object.

6.4.4 Configuration Example

The following example shows the configuration for a multiprocessor system with

three CPUs. The master is CPU 0, and shared memory is configured from its dual-

ported memory. This application has 20 tasks using shared-memory objects, and

uses 12 message queues and 20 semaphores. The maximum size of the name

database is the default value (100), and only one user-defined memory partition is

required. The header file configAll.h must reflect this new configuration, as in the

following excerpt:

Table 6-5 Configuration Constants for Shared-Memory Objects

Symbolic Constant
Default
Value

Description

SM_OBJ_MAX_TASK 40 Maximum number of tasks using shared-memory

objects.

SM_OBJ_MAX_SEM 30 Maximum number of shared semaphores

(counting and binary).

SM_OBJ_MAX_NAME 100 Maximum number of names in the name database.

SM_OBJ_MAX_MSG_Q 10 Maximum number of shared message queues.

SM_OBJ_MAX_MEM_PART 4 Maximum number of user-created shared-memory

partitions.

!

401

VxWorks 5.3.1
Programmer’s Guide
#define INCLUDE_SM_OBJ
...
#define SM_OBJ_MAX_TASK 20
#define SM_OBJ_MAX_SEM 20
#define SM_OBJ_MAX_NAME 100
#define SM_OBJ_MAX_MSG_Q 12
#define SM_OBJ_MAX_MEM_PART 1

On CPU 0, the shared-memory pool is configured to be on-board. This memory is

allocated from the processor’s system memory. The following excerpt is taken

from CPU 0’s config.h:

#define SM_OFF_BOARD FALSE
#if SM_OFF_BOARD
...
#else
#define SM_MEM_ADRS NONE
#define SM_MEM_SIZE 0x10000
#define SM_OBJ_MEM_ADRS NONE
#define SM_OBJ_MEM_SIZE 0x10000
#endif

On CPU 1 and CPU 2, the shared-memory pool is configured to be off-board. The

following excerpt is taken from the slaves’ config.h:

#define SM_OFF_BOARD TRUE
#if SM_OFF_BOARD
#undef SM_ANCHOR_ADRS
#define SM_ANCHOR_ADRS (char *) 0xfb800000
#define SM_MEM_ADRS SM_ANCHOR_ADRS
#define SM_MEM_SIZE 0x80000
#define SM_OBJ_MEM_ADRS (SM_MEM_ADRS + SM_MEM_SIZE)
#define SM_OBJ_MEM_SIZE 0x80000
#else
...
#endif

Note that for the slave CPUs, the value of SM_OBJ_MEM_SIZE is not used.

6.4.5 Initialization Steps

Initialization is performed by default in usrSmObjInit(), in
src/config/usrSmObj.c. On the master CPU, the initialization of shared-memory

objects consists of the following:

1. Setting up the shared-memory objects header and its pointer in the shared-

memory anchor, with smObjSetup().

2. Initializing shared-memory object parameters for this CPU, with smObjInit().

3. Attaching the CPU to the shared-memory object facility, with smObjAttach().
402

6

6
Shared-Memory Objects
On slave CPUs, only steps 2 and 3 are required.

The routine smObjAttach() checks the setup of shared-memory objects. It looks

for the shared-memory heartbeat to verify that the facility is running. The shared-

memory heartbeat is an unsigned integer that is incremented once per second by

the master CPU. It indicates to the slaves that shared-memory objects are

initialized, and can be used for debugging. The heartbeat is the first field in the

shared-memory object header; see 6.5 Troubleshooting, p.403.

6.5 Troubleshooting

Problems with shared-memory objects can be due to a number of causes. This

section discusses the most common problems and a number of troubleshooting

tools. Often, you can locate the problem by rechecking your hardware and

software configurations.

6.5.1 Configuration Problems

Refer to the following list to confirm that your system is properly configured:

■ Be sure to verify that the constant INCLUDE_SM_OBJ is defined in configAll.h
for all processors, or in config.h for each processor using VxMP.

■ Be sure the anchor address specified is the address seen by the CPU. This can

be defined with the constant SM_ANCHOR_ADRS in config.h or at boot time

(sm=) if the target is booted with the shared-memory network.

■ If there is heavy bus traffic relating to shared-memory objects, bus errors can

occur. Avoid this problem by changing the bus arbitration mode or by

changing relative CPU priorities on the bus.

■ If memAddToPool(), memPartSmCreate(), or smMemAddToPool() fail, check

that any address you are passing to these routines is in fact a global address.
403

VxWorks 5.3.1
Programmer’s Guide
6.5.2 Troubleshooting Techniques

Use the following techniques to troubleshoot any problems you encounter:

■ The routine smObjTimeoutLogEnable() enables or disables the printing of an

error message indicating that the maximum number of attempts to take a spin-

lock has been reached. By default, message printing is enabled.

■ If INCLUDE_SHOW_ROUTINES is defined, the routine smObjShow() displays

the status of the shared-memory objects facility on the standard output device.

It displays the maximum number of tries a task took to get a spin-lock on a

particular CPU. A high value can indicate that an application might run into

problems due to contention for shared-memory resources.

■ The shared-memory heartbeat can be checked to verify that the master CPU

has initialized shared-memory objects. The shared-memory heartbeat is in the

first 4-byte word of the shared-memory object header. The offset to the header

is in the sixth 4-byte word in the shared-memory anchor. (See The Shared-
Memory Heartbeat, p.304 in this manual.)

Thus, if the shared-memory anchor were located at 0x800000:

[VxWorks Boot]: d 0x800000
800000: 8765 4321 0000 0001 0000 0000 0000 002c *.eC!...........,*
800010: 0000 0000 0000 0170 0000 0000 0000 0000 *...p............*
800020: 0000 0000 0000 0000 0000 0000 0000 0000 *................*

The offset to the shared-memory object header is 0x170. To view the shared-

memory object header display 0x800170:

[VxWorks Boot]: d 0x800170
800170: 0000 0050 0000 0000 0000 0bfc 0000 0350 *...P...........P*

In the preceding example, the value of the shared-memory heartbeat is 0x50.

Display this location again to ensure that the heartbeat is alive; if its value has

changed, shared-memory objects are initialized.

■ The global variable smIfVerbose, when set to 1 (TRUE), causes shared-

memory interface error messages to print to the console, along with additional

details of shared-memory operations. This variable enables you to get run-

time information from the device driver level that would be unavailable at the

debugger level. The default setting for smIfVerbose is 0 (FALSE). That can be

reset programmatically or from the shell.
404

7
Virtual Memory Interface

Basic Support and Optional Component VxVMI
7.1 Introduction .. 406

7.2 Basic Virtual Memory Support ... 407

7.3 Virtual Memory Configuration .. 407

7.4 General Use .. 409

7.5 Using the MMU Programmatically .. 410

7.5.1 Virtual Memory Contexts ... 410

Global Virtual Memory ... 410

Initialization .. 411

Page States ... 411

7.5.2 Private Virtual Memory .. 412

7.5.3 Noncacheable Memory ... 420

7.5.4 Nonwritable Memory .. 421

7.5.5 Troubleshooting ... 424

7.5.6 Precautions .. 424
405

VxWorks 5.3.1
Programmer’s Guide
List of Tables

Table 7-1 MMU Configuration Constants .. 408

Table 7-2 State Flags ... 411

Table 7-3 State Masks ... 412

List of Figures

Figure 7-1 Global Mappings of Virtual Memory 413

Figure 7-2 Mapping Private Virtual Memory 414

Figure 7-3 Example of Possible Problems with Data Caching 421

List of Examples

Example 7-1 Private Virtual Memory Contexts 414

Example 7-2 Nonwritable Memory ... 421

7.1 Introduction

VxWorks provides two levels of virtual memory support. The basic level is

bundled with VxWorks and provides caching on a per-page basis. The full level is

unbundled, and requires the optional component, VxVMI. VxVMI provides write

protection of text segments and the VxWorks exception vector table, and an

architecture-independent interface to the CPU’s memory management unit

(MMU). For information on how to install VxVMI, see the Wind River Products
Installation Guide.

This chapter contains the following sections:

■ The first describes the basic level of support.
406

7

7
Virtual Memory Interface
■ The second describes configuration, and is applicable to both levels of support.

■ The third and fourth parts apply only to the optional component, VxVMI:

– The third is for general use, discussing the write protection implemented

by VxVMI.

– The fourth describes a set of routines for manipulating the MMU. VxVMI

provides low-level routines for interfacing with the MMU in an

architecture-independent manner, allowing you to implement your own

virtual memory systems.

7.2 Basic Virtual Memory Support

For systems with an MMU, VxWorks allows you to perform DMA and

interprocessor communication more efficiently by rendering related buffers

noncacheable. This is necessary to ensure that data is not being buffered locally

when other processors or DMA devices are accessing the same memory location.

Without the ability to make portions of memory noncacheable, caching must be

turned off globally (resulting in performance degradation) or buffers must be

flushed/invalidated manually.

Basic virtual memory support is included by defining INCLUDE_MMU_BASIC in

configAll.h; see 7.3 Virtual Memory Configuration, p.407. It is also possible to

allocate noncacheable buffers using cacheDmaMalloc(); see the reference entry for

cacheLib.

7.3 Virtual Memory Configuration

The following discussion of configuration applies to both bundled and unbundled

virtual memory support.

In configAll.h, define the constants in Table 7-1 to reflect your system

configuration.
407

VxWorks 5.3.1
Programmer’s Guide
The default page size (8KB) is defined by VM_PAGE_SIZE in configAll.h. For

architectures that support different page sizes, redefine VM_PAGE_SIZE in

config.h.

To make memory noncacheable, it must have a virtual-to-physical mapping. The

data structure PHYS_MEM_DESC in vmLib.h defines the parameters used for

mapping physical memory. Each board’s memory map is defined in sysLib.c using

sysPhysMemDesc (which is declared as an array of PHYS_MEM_DESC). In

addition to defining the initial state of the memory pages, the sysPhysMemDesc
structure defines the virtual addresses used for mapping virtual-to-physical

memory. For a discussion of page states, see Page States, p.411.

Modify the sysPhysMemDesc structure to reflect your system configuration. For

example, you may need to add the addresses of interprocessor communication

buffers not already included in the structure. Or, you may need to map and make

noncacheable the VMEbus addresses of the shared-memory data structures. Most

board support packages have a section of VME space defined in

sysPhysMemDesc; however, this may not include all the space required by your

system configuration.

I/O devices and memory not already included in the structure must also be

mapped and made noncacheable. In general, off-board memory regions are

specified as noncacheable; see On-Board and Off-Board Options, p.306.

NOTE: The regions of memory defined in sysPhysMemDesc must be page-

aligned, and must span complete pages. In other words, the first three fields

(virtual address, physical address, and length) of a PHYS_MEM_DESC structure

must all be even multiples of VM_PAGE_SIZE. Specifying elements of

sysPhysMemDesc that are not page-aligned leads to crashes during VxWorks

initialization.

Table 7-1 MMU Configuration Constants

Constant Description

INCLUDE_MMU_BASIC Basic MMU support without VxVMI option.

INCLUDE_MMU_FULL Full MMU support with the VxVMI option.

INCLUDE_PROTECT_TEXT Text segment protection (requires full MMU

support).

INCLUDE_PROTECT_VEC_TABLE Exception vector table protection (requires full

MMU support).

!

408

7

7
Virtual Memory Interface
The following example configuration consists of multiple CPUs using the shared-

memory network. A separate memory board is used for the shared-memory pool.

Because this memory is not already mapped, it must be added to

sysPhysMemDesc for all the boards on the network. The memory starts at

0x4000000 and must be made noncacheable, as shown in the following code

excerpt:

/* shared memory */
{
(void *) 0x4000000, /* virtual address */
(void *) 0x4000000, /* physical address */
0x20000, /* length */
/* initial state mask */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |VM_STATE_MASK_CACHEABLE,
/* initial state */
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT
}

For MC680x0 boards, the virtual address must be the same as the physical address.

For other boards, the virtual and physical addresses are the same as a matter of

convention.

7.4 General Use

This section describes VxVMI’s general use and configuration for write-protecting

text segments and the exception vector table.

VxVMI uses the MMU to prevent portions of memory from being overwritten.

This is done by write-protecting pages of memory. Not all target hardware

supports write protection; see the architecture appendices in this manual for

further information. For most architectures, the page size is 8KB. An attempt to

write to a memory location that is write-protected causes a bus error.

When VxWorks is loaded, all text segments are write-protected; see 7.3 Virtual
Memory Configuration, p.407. The text segments of additional object modules

loaded using ld() are automatically marked as read-only. When object modules are

loaded, memory to be write-protected is allocated in page-size increments. No

additional steps are required to write-protect application code.

During system initialization, VxWorks write-protects the exception vector table.

The only way to modify the interrupt vector table is to use the routine
409

VxWorks 5.3.1
Programmer’s Guide
intConnect(), which write-enables the exception vector table for the duration of

the call.

To include write-protection, define the following in configAll.h:

INCLUDE_MMU_FULL
INCLUDE_PROTECT_TEXT
INCLUDE_PROTECT_VEC_TABLE

7.5 Using the MMU Programmatically

This section describes the facilities provided for manipulating the MMU

programmatically using low-level routines in vmLib. You can make data private

to a task or code segment, make portions of memory noncacheable, or write-

protect portions of memory. The fundamental structure used to implement virtual

memory is the virtual memory context (VMC).

For a summary of the VxVMI routines, see the reference entry for vmLib.

7.5.1 Virtual Memory Contexts

A virtual memory context (VM_CONTEXT, defined in vmLib) is made up of a

translation table and other information used for mapping a virtual address to a

physical address. Multiple virtual memory contexts can be created and swapped

in and out as desired.

Global Virtual Memory

Some system objects, such as text segments and semaphores, must be accessible to

all tasks in the system regardless of which virtual memory context is made current.

These objects are made accessible by means of global virtual memory. Global virtual

memory is created by mapping all the physical memory in the system (the

mapping is defined in sysPhysMemDesc) to the identical address in the virtual

memory space. In the default system configuration, this initially gives a one-to-one

relationship between physical memory and global virtual memory; for example,

virtual address 0x5000 maps to physical address 0x5000. On some architectures, it

is possible to use sysPhysMemDesc to set up virtual memory so that the mapping
410

7

7
Virtual Memory Interface
of virtual-to-physical addresses is not one-to-one; see 7.3 Virtual Memory
Configuration, p.407 for additional information.

Global virtual memory is accessible from all virtual memory contexts.

Modifications made to the global mapping in one virtual memory context appear

in all virtual memory contexts. Before virtual memory contexts are created, add all

global memory with vmGlobalMap(). Global memory that is added after virtual

memory contexts are created may not be available to existing contexts.

Initialization

Global virtual memory is initialized by vmGlobalMapInit() in usrMmuInit(),
which is called from usrRoot(). The routine usrMmuInit() is in

src/config/usrMmuInit.c, and creates global virtual memory using

sysPhysMemDesc. It then creates a default virtual memory context and makes the

default context current. Optionally, it also enables the MMU.

Page States

Each virtual memory page (typically 8KB) has a state associated with it. A page can

be valid/invalid, writable/nonwritable, or cacheable/noncacheable. See Table 7-2

for the associated constants.

Validity A valid state indicates the virtual-to-physical translation is true.

When the translation tables are initialized, global virtual memory

is marked as valid. All other virtual memory is initialized as

invalid.

Table 7-2 State Flags

Constant Description

VM_STATE_VALID Valid translation

VM_STATE_VALID_NOT Invalid translation

VM_STATE_WRITABLE Writable memory

VM_STATE_WRITABLE_NOT Read-only memory

VM_STATE_CACHEABLE Cacheable memory

VM_STATE_CACHEABLE_NOT Noncacheable memory
411

VxWorks 5.3.1
Programmer’s Guide
Writability Pages can be made read-only by setting the state to nonwritable.

This is used by VxWorks to write-protect all text segments.

Cacheability The caching of memory pages can be prevented by setting the

state flags to noncacheable. This is useful for memory that is

shared between processors (including DMA devices).

Change the state of a page with the routine vmStateSet(). In addition to specifying

the state flags, a state mask must describe which flags are being changed; see

Table 7-3. Additional architecture-dependent states are specified in vmLib.h.

7.5.2 Private Virtual Memory

Private virtual memory can be created by creating a new virtual memory context.

This is useful for protecting data by making it inaccessible to other tasks or by

limiting access to specific routines. Virtual memory contexts are not automatically

created for tasks, but can be created and swapped in and out in an application-

specific manner.

At system initialization, a default context is created. All tasks use this default

context. To create private virtual memory, a task must create a new virtual memory

context using vmContextCreate(), and make it current. All virtual memory

contexts share the global mappings that are created at system initialization; see

Figure 7-1. Only the valid virtual memory in the current virtual memory context

(including global virtual memory) is accessible. Virtual memory defined in other

virtual memory contexts is not accessible. To make another memory context

current, use vmCurrentSet().

To create a new virtual-to-physical mapping, use vmMap(); both the physical and

virtual address must be determined in advance. The physical memory (which

must be page aligned) can be obtained using valloc(). The easiest way to

determine the virtual address is to use vmGlobalInfoGet() to find a virtual page

that is not a global mapping. With this scheme, if multiple mappings are required,

Table 7-3 State Masks

Constant Description

VM_STATE_MASK_VALID Modify valid flag

VM_STATE_MASK_WRITABLE Modify write flag

VM_STATE_MASK_CACHEABLE Modify cache flag
412

7

7
Virtual Memory Interface
a task must keep track of its own private virtual memory pages to guarantee it does

not map the same non-global address twice.

When physical pages are mapped into new sections of the virtual space, the

physical page is accessible from two different virtual addresses (a condition

known as aliasing): the newly mapped virtual address and the virtual address

equal to the physical address in the global virtual memory. This can cause

problems for some architectures, because the cache may hold two different values

for the same underlying memory location. To avoid this, invalidate the virtual

page (using vmStateSet()) in the global virtual memory. This also ensures that the

data is accessible only when the virtual memory context containing the new

mapping is current.

Figure 7-2 depicts two private virtual memory contexts. The new context (pvmc2)

maps virtual address 0x6000000 to physical address 0x10000. To prevent access to

this address from outside of this virtual context (pvmc1), the corresponding

physical address (0x10000) must be set to invalid. If access to the memory is made

using address 0x10000, a bus error occurs because that address is now invalid.

Figure 7-1 Global Mappings of Virtual Memory

...

PRIVATE

TRANSLATION
TABLE

Private

...

GLOBAL GLOBAL

TRANSLATION
TABLE

Default
Virtual Memory Context Virtual Memory Context

MAPPING MAPPING MAPPING
413

VxWorks 5.3.1
Programmer’s Guide
Example 7-1 Private Virtual Memory Contexts

In the following code example, private virtual memory contexts are used for

allocating memory from a task’s private memory partition. The setup routine,

contextSetup(), creates a private virtual memory context that is made current

during a context switch. The virtual memory context is stored in the field spare1 in

the task’s TCB. Switch hooks are used to save the old context and install the task’s

private context. Note that the use of switch hooks increases the context switch

time. A user-defined memory partition is created using the private virtual memory

context. The partition ID is stored in spare2 in the tasks TCB. Any task wanting a

private virtual memory context must call contextSetup(). A sample task to test the

code is included.

/* contextExample.h - header file for vm contexts used by switch hooks */

#define NUM_PAGES (3)

Figure 7-2 Mapping Private Virtual Memory

... ...

...

0

0x10000 0x10000

V

V

I

V

V

...

0x6000000

...

V

...

0x10000

VIRTUAL
ADDRESS

PHYSICAL
ADDRESS

STATE PHYSICAL
ADDRESS

STATEVIRTUAL
ADDRESS

invalid
mapping

valid
mapping

pvmc1 pvmc2

Global
Virtual
Memory

Private
Virtual
Memory

Private
Virtual Memory Context

New
Virtual Memory Context
414

7

7
Virtual Memory Interface
/* context.c - use context switch hooks to make task private context current */

#include "vxWorks.h"
#include "vmLib.h"
#include "semLib.h"
#include "taskLib.h"
#include "taskHookLib.h"
#include "memLib.h"
#include "contextExample.h"

void privContextSwitch (WIND_TCB *pOldTask, WIND_TCB *pNewTask);

/**
*
* initContextSetup - install context switch hook
*
*/

STATUS initContextSetup ()
{
/* Install switch hook */

if (taskSwitchHookAdd ((FUNCPTR) privContextSwitch) == ERROR)
return (ERROR);

return (OK);
}

415

VxWorks 5.3.1
Programmer’s Guide
/**
*
* contextSetup - initialize context and create separate memory partition
*
* Call only once for each task that wants a private context.
*
* This could be made into a create-hook routine if every task on the
* system needs a private context. To use as a create hook, the code for
* installing the new virtual memory context should be replaced by simply
* saving the new context in spare1 of the task’s TCB.
*/

STATUS contextSetup (void)
{
VM_CONTEXT_ID pNewContext;
int pageSize;
int pageBlkSize;
char * pPhysAddr;
char * pVirtAddr;
UINT8 * globalPgBlkArray;
int newMemSize;
int index;
WIND_TCB * pTcb;

/* create context */

pNewContext = vmContextCreate();

/* get page and page block size */

pageSize = vmPageSizeGet ();
pageBlkSize = vmPageBlockSizeGet ();
newMemSize = pageSize * NUM_PAGES;

/* allocate physical memory that is page aligned */

if ((pPhysAddr = (char *) valloc (newMemSize)) == NULL)
return (ERROR);

/* Select virtual address to map. For this example, since only one page
* block is used per task, simply use the first address that is not a
* global mapping. vmGlobalInfoGet() returns a boolean array where each
* element corresponds to a block of virtual memory.

 */

globalPgBlkArray = vmGlobalInfoGet();
for (index = 0; globalPgBlkArray[index] == TRUE; index++)

;
pVirtAddr = (char *) (index * pageBlkSize);

/* map physical memory to new context */

if (vmMap (pNewContext, pVirtAddr, pPhysAddr, newMemSize) == ERROR)
{
free (pPhysAddr);
return (ERROR);
}

416

7

7
Virtual Memory Interface
/*
 * Set state in global virtual memory to be invalid - any access to
 * this memory must be done through new context.
 */

if (vmStateSet(pNewContext, pPhysAddr, newMemSize, VM_STATE_MASK_VALID,
VM_STATE_VALID_NOT) == ERROR)

return (ERROR);

/* get tasks TCB */

pTcb = taskTcb (taskIdSelf());

/* change virtual memory contexts */

/*
 * Stash the current vm context in the spare TCB field -- the switch
 * hook will install this when this task gets swapped out.
 */

pTcb->spare1 = (int) vmCurrentGet();

/* install new tasks context */

vmCurrentSet (pNewContext);

/* create new memory partition and store id in task’s TCB */

if ((pTcb->spare2 = (int) memPartCreate (pVirtAddr,newMemSize)) == NULL)
return (ERROR);

return (OK);
}

/***
*
* privContextSwitch - routine to be executed on a context switch
*
* If old task had private context, save it. If new task has private
* context, install it.
*/

void privContextSwitch
(
WIND_TCB *pOldTcb,
WIND_TCB *pNewTcb
)

{
VM_CONTEXT_ID pContext = NULL;

/* If previous task had private context, save it--reset previous context. */

if (pOldTcb->spare1)
{
pContext = (VM_CONTEXT_ID) pOldTcb->spare1;
417

VxWorks 5.3.1
Programmer’s Guide
pOldTcb->spare1 = (int) vmCurrentGet ();

/* restore old context */

vmCurrentSet (pContext);
}

/*
 * If next task has private context, map new context and save previous
 * context in task’s TCB.
 */

if (pNewTcb->spare1)
{
pContext = (VM_CONTEXT_ID) pNewTcb->spare1;
pNewTcb->spare1 = (int) vmCurrentGet();

/* install new tasks context */

vmCurrentSet (pContext);
}

}

/* taskExample.h - header file for testing VM contexts used by switch hook */

/* This code is used by the sample task. */

#define MAX (10000000)

typedef struct myStuff {
int stuff;
int myStuff;
} MY_DATA;

/* testTask.c - task code to test switch hooks */

#include "vxWorks.h"
#include "memLib.h"
#include "taskLib.h"
#include "stdio.h"
#include "vmLib.h"
#include "taskExample.h"

IMPORT char *string = "test\n";

MY_DATA *pMem;
418

7

7
Virtual Memory Interface
/**
*
* testTask - allocate private memory and use it
*
* Loop forever, modifying memory and printing out a global string. Use this
* in conjunction with testing from the shell. Since pMem points to private
* memory, the shell should generate a bus error when it tries to read it.
* For example:
* -> sp testTask
* -> d pMem
*/

STATUS testTask (void)
{
int val;
WIND_TCB *myTcb;

/* install private context */

if (contextSetup () == ERROR)
return (ERROR);

/* get TCB */

myTcb = taskTcb (taskIdSelf ());

/* allocate private memory */

if ((pMem = (MY_DATA *) memPartAlloc((PART_ID) myTcb->spare2,
 sizeof (MY_DATA))) == NULL)
return (ERROR);

/*
 * Forever, modify data in private memory and display string in
 * global memory.
 */

FOREVER
{
for (val = 0; val <= MAX; val++)

{
/* modify structure */

pMem->stuff = val;
pMem->myStuff = val / 2;

/* make sure can access global virtual memory */

printf (string);

taskDelay (sysClkRateGet() * 10);
}

}
return (OK);
}

419

VxWorks 5.3.1
Programmer’s Guide
/**
*
* testVmContextGet - return a task’s virtual memory context stored in TCB
*
* Used with vmContextShow() 1 to display a task’s virtual memory context.
* For example, from the shell, type:
* -> tid = sp (testTask)
* -> vmContextShow (testVmContextGet (tid))
*/

VM_CONTEXT_ID testVmContextGet
(
UINT tid
)
{
return ((VM_CONTEXT_ID) ((taskTcb (tid))->spare1));
}

7.5.3 Noncacheable Memory

Architectures that do not support bus snooping must disable the memory caching

that is used for interprocessor communication (or by DMA devices). If multiple

processors are reading from and writing to a memory location, you must

guarantee that when the CPU accesses the data, it is using the most recent value. If

caching is used in one or more CPUs in the system, there can be a local copy of the

data in one of the CPUs’ data caches. In the example in Figure 7-3, a system with

multiple CPUs share data, and one CPU on the system (CPU 0) caches the shared

data. A task on CPU 0 reads the data [1] and then modifies the value [2]; however,

the new value may still be in the cache and not flushed to memory when a task on

another CPU (CPU 1) accesses it [3]. Thus the value of the data used by the task on

CPU 1 is the old value and does not reflect the modifications done by the task on

CPU 0; that value is still in CPU 0’s data cache [2].

To disable caching on a page basis, use vmStateSet(); for example:

vmStateSet (pContext, pSData, len, VM_STATE_MASK_CACHEABLE, VM_STATE_CACHEABLE_NOT)

To allocate noncacheable memory, see the reference entry for cacheDmaMalloc().

1. This routine is not built in to the Tornado shell. To use it from the Tornado shell, you must

define INCLUDE_SHOW_ROUTINES in your VxWorks configuration; see

8. Configuration. When invoked this routine’s output is sent to the standard output device.
420

7

7
Virtual Memory Interface
7.5.4 Nonwritable Memory

Memory can be marked as nonwritable. Sections of memory can be write-

protected using vmStateSet() to prevent inadvertent access.

One use of this is to restrict modification of a data object to a particular routine. If

a data object is global but read-only, tasks can read the object but not modify it. Any

task that must modify this object must call the associated routine. Inside the

routine, the data is made writable for the duration of the routine, and on exit, the

memory is set to VM_STATE_WRITABLE_NOT.

Example 7-2 Nonwritable Memory

In this code example, to modify the data structure pointed to by pData, a task must

call dataModify(). This routine makes the memory writable, modifies the data,

and sets the memory back to nonwritable. If a task tries to read the memory, it is

successful; however, if it tries to modify the data outside of dataModify(), a bus

error occurs.

Figure 7-3 Example of Possible Problems with Data Caching

CPU 0

CPU 1

Data
Cache

Access and
modify myVal .
Cache myVal .

myVal = 100

(task executes first)

(task executes second)

Access myVal;
myVal = 25

(not the value
of 100 just

set by CPU0).

[1]
[2]

[3]

Memory

myVal25
421

VxWorks 5.3.1
Programmer’s Guide
/* privateCode.h - header file to make data writable from routine only */

#define MAX 1024

typedef struct myData
{
char stuff[MAX];
int moreStuff;
} MY_DATA;

/* privateCode.c - uses VM contexts to make data private to a code segment */

#include "vxWorks.h"
#include "vmLib.h"
#include "semLib.h"
#include "privateCode.h"

MY_DATA * pData;
SEM_ID dataSemId;
int pageSize;

/***
*
* initData - allocate memory and make it nonwritable
*
* This routine initializes data and should be called only once.
*
*/

STATUS initData (void)
{
pageSize = vmPageSizeGet();

/* create semaphore to protect data */

dataSemId = semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);

/* allocate memory = to a page */

pData = (MY_DATA *) valloc (pageSize);

/* initialize data and make it read-only */

bzero (pData, pageSize);
if (vmStateSet (NULL, pData, pageSize, VM_STATE_MASK_WRITABLE,

VM_STATE_WRITABLE_NOT) == ERROR)
{
semGive (dataSemId);
return (ERROR);
}

422

7

7
Virtual Memory Interface
/* release semaphore */

semGive (dataSemId);
return (OK);
}

/**
*
* dataModify - modify data
*
* To modify data, tasks must call this routine, passing a pointer to
* the new data.
* To test from the shell use:
* -> initData
* -> sp dataModify
* -> d pData
* -> bfill (pdata, 1024, 'X')
*/

STATUS dataModify
(
MY_DATA * pNewData
)
{

/* take semaphore for exclusive access to data */

semTake (dataSemId, WAIT_FOREVER);

/* make memory writable */

if (vmStateSet (NULL, pData, pageSize, VM_STATE_MASK_WRITABLE,
VM_STATE_WRITABLE) == ERROR)

{
semGive (dataSemId);
return (ERROR);
}

/* update data*/

bcopy (pNewData, pData, sizeof(MY_DATA));

/* make memory not writable */

if (vmStateSet (NULL, pData, pageSize, VM_STATE_MASK_WRITABLE,
VM_STATE_WRITABLE_NOT) == ERROR)

{
semGive (dataSemId);
return (ERROR);
}

semGive (dataSemId);

return (OK);
}

423

VxWorks 5.3.1
Programmer’s Guide
7.5.5 Troubleshooting

If INCLUDE_SHOW_ROUTINES is defined, you can use vmContextShow() to
display a virtual memory context on the standard output device. In the following

example, the current virtual memory context is displayed. Virtual addresses

between 0x0 and 0x59fff are write protected; 0xff800000 through 0xffbfffff are

noncacheable; and 0x2000000 through 0x2005fff are private. All valid entries are

listed and marked with a V+. Invalid entries are not listed.

-> vmContextShow 0
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

VIRTUAL ADDR BLOCK LENGTH PHYSICAL ADDR STATE
0x0 0x5a000 0x0 W- C+ V+ (global)
0x5a000 0x1f3c000 0x5a000 W+ C+ V+ (global)
0x1f9c000 0x2000 0x1f9c000 W+ C+ V+ (global)
0x1f9e000 0x2000 0x1f9e000 W- C+ V+ (global)
0x1fa0000 0x2000 0x1fa0000 W+ C+ V+ (global)
0x1fa2000 0x2000 0x1fa2000 W- C+ V+ (global)
0x1fa4000 0x6000 0x1fa4000 W+ C+ V+ (global)
0x1faa000 0x2000 0x1faa000 W- C+ V+ (global)
0x1fac000 0xa000 0x1fac000 W+ C+ V+ (global)
0x1fb6000 0x2000 0x1fb6000 W- C+ V+ (global)
0x1fb8000 0x36000 0x1fb8000 W+ C+ V+ (global)
0x1fee000 0x2000 0x1fee000 W- C+ V+ (global)
0x1ff0000 0x2000 0x1ff0000 W+ C+ V+ (global)
0x1ff2000 0x2000 0x1ff2000 W- C+ V+ (global)
0x1ff4000 0x2000 0x1ff4000 W+ C+ V+ (global)
0x1ff6000 0x2000 0x1ff6000 W- C+ V+ (global)
0x1ff8000 0x2000 0x1ff8000 W+ C+ V+ (global)
0x1ffa000 0x2000 0x1ffa000 W- C+ V+ (global)
0x1ffc000 0x4000 0x1ffc000 W+ C+ V+ (global)
0x2000000 0x6000 0x1f96000 W+ C+ V+
0xff800000 0x400000 0xff800000 W- C- V+ (global)
0xffe00000 0x20000 0xffe00000 W+ C+ V+ (global)
0xfff00000 0xf0000 0xfff00000 W+ C- V+ (global)

7.5.6 Precautions

Memory that is marked as global cannot be remapped using vmMap(). To add to

global virtual memory, use vmGlobalMap(). For further information on adding

global virtual memory, see 7.5.2 Private Virtual Memory, p.412.

Performances of MMUs vary across architectures; in fact, some architectures may

cause the system to become non-deterministic. For additional information, see the

architecture-specific documentation for your hardware.
424

8
Configuration
8.1 Introduction .. 427

8.2 The Board Support Package (BSP) .. 427

The System Library .. 428

Virtual Memory Mapping ... 429

The Serial Driver .. 429

BSP Initialization Modules ... 429

BSP Documentation ... 429

8.3 Configuring VxWorks .. 430

8.3.1 The Environment Variables .. 430

8.3.2 The Configuration Header Files .. 431

The Global Configuration Header File: configAll.h 431

The BSP-specific Configuration Header File: config.h 432

Selection of Optional Features ... 432

8.3.3 The Configuration Module: usrConfig.c .. 434

8.3.4 VxWorks Initialization Timeline .. 435

The VxWorks Entry Point: sysInit() .. 435

The Initial Routine: usrInit() .. 436

Initializing the Kernel .. 437

Initializing the Memory Pool ... 438

The Initial Task: usrRoot() .. 439

The System Clock Routine: usrClock() ... 444

Initialization Summary ... 444
425

VxWorks 5.3.1
Programmer’s Guide
8.4 Alternative VxWorks Configurations ... 447

8.4.1 Scaling Down VxWorks .. 447

Excluding Kernel Facilities ... 447

Excluding Network Facilities ... 448

Option Dependencies .. 449

8.4.2 Executing VxWorks from ROM ... 449

8.4.3 Initialization Sequence for ROM-Based VxWorks 452

List of Tables

Table 8-1 Key VxWorks Options .. 433

Table 8-2 VxWorks Run-time System Initialization Sequence 444

Table 8-3 Makefile ROM-Resident Images 450

Table 8-4 ROM-Based VxWorks Initialization Sequence 453

List of Figures

Figure 8-1 ROM-Resident Memory Layout 451
426

8

8
Configuration
8.1 Introduction

The Tornado distribution includes a VxWorks system image for each target shipped.

The system image is a binary module that can be booted and run on a target system.

The system image consists of all desired system object modules linked together

into a single non-relocatable object module with no unresolved external references.

In most cases, you will find the supplied system image entirely adequate for initial

development. However, later in the cycle you may want to tailor its configuration

to reflect your application’s requirements.

This chapter describes how to configure the system image, which you accomplish

by directly editing configuration files. This chapter covers the following topics:

■ The VxWorks board support package (BSP).

■ VxWorks configuration files and configuration options and parameters.

■ Some of the common alternative configurations of VxWorks.

8.2 The Board Support Package (BSP)

The directory config/bspname contains the Board Support Package (BSP), which

consists of files for the particular hardware used to run VxWorks, such as a VME

board with serial lines, timers, and other devices. The files include: Makefile,

sysLib.c, sysSerial.c, sysALib.s, romInit.s, bspname.h, and config.h.

In releasing new versions of BSPs for VxWorks 5.3, a new BSP standard has been

created, called BSP Version 1.1. The application note Upgrading a VxWorks BSP for
Tornado 1.0 describes how to convert version 1.0 BSPs to version 1.1. The standard

is fully described in the VxWorks BSP Porting Kit.
427

VxWorks 5.3.1
Programmer’s Guide
The System Library

The file sysLib.c provides the board-level interface on which VxWorks and

application code can be built in a hardware-independent manner. The functions

addressed in this file include:

■ Initialization functions

– initialize the hardware to a known state

– identify the system

– initialize drivers, such as SCSI or custom drivers

■ Memory/address space functions

– get the on-board memory size

– make on-board memory accessible to external bus (optional)

– map local and bus address spaces

– enable/disable cache memory

– set/get nonvolatile RAM (NVRAM)

– define the board’s memory map (optional)

– virtual-to-physical memory map declarations for processors with MMUs

■ Bus interrupt functions

– enable/disable bus interrupt levels

– generate bus interrupts

■ Clock/timer functions

– enable/disable timer interrupts

– set the periodic rate of the timer

■ Mailbox/location monitor functions (optional)

– enable mailbox/location monitor interrupts

The sysLib library does not support every feature of every board: some boards

may have additional features, others may have fewer, others still may have the

same features with a different interface. For example, some boards provide some

sysLib functions by means of hardware switches, jumpers, or PALs, instead of by

software-controllable registers.

The configuration modules usrConfig.c and bootConfig.c in config/all are

responsible for invoking this library’s routines at the appropriate time. Device

drivers can use some of the memory mapping routines and bus functions.
428

8

8
Configuration
Virtual Memory Mapping

For boards with MMU support, the data structure sysPhysMemDesc defines the

virtual-to-physical memory map. This table is typically defined in sysLib.c,

although some BSPs place it in a separate file, memDesc.c. It is declared as an array

of the data structure PHYS_MEM_DESC. No two entries in this descriptor can

overlap; each entry must be a unique memory space.

The sysPhysMemDesc array should reflect your system configuration, and you

may encounter a number of reasons for changing the MMU memory map, for

example: the need to change the size of local memory or the size of the VME master

access space, or because the address of the VME master access space has been

moved. For information on virtual memory mapping, as well as an example of

how to modify sysPhysMemDesc, see 7.3 Virtual Memory Configuration, p.407.

NOTE: A bus error can occur if you try to access memory that is not mapped.

The Serial Driver

The file sysSerial.c provides board-specific initialization for the on-board serial

ports. The actual serial I/O driver is in the src/drv/sio directory. The library ttyDrv
uses the serial I/O driver to provide terminal operations for VxWorks.

BSP Initialization Modules

The following files initialize the BSP:

■ The file romInit.s contains assembly-level initialization routines.

■ The file sysALib.s contains initialization and system-specific assembly-level

routines.

BSP Documentation

The file target.nr in the config/bspname directory is the nroff source of the online

man-page entry for target-specific information. (For information on how to view

these man pages, see the Tornado User’s Guide: Starting Tornado.) The target.nr file

describes the supported board variations, the relevant jumpering, and supported

devices. It also includes an ASCII representation of the board layout with an

indication of board jumpers (if applicable) and the location of the ROM sockets.

!

429

VxWorks 5.3.1
Programmer’s Guide
8.3 Configuring VxWorks

The configuration of VxWorks is determined by the configuration header files

config/all/configAll.h and config/bspname/config.h. These files are used by the

usrConfig.c, bootConfig.c, and bootInit.c modules as they run the initialization

routines distributed in the directory src/config to configure VxWorks.

The VxWorks distribution includes the configuration files for the default

development configuration. You can create your own versions of these files to

better suit your particular configurations; this is described in the following

subsections. In addition, if you need multiple configurations, environment

variables are provided so you can move easily between them.

To rebuild VxWorks for your own configuration, follow the procedures described

in the Tornado User’s Guide: Cross-Development.

Including optional components in your VxWorks image can significantly increase

the image size. If you receive a warning from vxsize when building VxWorks, or if

the size of your image becomes greater than that supported by the current setting

of RAM_HIGH_ADRS, be sure to see 8.4.1 Scaling Down VxWorks, p.447 and

Creating Bootable Applications in the Tornado User’s Guide: Cross-Development for

information on how to resolve the problem.

8.3.1 The Environment Variables

In a development environment, you may have several different configurations you

wish to test, or you may wish to specify different target code in different situations.

In order to build VxWorks to these different specifications, you need to modify

your environment.

In general, your Tornado environment consists of three parts: the host code

(Tornado), the target code, and the configuration files discussed in this section. If

you use the default environment, your environment variables are defined as

follows:

Host code $WIND_BASE/host/hosttype/bin

Target code TGT_DIR = $WIND_BASE/target

Configuration code

CONFIG_ALL = TGT_DIR/config/all

To use different versions of usrConfig.c, bootConfig.c, and bootInit.c, store them

in a different directory and change the value of CONFIG_ALL. To use different
430

8

8
Configuration
target code, point to the alternate directory by changing the value of TGT_DIR. You

can change the value of CONFIG_ALL by changing it either in your makefile or on

the command line. The value of TGT_DIR must be changed on the command line.

NOTE: Changing TGT_DIR will change the default value of CONFIG_ALL. If this

is not what you want, reset CONFIG_ALL as well.

To change CONFIG_ALL in your make file, add the following command:

CONFIG_ALL = $WIND_BASE/target/config/ newDir

To change CONFIG_ALL on the command line, do the following:

% make ... CONFIG_ALL = $WIND_BASE/target/config/ newDir

To change TGT_DIR on the command line, do the following:

% make ... TGT_DIR = $ ALT_DIR/target

8.3.2 The Configuration Header Files

You can control VxWorks’s configuration by including or excluding definitions in

the global configuration header file configAll.h and in the target-specific

configuration header file config.h. This section describes these files.

The Global Configuration Header File: configAll.h

The configAll.h header file, in the directory config/all, contains default definitions

that apply to all targets, unless redefined in the target-specific header file config.h.

The following options and parameters are defined in configAll.h:

– kernel configuration parameters

– I/O system parameters

– NFS parameters

– selection of optional software modules

– selection of optional device controllers

– cache modes

– maximum number of the different shared memory objects

– device controller I/O addresses, interrupt vectors, and interrupt levels

– miscellaneous addresses and constants

!

431

VxWorks 5.3.1
Programmer’s Guide
The BSP-specific Configuration Header File: config.h

There is also a BSP-specific header file, config.h, in the directory config/bspname.

This file contains definitions that apply only to the specific target, and can also

redefine default definitions in configAll.h that are inappropriate for the particular

target. For example, if a target cannot access a device controller at the default I/O

address defined in configAll.h because of addressing limitations, the address can

be redefined in config.h.

The config.h header file includes definitions for the following parameters:

– default boot parameter string for boot ROMs

– interrupt vectors for system clock and parity errors

– device controller I/O addresses, interrupt vectors, and interrupt levels

– shared memory network parameters

– miscellaneous memory addresses and constants

If any options from configAll.h need to be changed for this one BSP, then any

previous definition of that option should be undefined and redefined as necessary

in config.h. Do not change options in config/all/configAll.h unless they are to

apply to all BSPs at your site.

Selection of Optional Features

VxWorks ships with optional features and device drivers that can be included or

omitted from the target system. These are controlled by macros in the

configuration header files that cause conditional compilation in the

config/all/usrConfig.c module.

The distributed versions of the configuration header files configAll.h and config.h
include all the available software options and several network device drivers. You

define a macro by moving it from the EXCLUDED FACILITIES section of the

header file to the INCLUDED SOFTWARE FACILITIES section. (For a partial

listing of the configuration macros, see Table 8-1.) For example, to include the

ANSI C assert library, make sure the macro INCLUDE_ANSI_ASSERT is defined; to

include the Network File System (NFS) facility, make sure INCLUDE_NFS is

defined. Modification or exclusion of particular facilities is discussed in detail in

8.4 Alternative VxWorks Configurations, p.447.

Macros shown in Table 8-1 that end in XXX are not valid macros but represent

families of options where the XXX is replaced by a suffix declaring a specific

routine. For example, INCLUDE_CPLUS_XXX refers to a family of macros that

includes INCLUDE_CPLUS_MIN and INCLUDE_CPLUS_BOOCH.
432

8

8
Configuration
Table 8-1 Key VxWorks Options

Macro * Option

INCLUDE_ADA Ada support

INCLUDE_ANSI_XXX * Various ANSI C library options

INCLUDE_BOOTP * BOOTP support

INCLUDE_CACHE_SUPPORT * Cache support

INCLUDE_CPLUS Bundled C++ support

INCLUDE_CPLUS_XXX Various C++ support options

INCLUDE_CPLUS Native debugging, for backward-compatible

use with target-resident shell

INCLUDE_DEMO Use simple demo program

INCLUDE_DOSFS DOS-compatible file system

INCLUDE_FLOATING_POINT * Floating-point I/O

INCLUDE_FORMATTED_IO * Formatted I/O

INCLUDE_FTP_SERVER * FTP server support

INCLUDE_HW_FP Hardware floating-point support

INCLUDE_INSTRUMENTATION WindView instrumentation; see the WindView
User’s Guide for details

INCLUDE_IO_SYSTEM * I/O system package

INCLUDE_LOADER Target-resident object module loader package

INCLUDE_LOGGING * Logging facility

INCLUDE_MEM_MGR_FULL Full-featured memory manager

INCLUDE_MIB2_XXX Various MIB-2 options

INCLUDE_MMU_BASIC Bundled MMU support

INCLUDE_MMU_FULL Unbundled MMU support (requires VxVMI)

INCLUDE_MSG_Q * Message queue support

INCLUDE_NETWORK * Network subsystem code

INCLUDE_NFS Network File System (NFS)

INCLUDE_NFS_SERVER NFS server

INCLUDE_PIPES * Pipe driver

INCLUDE_POSIX_XXX Various POSIX options

INCLUDE_PROTECT_TEXT Text segment write protection (requires VxVMI)

INCLUDE_PROTECT_VEC_TABLE Vector table write protection (requires VxVMI)

INCLUDE_PROXY_CLIENT * Proxy ARP client support

INCLUDE_PROXY_SERVER Proxy ARP server support

INCLUDE_RAWFS Raw file system

INCLUDE_RLOGIN Remote login with rlogin
INCLUDE_RPC Remote Procedure Calls (RPC)

INCLUDE_RT11FS RT-11 file system

INCLUDE_SCSI SCSI support

INCLUDE_SCSI2 SCSI-2 extensions
433

VxWorks 5.3.1
Programmer’s Guide
8.3.3 The Configuration Module: usrConfig.c

Use VxWorks configuration header files to configure your VxWorks system to meet

your development requirements. Users should not resort to changing the WRS-

supplied usrConfig.c, or any other module in the directory config/all. If an extreme

situation requires such a change, we recommend you copy all the files in config/all

* Items marked with an asterisk are included in the default configuration. Note

that, since this list of options is not complete, not all macros included in the

default configuration are listed here. Note also that their inclusion may be

overridden in config.h for your BSP.

INCLUDE_SCSI_BOOT Allow booting from a SCSI device

INCLUDE_SECURITY Remote login security package

INCLUDE_SEM_BINARY * Binary semaphore support

INCLUDE_SEM_COUNTING * Counting semaphore support

INCLUDE_SEM_MUTEX * Mutual exclusion semaphore support

INCLUDE_SHELL C-expression interpreter (target shell)

INCLUDE_SHOW_ROUTINES Various system object show facilities

INCLUDE_SIGNALS * Software signal facilities

INCLUDE_SM_OBJ Shared memory object support (requires VxMP)

INCLUDE_SNMPD SNMP agent

INCLUDE_SPY Task activity monitor

INCLUDE_STDIO * Standard I/O package

INCLUDE_SW_FP Software Floating point emulation package

INCLUDE_SYM_TBL Target-resident symbol table support

INCLUDE_TASK_HOOKS * Kernel call-out support

INCLUDE_TASK_VARS * Task variable support

INCLUDE_TELNET Remote login with telnet
INCLUDE_TFTP_CLIENT TFTP client support

INCLUDE_TFTP_SERVER TFTP server support

INCLUDE_TIMEX * Function execution timer

INCLUDE_UNLOADER Target-resident object module unloader

package

INCLUDE_WATCHDOGS Watchdog support

INCLUDE_WDB * Target agent

INCLUDE_WINDVIEW WindView command server; see the WindView
User’s Guide for details

INCLUDE_ZBUF_SOCK Zbuf socket interface

Table 8-1 Key VxWorks Options (Continued)

Macro * Option
434

8

8
Configuration
to another directory, and add a CONFIG_ALL macro to your makefile to point the

make system to the location of the modified files. For example, add the following

to your makefile after the first group of include statements:

../myAll contains a copy of all the ../all files
CONFIG_ALL = ../myAll

8.3.4 VxWorks Initialization Timeline

This section covers the initialization sequence for VxWorks in a typical

development configuration. The steps are described in sequence of execution. This

is not the only way VxWorks can be bootstrapped on a particular processor. There

are often more efficient or robust techniques unique to a particular processor or

hardware; consult your hardware’s documentation.

For final production, the sequence can be revisited to include diagnostics or to

remove some of the generic operations that are required for booting a development

environment, but that are unnecessary for production. This description can

provide only an approximate guide to the processor initialization sequence and

does not document every exception to this time-line.

The early steps of the initialization sequence are slightly different for ROM-based

versions of VxWorks; for infomration, see 8.4.3 Initialization Sequence for ROM-
Based VxWorks, p.452.

For a summary of the initialization time-line, see Table 8-2. The following sections

describe the initialization in detail by routine name. For clarity, the sequence is

divided into a number of main steps or function calls. The key routines are listed

in the headings and are described in chronological order.

The VxWorks Entry Point: sysInit()

The first step in starting a VxWorks system is to load a system image into main

memory. This usually occurs as a download from the development host, under the

control of the VxWorks boot ROM. Next, the boot ROM transfers control to the

VxWorks startup entry point, sysInit(). This entry point is configured by

RAM_LOW_ADRS in the makefile and in config.h. The VxWorks memory layout is

different for each architecture; for details, see the appendix that describes your

architecture.

The entry point, sysInit(), is in the system-dependent assembly language module,

sysALib.s. It locks out all interrupts, invalidates caches if applicable, and

initializes processor registers (including the C stack pointer) to default values. It
435

VxWorks 5.3.1
Programmer’s Guide
also disables tracing, clears all pending interrupts, and invokes usrInit(), a C

subroutine in the usrConfig.c module. For some targets, sysInit() also performs

some minimal system-dependent hardware initialization, enough to execute the

remaining initialization in usrInit(). The initial stack pointer, which is used only

by usrInit(), is set to occupy an area below the system image but above the vector

table (if any).

The Initial Routine: usrInit()

The usrInit() routine (in usrConfig.c) saves information about the boot type,

handles all the initialization that must be performed before the kernel is actually

started, and then starts the kernel execution. It is the first C code to run in VxWorks.

It is invoked in supervisor mode with all hardware interrupts locked out.

Many VxWorks facilities cannot be invoked from this routine. Because there is no

task context as yet (no TCB and no task stack), facilities that require a task context

cannot be invoked. This includes any facility that can cause the caller to be

preempted, such as semaphores, or any facility that uses such facilities, such as

printf(). Instead, the usrInit() routine does only what is necessary to create an

initial task, usrRoot(). This task then completes the startup.

The initialization in usrInit() includes the following:

Cache Initialization

The code at the beginning of usrInit() initializes the caches, sets the mode of the

caches and puts the caches in a safe state. At the end of usrInit(), the instruction

and data caches are enabled by default.

Zeroing Out the System bss Segment

The C and C++ languages specify that all uninitialized variables must have initial

values of 0. These uninitialized variables are put together in a segment called bss.

This segment is not actually loaded during the bootstrap, because it is known to be

zeroed out. Because usrInit() is the first C code to execute, it clears the section of

memory containing bss as its very first action. While the VxWorks boot ROMs clear

all memory, VxWorks does not assume that the boot ROMs are used.

Initializing Interrupt Vectors

The exception vectors must be set up before enabling interrupts and starting the

kernel. First, intVecBaseSet() is called to establish the vector table base address.
436

8

8
Configuration
NOTE: There are exceptions to this in some architectures; see the appendix that

describes your architecture for details.

After intVecBaseSet() is called, the routine excVecInit() initializes all exception

vectors to default handlers that safely trap and report exceptions caused by

program errors or unexpected hardware interrupts.

Initializing System Hardware to a Quiescent State

System hardware is initialized by calling the system-dependent routine

sysHwInit(). This mainly consists of resetting and disabling hardware devices

that can cause interrupts after interrupts are enabled (when the kernel is started).

This is important because the VxWorks ISRs (for I/O devices, system clocks, and

so on), are not connected to their interrupt vectors until the system initialization is

completed in the usrRoot() task. However, do not attempt to connect an interrupt

handler to an interrupt during the sysHwInit() call, because the memory pool is

not yet initialized.

Initializing the Kernel

The usrInit() routine ends with calls to two kernel initialization routines:

usrKernelInit() (defined in usrKernel.c)

calls the appropriate initialization routines for each of the specified optional

kernel facilities (see Table 8-2 for a list).

kernelInit() (part of kernelLib.c)

initiates the multitasking environment and never returns. It takes the

following parameters:

– The application to be spawned as the “root” task, typically usrRoot().

– The stack size.

– The start of usable memory; that is, the memory after the main text, data,

and bss of the VxWorks image. All memory after this area is added to the

system memory pool, which is managed by memPartLib. Allocation for

dynamic module loading, task control blocks, stacks, and so on, all come

out of this region. See Initializing the Memory Pool, p.438.

– The top of memory as indicated by sysMemTop(). If a contiguous block of

memory is to be preserved from normal memory allocation, pass

sysMemTop() less the reserved memory.

!

437

VxWorks 5.3.1
Programmer’s Guide
– The interrupt stack size. The interrupt stack corresponds to the largest

amount of stack space any interrupt-level routine uses, plus a safe margin

for the nesting of interrupts.

– The interrupt lock-out level. For architectures that have a level concept, it

is the maximum level. For architectures that do not have a level concept, it

is the mask to disable interrupts. See the appendix that describes your

architecture for details.

kernelInit() calls intLockLevelSet(), disables round-robin mode, and creates an

interrupt stack if supported by the architecture. It then creates a root stack and TCB

from the top of the memory pool, spawns the root task, usrRoot(), and terminates

the usrInit() thread of execution. At this time, interrupts are enabled; it is critical

that all interrupt sources are disabled and pending interrupts cleared.

Initializing the Memory Pool

VxWorks includes a memory allocation facility, in the module memPartLib, that

manages a pool of available memory. The malloc() routine allows callers to obtain

variable-size blocks of memory from the pool. Internally, VxWorks uses malloc()
for dynamic allocation of memory. In particular, many VxWorks facilities allocate

data structures during initialization. Therefore, the memory pool must be

initialized before any other VxWorks facilities are initialized.

Note that the Tornado target server manages a portion of target memory to

support downloading of object modules and other development functions. See the

Tornado User’s Guide: Cross-Development for more information.

VxWorks makes heavy use of malloc(), including allocation of space for loaded

modules, allocation of stacks for spawned tasks, and allocation of data structures

on initialization. You are also encouraged to use malloc() to allocate any memory

your application requires. Therefore, it is recommended that you assign to the

VxWorks memory pool all unused memory, unless you must reserve some fixed

absolute memory area for a particular application use.

The memory pool is initialized by kernelInit(). The parameters to kernelInit()
specify the start and end address of the initial memory pool. In the default

usrInit() distributed with VxWorks, the pool is set to start immediately following

the end of the booted system, and to contain all the rest of available memory.

The extent of available memory is determined by sysMemTop(), which is a system-

dependent routine that determines the size of available memory. If your system

has other noncontiguous memory areas, you can make them available in the

general memory pool by later calling memAddToPool() in the usrRoot() task.
438

8

8
Configuration
The Initial Task: usrRoot()

When the multitasking kernel starts executing, all VxWorks multitasking facilities

are available. Control is transferred to the usrRoot() task and the initialization of

the system can be completed. For example, usrRoot() performs the following:

– initialization of the system clock

– initialization of the I/O system and drivers

– creation of the console devices

– setting of standard in and standard out

– installation of exception handling and logging

– initialization of the pipe driver

– initialization of standard I/O

– creation of file system devices and installation of disk drivers

– initialization of floating-point support

– initialization of performance monitoring facilities

– initialization of the network

– initialization of optional facilities

– initialization of WindView (see the WindView User’s Guide)

– initialization of target agent

– execution of a user-supplied startup script

To review the complete initialization sequence within usrRoot(), see config/all/
usrConfig.c.

Modify these initializations to suit your configuration. The meaning of each step

and the significance of the various parameters are explained in the following

sections.

Initialization of the System Clock

The first action in the usrRoot() task is to initialize the VxWorks clock. The system

clock interrupt vector is connected to the routine usrClock() (described in The
System Clock Routine: usrClock(), p.444) by calling sysClkConnect(). Then, the

system clock rate (usually 60Hz) is set by sysClkRateSet(). Most boards allow

clock rates as low as 30Hz (some even as low as 1Hz), and as high as several

thousand Hz. High clock rates (>1000Hz) are not desirable, because they can cause

system thrashing.1

The timer drivers supplied by WRS include a call to sysHwInit2() as part of the

sysClkConnect() routine. Wind River BSPs use sysHwInit2() to perform further

1. Thrashing occurs when clock interrupts are so frequent that the processor spends too much

time servicing the interrupts, and no application code can run.
439

VxWorks 5.3.1
Programmer’s Guide
board initialization that is not completed in sysHwInit(). For example, an

intConnect() of ISRs can take place here, because memory can be allocated now

that the system is multitasking.

Initialization of the I/O System

If INCLUDE_IO_SYSTEM is defined in configAll.h, the VxWorks I/O system is

initialized by calling the routine iosInit(). The arguments specify the maximum

number of drivers that can be subsequently installed, the maximum number of

files that can be open in the system simultaneously, and the desired name of the

“null” device that is included in the VxWorks I/O system. This null device is a “bit-

bucket” on output and always returns end-of-file for input.

The inclusion or exclusion of INCLUDE_IO_SYSTEM also affects whether the

console devices are created, and whether standard in, standard out, and standard

error are set; see the next two sections for more information.

Creation of the Console Devices

If the driver for the on-board serial ports is included (INCLUDE_TTY_DEV), it is

installed in the I/O system by calling the driver’s initialization routine, typically

ttyDrv(). The actual devices are then created and named by calling the driver’s

device-creation routine, typically ttyDevCreate(). The arguments to this routine

includes the device name, a serial I/O channel descriptor (from the BSP), and input

and output buffer sizes.

The macro NUM_TTY specifies the number of tty ports (default is 2),

CONSOLE_TTY specifies which port is the console (default is 0), and

CONSOLE_BAUD_RATE specifies the bps rate (default is 9600). These macros are

specified in configAll.h, but can be overridden in config.h for boards with a

nonstandard number of ports.

PCs can use an alternative console with keyboard input and VGA output; see your

PC workstation documentation for details.

Setting of Standard In, Standard Out, and Standard Error

The system-wide standard in, standard out, and standard error assignments are

established by opening the console device and calling ioGlobalStdSet(). These

assignments are used throughout VxWorks as the default devices for

communicating with the application developer. To make the console device an

interactive terminal, call ioctl() to set the device options to OPT_TERMINAL.
440

8

8
Configuration
Installation of Exception Handling and Logging

Initialization of the VxWorks exception handling facilities (supplied by the module

excLib) and logging facilities (supplied by logLib) takes place early in the

execution of the root task. This facilitates detection of program errors in the root

task itself or in the initialization of the various facilities.

The exception handling facilities are initialized by calling excInit() when

INCLUDE_EXC_HANDLING and INCLUDE_EXC_TASK are defined. The excInit()
routine spawns the exception support task, excTask(). Following this

initialization, program errors causing hardware exceptions are safely trapped and

reported, and hardware interrupts to uninitialized vectors are reported and

dismissed. The VxWorks signal facility, used for task-specific exception handling,

is initialized by calling sigInit() when INCLUDE_SIGNALS is defined.

The logging facilities are initialized by calling logInit() when

INCLUDE_LOGGING is defined. The arguments specify the file descriptor of the

device to which logging messages are to be written, and the number of log message

buffers to allocate. The logging initialization also includes spawning the logging

task, logTask().

Initialization of the Pipe Driver

If named pipes are desired, define INCLUDE_PIPE in configAll.h so that pipeDrv()
is called automatically to initialize the pipe driver. Tasks can then use pipes to

communicate with each other through the standard I/O interface. Pipes must be

created with pipeDevCreate().

Initialization of Standard I/O

VxWorks includes an optional standard I/O package when INCLUDE_STDIO is

defined.

Creation of File System Devices and Initialization of Device Drivers

Many VxWorks configurations include at least one disk device or RAM disk with

a dosFs, rt11Fs, or rawFs file system. First, a disk driver is installed by calling the

driver’s initialization routine. Next, the driver’s device-creation routine defines a

device. This call returns a pointer to a BLK_DEV structure that describes the device.

The new device can then be initialized and named by calling the file system’s

device-initialization routine—dosFsDevInit(), rt11FsDevInit(), or

rawFsDevInit()—when the respective constants INCLUDE_DOSFS,

INCLUDE_RT11FS, and INCLUDE_RAWFS are defined. (Before a device can be

initialized, the file system module must already be initialized with dosFsInit(),
441

VxWorks 5.3.1
Programmer’s Guide
rt11FsInit(), or rawFsInit().) The arguments to the file system device-

initialization routines depend on the particular file system, but typically include

the device name, a pointer to the BLK_DEV structure created by the driver’s

device-creation routine, and possibly some file-system-specific configuration

parameters.

Initialization of Floating-Point Support

Support for floating-point I/O is initialized by calling the routine floatInit() when

INCLUDE_FLOATING_POINT is defined in configAll.h. Support for floating-point

coprocessors is initialized by calling mathHardInit() when INCLUDE_HW_FP is

defined. Support for software floating-point emulation is initialized by calling

mathSoftInit() when INCLUDE_SW_FP is defined. See the appropriate

architecture appendix for details on your processor’s floating-point support.

Inclusion of Performance Monitoring Tools

VxWorks has two built-in performance monitoring tools. A task activity summary

is provided by spyLib, and a subroutine execution timer is provided by timexLib.

These facilities are included by defining the macros INCLUDE_SPY and

INCLUDE_TIMEX, respectively, in configAll.h.

Initialization of the Network

Before the network can be used, it must be initialized with the routine

usrNetInit(), which is called by usrRoot() when the constant INCLUDE_NET_INIT
is defined in one of the configuration header files. (The source for usrNetInit() is
in src/config/usrNetwork.c.) The routine usrNetInit() takes a configuration string

as an argument. This configuration string is usually the “boot line” that is specified

to the VxWorks boot ROMs to boot the system (see the Tornado User’s Guide:
Starting Tornado). Based on this string, usrNetInit() performs the following:

■ Initializes network subsystem by calling the routine netLibInit().

■ Attaches and configures appropriate network drivers.

■ Adds gateway routes.

■ Initializes the remote file access driver netDrv, and adds a remote file access

device.

■ Initializes the remote login facilities.

■ Optionally initializes the Remote Procedure Calls (RPC) facility.

■ Optionally initializes the Network File System (NFS) facility.
442

8

8
Configuration
As noted previously, the inclusion of some of these network facilities is controlled

by definitions in configAll.h; see Table 8-1 for a list of these constants. The network

initialization steps are described in 5. Network.

Initialization of Optional Products and Other Facilities

Shared memory objects are provided with the optional product VxMP. Before

shared memory objects can be used, they must be initialized with the routine

usrSmObjInit() (in src/config/usrSmObj.c), which is called from usrRoot() if
INCLUDE_SM_OBJ is defined.

Basic MMU support is provided if INCLUDE_MMU_BASIC is defined. Text

protection, vector table protection, and a virtual memory interface are provided

with the optional product VxVMI, if INCLUDE_MMU_FULL is defined. The MMU

is initialized by the routine usrMmuInit() in src/config/usrMmuInit.c. If the

macros INCLUDE_PROTECT_TEXT and INCLUDE_PROTECT_VEC_TABLE are also

defined, text protection and vector table protection are initialized.

The GNU C++ compiler is shipped with Tornado. To initialize C++ support for

either the GNU compiler or the optional CenterLine compiler, define either

INCLUDE_CPLUS or INCLUDE_CPLUS_MIN. To include one or more of the Wind

Foundation Class libraries, define the appropriate INCLUDE_CPLUS_library
macros (listed in Table 8-1).2

Initialization of WindView

Kernel instrumentation is provided with the optional product WindView. It is

initialized in usrRoot() when INCLUDE_INSTRUMENTATION is defined in

configAll.h. Other WindView configuration constants control particular

initialization steps; see the WindView User’s Guide: Configuring WindView.

Initialization of the Target Agent

If INCLUDE_WDB is defined, wdbConfig() in src/config/usrWdb.c is called. This

routine initializes the agent’s communication interface, then starts the agent. For

information on configuring the agent and the agent’s initialization sequence, see

the Tornado User’s Guide: Getting Started.

Execution of a Startup Script

The usrRoot() routine executes a user-supplied startup script if the target-resident

shell is configured into VxWorks, INCLUDE_STARTUP_SCRIPT is defined, and the

2. For information on using the GNU C++ compiler and the optional Wind Foundation

Classes, see 10. C++ Development and the Tornado User’s Guide: Cross-Development.
443

VxWorks 5.3.1
Programmer’s Guide
script’s file name is specified at boot time with the startup script parameter (see the

Tornado User’s Guide: Starting Tornado). If the parameter is missing, no startup script

is executed.

The System Clock Routine: usrClock()

Finally, the system clock ISR usrClock() is attached to the system clock timer

interrupt by the usrRoot() task described The Initial Task: usrRoot(), p.439. The

usrClock() routine calls the kernel clock tick routine tickAnnounce(), which

performs OS bookkeeping. You can add application-specific processing to this

routine.

Initialization Summary

Table 8-2 shows a summary of the entire VxWorks initialization sequence for

typical configurations. For a similar summary applicable to ROM-based VxWorks

systems, see Overall Initialization for ROM-Based VxWorks, p.453.

Table 8-2 VxWorks Run-time System Initialization Sequence

Routine Activity File

sysInit() (a) lock out interrupts sysALib.s

(b) invalidate caches, if any

(c) initialize system interrupt tables with default

stubs (i960 only)

(d) initialize system fault tables with default stubs

(i960 only)

(e) initialize processor registers to known default

values

(f) disable tracing

(g) clear all pending interrupts

(h) invoke usrInit() specifying boot type
444

8

8
Configuration
usrInit() (a) zero bss (uninitialized data) usrConfig.c

(b) save bootType in sysStartType

(c) invoke excVecInit() to initialize all system and

default interrupt vectors

(d) invoke sysHwInit()

(e) invoke usrKernelInit()

(f) invoke kernelInit()

usrKernelInit() The following routines are invoked if their

configuration constants are defined.

usrKernel.c

(a) classLibInit()

(b) taskLibInit()

(c) taskHookInit()

(d) semBLibInit()

(e) semMLibInit()

(f) semCLibInit()

(g) semOLibInit()

(h) wdLibInit()

(i) msgQLibInit()

(j) qInit() for all system queues

(k) workQInit()

Table 8-2 VxWorks Run-time System Initialization Sequence (Continued)

Routine Activity File
445

VxWorks 5.3.1
Programmer’s Guide
kernelInit() Initialize and start the kernel. kernelLib.c

(a) invoke intLockLevelSet()

(b) create root stack and TCB from top of memory

pool

(c) invoke taskInit() for usrRoot()

(d) invoke taskActivate() for usrRoot()

(e) usrRoot()

usrRoot() Initialize I/O system, install drivers, and create

devices as specified in configAll.h and config.h.

usrConfig.c

(a) sysClkConnect()

(b) sysClkRateSet()

(c) iosInit()

(d) if (INCLUDE_TTY_DEV and NUM_TTY)

ttyDrv(),
then establish console port, STD_IN,

STD_OUT, STD_ERR

(e) initialize exception handling with excInit(),
logInit(), sigInit()

(f) initialize the pipe driver with pipeDrv()

(g) stdioInit()

(h) mathSoftInit() or mathHardInit()

(i) wdbConfig(): configure and initialize target

agent

(j) run startup script if target-resident shell is

configured

Table 8-2 VxWorks Run-time System Initialization Sequence (Continued)

Routine Activity File
446

8

8
Configuration
8.4 Alternative VxWorks Configurations

The discussion of the usrConfig module in 8.3.3 The Configuration Module:
usrConfig.c, p.434 outlined the default configuration for a development

environment. In this configuration, the VxWorks system image contains all of the

VxWorks modules that are necessary to allow you to interact with the system

through the Tornado host tools.

However, as you approach a final production version of your application, you may

want to change the VxWorks configuration in one or more of the following ways:

■ Change the configuration of the target agent.
■ Decrease the size of VxWorks.
■ Run VxWorks from ROM.

The following sections discuss the latter two alternatives to the typical

development configuration. For a discussion on reconfiguring the target agent, see

the Tornado User’s Guide: Getting Started.

8.4.1 Scaling Down VxWorks

In a production configuration, it is often desirable to remove some of the VxWorks

facilities to reduce the memory requirements of the system, to reduce boot time, or

for security purposes.

Optional VxWorks facilities can be omitted by commenting out or using #undef to

undefine their corresponding control constants in the header files configAll.h or

config.h. For example, logging facilities can be omitted by undefining

INCLUDE_LOGGING, and signalling facilities can be omitted by undefining

INCLUDE_SIGNALS.

VxWorks is structured to make it easy to exclude facilities you do not need.

However, not every BSP will be structured in this way. If you wish to minimize

your application, be sure to examine your BSP code and eliminate references to

facilities you do not need to include. Otherwise, they will be included even though

you undefined them in your VxWorks configuration files.

Excluding Kernel Facilities

The definition of the following constants in configAll.h is optional, because

referencing any of the corresponding kernel facilities from the application

automatically includes the kernel service:
447

VxWorks 5.3.1
Programmer’s Guide
– INCLUDE_SEM_BINARY
– INCLUDE_SEM_MUTEX
– INCLUDE_SEM_COUNTING
– INCLUDE_MSG_Q
– INCLUDE_WATCHDOGS

These configuration constants appear in the default VxWorks configuration to

ensure that all kernel facilities are configured into the system, even if not

referenced by the application. However, if your goal is to achieve the smallest

possible system, exclude these constants; this ensures that the kernel does not

include facilities you are not actually using.

There are two other configuration constants that control optional kernel facilities:

INCLUDE_TASK_HOOKS and INCLUDE_CONSTANT_RDY_Q. Define these

constants in configAll.h if the application requires either kernel callouts (use of

task hook routines) or a constant-insertion-time, priority-based ready queue. A

ready queue with constant insert time allows the kernel to operate context

switches with a fixed overhead regardless of the number of tasks in the system.

Otherwise, the worst-case performance degrades linearly with the number of

ready tasks in the system. Note that the constant-insert-time ready queue uses 2KB

for the data structure; some systems do not have sufficient memory for this. In

those cases, the definition of INCLUDE_CONSTANT_RDY_Q may be omitted, thus

enabling use of a smaller (but less deterministic) ready queue mechanism.

Excluding Network Facilities

In some applications it may be appropriate to eliminate the VxWorks network

facilities. For example, in the ROM-based systems or standalone configurations

described in the Tornado User’s Guide: Cross-Development, there may be no need for

network facilities.

To exclude the network facilities, be sure the following constants are not defined:

– INCLUDE_NETWORK
– INCLUDE_NET_INIT
– INCLUDE_NET_SYM_TBL
– INCLUDE_NFS
– INCLUDE_RPC
– INCLUDE_RDB

To exclude the Remote Procedure Call library (RPC), undefine INCLUDE_RPC.
448

8

8
Configuration
Option Dependencies

Option dependencies are coded in the file src/config/usrDepend.c, so that when a

particular option is chosen, everything required is included. This assures you of a

working system with minimum effort. Although you can exclude the features that

you do not need by undefining them in config.h and configAll.h, you should be

aware that in some cases they may not be excluded because of dependencies.

For example, you cannot use telnet without running the network. Therefore, if in

your configAll.h file, the option INCLUDE_TELNET is selected but the option

INCLUDE_NET_INIT is not, usrDepend.c defines INCLUDE_NET_INIT for you.

Because the network initialization requires the network software, the

userDepend.c file also defines INCLUDE_NETWORK.

Because most of the dependencies are taken care of in usrDepend.c, that file is

currently included in usrConfig.c. This simplifies the build process and the

selection of options. However, you can change or add dependencies if you choose.

8.4.2 Executing VxWorks from ROM

You can put VxWorks or a VxWorks-based application into ROM; this is discussed

in the Tornado User’s Guide: Cross-Development. For an example of a ROM-based

VxWorks application, see the VxWorks boot ROM program. The file

config/all/bootConfig.c is the configuration module for the boot ROM, replacing

the file usrConfig.c provided for the default VxWorks development system.

In such ROM configurations, the text and data segments of the boot or VxWorks

image are first copied into the system RAM, then the boot procedure or VxWorks

executes in RAM. On some systems where memory is a scarce resource, it is

possible to save space by copying only the data segment to RAM. The text segment

remains in ROM and executes from that address space, and thus is termed

ROM resident. The memory that was to be occupied by the text segment in RAM is

now available for an application (up to 300KB for a standalone VxWorks system).

Note that ROM-resident VxWorks is not supported on all boards; see your target’s

man page if you are not sure that your board supports this configuration.

The drawback of a ROM-resident text segment is the limited data widths and

lower memory access time of the EPROM, which causes ROM-resident text to

execute more slowly than if it was in RAM. This can sometimes be alleviated by

using faster EPROM devices or by reconfiguring the standalone system to exclude

unnecessary system features.
449

VxWorks 5.3.1
Programmer’s Guide
Aside from program text not being copied to RAM, the ROM-resident versions of

the VxWorks boot ROMs and the standalone VxWorks system are identical to the

conventional versions. A ROM-resident image is built with an uncompressed

version of either the boot ROM or standalone VxWorks system image. VxWorks

target makefiles include entries for building these images; see Table 8-3.

Because of the size of the system image, 512KB of EPROM is recommended for the

ROM-resident version of the standalone VxWorks system. More space is probably

required if applications are linked with the standalone VxWorks system. For a

ROM-resident version of the boot ROM, 256KB of EPROM is recommended. If you

use ROMs of a size other than the default, modify the value of ROM_SIZE in the

target makefile and config.h.

* All images have a corresponding file in Motorola S-record or Intel Hex format

with the same file name plus the extension .hex.

Table 8-3 Makefile ROM-Resident Images

Architecture Image FIle * Description

MIPS and

PowerPC

bootrom_res_high ROM-resident boot ROM image. The

data segment is copied from ROM to

RAM at address RAM_HIGH_ADRS.

vxWorks.res_rom_res_low ROM-resident standalone system image

without compression. The data segment

is copied from ROM to RAM at address

RAM_LOW_ADRS.

vxWorks.res_rom_nosym_res_low ROM-resident standalone system image

without compression or symbol table.

Data segment is copied from ROM to

RAM at address RAM_LOW_ADRS.

All Other

Targets

bootrom_res ROM-resident boot ROM image.

vxWorks.res_rom ROM-resident standalone system image

without compression.

vxWorks.res_rom_nosym ROM-resident system image without

compression or symbol table. Ideal for

the Tornado environment.
450

8

8
Configuration
Figure 8-1 ROM-Resident Memory Layout

BOOT IMAGE VXWORKS IMAGE

text
text

data

RAM_HIGH_ADRS

ROM_TEXT_ADRS

RAM_LOW_ADRS

ROM

RAM

data

data

bss

bss

ROM

RAM

data

ROM_TEXT_ADRS

LOCAL_MEM_LOCAL_ADRS LOCAL_MEM_LOCAL_ADRS

= copied to RAM
451

VxWorks 5.3.1
Programmer’s Guide
A new make target, vxWorks.res_rom_nosym, has been created to provide a

ROM-resident image without the symbol table. This is intended to be a standard

ROM image for use with the Tornado environment where the symbol table resides

on the host system. Being ROM-resident, the debug agent and VxWorks are ready

almost immediately after power-up or restart.

The data segment of a ROM-resident standalone VxWorks system is loaded at

RAM_LOW_ADRS (defined in the makefile) to minimize fragmentation. The data

segment of ROM-resident boot ROMs is loaded at RAM_HIGH_ADRS, so that

loading VxWorks does not overwrite the resident boot ROMs. For a CPU board

with limited memory (under 1MB of RAM), make sure that RAM_HIGH_ADRS is

less than LOCAL_MEM_SIZE by a margin sufficient to accommodate the data

segment. Note that RAM_HIGH_ADRS is defined in both the makefile and

config.h. These definitions must agree.

Figure 8-1 shows the memory layout for ROM-resident boot and VxWorks images.

The lower portion of the diagram shows the layout for ROM; the upper portion

shows the layout for RAM. LOCAL_MEM_LOCAL_ADRS is the starting address of

RAM. For the boot image, the data segment gets copied into RAM above

RAM_HIGH_ADRS (after space for bss is reserved). For the VxWorks image, the

data segment gets copied into RAM above RAM_LOW_ADRS (after space for bss is

reserved). Note that for both images the text segment remains in ROM.

8.4.3 Initialization Sequence for ROM-Based VxWorks

The early steps of system initialization are somewhat different for the ROM-based

versions of VxWorks: on most target architectures, the two routines romInit() and

romStart() execute instead of the usual VxWorks entry point, sysInit().

ROM Entry Point: romInit()

At power-up the processor begins executing at romInit() (defined in

config/bspname/romInit.s). The romInit() routine disables interrupts, puts the boot

type (cold/warm) on the stack, performs hardware-dependent initialization (such

as clearing caches or enabling DRAM), and branches to romStart(). The stack

pointer is initialized to reside below the data section in the case of ROM-resident

versions of VxWorks (in RAM versions, the stack pointer instead resides below the

text section).

Copying the VxWorks Image: romStart()

Next, the romStart() routine (in config/all/bootInit.c) loads the VxWorks system

image into RAM. If the ROM-resident version of VxWorks is selected, the data
452

8

8
Configuration
segment is copied from ROM to RAM and memory is cleared. If VxWorks is not

ROM resident, all of the text and code segment is copied and decompressed from

ROM to RAM, to the location defined by RAM_HIGH_ADRS in Makefile. If

VxWorks is neither ROM resident nor compressed, the entire text and data

segment is copied without decompression straight to RAM, to the location defined

by RAM_LOW_ADRS in Makefile.

Overall Initialization for ROM-Based VxWorks

Beyond romStart(), the initialization sequence for ROM-based VxWorks

resembles the normal sequence, continuing with the usrInit() call.

Table 8-4 summarizes the complete initialization sequence. For details on the steps

after romInit() and romStart(), see 8.3.4 VxWorks Initialization Timeline, p.435.

Table 8-4 ROM-Based VxWorks Initialization Sequence

Routine Activity File

1. romInit() (a) disable interrupts romInit.s

(b) save boot type (cold/warm)

(c) hardware-dependent initialization

(d) branch to romStart()

2. romStart() (a) copy data segment from ROM to RAM; clear

memory

bootInit.c

(b) copy code segment from ROM to RAM,

decompressing if necessary

(c) invoke usrInit() with boot type

3. usrInit() Initial routine. usrConfig.c

4. usrKernelInit() Routines invoked if the corresponding

configuration constants are defined.

usrKernel.c

5. kernelInit() Initialize and start the kernel. kernelLib.c

6. usrRoot() Initialize I/O system, install drivers, and create

devices as configured in configAll.h and config.h.

usrConfig.c

7. Application

routine

Application code. Application

source file
453

9
Target Shell
9.1 Introduction .. 456

9.2 Target-Resident Shell .. 457

9.2.1 Creating the Target Shell ... 457

9.2.2 Spawning an Application Instead of the Target Shell 457

9.2.3 Using the Target Shell .. 458

9.2.4 Debugging with the Target Shell ... 459

9.2.5 Aborting the Target Shell .. 459

9.2.6 Remote Login to the Target Shell ... 461

Remote Login From Host: telnet and rlogin 461

Remote Login Security .. 461

9.2.7 Summary of Target and Host Shell Differences 462

9.3 Other Target-Resident Facilities ... 464

9.3.1 Target Symbol Table, Module Loader, and Module Unloader 464

9.3.2 Show Routines .. 465
455

VxWorks 5.3.1
Programmer’s Guide
List of Tables

Table 9-1 Target Shell Terminal Control Characters 459

Table 9-2 Show Routines ... 465

Table 9-3 Network Show Routines .. 466

List of Figures

Figure 9-1 Typical Target Shell Sign-on Banner 458

9.1 Introduction

In the Tornado development system, a full suite of development tools resides and

executes on the host machine, thus conserving target memory and resources; see

the Tornado User’s Guide for details. However, a target-resident symbol table and

module loader/unloader can be configured into the VxWorks system if necessary,

for example, to create a dynamically configured run-time system. In this case, use

the target-resident shell for development.

NOTE: If you choose to use the target-resident tools, you must use the target shell.

The host tools cannot access the target-resident symbol table; thus symbols defined

on the target are not visible to the host.

This chapter briefly describes these target-resident facilities.

!

456

9

9
Target Shell
9.2 Target-Resident Shell

For the most part, the target-resident shell works the same as the Tornado shell; for

details, see the Tornado User’s Guide: Shell. However, there are some differences,

which are described in this section.

9.2.1 Creating the Target Shell

To create the target shell, you must configure it into the VxWorks configuration by

defining the INCLUDE_SHELL macro (for details, see 8.3 Configuring VxWorks,

p.430). When you do so, usrRoot() (in usrConfig.c) spawns the target shell task by

calling shellInit(). The first argument to shellInit() specifies the target shell’s stack

size, which must be large enough to accommodate any routines you call from the

target shell. The second argument is a boolean that specifies whether the target

shell’s input is from an interactive source (TRUE), or a non-interactive source

(FALSE) such as a script file. If the source is interactive, then the shell prompts for

commands but does not echo them to standard out; the reverse is true if the source

is non-interactive.

The shell task (tShell) is created with the VX_UNBREAKABLE option; therefore,

breakpoints cannot be set in this tasks, because a breakpoint in the shell would

make it impossible for the user to interact with the system. Any routine or task that

is invoked from the target shell, rather than spawned, runs in the tShell context.

Only one target shell can run on a VxWorks system at a time; the target shell parser

is not reentrant, because it is implemented using the UNIX tool yacc.

When the shell is started, the banner displayed in Figure 9-1 appears.

For more information, see the reference entry for shellLib.

9.2.2 Spawning an Application Instead of the Target Shell

If you undefine INCLUDE_SHELL and define INCLUDE_DEMO in your VxWorks

configuration, then instead of spawning the target shell task, usrRoot() spawns

the demo task. This program serves as an example for initializing bootable

applications: it loops forever, prompting for a string and echoing it. If the string is

“0” or “1”, the demo displays various memory statistics.

To spawn your application instead of the demo program, insert the initialization of

your application after the conditional code to start the demo. For example:

/* spawn demo if selected */
457

VxWorks 5.3.1
Programmer’s Guide
#if defined(INCLUDE_DEMO)
taskSpawn ("demo", 20, 0, 2000, (FUNCPTR)usrDemo, 0,0,0,0,0,0,0,0,0,0);

#endif

☛ taskSpawn ("myMod", 100, 0, 20000, (FUNCPTR)myModEntryPt, 0,0,0,0,0,0,0,0,0,0);

For more information, see the Tornado User’s Guide: Cross-Development.

9.2.3 Using the Target Shell

The target shell works almost exactly like the Tornado shell; see the Tornado User’s
Guide: Shell and the usrLib reference entry for details. You can also type the

following command to display help:

-> help

The following target shell command lists all the available help routines:

-> lkup "Help"

The target shell has its own set of terminal-control characters, unlike the Tornado

shell, which inherits its setting from the host window from which it was invoked.

Table 9-1 lists the target shell’s terminal-control characters. The first four of these

Figure 9-1 Typical Target Shell Sign-on Banner

]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] (R)
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]] Development System
]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]] VxWorks version 5.3
]]]]]]]]]]]]]]]]]]]]]]]]]] KERNEL: WIND version 2.4
]]]]]]]]]]]]]]]]]]]]]]]]] Copyright Wind River Systems, Inc., 1984-1995

 CPU: Sun SPARCstation 5. Processor #0.
 Memory Size: 0x700000. BSP version 1.1/0.
WDB: Ready.

->
458

9

9
Target Shell
are defaults that can be mapped to different keys using routines in tyLib (see also

Tty Special Characters, p.133).

The shell line-editing commands are the same as they are for the Tornado shell. For

a summary of the commands, see the Tornado User’s Guide: Shell.

9.2.4 Debugging with the Target Shell

The target shell includes the same debugging utilities as the Tornado shell, if

INCLUDE_DEBUG is defined in the VxWorks configuration. For details, see the

Tornado User’s Guide: Shell and the reference entry for dbgLib.

In order to use the CrossWind host debugger with the target shell, the RDB

daemon must be started by defining INCLUDE_RDB in the VxWorks configuration.

This starts the tRdbTask daemon, which services RPC requests made by remote

source-level debuggers.

9.2.5 Aborting the Target Shell

Occasionally it is desirable to abort the shell’s evaluation of a statement. For

example, an invoked routine may loop excessively, suspend, or wait on a

semaphore. This may happen as the result of errors in arguments specified in the

invocation, errors in the implementation of the routine itself, or simply oversight

as to the consequences of calling the routine at all.

Table 9-1 Target Shell Terminal Control Characters

Command Description

CTRL+H Delete a character (backspace).

CTRL+U Delete an entire line.

CTRL+C Abort and restart the shell.

CTRL+X Reboot (trap to the ROM monitor).

CTRL+S Temporarily suspend output.

CTRL+Q Resume output.

ESC Toggle between input mode and edit mode.
459

VxWorks 5.3.1
Programmer’s Guide
In such cases it is usually possible to abort and restart the target shell task. This is

done by pressing the special target-shell abort character on the keyboard, CTRL+C
by default. This causes the target shell task to restart execution at its original entry

point. Note that the abort key can be changed to a character other than CTRL+C by

calling tyAbortSet().

When restarted, the target shell automatically reassigns the system standard input

and output streams to the original assignments they had when the target shell was

first spawned. Thus any target shell redirections are canceled, and any executing

shell scripts are aborted.

The abort facility works only if the following are true:

■ dbgInit() has been called (see 9.2.4 Debugging with the Target Shell, p.459).

■ excTask() is running (see Installation of Exception Handling and Logging, p.441).

■ The driver for the particular keyboard device supports it (all VxWorks-

supplied drivers do).

■ The device’s abort option is enabled. This is done with an ioctl() call, usually

in the root task in usrConfig.c. For information on enabling the target shell

abort character, see Tty Options, p.132.

Also, you may occasionally enter an expression that causes the target shell to incur

a fatal error such as a bus/address error or a privilege violation. Such errors

normally result in the suspension of the offending task, which allows further

debugging.

However, when such an error is incurred by the target shell task, VxWorks

automatically restarts the target shell, because further debugging is impossible

without it. Note that for this reason, as well as to allow the use of breakpoints and

single-stepping, it is often useful when debugging to spawn a routine as a task

instead of just calling it directly from the target shell.

When the target shell is aborted for any reason, either because of a fatal error or

because it is aborted from the terminal, a task trace is displayed automatically. This

trace shows where the target shell was executing when it died.

Note that an offending routine can leave portions of the system in a state that may

not be cleared when the target shell is aborted. For instance, the target shell might

have taken a semaphore, which cannot be given automatically as part of the abort.
460

9

9
Target Shell
9.2.6 Remote Login to the Target Shell

Remote Login From Host: telnet and rlogin

When VxWorks is first booted, the target shell’s terminal is normally the system

console. You can use telnet to access the target shell from a host over the network

if the constant INCLUDE_TELNET is defined in your VxWorks configuration (see

8.3 Configuring VxWorks, p.430). Defining INCLUDE_TELNET creates the tTelnetd
task. To do so, enter the following command from the host (targetname is the name

of the target VxWorks system):

% telnet " targetname"

UNIX host systems also use rlogin to provide access to the target shell from the

host. Define INCLUDE_RLOGIN in your VxWorks configuration to create the

tRlogind task. However, note that VxWorks does not support telnet or rlogin
access from the VxWorks system to the host.

A message is printed on the system console indicating that the target shell is being

accessed via telnet or rlogin, and that it is no longer available from its console.

If the target shell is being accessed remotely, typing at the system console has no

effect. The target shell is a single-user system—it allows access either from the

system console or from a single remote login session, but not both simultaneously.

To prevent someone from remotely logging in while you are at the console, use the

routine shellLock() as follows:

-> shellLock 1

To make the target shell available again to remote login, enter the following:

-> shellLock 0

To end a remote-login target shell session, call logout() from the target shell. To

end an rlogin session, type TILDE and DOT as the only characters on a line:

-> ~.

Remote Login Security

You can be prompted to enter a login user name and password when accessing

VxWorks remotely:

VxWorks login: user_name
Password: password
461

VxWorks 5.3.1
Programmer’s Guide
The remote-login security feature is enabled by defining INCLUDE_SECURITY in

the VxWorks configuration. The default login user name and password provided

with the supplied system image is target and password. You can change the user

name and password with the loginUserAdd() routine, as follows:

-> loginUserAdd "fred", " encrypted_password"

To obtain encrypted_password, use the tool vxencrypt on the host system. This tool

prompts you to enter your password, and then displays the encrypted version.

To define a group of login names, include a list of loginUserAdd() commands in a

startup script and run the script after the system has been booted. Or include the

list of loginUserAdd() commands to the file usrConfig.c, then rebuild VxWorks.

The values for the user name and password apply only to remote login into the

VxWorks system. They do not affect network access from VxWorks to a remote

system; See 5.3.5 Remote Login from VxWorks to the Host: rlogin(), p.292.

The remote-login security feature can be disabled at boot time by specifying the

flag bit 0x20 (SYSFLAG_NO_SECURITY) in the flags parameter on the boot line (see

the Tornado User’s Guide: Getting Started). This feature can also be disabled by

undefining INCLUDE_SECURITY in the VxWorks configuration.

9.2.7 Summary of Target and Host Shell Differences

For details on the Tornado shell, see the Tornado User’s Guide: Shell. The following

is a summary of the differences between it and the target shell:

■ Both shells contain a C interpreter, which allows C-shell and vi editing

facilities. However, the Tornado shell also provides a Tcl interpreter.

■ You can have multiple Tornado shells active for any given target; only one

target shell can be active for a target at any one time.

■ The Tornado shell allows virtual I/O; the target shell does not.

■ The target shell does not have a GNU C++ demangler; it is necessary to use the

target tools when C++ demangling is required.

■ The Tornado shell is always ready to execute. The target shell, as well as its

associated target-resident symbol table and module loader/unloader, must be

configured into the VxWorks image by defining constants in configAll.h or

config.h (discussed throughout this chapter).

■ Because the target shell is often started from the system console, the standard

input and output are directed to the same window. For the Tornado shell, these
462

9

9
Target Shell
standard I/O streams are not necessarily directed to the same window as the

Tornado shell. For details, see the Tornado User’s Guide: Shell.

■ The Tornado shell can perform many control and information functions

entirely on the host without consuming target resources.

■ The Tornado shell uses host resources for most functions so that it remains

segregated from the target. This means that the Tornado shell can operate on

the target from the outside. The target shell, on the other hand, must act on

itself. This means that there are limitations to what the target shell can do (for

example, while debugging it cannot set breakpoints on itself or on routines it

calls). Also, conflicts in priority may occur while using the target shell.

■ When the target shell encounters a string literal ("...") in an expression, it

allocates space for the string including the null-byte string terminator. The

value of the literal is the address of the string in the newly allocated storage.

For example, the following expression allocates 12 bytes from the target

memory pool, enters the string in those 12 bytes (including the null

terminator), and assigns the address of the string to x:

-> x = "hello there"

The following expression can be used to return those 12 bytes to the target

memory pool (see the memLib reference entry for information on memory

management):

-> free (x)

Furthermore, even when a string literal is not assigned to a symbol, memory

is still permanently allocated for it. For example, the following expression uses

12 bytes of memory that are never freed:

-> printf ("hello there")

This is because if strings were only temporarily allocated, and a string literal

were passed to a routine being spawned as a task, then by the time the task

executed and attempted to access the string, the target shell would have

already released (and possibly even reused) the temporary storage where the

string was held.

After extended development sessions with the target shell, the cumulative

memory used for strings may be noticeable. If this becomes a problem, you

must reboot your target. Because the Tornado shell has access to a host-

controlled target memory pool, this memory leak never occurs.
463

VxWorks 5.3.1
Programmer’s Guide
9.3 Other Target-Resident Facilities

9.3.1 Target Symbol Table, Module Loader, and Module Unloader

To make full use of the target shell’s features, you should also define the target

symbol table, as well as the target module loader and unloader. Use the following

macros in the VxWorks configuration (see 8.3 Configuring VxWorks, p.430 for

configuration information):

■ INCLUDE_SYM_TBL for target symbol table support, plus one of the following:

– INCLUDE_NET_SYM_TBL to load the symbol table from the network

(vxWorks.sym; you will also need to separately load vxWorks)

– INCLUDE_STANDALONE_SYM_TBL to build a VxWorks image that

includes the target symbol table (vxWorks.st)

■ INCLUDE_LOADER

■ INCLUDE_UNLOADER

If the target symbol table is included, usrRoot() runs hashLibInit() and

symLibInit() to initialize the corresponding libraries. The target symbol table is

created by calling symTblCreate(). For convenience during debugging (see

9.2.4 Debugging with the Target Shell, p.459), it is most useful to have access to all

symbols in the system. On the other hand, a production version of a system can be

built that does not require the target symbol table, if (for example) memory

resources are constrained.

The symTblCreate() call creates an empty target symbol table. VxWorks system

facilities are not accessible through the target shell until the symbol definitions for

the booted VxWorks system are entered into the target symbol table. This is done

by reading the target symbol table from a file called vxWorks.sym in the same

directory from which vxWorks was loaded (config/bspname). This file contains an

object module that consists only of a target symbol table section containing the

symbol definitions for all the variables and routines in the booted system module.

It has zero-length (empty) code, data, and relocation sections. Nonetheless, it is a

legitimate object module in the standard object module format.

The symbols in vxWorks.sym are entered in the target symbol table by calling

loadSymTbl() (whose source is in src/config/usrLoadSym.c). This routine uses the

target-resident module loader to load symbols from vxWorks.sym into the target

symbol table.
464

9

9
Target Shell
For the most part, the target-resident facilities work the same as their Tornado host

counterparts; see the Tornado User’s Guide: Cross-Development. However, as stated

earlier, the target-resident facilities can be useful if you are building dynamically

configured applications. For example, with the target-resident loader, you can load

from a target disk as well as over the network, with these caveats: If you use the

target-resident loader to load a module over the network (as opposed to loading

from a target-system disk), the amount of memory required to load an object

module depends on what kind of access is available to the remote file system over

the network. Loading a file that is mounted over the default network driver

requires enough memory to hold two copies of the file simultaneously. First, the

entire file is copied to a buffer in local memory when opened; second, the file

resides in memory when it is linked to VxWorks. On the other hand, loading an

object module from a host file system mounted through NFS only requires enough

memory for one copy of the file (plus a small amount of overhead). In any case,

however, using the target-resident loader takes away additional memory from

your application—most significantly for the target-resident symbol table required

by the target-resident loader.

For information on the target-resident module loader, unloader, and symbol table,

see the loadLib, unldLib, and symLib reference entries.

9.3.2 Show Routines

VxWorks includes system information routines which print pertinent system

status on the specified object or service; however, they show only a snapshot of the

system service at the time of the call and may not reflect the current state of the

system. To use these routines, you must define INCLUDE_SHOW_ROUTINES in

your VxWorks configuration; see 8. Configuration. When you invoke them, their

output is sent to the standard output device. Table 9-2 lists commonly called

system show routines.

Table 9-2 Show Routines

Call Description

envShow() Display the environment for a given task on stdout

memPartShow() Show the partition blocks and statistics

memShow() System memory show routine

moduleShow() Show statistics for all loaded modules
465

An alternative method of viewing system information is the Tornado browser,

which can be configured to update system information periodically. For

information on this tool, see the Tornado User’s Guide: The Tornado Browser.

VxWorks also includes several network information routines. These routines are

initialized by defining INCLUDE_NET_SHOW in your VxWorks configuration; see

8. Configuration. Table 9-3 lists commonly called network show routines.

msgQShow() Message queue show utility (both POSIX and wind)

semShow() Semaphore show utility (both POSIX and wind)

show() Generic object show utility

stdioShow() Standard I/O file pointer show utility

taskSwitchHookShow() Show the list of task switch routines

taskCreateHookShow() Show the list of task create routines

taskDeleteHookShow() Show the list of task delete routines

taskShow() Display the contents of a task control block

wdShow() Watchdog show utility

Table 9-3 Network Show Routines

Call Description

hostShow() Display the host table

ifShow() Display the attached network interfaces

routeShow() Display host and hetwork routing tables

Table 9-2 Show Routines (Continued)

Call Description

9

9
Target Shell
467

10
C++ Development

Basic Support and the Optional Component

Wind Foundation Classes
10.1 Introduction .. 470

10.2 C++ Development Under Tornado .. 471

10.2.1 Tools Support .. 471

WindSh .. 471

CrossWind ... 472

10.2.2 Programming Issues .. 472

Static Constructors ... 472

Template Instantiation ... 473

Application Size ... 473

Header Files .. 474

10.2.3 Compiling C++ Applications ... 474

10.2.4 Configuration Constants ... 475

10.3 Iostreams Library ... 475

10.4 Wind Foundation Classes ... 476

10.4.1 VxWorks Wrapper Class Library ... 477

10.4.2 Tools.h++ Library ... 479

10.4.3 Booch Components Library .. 480

Booch Components Source Code .. 480

Building Booch Components Applications 481

Booch Components Examples .. 481
469

VxWorks 5.3.1
Programmer’s Guide
List of Tables

Table 10-1 Header Files for VxWorks Wrapper Classes 477

List of Figures

Figure 10-1 Wrapper-Class Inheritance .. 478

List of Examples

Example 10-1 Watchdog Timers ... 478

Example 10-2 Makefile for BagT Example from Booch Components .. 482

Example 10-3 BagT Template Instantiation .. 484

10.1 Introduction

In the Tornado environment, C++ development support consists of the GNU C++

compilation, run-time support, and the Iostreams class library. In addition, Wind

River Systems offers an optional product, the Wind Foundation Classes, providing

several class libraries to extend VxWorks functionality.

This chapter discusses basic application development using C++ and provides

references to relevant information in other Wind River documentation. In addition,

the Iostreams library and the Wind Foundation Classes are documented here.

The Iostreams library provides support for formatted I/O in C++. The C++

language definition (like C) does not include special input and output statements,

relying instead on standard library facilities. The Iostreams library provides C++

capabilities analogous to the C functions offered by the stdio library. The principal

differences are that the Iostreams library gives you enhanced type security and can

be extended to support your own class definitions.
470

10

10
C++ Development
The Wind Foundation Classes consist of a group of libraries (some of which are

industry standard) that provide a broad range of C++ classes to extend VxWorks

functionality in several important ways. They are called Foundation classes because

they provide basic services which are fundamental to many programming tasks,

and which can be used in almost every application domain. For information about

how to install the Wind Foundation Classes, see the Wind River Products Installation
Guide.

The Wind Foundation Classes consist of the following libraries:

■ VxWorks Wrapper Class library

■ Tools.h++ library from Rogue Wave Software

■ Booch Components library from Rogue Wave Software

10.2 C++ Development Under Tornado

Basic C++ support is bundled with the Tornado development environment.

VxWorks provides header files containing C++ safe declarations for all routines

and the necessary run-time support. The standard Tornado interactive

development tools such as the debugger, the shell, and the incremental loader

include C++ support.

10.2.1 Tools Support

WindSh

Tornado supports both C and C++ as development languages. WindSh can

interpret simple C++ expressions. To exercise C++ facilities that are missing from

the C-expression interpreter, you can compile and download routines that

encapsulate the special C++ syntax. See the Tornado User’s Guide: Tornado Tools
Reference for WindSh C++ options.

Demangling

When C++ functions are compiled, the class membership (if any) and the type and

number of the function’s arguments are encoded in the function’s linkage name.
471

VxWorks 5.3.1
Programmer’s Guide
This is called name mangling or mangling. The debugging and system information

routines in WindSh can print C++ function names in demangled or mangled

representations.

The default representation is gnu. In addition, arm and none (no demangling) are

available options. To select an alternate mode, modify the Tcl variable

shDemangleStyle. For instance:

-> ?set shDemangleStyle none

Overloaded Function Names

When you invoke an overloaded function, WindSh prints the matching functions’

signatures and prompts you for the desired function. For more information on

how WindSh handles overloaded function names, including an example, see the

Tornado User’s Guide: Shell.

CrossWind

CrossWind supports debugging C++ templates, stepping through constructors,

and other facilities for debugging C++ applications. For details, see the Tornado
User’s Guide: Tornado Tools Reference and Debugging with GDB.

10.2.2 Programming Issues

Static Constructors

Munching

After compilation, you must munch the generated binary to provide VxWorks with

the information needed to call static constructors and destructors. Munching is the

process of scanning an object module for your application’s static objects, and

generating data structures that VxWorks can use to call the objects’ constructors

and destructors. The details are described in the Tornado User’s Guide: Cross-
Development.

Calling Strategy

The default Tornado behavior for handling C++ static constructors in

incrementally loaded modules is to call them automatically as a side effect of

loading. This means that cplusCtors() is called automatically when
472

10

10
C++ Development
INCLUDE_CPLUS or INCLUDE_CPLUS_MIN is defined. It also means that

cplusDtors() is called automatically as a side effect of unloading. In addition,

VxWorks automatically calls static constructors for modules linked with VxWorks

when INCLUDE_CPLUS or INCLUDE_CPLUS_MIN is defined.

To change the default strategy to manual, use cplusXtorSet(). Under the manual

mode, static constructors and destructors are called as a result of invoking

cplusCtors() and cplusDtors() by hand. The manual mode can be used with no

argument, to invoke all currently loaded static constructors or destructors or it can

be used to call static constructors and destructors explicitly on a module-by-

module basis.

Template Instantiation

In general, C++ toolchains that support templates permit templates to be

instantiated either at compile time (using explicit instantiation) or at link time

(using implicit instantiation). The GNU compiler supports both methods.

However, explicit instantiation is easier to understand and use. With explicit

instantiation, it is clear when and where your templates are instantiated, and it is

simpler to control the instantiation process, especially in the context of the

incremental development methodology supported by Tornado. For more

information on compiler support for template instantiation, see the GNU ToolKit
User’s Guide.

To instantiate templates explicitly, your client code (the code that creates the

template instantiations) must include header and source files for the templates that

you want to instantiate. This is followed by a declaration of a template

instantiation. See Example 10-3.

The C++ compiler instantiates the specified templates. The instantiations occur in

the module containing the template class declaration. Bear this in mind to control

the location of your template instantiations, and to avoid redundant or duplicate

instantiation of any given template.

Application Size

If application size is an issue, you can link your application with the VxWorks

archive located in lib/libcpugnuvx.a rather than using INCLUDE_TOOLS. This

causes only the necessary modules to be included rather than all Tools.h++

modules.
473

VxWorks 5.3.1
Programmer’s Guide
Header Files

Wind River Systems header files are C++ safe and prototype all VxWorks C API

functions to have C linkage (extern “C”) when used with C++.

10.2.3 Compiling C++ Applications

For general information on how to compile applications for VxWorks, see the

Tornado User’s Guide: Cross-Development. For more details on the GNU compiler

and on the associated tools, see the GNU ToolKit User’s Guide.

When compiling C++ modules with the GNU compiler, invoke ccarch (just as for

C source) on any source file with a C++ suffix (such as .cpp). Compiling C++

applications in the VxWorks environment involves the following steps:

1. C++ source code is compiled into object code for a specific target architecture,

just as for C applications. In addition, an object containing the data structures

from the C++ source is created.

2. The new object module is munched.

3. The munched object is compiled using the C compiler with the -traditional
flag.

4. The static linker links the compiled data structures to the original object

module.

% cc arch -fno-builtin -I ${WIND_BASE}/target/h -nostdinc -O2 \
-mcpu -DCPU= cpu -r foo.cpp bar.cpp baz.cpp -o foobarbaz.o

% nm arch foobarbaz.o | munch arch > __ctordtor.c
% cc arch -traditional -m cpu -c __ctordtor.c
% ld arch -r -o foobarbaz.out __ctordtor.o foobarbaz.o

NOTE: If you use a Wind River Systems makefile to build your application,

munching is handled by make.

WARNING: In the linking step, -r is used to specify partial linking. A partially

linked file is still relocatable, and is suitable for downloading and linking using the

VxWorks module loader. The GNU ToolKit User’s Guide: Using ld describes a -Ur
option for resolving references to C++ constructors. That option is for native

development, not for cross-development. Do not use -Ur with C++ modules for

VxWorks.

!

!

474

10

10
C++ Development
10.2.4 Configuration Constants

To include C++ support in VxWorks, define one of the following constants in the

header file configAll.h or config.h:

INCLUDE_CPLUS
Includes all basic C++ run-time support in VxWorks. This enables you to

download and run compiled and munched C++ modules. It does not

configure any of the Wind Foundation Class libraries into VxWorks.

INCLUDE_CPLUS_MIN
Includes only the C++ run-time support that is explicitly referenced in the

static link of the VxWorks system image.

To include Iostreams, define the following constant in the header file configAll.h:

INCLUDE_CPLUS_IOSTREAMS
Includes the Iostreams class library.

To include one or more of the Wind Foundation Classes, define one or more of the

following constants in the header file configAll.h or config.h:

INCLUDE_CPLUS_VXW
Includes the VxWorks Wrapper Class library.

INCLUDE_CPLUS_TOOLS
Includes Rogue Wave’s Tools.h++ class library.

INCLUDE_CPLUS_BOOCH
Includes Rogue Wave’s Booch Components class library.

For more information on configuring VxWorks, see 8. Configuration.

10.3 Iostreams Library

This library is configured into VxWorks with the INCLUDE_CPLUS_IOSTREAMS
constant; see 10.2.4 Configuration Constants, p.475. If you use Wind River makefiles,

you do not have to worry about munching VxWorks.

The Iostreams library header files reside in the standard VxWorks header file

directory, target/h. To use this library, include one or more of the header files after

the vxWorks.h header in the appropriate modules of your application. The most
475

VxWorks 5.3.1
Programmer’s Guide
frequently used header file is iostream.h, but others are available; see the AT&T
C++ Language System Library Manual for information.

The standard Iostreams objects (cin, cout, cerr, and clog) are global: that is, they are

not private to any given task. They are correctly initialized regardless of the

number of tasks or modules that reference them, but their member functions do

not interlock access when used concurrently by multiple tasks. The responsibility

for mutual exclusion rests with the application.

The effect of private standard Iostreams objects can be simulated by creating a new

Iostreams object of the same class as the standard Iostreams object (for example,

cin is an istream_withassign), and assigning to it a new filebuf object tied to the

appropriate file descriptor. The new filebuf and Iostreams objects are private to the

calling task, ensuring that no other task can accidentally corrupt them.

Consult the AT&T C++ Language System Library Manual for general reference

information on Iostreams.

10.4 Wind Foundation Classes

The Wind Foundation Classes include three libraries:

– VxWorks Wrapper Class library

– Tools.h++ library from Rogue Wave Software

– Booch Components library from Rogue Wave Software

The VxWorks Wrapper Class library provides a thin C++ interface to several

standard VxWorks modules. The Tools.h++ foundation class library from Rogue

Wave Software supports a variety of C++ features. The Booch Components library

from Rogue Wave provides a collection of domain-independent data structures

and algorithms.

NOTE: In order to prevent dependency conflicts between VxWorks libraries and

Rogue Wave libraries, all VxWorks libraries, including the VxWorks Wrapper

Class Library, should be included before all Rogue Wave libraries, including both

the Tools.h++ and Booch Components libraries.

!

476

10

10
C++ Development
10.4.1 VxWorks Wrapper Class Library

The classes in this library are called wrapper classes because each class

encapsulates, or wraps, the interfaces for some portion of standard VxWorks

functionality. Define the INCLUDE_CPLUS_VXW constant to configure this library

into VxWorks; see 10.2.4 Configuration Constants, p.475.

The VxWorks Wrapper Class library header files reside in the standard VxWorks

header file directory, target/h. The classes and their corresponding header files are

shown in Table 10-1. To use one of these classes, include the corresponding header

file in the appropriate modules of your application.

The VxWorks Wrapper Classes are designed to provide C++ language bindings to

VxWorks modules that are inherently object-oriented, but for which only C

bindings have previously been available. Figure 10-1 shows the inheritance

relationships for all of the VxWorks Wrapper Classes. The classes are named to

correspond with the VxWorks features that they wrap. For example, VXWMsgQ
is the class of message queues, and provides a C++ interface to msgQLib.

NOTE: The classes VXWError and VXWIdObject are used internally by the

VxWorks Wrapper Classes. They are listed in Figure 10-1 for completeness only.

These two classes are not intended for direct use by applications.

Table 10-1 Header Files for VxWorks Wrapper Classes

Header File Description

vxwLoadLib.h Object module loader and unloader (wraps loadLib, unldLib,

moduleLib)

vxwLstLib.h Linked lists (wraps lstLib)

vxwMemPartLib.h Memory partitions (wraps memLib)

vxwMsgQLib.h Message queues (wraps msgQLib)

vxwRngLib.h Ring buffers (wraps rngLib)

vxwSemLib.h Semaphores (wraps semLib)

vxwSmLib.h Shared memory objects (adds support for shared memory semaphores,

message queues, and memory partitions)

vxwSymLib.h Symbol tables (wraps symLib)

vxwTaskLib.h Tasks (wraps taskLib, envLib, errnoLib, sigLib, and taskVarLib)

vxwWdLib.h Watchdog timers (wraps wdLib)

!

477

VxWorks 5.3.1
Programmer’s Guide
Example 10-1 Watchdog Timers

To illustrate the way in which the wrapper classes provide C++ language bindings

for VxWorks objects, the following example exhibits methods in the watchdog

timer class, VXWWd. See 2.6 Watchdog Timers, p.99 for general information about

watchdog timers.

/* Create a watchdog timer and set it to go off in 3 seconds. */

/* includes */

#include "vxWorks.h"
#include "logLib.h"
#include "vxwWdLib.h"

/* defines */

#define SECONDS (3)

task (void)
 {
 /* Create watchdog */

Figure 10-1 Wrapper-Class Inheritance

VXWError

VXWIdObject

VXWList

VXWMemPart

VXWModule

VXWMsgQ

VXWRingBuf

VXWBSem

VXWCSem

VXWMSem

VXWSmBSem

VXWSmCSem

VXWSmName

VXWSymTab

VXWTask

VXWWd

VXWSem

VXWSmMemBlock

VXWSmSem

VXWSmMemPart

VXWSmMsgQ

(Derived classes appear to the right.)
478

10

10
C++ Development
[1] VXWWd myWatchDog;

 /* Set timer to go off in SECONDS - printing a message to stdout */

[2] if (myWatchDog.start (sysClkRateGet() * SECONDS, logMsg,
 int ("Watchdog timer just expired\n")) == ERROR)
 return (ERROR);

 while (TIMER_NEEDED)
 {
 /* ... */
 }

[3] }

A notable difference from the C interface is that the wrapper classes allow you to

manipulate watchdog timers as objects rather than through an object ID. Line [1]

creates and names a watchdog object; C++ automatically calls the VXWWd
constructor, implicitly invoking the C routine wdCreate() to create a watchdog

timer.

Line [2] in the example illustrates how to use a method from the wrapper classes.

The example invokes the method start() for the instance myWatchDog of the class

VXWWd to call the timer. Because this method is invoked on a specific object, the

argument list for the method start() does not require an argument to identify

which timer to start (unlike wdStart(), the corresponding C routine).

Finally, because myWatchDog is a local object, exiting from the routine task() on

line [3] automatically calls the destructor for the VXWWd watchdog class. This

implicit call to the destructor deallocates the watchdog object, and if the timer was

still running removes it from the system timer queues. Thus, for objects declared

on the stack, it is not necessary to call a routine equivalent to the C routine

wdDelete(). (However, if an object is created dynamically with the operator new,

you must delete it explicitly with the operator delete, once your application no

longer needs the object.)

For details of the wrapper classes and on each of the wrapper class functions, see

the VxWorks Reference Manual.

10.4.2 Tools.h++ Library

Tools.h++ is an industry-standard foundation class library from Rogue Wave

Software which supports the following features:

– A complete set of collection classes

– Template based classes

– Persistent store facility
479

VxWorks 5.3.1
Programmer’s Guide
– File classes and file space manager

– B-tree disk retrieval

– Multi-thread safety

– Multi-byte and wide character strings

– Localized string collation

– Parse and format times, dates, and currency in multiple locales

– Support for multiple time zones and daylight savings rules

– Support for localized messages

– Localized I/O streams

This library is configured into VxWorks with the INCLUDE_CPLUS_TOOLS
constant; see 10.2.4 Configuration Constants, p.475.

The Tools.h++ library header files reside in the VxWorks header file directory h/rw.

To use this library, #include one or more of these header files after the #include
"vxWorks.h" statement and after the #include statements for all other VxWorks

libraries in the appropriate modules of your application. For a list of all the header

files and details on this library, see Rogue Wave’s Tools.h++ Introduction and
Reference Manual.

10.4.3 Booch Components Library

The Booch Components library from Rogue Wave provides a collection of domain-

independent data structures (such as graphs, queues, rings, and stacks) and

algorithms (such as date/time, searching, and sorting). The library represents an

application of the Booch object-oriented analysis and design method.

This library is configured into VxWorks with the INCLUDE_CPLUS_BOOCH
constant; see 10.2.4 Configuration Constants, p.475.

The Booch Components library header files reside in the VxWorks header file

directory, src/cplus/booch/CppBooch/Include. To use this library, #include one or

more of the header files after the #include "vxWorks.h" statement and after the

#include statements for all other VxWorks libraries in the appropriate modules of

your application. For a list of all the header files and details on this library, see

Rogue Wave’s C++ Booch Components Class Catalog: C++ Class Library for
Multithreading and Storage Management.

Booch Components Source Code

The Booch Components are almost exclusively template-based. The few non-

template classes are not used by all client programs. For these reasons, the Booch
480

10

10
C++ Development
Components are delivered in source form only, and there is no overall makefile for

building the components.

The source code for the Booch Components is located in the VxWorks directory

src/cplus/booch/CppBooch. Details of the directory structure subordinate to

CppBooch can be found in the C++ Booch Components Class Catalog, which is

shipped with Wind Foundation Classes. The most important directory to clients of

the Booch Components is CppBooch/Include. This directory contains copies of, or

links to (depending on your host platform), all of the Booch Components C++

source and header files contained elsewhere below CppBooch. Thus,

CppBooch/Include is normally the only directory that you will need to refer to

directly in developing applications that use the Booch Components.

Building Booch Components Applications

Due to its heavy dependence on template classes, building applications that use

the Booch Components is slightly more complicated than building C++

applications that do not use templates. For more information, refer to Template
Instantiation, p.473. For information specific to template use with the GNU

compiler, see Using GNU CC: Extensions to the C++ Language in the GNU ToolKit
User’s Guide.

The following section illustrates the complete process of building an application

with the Booch Components.

Booch Components Examples

Several examples are included with the Booch Components. These can be found in

the directory src/cplus/booch/CppBooch/Examples. Source code for the examples

is located in the Tests/Source subdirectory. The remaining subdirectories contain

files documented in the C++ Booch Components Class Catalog. The remainder of this

section refers only to files in the Source subdirectory.

The remainder of this section spells out all the steps to adapt the BagT example to

VxWorks, running on the mv147 target. The BagT example is distributed ready to

build, with these adaptations in place for an mv147; it is straightforward to adapt

it to other supported BSPs. The BagT adaptation also provides a pattern you can

imitate to adapt other Booch Components examples to VxWorks. There are three

parts to the adaptation. The following sections describe them in detail:

■ Run-time adaptation
■ Makefile
481

VxWorks 5.3.1
Programmer’s Guide
■ Template instantiation

Run-Time Adaptation

The first step is accomplished by simply inserting the following at the start of each

source module:

#include "vxWorks.h"

This configures the other header files, included after vxWorks.h, with options

specific to VxWorks and to the selected architecture.

Makefile

Example 10-2 shows a makefile that can build the downloadable VxWorks

application module BagT.out. This makefile is distributed in

CppBooch/Examples/Tests/Source. You must adapt this makefile if your target

has a different CPU than the MC68040 used in the example, or if you are not using

the GNU compiler. For supported compilers and architectures, the only adaptation

required is to define a different CPU in the first line.

Build the BagT.out module by invoking make, specifying BagT.out in the make

command. Use the following command1:

% make BagT.out

Example 10-2 Makefile for BagT Example from Booch Components

[1] CPU = MC68040
 TOOL = gnu

[2] include $(WIND_BASE)/target/h/make/defs.bsp
 include $(WIND_BASE)/target/h/make/make.(CPU)(TOOL)
 include $(WIND_BASE)/target/h/make/defs.$(WIND_HOST_TYPE)
 include $(WIND_BASE)/target/h/make/rules.bsp
[3] BCINC = $(WIND_BASE)/target/src/cplus/booch/CppBooch/Include
[4] EXTRA_INCLUDE = -I$(BCINC) -I$(WIND_BASE)/target/h

[5] BagT.out : Items.o BagT.o

 Items.o : Items.cpp $(BCINC)/BCType.h Items.h

 BagT.o : BagT.cpp \
 $(BCINC)/BCType.h \
 $(BCINC)/BCExcept.h \

1. PC users must first invoke the torVars.bat file located in the host bin directory. This file

configures the Tornado environment variables necessary for invoking tools from the DOS

prompt. For more information about torVars.bat, see the Tornado User’s Guide: Getting
Started. PC users can also build this example using the Tornado project facility; see the

Tornado User’s Guide: Project Facility.
482

10

10
C++ Development
 $(BCINC)/BCPool.h \
 $(BCINC)/BCStoreM.h \
 $(BCINC)/BCNodes.h \
 $(BCINC)/BCBound.h \
 $(BCINC)/BCDynami.h \
 $(BCINC)/BCUnboun.h \
 $(BCINC)/BCHashTa.h \
 $(BCINC)/BCBag.h \
 $(BCINC)/BCBagB.h \
 $(BCINC)/BCBagD.h \
 $(BCINC)/BCBagU.h \
 Items.h

The following describes the operation of this makefile:

[1] Define values for standard makefile variables CPU and TOOL.

[2] Include standard VxWorks makefile fragments. These files contain default and

architecture-specific rules and compiler options for compiling C++ modules.

[3] Define a make variable to represent the directory containing Booch

Components source and header files. Files from this directory are included by

the application.

[4] Define EXTRA_INCLUDE, a make variable that is used in the makefile

fragments included in [1].

[5] The remaining rules list the header and source file dependencies for the BagT
example. They define two modules, Items.o and BagT.o which are used to

generate BagT.out. The actual rules for compiling and munching these

modules are defined in the makefile fragments included in [1]. (For a

discussion of the “munching” process, see the Tornado User’s Guide: Cross-
Development.)

Template Instantiation

Example 10-3 shows how to include header and source files for the templates that

you are instantiating and how to declare a template instantiation. The sample code

is extracted directly from the BagT example described above (the complete

example is much too long to include here).

This example illustrates the basics of explicit template instantiation. When you

compile using the instructions of the previous sections, the C++ compiler

automatically instantiates the specified templates. The instantiations occur in the

module containing the template class declaration. Template instantiations can be

distributed among multiple application modules. They can also be gathered

together into a single module containing many instantiations, or any of several

other alternative organizations, as long as the form of the example is followed:
483

VxWorks 5.3.1
Programmer’s Guide
include the source and header files for the templates, then make a template class
declaration to complete the instantiation.

Example 10-3 BagT Template Instantiation

// BagT.cpp - This file contains tests for the bag classes.
 ...
[1] #include "BCBagB.h"
 #include "BCBagB.cpp"
 ...
[2] template class BC_TBoundedBag<Char, 3U, 100U>;

The following details explain the preceding source lines:

[1] Include header and source files that define the template(s) that you want to

use. In this case, BagT.cpp uses the bounded-bag template class.

[2] Declare the template instantiation that your application needs. In this case,

BagT.cpp is declaring a bounded bag to contain objects of type Char. The other

parameters, 3U and 100U, define the bag’s size and organization.
484

Appendices
485

A
Motorola MC680x0
A.1 Introduction .. 489

A.2 Building Applications .. 489

Defining the CPU Type ... 489

Configuring the GNU ToolKit Environment 490

Compiling C or C++ Modules ... 490

A.3 Interface Variations .. 492

A.4 Architecture Considerations .. 492

MC68060 Unimplemented Integer Instructions 493

Double-word Integers: long long .. 493

Interrupt Stack .. 494

MC68060 Superscalar Pipeline ... 494

Caches ... 495

Memory Management Unit .. 497

Floating-Point Support .. 498

Memory Layout .. 502
487

VxWorks 5.3.1
Programmer’s Guide
List of Tables

Table A-1 VxWorks Interface Variations for MC68040/MC68060 . 492

Table A-2 Double-Precision Floating-Point Routines Supported for

MC680x0 Family .. 500

List of Figures

Figure A-1 VxWorks System Memory Layout (MC680x0) 503
488

A

A
Motorola MC680x0
A.1 Introduction

This appendix provides information specific to VxWorks development on

Motorola MC680x0 targets. It includes the following topics:

■ Building Applications: how to compile modules for your target architecture.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the MC680x0 processors.

■ Architecture Considerations: special features and limitations of the MC680x0

processors, including a figure showing the VxWorks memory layout for these

processors.

For general information on the Tornado development environment’s cross-

development tools, see the Tornado User’s Guide: Cross-Development.

A.2 Building Applications

The following sections describe a configuration constant, an environment variable,

and compiler options that together specify the information the GNU ToolKit

requires to compile correctly for MC680x0 targets.

Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

build with the appropriate architecture-specific features enabled. Define this

variable to one of the following values, to match the processor you are using:
489

VxWorks 5.3.1
Programmer’s Guide
– MC68000
– MC68010
– MC68020 (used also for MC68030 processors)

– MC68040
– MC68LC040 (used also for MC68EC040 processors)

– MC68060
– CPU32

For example, to define CPU for a MC68040 on the compiler command line, specify

the following command-line option when you invoke the compiler:

-DCPU=MC68040

To provide the same information in a header or source file instead, include the

following line in the file:

#define CPU MC68040

Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. Running the GNU

compiler requires that you define the environment variable GCC_EXEC_PREFIX.

No change is required to the execution path, because the compilation chain is

installed in the same bin directory as the other Tornado executables.

For developers using UNIX hosts, you must specifically define this variable. For

example, if you use the C-shell, add the following to your .cshrc:

setenv GCC_EXEC_PREFIX $WIND_BASE/host/$WIND_HOST_TYPE/lib/gcc-lib/

For developers using Windows hosts, if you are working through the Tornado IDE,

the appropriate variable(s) are set automatically. However, before invoking the

compiler from a DOS command line, first run the following batch file to set the

variable(s):

%WIND_BASE%/host/x86-win32/bin/torVars.bat

For more information, see the Tornado User’s Guide: Getting Started.

Compiling C or C++ Modules

The following is an example of a compiler command line for MC680x0 cross-

development. The file to be compiled in this example has a base name of applic.

% cc68k -DCPU=MC68040 -I $WIND_BASE/target/h -fno-builtin \
-O -nostdinc -c applic. language_id
490

A

A
Motorola MC680x0
The options shown in the example have the following meanings:1

-DCPU=MC68040
Required; defines the CPU type. If you are using another

MC680x0 processor, specify the appropriate value (see Defining the
CPU Type, p.489).

-I $WIND_BASE/target/h
Required; includes VxWorks header files. (Additional -I flags may

be included to specify other header files.)

-fno-builtin Required; uses library calls even for common library subroutines.

-O Optional; performs standard optimization.

-nostdinc Required; searches only the directory(ies) specified with the -I flag

(see above) and the current directory for header files. Does not

search host-system include files.

-c Required; specifies that the module is to be compiled only, and not

linked for execution under the host.

applic.language_id
Required; the file(s) to compile. For C compilation, specify a suffix

of .c. For C++ compilation, specify a suffix of .cpp. The output is

an unlinked object module in a.out format with the suffix .o; for

the example, the output is applic.o.

During C++ compilation, the compiled object module (applic.o) is

munched. Munching is the process of scanning an object module

for non-local static objects, and generating data structures that

VxWorks run-time support can use to call the objects’ constructors

and destructors. See the Tornado User’s Guide: Cross-Development
for details.

NOTE: Do not use -msoft-float on the MC68040 or MC68060. However, do use this

flag for floating-point support on the MC68LC040. See Floating-Point Support,
p.498.

1. For more information on these and other compiler options, see the GNU ToolKit User’s Guide.

WRS supports compiler options used in building WRS software; a list of these options is

included in the Guide. Other options are not supported, although they are available with the

tools as shipped.

!

491

VxWorks 5.3.1
Programmer’s Guide
A.3 Interface Variations

Because of specific characteristics of the MC68040 or MC68060, certain VxWorks

features are not useful on these targets. Conversely, other VxWorks features are

particular to one or both of these processors, to exploit specific characteristics.

Note that discussion of the MC68040 also applies to the MC68LC040 unless

otherwise noted. The MC68LC040 is a derivative of the MC68040 and differs only

in that it has no floating-point unit.

Table A-1 lists such CPU-specific VxWorks interfaces. Section A.4 Architecture
Considerations, p.492 discusses these interfaces in the context of CPU architecture.

For more complete documentation on these routines, see the reference entries.

A.4 Architecture Considerations

This section describes the following characteristics of the MC680x0 processors

(particularly the MC68040 and MC68060) that you should keep in mind as you

write a VxWorks application:

■ MC68060 unimplemented integer instructions

Table A-1 VxWorks Interface Variations for MC68040/MC68060

Routine or Macro Name CPU Change Detailed Discussion

checkStack() 060 Interrupt stack display meaningless MC68060: No Interrupt Stack, p.494

vxSSEnable()
vxSSDisable()

060 Only for this architecture MC68060 Superscalar Pipeline, p.494

cacheLock()
cacheUnlock()

040 Always return ERROR MC68040 Caches, p.495

cacheStoreBufEnable()
cacheStoreBufDisable()

060 Only for this architecture MC68060 Caches, p.496

USER_B_CACHE_ENABLE 060 Architecture-specific configuration MC68060 Caches, p.496

BRANCH_CACHE 060 Architecture-specific cache MC68060 Caches, p.496

VM_STATE… both Architecture-specific MMU states Memory Management Unit, p.497
492

A

A
Motorola MC680x0
■ Double-word integers
■ Interrupt stack
■ MC68060 superscalar pipeline
■ Caches
■ Memory Management Unit
■ Floating-point support
■ Memory layout

Note that discussion of the MC68040 also applies to the MC68LC040 unless

otherwise noted. The MC68LC040 is a derivative of the MC68040 and differs only

in that it has no floating-point unit.

For comprehensive documentation of Motorola architectures, see the appropriate

Motorola microprocessor user’s manual.

The names of macros specific to these architectures, and specialized terms in the

remainder of this section, match the terms used by the Motorola manuals.

MC68060 Unimplemented Integer Instructions

Neither the 64-bit divide and multiply instructions, nor the movep, cmp2, chk2,

cas, and cas2 instructions are implemented on the MC68060 processor. To

eliminate these restrictions, VxWorks integrates the software emulation provided

in the Motorola MC68060 software package, version B1. This package contains an

exception handler that allows full emulation of the instructions listed above.

VxWorks connects this exception handler to the unimplemented-integer-

instruction exception (vector 61).

The Motorola exception handler allows the host operating system to add or to

substitute its own routines. VxWorks does not add or substitute any routines; the

instruction emulation is the full Motorola implementation.

Double-word Integers: long long

The double-word integer long long is not supported, except as an artifact of your

particular architecture and compiler. For more information about handling

unsupported features, please see the Customer Support User’s Guide.
493

VxWorks 5.3.1
Programmer’s Guide
Interrupt Stack

VxWorks uses a separate interrupt stack whenever the underlying architecture

supports it. All MC680x0 processors, except the MC68060, have an interrupt stack.

The MC680x0 Interrupt Stack

For all MC680x0 processors except the MC68060, VxWorks uses the separate

interrupt stack instead of the current task stack when the processor takes an

interrupt.

The interrupt stack size is defined by the ISR_STACK_SIZE macro in the

configAll.h file. The default size of the interrupt stack is 0x1000 bytes.

MC68060: No Interrupt Stack

When the MC68060 processor takes an interrupt, VxWorks uses the current

supervisor stack. To avoid stack overflow, spawn every task with a stack big

enough to hold both the task stack and the interrupt stack.

The routine checkStack(), which is built in to the Tornado shell, displays the stack

state for each task and also for the interrupt stack. Because this routine is the same

for all processors that VxWorks supports, checkStack() displays a line for the

interrupt stack state. For the MC68060, the values that appear on this line are

meaningless.

MC68060 Superscalar Pipeline

The MC68060 implements a superscalar pipeline that allows multiple instructions

to be executed in a single machine cycle. This feature can be enabled or disabled

by setting or clearing the ESS (Enable SuperScalar) bit of the Processor

Configuration Register (PCR). For this architecture, VxWorks provides two

routines to enable and disable the superscalar pipeline, declared as follows:

void vxSSEnable (void)
void vxSSDisable (void)

In the default configuration, VxWorks enables the superscalar pipeline.
494

A

A
Motorola MC680x0
Caches

The MC68000 and MC68010 processors do not have caches. The MC68020 has only

a 256-byte instruction cache; see the general cache information presented in Cache
Coherency, p.168.

The MC68040 has 4KB instruction and data caches, and the MC68060 has 8KB

instruction and data caches. The following subsections augment the information in

Cache Coherency, p.168.

MC68040 Caches

The MC68040 processor contains an instruction cache and a data cache. By default,

VxWorks uses both caches; that is, both are enabled. To disable the instruction

cache, undefine the USER_I_CACHE_ENABLE macro in config/all/configAll.h; to

disable the data cache, undefine USER_D_CACHE_ENABLE in configAll.h.

These caches can be set to the following modes:

– cacheable writethrough (the default for both caches)

– cacheable copyback

– cache-inhibited serialized

– cache-inhibited not-serialized

Choose the mode by setting the USER_I_CACHE_MODE macro or the

USER_D_CACHE_MODE macro in configAll.h. The list of possible values for these

macros is defined in h/cacheLib.h.

For most boards, the cache capabilities must be used with the MMU to resolve

cache coherency problems. In that situation, the page descriptor for each page

selects the cache mode. This page descriptor is configured by filling the

sysPhysMemDesc[] data structure defined in the BSP config/bspname/sysLib.c file.

(For more information about cache coherency, see the cacheLib reference entry. See

also 7. Virtual Memory Interface for information on VxWorks MMU support. For

MMU information specific to the MC680x0 family, see Memory Management Unit,
p.497.)

The MC68040 caches do not support cache locking and unlocking. Thus the

cacheLock() and cacheUnlock() routines have no effect on this target, and always

return ERROR.

The cacheClear() and cacheInvalidate() routines are very similar. Their effect

depends on the cache:

■ With the data cache, cacheClear() first pushes dirty data2 to memory (if the

cache line contains any) and then invalidates the cache line, while
495

VxWorks 5.3.1
Programmer’s Guide
cacheInvalidate() just invalidates the line (in which case any dirty data

contained in this line is lost).

■ For the instruction cache, both routines have the same result: they invalidate

the cache lines.

MC68060 Caches

VxWorks for the MC68060 processor provides all the cache features of the

MC68040, and some additional features.

■ Instruction and Data Cache

Motorola has introduced a change of terminology with the MC68060: the mode

called “cache-inhibited serialized mode” on the MC68040 is called “cache-

inhibited precise mode” on the MC68060, and the MC68040’s “cache-inhibited not-

serialized mode” is replaced by “cache-inhibited imprecise mode” on the

MC68060.

To make your code consistent with this change, you can use the macros3

CACHE_INH_PRECISE and CACHE_INH_IMPRECISE with VxWorks cache

routines when writing specifically for the MC68060, instead of using the MC68040-

oriented macro names CACHE_INH_SERIAL and CACHE_INH_NONSERIAL. (The

corresponding macros in each pair have the same definition, however, to make

MC68040 object code compatible with the MC68060.)

A four-entry first-in-first-out (FIFO) buffer is implemented on the MC68060. This

buffer, used by the cacheable writethrough and cache inhibited imprecise mode, is

enabled by default. Two VxWorks routines are available to enable or disable this

store buffer. Their names and prototypes are declared as follows:

void cacheStoreBufEnable (void)
void cacheStoreBufDisable (void)

On the MC68060, the instruction cache and data cache can be locked by software.

Thus, on this architecture (unlike for the MC68040), the cacheLock() and

cacheUnlock() routines are effective.

VxWorks does not support the MC68060 option to use only half of the instruction

cache or data cache.

2. Dirty data refers to data saved in the cache, not in memory (copyback mode only).

3. Defined in h/arch/mc68k/cacheMc68kLib.h.
496

A

A
Motorola MC680x0
■ Branch Cache

In addition to the instruction cache and the data cache, the MC68060 contains a

branch cache that VxWorks supports as an additional cache. Use the name

BRANCH_CACHE to refer to this cache with the VxWorks cache routines.

Most routines available for both instruction and data caches are also available for

the branch cache. However, the branch cache cannot be locked; thus, the

cacheLock() and cacheUnlock() routines have no effect and always return ERROR.

The branch cache uses only one operating mode and does not require a macro to

specify the current mode. In the default configuration, VxWorks enables the

branch cache. This option can be removed by disabling the definition of the

USER_B_CACHE_ENABLE macro in configAll.h.

The branch cache can be invalidated only in its entirety. Trying to invalidate one

branch cache line, or, as for the instruction cache, clearing the branch cache,

invalidates the whole cache.

The branch cache is automatically cleared by the hardware as part of any

instruction-cache invalidate.

Memory Management Unit

VxWorks provides two levels of virtual memory support: the basic level bundled

with VxWorks, and the full level, unbundled, that requires the optional product

VxVMI. These two levels are supported by the MC68040 and MC68060 processors;

however, the MC68000, MC68010, and MC68020 processors do not have MMUs.

For detailed information on VxWorks’s MMU support, see 7. Virtual Memory
Interface. The following subsections augment the information in that chapter.

MC68040 Memory Management Unit

On the MC68040, you can set a specific configuration for each memory page. The

entire physical memory is described by the data structure sysPhysMemDesc[]
defined in the BSP file sysLib.c. This data structure is made up of state flags for

each page or group of pages. All the state flags defined in Table 7-2 of 7. Virtual
Memory Interface are available for MC68040 virtual memory pages.

NOTE: The VM_STATE_CACHEABLE flag listed in Table 7-2 of 7. Virtual Memory
Interface sets the cache to copyback mode for each page or group of pages.

In addition, two other state flags are supported:

!

497

VxWorks 5.3.1
Programmer’s Guide
– VM_STATE_CACHEABLE_WRITETHROUGH
– VM_STATE_CACHEABLE_NOT_NON_SERIAL

The first flag sets the page descriptor cache mode field in cacheable writethrough

mode, and the second sets it in cache-inhibited non-serialized mode.

For more information on memory page states, state flags, and state masks, see Page
States, p.411.

MC68060 Memory Management Unit

The MMU on the MC68060 is very similar to the MC68040 MMU, and MC68060

virtual memory management provides the same capabilities as the MC68040

virtual memory; see MC68040 Memory Management Unit, p.497 for details.

You can use the page state constant VM_STATE_CACHEABLE_NOT_IMPRECISE
instead of VM_STATE_CACHEABLE_NOT_NON_SERIAL, to match changes in

Motorola terminology (see MC68060 Caches, p.496). Use this constant (as its name

suggests) to set the page descriptor cache mode field to “cache-inhibited imprecise

mode.” To set the page cache mode to “cache-inhibited precise mode,” use

VM_STATE_CACHEABLE_NOT.

The MC68060 does not use the data cache when searching MMU address tables,

because the MC68060 tablewalker unit has a direct interface to the bus controller.

Therefore, virtual address translation tables are always placed in writethrough

space. (Although VxWorks maps virtual addresses to the identical physical

addresses, the MMU address translation tables also record the page protection

provided through VxVMI.)

Floating-Point Support

The MC68020 uses an MC68881/MC68882 floating-point coprocessor for

hardware floating-point support. The MC68040 and MC68060 CPUs (but not the

MC68LC040) include internal floating-point units that provide a significant subset

of the MC68881/MC68882 instruction set, in addition to the same control, status,

and data register programming model. Basic floating-point arithmetic and

manipulation functions are provided, but higher-level transcendental functions

(for example, trigonometric, logarithmic, rounding) are not. Floating-point

support for the MC68LC040 is provided in software only.

Different subsets of the floating-point math routines in mathALib are supported

for each processor of the MC680x0 family. Table A-2 shows the supported double-

precision routines.
498

A

A
Motorola MC680x0
There is no hardware support for single-precision floating-point. On the MC68000,

MC68010, MC68020, MC68LC040, and CPU32, software support is available for

the following single-precision routines:

On the MC68040 or MC68060, there are no supported single-precision floating-

point routines.

Floating-Point Support for MC680 x0 CPUs Using MC68881/MC68882

VxWorks provides both hardware and software floating-point, in support of those

target configurations that include a floating-point coprocessor as well as those that

do not. Use the compiler option -msoft-float to generate object code that uses

software floating-point, and the compiler option -m68881 for hardware floating-

point.

Floating-Point Support for the MC68040 and MC68060

For the MC68040 and the MC68060 (but not the MC68LC040), VxWorks includes

support for MC68881/MC68882 floating-point instructions that are not directly

supported by the CPU. This emulation is provided by the Floating-Point Software

Package (FPSP) from Motorola, which is integrated into VxWorks.

The FPSP is called by special exception handlers that are invoked when one of the

unsupported instructions executes. This allows MC68881/MC68882 instructions

to be interpreted, although the exception overhead can be significant. Exception

handlers are also provided for other floating-point exceptions (for example,

floating-point division by zero, over- and underflow).

The initialization routine mathHardInit() installs these exception handlers; this

routine is called from usrConfig.c when you configure VxWorks for hardware

floating-point by defining INCLUDE_HW_FP in config/all/configAll.h. (It is

defined by default.)

To avoid the overhead associated with unimplemented-instruction exceptions, the

floating-point libraries in VxWorks call specific routines in the FPSP directly. As a

result, application code written in C that uses transcendental functions (for

example, the sin() or log() routines) does not suffer from the exception-handling

overhead. No special changes to application source code are necessary. (However,

support is provided only for double-precision floating-point operations.)

acosf() asinf() atanf() atan2f() cbrtf()
ceilf() cosf() expf() fabsf() floorf()
infinityf() logf() log10f() log2f() powf()
sinf() sincosf() sqrtf() tanf()
499

VxWorks 5.3.1
Programmer’s Guide
Table A-2 Double-Precision Floating-Point Routines Supported for MC680x0 Family

MC68000/
MC68010

MC68020/
CPU32

MC68040 MC68LC040 MC68060

acos() S HS E S E

asin() S HS E S E

atan() S HS E S E

atan2() S HS E S E

cbrt() S S S

ceil() S HS E S H

cos() S HS E S E

cosh() S HS E S E

exp() S HS E S E

fabs() S HS E S H

floor() S HS E S H

fmod() H E E

infinity() S HS E S H

irint() H E H

iround() H E H

log() S HS E S E

log10() S HS E S E

log2() S HS E S E

pow() S HS E S E

round() H E H

sin() S HS E S E

sincos() S HS E S E

sinh() S HS E S E

sqrt() S HS E S H

tan() S HS E S E

tanh() S HS E S E

trunc() H E H

S = software floating-point support

H = hardware floating-point support

E = emulated hardware floating-point support
500

A

A
Motorola MC680x0
If you are using the GNU ToolKit C compiler (cc68k) distributed by Wind River

Systems, compile your code without the flag -msoft-float.

■ MC68040 Floating-Point Software Package

On the MC68040, VxWorks uses version 2.2 of the MC68040 Floating-Point

Software Package (FPSP) from Motorola. This library makes full use of the

floating-point support provided by the MC68040 hardware, as opposed to

pure software emulation. The size of this FPSP is approximately 64KB.

■ MC68060 Floating-Point Software Package

As with the MC68040, the MC68060 floating-point unit implements only a

subset of the MC68881/MC68882 instruction set. The two subsets are not

identical (see §6.5.1 Unimplemented Floating-Point Instructions in the MC68060
Microprocessors User’s Manual); hence the MC68060 has its own FPSP. VxWorks

uses version B1 of the MC68060 Floating-Point Software Package from

Motorola. The size of this FPSP is approximately 84KB.

Floating-Point Support for the MC68LC040

While the MC68LC040 is a derivative of the MC68040 (implementing the same

integer unit and memory management unit), it has no floating-point unit.

Applications for the MC68LC040 must use software floating-point emulation. Use

the compiler option -msoft-float to generate object code that uses software

floating-point. Be sure to specify a CPU value of MC68LC040 when building

VxWorks (see Defining the CPU Type, p.489).
501

VxWorks 5.3.1
Programmer’s Guide
Memory Layout

The VxWorks memory layout is the same for all MC680x0 processors, except that

the MC68060 has no interrupt stack. Figure A-1 shows memory layout, labeled as

follows:

Interrupt Vector Table
Table of exception/interrupt vectors.

SM Anchor Anchor for the shared memory network (if there is shared

memory on the board).

Boot Line ASCII string of boot parameters.

Exception Message ASCII string of the fatal exception message.

Initial Stack Initial stack for usrInit(), until usrRoot() gets allocated stack.

System Image VxWorks itself (three sections: text, data, bss). The entry point

for VxWorks is at the start of this region.

WDB Memory Pool Size depends on the macro WDB_POOL_SIZE which defaults

to one-sixteenth of the system memory pool. This space is

used by the target server to support host-based tools.

Interrupt Stack Stack for interrupt handlers (except MC68060). Size is defined

in configAll.h. Location depends on system image size.

System Memory Pool
Size depends on size of the system image and (on the all but

MC68060) the interrupt stack. The sysMemTop() routine

returns the end of the free memory pool.

All addresses shown in Figure A-1 are relative to the start of memory for a

particular target board. The start of memory (corresponding to 0x0 in the memory-

layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS in config.h for each

target.
502

A

A
Motorola MC680x0
Figure A-1 VxWorks System Memory Layout (MC680 x0)

+0x0000 LOCAL_MEM_LOCAL_ADRS

+400
+500
+600
+700
+800
+900

c00

+1000

Address

Initial Stack

Interrupt Vector Table
(1KB)

Exception Message

Boot Line

SM Anchor
(Bus Control Latch - HKV2F only)

System Image

text

data

bss

Interrupt Stack

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

(not available on MC68060)

WDB Memory Pool
_end
503

B
Sun SPARC, SPARClite
B.1 Introduction .. 506

B.2 Building Applications .. 507

Defining the CPU Type ... 507

Configuring the GNU ToolKit Environment 507

Compiling C or C++ Modules ... 507

B.3 Interface Variations .. 509

bALib ... 509

cacheMb930Lib .. 509

cacheMicroSparcLib ... 509

dbgLib ... 510

dbgArchLib .. 511

fppArchLib ... 511

intArchLib .. 511

ioMmuMicroSparcLib ... 512

mathALib .. 512

vxALib ... 513

vxLib ... 513

B.4 Architecture Considerations .. 513

Reserved Registers ... 513

Processor Mode .. 514

Vector Table Initialization ... 514

Double-word Integers: long long .. 514

Interrupt Handling .. 514
505

VxWorks 5.3.1
Programmer’s Guide
Floating-Point Support ... 517

Stack Pointer Usage ... 518

SPARClite Overview ... 519

Memory Layout ... 519

List of Figures

Figure B-1 VxWorks System Memory Layout (SPARC/SPARClite) 521

Figure B-2 VxWorks System Memory Layout (microSPARC I & II) 522

B.1 Introduction

This appendix provides information specific to VxWorks development on Sun

SPARC and SPARClite targets. It includes the following topics:

■ Building Applications: how to compile modules for your target architecture.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the Sun processors.

■ Architecture Considerations: special features and limitations of the Sun

processors, including information specific to the SPARClite and a figure

showing the VxWorks memory layout for these processors.

For general information on the Tornado development environment’s cross-

development tools, see the Tornado User’s Guide: Cross-Development.
506

B

B
Sun SPARC, SPARClite
B.2 Building Applications

The following sections describe a configuration constant, an environment variable,

and compiler options that together specify the information the GNU ToolKit

requires to compile correctly for SPARC and SPARClite targets.

Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

build with the appropriate architecture-specific features enabled. Define this

variable to SPARC for both the SPARC and SPARClite processors.

For example, to define CPU for a SPARC on the compiler command line, specify the

following command-line option when you invoke the compiler:

-DCPU=SPARC

To provide the same information in a header or source file instead, include the

following line in the file:

#define CPU SPARC

Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. Running the GNU

compiler requires that you define the UNIX environment variable

GCC_EXEC_PREFIX. No change is required to the execution path, because the

compilation chain is installed in the same bin directory as the other Tornado

executables. For example, if you use the C-shell, add the following to your .cshrc:

setenv GCC_EXEC_PREFIX $WIND_BASE/host/$WIND_HOST_TYPE/lib/gcc-lib/

For more information, see the Tornado User’s Guide: Getting Started.

Compiling C or C++ Modules

The following is an example of a compiler command line for SPARClite cross-

development. The file to be compiled in this example has a base name of applic.

% ccsparc -DCPU=SPARC -I $WIND_BASE/target/h -O2 -nostdinc \
-fno-builtin -msparclite -msoft-float -c applic. language_id

The options shown in the example have the following meanings:1
507

VxWorks 5.3.1
Programmer’s Guide
-DCPU=SPARC Required; defines the CPU type. Use SPARClite for SPARClite

processors.

-I $WIND_BASE/target/h
Required; includes VxWorks header files. (Additional -I flags may

be included to specify other header files.)

-O2 Optional; performs level 2 optimization.

-nostdinc Required; searches only the directory(ies) specified with the -I flag

(see above) and the current directory for header files. Does not

search host-system include files.

-fno-builtin Required; uses library calls even for common library subroutines.

-msparclite Required for SPARClite; generates SPARClite-specific code.

-msoft-float Optional; generates software floating point library calls, rather

than hardware floating point instructions. For more information,

see USS Floating-Point Emulation Library, p.519,

-c Required; specifies that the module is to be compiled only, and not

linked for execution under the host.

applic.language_id
Required; the file(s) to compile. For C compilation, specify a suffix

of .c. For C++ compilation, specify a suffix of .cpp. The output is

an unlinked object module in a.out format with the suffix .o; for

the example, the output is applic.o.

During C++ compilation, the compiled object module (applic.o) is

munched. Munching is the process of scanning an object module

for non-local static objects, and generating data structures that

VxWorks can use to call the objects’ constructors and destructors.

For details, see the Tornado User’s Guide: Cross-Development.

1. For more information on these and other compiler options, see the GNU ToolKit User’s Guide.

WRS supports compiler options used in building WRS software; a list of these options is

included in the Guide. Other options are not supported, although they are available with the

tools as shipped.
508

B

B
Sun SPARC, SPARClite
B.3 Interface Variations

This section describes particular routines that are specific to SPARC targets in one

of the following ways:

■ available only for SPARC or SPARClite targets

■ parameters specific to SPARC or SPARClite targets

■ special restrictions or characteristics on SPARC or SPARClite targets

For complete documentation on these routines, see the reference entries.

Unless otherwise noted, the information in this section applies to both the SPARC

and SPARClite. For SPARClite-specific information, see SPARClite Overview, p.519.

bALib

The following buffer-manipulation routines provided by bALib exploit the

SPARC LDD and STD instructions.

bzeroDoubles() Zeroes out a buffer, 256 bytes at a time.

bfillDoubles() Fills a buffer with a specified eight-byte pattern.

bcopyDoubles() Copies one buffer to another, eight bytes at a time.

cacheMb930Lib

The library cacheMb930Lib contains routines that allow you to initialize, lock, and

clear the Fujitsu MB86930 (SPARClite) cache. For more information, see the

manual pages and Instruction and Data Cache Locking, p.519.

cacheMicroSparcLib

The library cacheMicroSparcLib contains routines that allow you to initialize,

flush, and clear the MicroSparc I and II caches. For more information, see the

manual pages.
509

VxWorks 5.3.1
Programmer’s Guide
dbgLib

If you are using the target shell, note the following architecture-specific

information on routines in the dbgLib:

■ Optional Parameter for c() and s()

The SPARC versions of c() (continue) and s() (single-step) can take a second

address parameter, addr1. With this parameter, you can set nPC as well as the PC.

Note that if addr is NULL, addr1 is ignored.

■ Restrictions on cret()

In VxWorks for SPARC, cret() cannot determine the correct return address.

Because the actual return address is determined by code within the routine, only

the calling address is known. With C code in general, the calling instruction is a

CALL and routines return with the following:

ret
restore

This is the assumption made by cret() when it places a breakpoint at the return

address of the current subroutine and continues execution. Note that returns other

than %i7 + 8 result in cret() setting an incorrect breakpoint value and continuing.

■ Restrictions on so()

The so() routine single-steps a task stopped at a breakpoint, but steps over a

subroutine. However, in the SPARC version, if the next instruction is a CALL or

JMPL x, %o7, the routine breaks at the second instruction following the subroutine

(that is, the first instruction following the delay slot’s instruction). In general, the

delay slot loads parameters for the subroutine. This loading can have unintended

consequences if the delay slot is also a transfer of control.

■ Trace Routine, tt()

In general, a task trace works for all non-leaf C-language routines and any

assembly language routines that contain the standard prologue and epilogue:

save %sp, -STACK_FRAME_SIZE, %sp
...
ret
restore

Although the tt() routine works correctly in general, note the following caveats:

– Routines written in assembly or other languages, strange entries in routines,

or tasks with corrupted stacks, can result in confusing trace information.

– All parameters are assumed to be 32-bit quantities.
510

B

B
Sun SPARC, SPARClite
– The cross-compiler does not handle structures passed as parameters correctly.

– The current trace-back tag generated by C compilers is limited to 16

parameters; thus, tt() does not report the value of parameters above 16.

However, this does not mean that your application cannot use routines with

more than 16 parameters.

– If the routine changes the values of its local registers between the time it is

called and the time it calls the next level down (or, at the lowest level, the time

the task is suspended), tt() reports the changed values. It has no way to locate

the original values.

– If the routine changes the values of registers i0 through i5 between the time it

is called and the time it calls the next level down (or, at the lowest level, the

time the task is suspended), tt() reports the changed values. It has no way to

locate the original values.

– If you attempt a tt() of a routine between the time the routine is called and the

time its initial save is finished, you can expect strange results.

dbgArchLib

If you are using the target shell, the following architecture-specific show routines

are available if INCLUDE_SHOW_ROUTINES is defined:

psrShow() Displays the symbolic meaning of a specified PSR value on the

standard output device.

fsrShow() Displays the symbolic meaning of a specified FSR value on the

standard output device.

fppArchLib

The SPARC version of fppArchLib saves and restores a math coprocessor context

appropriate to the SPARC floating-point architecture standard.

intArchLib

■ Parameters for intLevelSet()

The SPARC version of intLevelSet() takes an argument from 0 to 15.
511

VxWorks 5.3.1
Programmer’s Guide
■ Returns for intLock()

The SPARC version of intLock() returns an interrupt level.

ioMmuMicroSparcLib

The library ioMmuMicroSparcLib contains routines that allow you to initialize

and map memory in the microSPARC I/O MMU. For more information, see the

manual pages.

mathALib

Because the overall SPARC architecture includes hardware floating-point support,

while the SPARClite variant does not, VxWorks includes mathALib hardware

floating-point support for SPARC and software floating-point support for

SPARClite.

■ SPARC

On SPARC targets, the following mathALib routines are available. Note that these

are all double-precision routines; no single-precision routines are supported for

SPARC:

■ SPARClite

On SPARClite targets, the following mathALib routines are supported (for

information about how to use this support, see USS Floating-Point Emulation
Library, p.519):

– Double-precision routines:

– Single-precision routines:

acos() asin() atan() atan2() cbrt() ceil() cos()
cosh() exp() fabs() floor() fmod() irint() iround()
log() log10() pow() round() sin() sinh() sqrt()
tan() tanh() trunc()

acos() asin() atan() atan2() ceil() cos() cosh()
exp() fabs() floor() fmod() frexp() ldexp() log()
log10() pow() sin() sinh() sqrt() tan() tanh()

acosf() asinf() atanf() atan2f() ceilf() cosf() coshf()
expf() fabsf() floorf() fmodf() logf() log10f() modf()
512

B

B
Sun SPARC, SPARClite
vxALib

The test-and-set primitive vxTas() provides a C-callable interface to the SPARC

ldstub instruction.

vxLib

The routine vxMemProbeAsi() probes addresses in SPARC ASI space.

B.4 Architecture Considerations

This section describes the following characteristics of the SPARC and SPARClite

architectures that you should keep in mind as you write a VxWorks application:

■ Reserved registers
■ Processor mode
■ Vector table initialization
■ Double-word Integers
■ Interrupt handling
■ Floating-point support
■ Stack pointer usage
■ SPARClite overview
■ Memory layout

Reserved Registers

Following the SPARC specification (Appendix D, Software Considerations, in The
SPARC Architecture Manual, Version 8 from Sun Microsystems), registers g5, g6, and

g7 are reserved for VxWorks kernel use. Avoid using these registers in your

applications.

powf() sinf() sinhf() sqrtf() tanf() tanhf()
513

VxWorks 5.3.1
Programmer’s Guide
Processor Mode

VxWorks for SPARC and SPARClite always runs in Supervisor mode.

Vector Table Initialization

After the VxWorks for SPARC or SPARClite has completed initialization, traps are

enabled and the PIL (Processor Interrupt Level) is set to zero. All 15 interrupt levels

are active with the coprocessor enables set according to hardware availability and

application use.

The TBR (Trap Base Register) points to the active vector table at address 0x1000 in

local memory.

Make sure that vectors are not reserved for the processor or the kernel before

acquiring them for an application.

Double-word Integers: long long

The double-word integer long long is not supported, except as an artifact of your

particular architecture and compiler. For more information about handling

unsupported features, please see the Customer Support User’s Guide.

Interrupt Handling

For VxWorks for SPARC and SPARClite, an interrupt stack allows all interrupt

processing to be performed on a separate stack. The interrupt stack is implemented

in software because the SPARC family does not support such a stack in hardware.

SPARC Interrupts

The SPARC microprocessor allows 15 levels of interrupts. The level is encoded by

external hardware on the four interrupt signal lines. The integer unit (CPU)

decodes this level and passes control directly to the entry in the vector table at an

offset of 0x100 plus the interrupt level times 16 bytes. This corresponds to vectors

16 through 31 (addresses 0x100 to 0x1F0). Each 16-byte entry in the vector table

contains up to four instructions. Typically, control passes to an interrupt service

routine (ISR) with a call or branch instruction.

The SPARC uses auto-vectored interrupts. The chip does not perform any type of

interrupt acknowledge (IACK) cycle. The address in the Trap Base Register (TBR)
514

B

B
Sun SPARC, SPARClite
concatenated with the interrupt level vector displacement allows the SPARC to

begin interrupt processing.

The alternative is vectored interrupts. The CPU responds to the interrupt with an

IACK cycle so that an interrupt controller chip or individual device can return a

value that clears and identifies the source of the interrupt. This is extremely useful

for multiple sources of interrupts on a single-interrupt level.

The ability to perform an interrupt acknowledge cycle is a function of the

microprocessor (not the software or board-level hardware). However, a target

board can synthesize an IACK cycle by accessing an area created in its address

space. This is often necessary to clear the interrupt pending bit in an interrupting

device. An IACK cycle also differs from a normal read cycle in that the value

returned is an interrupt vector. This vector is used to select an offset in the vector

table that has the device’s ISR connected to that table entry.

VxWorks allows an application to connect ISRs to vectors with the routine

intConnect(). A stub is built dynamically that calls an interrupt entry routine, calls

the ISR, and then calls an exit routine. The SPARC, like other RISC processors,

delegates to software the task of building an exception stack frame (ESF) to save

volatile information. The kernel builds up two types of exception stack frames: one

for interrupts and one for all other exceptions. The code execution sequence

following an interrupt is as follows:

■ Vector table
■ Exception stack frame building
■ Overflow exception handling
■ Interrupt entry code
■ ISR
■ Interrupt exit code
■ Rescheduling, if the interrupt added work for the kernel (such as a semGive())

Vectored Interrupts

The SPARC kernel was designed to handle vectored interrupts as an option.

Because this implementation varies with every target board, the kernel must work

with the board support package (BSP). The implementation of vectored interrupts

on a processor that does not support them must be done in software.

A table in the BSP allows an IACK for each of the 15 interrupt levels. A NULL (0)

entry corresponds to no interrupt acknowledge. If an IACK is required, the table

entry corresponds to a routine that performs the necessary operations. Because the

SPARC vector table contains 256 entries, a byte-sized vector can select any

exception handler.
515

VxWorks 5.3.1
Programmer’s Guide
Note that the microprocessor, the board, and the kernel reserve certain vector table

entries. The kernel appends this vector to the TBR and continues execution with

the selected ISR. All checking for the IACK condition and performing of the

operation is done by the kernel and is transparent. The interrupt connection

mechanism is the same, and checking for and clearing the pending interrupt is

done before the ISR attached by intConnect() is called.

The following shows the structure used on the SPARCengine 1E (also known as a

Sun 1E) SPARC board in config/sun1e/sysLib.c. It illustrates the use of vectored

interrupts for VME, but does not require an IACK cycle for local (on-board)

interrupts:

extern sysVmeAck(); /* IACK Leaf Functions, code in sysALib */

int (*sysIntAckTable [16])() =
{
NULL, /* Reserved for Kernel */
NULL, /* Interrupt Level 1 - Software 1 */
sysVmeAck, /* Interrupt Level 2 - VME 1 */
sysVmeAck, /* Interrupt Level 3 - VME 2 */
NULL, /* Interrupt Level 4 - SCSI */
sysVmeAck, /* Interrupt Level 5 - VME 3 */
NULL, /* Interrupt Level 6 - Ethernet */
NULL, /* Interrupt Level 7 - P2 Bus */
sysVmeAck, /* Interrupt Level 8 - VME 4 */
sysVmeAck, /* Interrupt Level 9 - VME 5 */
NULL, /* Interrupt Level 10 - Timer 0 */
sysVmeAck, /* Interrupt Level 11 - VME 6 */
NULL, /* Interrupt Level 12 - Serial Ports */
NULL, /* Interrupt Level 13 - Mailbox */
NULL, /* Interrupt Level 14 - Timer 1 */
NULL /* Interrupt Level 15 - NMI */
};

The performance penalty for this added feature is negligible. When vectored

interrupts are used, this penalty increases, because an operation is being handled

in software that the SPARC microprocessor was not designed to do. There are some

restrictions on these vector routines because they are called in a critical section of

code. Again, the Sun 1E SPARC board is used as an example. Note that you must

use special “leaf” procedures.

The corresponding code for the function table is in config/sun1e/sysALib.s:

/* IACK Function Call Template
/* Input: %l5 - return address
/* Volatile: %l4, %l6 (DO NOT USE OTHER REGISTERS !!!)
/* Return: %l5 - vector table index */

.global _sysVmeAck

_sysVmeAck:
sethi %hi(SUN_VME_ACK),%l6 /* VMEbus IACK - 0xFFD18001 */
516

B

B
Sun SPARC, SPARClite
or %l6,%lo(SUN_VME_ACK),%l6
rd %tbr,%l4 /* Extract interrupt level */
and %l4,0x00F0,%l4
add %l4,0x0010,%l4 /* Sun 1E to VME level conversion */
srl %l4,5,%l4 /* Add 1, divide by 2 (no remainder) */
sll %l4,1,%l4 /* Multiply VME level by 2 */
ldub [%l6 + %l4],%l4 /* VMEbus IACK and get vector */
jmpl %l5,%g0 /* Return address - leaf routine */
mov %l4,%l5 /* Interrupt vector to %l5 */

VMEbus Interrupt Handling

SPARC uses fifteen interrupt levels instead of the seven used by VMEbus. The

mapping of the seven VMEbus interrupts to the fifteen SPARC levels is board

dependent. VMEbus interrupts must be acknowledged.

Floating-Point Support

Floating-Point Contexts

A task can be spawned with floating-point support by setting the VX_FP_TASK
option. This causes switch hooks to initialize, save, and restore a floating-point

context. This option increases the task’s context switch time and memory

consumption, so only spawn tasks with VX_FP_TASK if they must perform

floating-point operations.

The floating-point data registers are initialized to NaN (Not-a-Number), which is

0xFFFFFFFF. You can change the FSR’s (Floating-point Status Register) value using

the global variable fppFsrDefault.

Floating-Point Exceptions

The following are SPARC floating-point exceptions (most are deferred):

■ Exception Options

The application can configure the types of floating-point exceptions that VxWorks

handles. The ideal solution is to not generate any floating-point exceptions in the

application tasks. However, a more realistic scheme is to mask all exceptions

globally (all tasks) in the TEM (Trap Enable Mask) field of the FSR (Floating-point

– FPU Disabled (or not present)

– Unfinished Operation

– Unimplemented Operation

– Sequence Error

– Invalid Operation

– Overflow

– Underflow

– Divide-by-Zero

– Inexact
517

VxWorks 5.3.1
Programmer’s Guide
Status Register). Alternatively, this can be done locally (on a per task basis) as tasks

are spawned and the FSR is initialized. In addition to global and local masks,

individual exceptions (invalid operation, overflow, underflow, divide-by-zero,

inexact) can be masked in the TEM. The masked exception continues to accrue (for

example, become more inexact, continue to overflow, and so on). The default for

VxWorks is to mask only the inexact exception.

■ Exception Handlers

All floating-point exceptions (if enabled) result in the suspension of the offending

task and a message sent through the exception handling task, excTask(). The

floating-point unit is flushed so that other tasks can still use the hardware and

continue their numeric processing.

■ Deferred Exceptions

Floating-point exceptions on the SPARC floating-point units are deferred. When

they occur in the FPU, they do not immediately interrupt the CPU (integer unit).

Instead they remain pended until they are pushed out of the queue by additional

floating-point operations or an FSR access.

If one of the last floating-point operations causes an unmasked exception before a

context switch, saving the task’s context flushes out the exception while in the

kernel. The exception handler checks for this special case and works its way back

to the kernel so that it can continue the context switch. When the task that caused

the exception is switched back in, it continues in the exception handler and

suspends itself. The relationship between a deferred exception and a context

switch cannot be controlled due to its asynchronous nature.

■ Floating-Point Exception Simulation

SPARCmon is a product from Sun Microsystems that you can attach to the floating-

point exception vectors to handle all exception cases for the SPARC. Any floating-

point exceptions must be simulated by software and the queue flushed of all

pending operations. This simulation fixes the error that caused the exception

whenever possible, or takes some default action (for example, suspends the task).

Stack Pointer Usage

Because the stack pointer can advance without stack memory actually being

written or read, it is possible for the stack highwater marker to appear below the

current stack pointer. In other words, current stack usage can be greater than the

high stack usage. This is an artifact of the SPARC architecture’s rolling register

windows.
518

B

B
Sun SPARC, SPARClite
The stack pointer is actually used very little. The local and output registers in each

register window perform the bulk of stack operations. The stack is used when

argument lists are very long, or if a window overflow exception pushes registers

onto the stack.

SPARClite Overview

All information pertaining to the SPARC applies to the SPARClite, with the

addition of the architectural enhancements described in the following subsections.

Instruction and Data Cache Locking

The SPARClite allows the global and local locking of the instruction and data

caches. The ability to lock instructions and/or data in the caches allows for higher

performance and more deterministic systems. The locking must be done in such a

way that overall system performance is improved, not degraded. For a better real-

time system, call cacheMb930LockAuto() to enable instruction and data cache

locking. After the caches are locked, they cannot be unlocked or disabled.

To enhance performance, some of the VxWorks kernel data items are locked in the

data cache. This uses approximately 128 bytes. The remainder of the data cache is

available to the developer. Additional data can be locked in the cache using the

BSP.

USS Floating-Point Emulation Library

The SPARClite does not have a floating-point coprocessor; thus, the USS floating-

point emulation library is used. Using the -msparclite compile flag allows this

library to be accessed by your code for floating-point calculations.

Memory Layout

The memory layout of both the SPARC and SPARClite processors is shown in

Figure B-1. The memory layout of the microSPARC processor is in Figure B-2.

These figures contain the following labels:

SM Anchor Anchor for the shared memory network (if there is shared

memory on the board).

Boot Line ASCII string of boot parameters.

Exception Message
ASCII string of the fatal exception message.
519

VxWorks 5.3.1
Programmer’s Guide
Interrupt Vector Table
Table of exception/interrupt vectors.

Initial Stack Initial stack for usrInit(), until usrRoot() gets allocated stack.

System Image Entry point for VxWorks.

WDB Memory Pool
Size depends on the macro WDB_POOL_SIZE which defaults

to one-sixteenth of the system memory pool. This space is

used by the target server to support host-based tools.

Interrupt Stack Size defined in configAll.h. Location depends on system

image size.

System Memory Pool
Size depends on size of system image and interrupt stack. The

end of the free memory pool for this board is returned by

sysMemTop().

All addresses shown are relative to the start of memory for a particular target

board. The start of memory (corresponding to 0x0 in the memory-layout diagram)

is defined as LOCAL_MEM_LOCAL_ADRS in config.h for each target.
520

B

B
Sun SPARC, SPARClite
Figure B-1 VxWorks System Memory Layout (SPARC/SPARClite)

+0x0000 LOCAL_MEM_LOCAL_ADRS

+600
+700
+800
+900

+1000

Address

Exception Message

Boot Line

SM Anchor

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

System Image

text

data

bss

+2000

Interrupt Vector Table

+3000

Initial Stack

(4KB)

Interrupt Stack

WDB Memory Pool
_end
521

VxWorks 5.3.1
Programmer’s Guide
Figure B-2 VxWorks System Memory Layout (microSPARC I & II)

+0x0000 LOCAL_MEM_LOCAL_ADRS

+600
+700
+800
+900

+1000

Address

Exception Message

Boot Line

SM Anchor

Interrupt Stack

System Memory Pool

+800000 sysMemTop()

= Available

= Reserved

KEY

System Image
text

data

bss

+2000

Interrupt Vector Table

+3000

Initial Stack

(4KB)

+10000

+20000

Shared Memory Pool

Ethernet Buffer Pool

(64KB)

(128KB)

Additional System Memory Pool
(added by ADD_MEM option)

BootROM / MMU Tables LOCAL_MEM_RSVD_SIZE{

WDB Memory Pool
_end
522

B

B
Sun SPARC, SPARClite
523

C
Intel i960
C.1 Introduction .. 526

C.2 Building Applications .. 526

Defining the CPU Type ... 526

Configuring the GNU ToolKit Environment 527

Compiling C or C++ Modules ... 527

C.3 Interface Variations .. 529

Initialization .. 529

Data Breakpoint Routine bh() ... 529

Parameter Change for intLevelSet() ... 530

Results Change for memLib .. 530

Math Routines .. 530

Adding in Unresolved Routines .. 530

Floating-Point Task Option: VX_FP_TASK 531

C.4 Architecture Considerations .. 532

Byte Order ... 532

Double-word Integers: long long .. 532

VMEbus Interrupt Handling .. 532

Memory Layout .. 533
525

VxWorks 5.3.1
Programmer’s Guide
List of Figures

Figure C-1 VxWorks System Memory Layout (i960CA) 534

Figure C-2 VxWorks System Memory Layout (i960JX) 535

Figure C-3 VxWorks System Memory Layout (i960KA and i960KB) 536

C.1 Introduction

This appendix provides information specific to VxWorks development on Intel

i960CA, JX, KA, and KB targets. It includes the following topics:

■ Building Applications: how to compile modules for your target architecture.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the i960 processors.

■ Architecture Considerations: special features and limitations of the i960

processors.

C.2 Building Applications

The following sections describe a configuration constant, an environment variable,

and compiler options that together specify the information the GNU ToolKit

requires to compile correctly for i960 targets.

Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

build with the appropriate architecture-specific features enabled. Define this

variable to one of the following values, to match the processor you are using:
526

C

C
Intel i960
– I960CA
– I960JX
– I960KA
– I960KB

For example, to define CPU for a i960CA on the compiler command line, specify

the following command-line option when you invoke the compiler:

-DCPU=I960CA

To provide the same information in a header or source file instead, include the

following line in the file:

#define CPU I960CA

Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. Running the GNU

compiler requires that you define the environment variable GCC_EXEC_PREFIX.

No change is required to the execution path, because the compilation chain is

installed in the same bin directory as the other Tornado executables.

For developers using UNIX hosts, you must specifically define this variable. For

example, if you use the C-shell, add the following to your .cshrc:

setenv GCC_EXEC_PREFIX $WIND_BASE/host/$WIND_HOST_TYPE/lib/gcc-lib/

For developers using Windows hosts, if you are working through the Tornado IDE,

the appropriate variable(s) are set automatically. However, before invoking the

compiler from a DOS command line, first run the following batch file to set the

variable(s):

%WIND_BASE%/host/x86-win32/bin/torVars.bat

For more information, see the Tornado User’s Guide: Getting Started.

Compiling C or C++ Modules

The following is an example of a compiler command line for i960 cross-

development. The file to be compiled in this example has a base name of applic.

% cc960 -fno-builtin -I $WIND_BASE/target/h -0 -c -mca\
-mstrict-align -fvolatile -nostdinc -DCPU=I960CA applic.c

The options shown in the example have the following meanings:1
527

VxWorks 5.3.1
Programmer’s Guide
-fno-builtin Required; uses library calls even for common library subroutines.

-I $WIND_BASE/target/h
Required; includes VxWorks header files. (Additional -I flags may

be included to specify other header files.)

-O Optional; performs standard optimization.

-c Required; specifies that the module is to be compiled only, and not

linked for execution under the host.

-mca Required for i960CA and i960JX; specifies the instruction set. For

the i960KA and KB, use -mka and -mkb, respectively.

-mstrict-align Required; do not permit unaligned accesses.

-fvolatile Required; consider all memory references through pointers to be

volatile.

-nostdinc Required; searches only the directory(ies) specified with the -I flag

(see above) and the current directory for header files. Does not

search host-system include files.

-DCPU=I960CA Required; defines the CPU type. If you are using an i960 processor

other than the CA, specify the appropriate value (see Defining the
CPU Type, p.526).

applic.language_id
Required; the file(s) to compile. For C compilation, specify a suffix

of .c. For C++ compilation, specify a suffix of .cpp. The output is

an unlinked object module in a.out format with the suffix .o; for

the example, the output is applic.o.

During C++ compilation, the compiled object module (applic.o) is

munched. Munching is the process of scanning an object module

for non-local static objects, and generating data structures that

VxWorks run-time support can use to call the objects’ constructors

and destructors. See the Tornado User’s Guide: Cross-Development
for details.

1. For more information on these and other compiler options, see the GNU ToolKit User’s Guide.

WRS supports compiler options used in building WRS software; a list of these options is

included in the Guide. Other options are not supported, although they are available with the

tools as shipped.
528

C

C
Intel i960
C.3 Interface Variations

This section describes particular routines that are specific to i960 targets in any of

the following ways:

■ available only on i960 targets

■ parameters specific to i960 targets

■ special restrictions or characteristics on i960 targets

For complete documentation on these routines, see the reference entries.

Initialization

There are several differences in what sysInit() initializes and in the initialization

sequence on i960 targets.

Differences in sysInit() Routine

For the i960, the sysInit() routine initializes the system interrupt and fault tables

with default stubs, in addition to its standard functions.

ROM-Based VxWorks with i960 Targets

As with other target architectures, the routines romInit() and romStart() execute

first. Then initialization continues at the sysInit() call, rather than with the

usrInit() call as for other ROM-based targets.

Data Breakpoint Routine bh()

In addition to being able to break at an instruction with b(), the i960CA permits

breakpoints at a data address using bh().

For example, the following command from the VxWorks shell causes a data

breakpoint on any access to data address 0xFFFF:

-> bh 0xFFFF, 3

For more information, see the reference entry for bh().

NOTE: The bh() routine does not work reliably on instruction fetches; use b() to
break on instructions.

!

529

VxWorks 5.3.1
Programmer’s Guide
The delete-breakpoint routines, bd() and bdall(), delete both instruction and data

breakpoints. Only two data breakpoints can be present in the system at one time.

Parameter Change for intLevelSet()

The i960 version of intLevelSet() takes an argument from 0 to 31. Level 31 is

equivalent to locking all interrupts.

Results Change for memLib

In VxWorks for the i960, the library memLib forces both partitions and blocks

returned by malloc() to be 16-byte aligned.

Math Routines

Mathematics routines using software floating-point emulation are part of the

GNU/960 distribution from Cygnus, in the libraries libm.a, libg.a, and libgcc.a.

The location of these libraries is described by the variable LIBS in

h/make/make.I960xxgnu (where xx identifies libraries specific to the CA, JX, KA,

or KB variant of the i960 architecture).

The following double-precision floating-point routines are included in the

GNU/960 distribution from Cygnus:

The following single-precision floating-point routines are also available:

Adding in Unresolved Routines

Occasions can arise when an application requires libm.a, libg.a, and libgcc.a
routines, although the application has not been prelinked with the VxWorks image.

There are several alternatives for dealing with this situation:

acos() asin() atan() atan2() ceil() cos() cosh()
exp() fabs() floor() fmod() log() log10() log2()
pow() sin() sinh() sqrt() tan() tanh()

atanf() atan2() ceilf() expf()
fabsf() floorf() logf() log2f()
powf() sinf() sqrtf() tanf()
530

C

C
Intel i960
■ You can compile and link a set of dummy calls with VxWorks to ensure that

the necessary routines are included in the VxWorks image.

■ You can explicitly link the appropriate archive with your application module

by using ld960.

■ You can add any unresolved reference symbols to src/config/mathInit.c and

rebuild VxWorks.

Floating-Point Task Option: VX_FP_TASK

The i960CA, JX, and KA processors contain no floating-point hardware; thus no

floating-point context is used. Floating-point emulation is performed in software

with the routines provided by the Cygnus libraries (see Math Routines, p.530);

therefore, the task option VX_FP_TASK is not required.

The i960KB has on-board floating-point hardware. The task option VX_FP_TASK is

required when spawning tasks on the i960KB processor.
531

VxWorks 5.3.1
Programmer’s Guide
C.4 Architecture Considerations

This section describes the following characteristics of the i960 architecture that you

should keep in mind as you write a VxWorks application:

■ Byte order
■ Double-word Integers
■ VMEbus interrupt handling
■ Memory layout

Byte Order

The i960 architecture uses little-endian byte order. For information about macros

and routines to convert byte order (from big-endian to little-endian and vice

versa), see Network Byte Order, p.250.

The VxWorks loader allows object module headers to be in either big-endian or

little-endian byte order. Host utility programs can use the most convenient byte

order to process i960 objects. Object file text and data segments must be little

endian for i960 processors.

Double-word Integers: long long

The double-word integer long long is not supported, except as an artifact of your

particular architecture and compiler. For more information about handling

unsupported features, please see the Customer Support User’s Guide.

VMEbus Interrupt Handling

The i960 uses 31 interrupt levels instead of the seven used by VMEbus. The

mapping of the seven VMEbus interrupts to the 31 i960 levels is board dependent.

VMEbus interrupts must be acknowledged with sysBusIntAck(). VxWorks does

not use the vector submitted by the interrupting device.

For more information, see the file h/arch/i960/ivI960.h.
532

C

C
Intel i960
Memory Layout

The figures on the following pages show the layout of a VxWorks system in

memory for various target architectures. Areas contain the following labels:

Interrupt Vector Table
Table of exception/interrupt vectors.

SM Anchor Anchor for the shared memory network (if there is shared

memory on the board).

Boot Line ASCII string of boot parameters.

Exception Message ASCII string of the fatal exception message.

Initial Stack Initial stack for usrInit(), until usrRoot() gets allocated stack.

System Image Entry point for VxWorks.

WDB Memory Pool Size depends on the macro WDB_POOL_SIZE which defaults

to one-sixteenth of the system memory pool. This space is

used by the target server to support host-based tools.

Interrupt Stack Size defined in configAll.h. Location depends on system

image size.

System Memory Pool
Size depends on size of system image and interrupt stack. The

end of the free memory pool for this board is returned by

sysMemTop().

Figure C-1 shows the memory layout for an i960CA target; Figure C-2 shows the

memory layout for an i960JX target; Figure C-3 shows the memory layout for an

i960KA or i960KB target.

All addresses shown in these figures are relative to the start of memory for a

particular target board. The start of memory (corresponding to 0x0 in the memory-

layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS in config.h for each

target.
533

VxWorks 5.3.1
Programmer’s Guide
Figure C-1 VxWorks System Memory Layout (i960CA)

+0x0000 LOCAL_MEM_LOCAL_ADRS

+400

+600

+700

+800

+900

+e00

+1000

Address

Initial Stack

Exception Message

Boot Line

SM Anchor

System Image

text

data

bss

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

NMI Vector

ffffff00

Initialization Boot Record

Interrupt Vector Table

Interrupt Stack

WDB Memory Pool

_end
534

C

C
Intel i960
Figure C-2 VxWorks System Memory Layout (i960JX)

+0x0000 LOCAL_MEM_LOCAL_ADRS

+400

+600

+800

+900

+30000

Address

Exception Message

Boot Line

System Image

text

data

bss

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

NMI Vector

ffffffd0

Initialization Boot Record

Interrupt Vector Table

Interrupt Stack

WDB Memory Pool

_end
535

VxWorks 5.3.1
Programmer’s Guide
Figure C-3 VxWorks System Memory Layout (i960KA and i960KB)

0x0000
+ac

+600

+700

+800

+900

+e00

+1000

Address

Initial Stack

Exception Message
Boot Line

SM Anchor

System Image

text

data

bss

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

Initial Memory Image

Interrupt Vector Table

Interrupt Stack

ff000000

+400

ffffffff

WDB Memory Pool

_end

+0x0000 LOCAL_MEM_LOCAL_ADRS
536

C

C
Intel i960
537

D
Intel x86
D.1 Introduction .. 541

D.2 Building Applications .. 541

Defining the CPU Type ... 541

Configuring the GNU ToolKit Environment 542

Compiling C and C++ Modules .. 542

D.3 Interface Variations .. 544

Supported Routines in mathALib ... 544

Architecture-Specific Global Variables ... 544

Architecture-Specific Routines ... 545

D.4 Architecture Considerations .. 548

Operating Mode, Privilege Protection, and Byte Order 548

Memory Segmentation .. 548

I/O Mapped Devices ... 549

Memory Mapped Devices .. 549

Memory Considerations for VME ... 550

Interrupts and Exceptions .. 550

Double-word Integers: long long .. 551

Context Switching .. 551

ISA/EISA Bus ... 552

PC104 Bus .. 552

PCI Bus .. 552

Software Floating-Point Emulation ... 552

VxWorks Memory Layout .. 553
539

VxWorks 5.3.1
Programmer’s Guide
D.5 Board Support Packages .. 556

Boot Considerations for pc386, pc486, and epc4 556

DMA Buffer Alignment and cacheLib ... 565

Support for Third-Party BSPs .. 565

VxWorks Images .. 565

BSP-Specific Global Variables .. 566

ROM Card and EPROM Support .. 566

Device Drivers .. 567

List of Tables

Table D-1 Architecture-Specific Global Variables 544

Table D-2 Architecture-Specific Routines .. 546

Table D-3 BSP-Specific Global Variables .. 566

Table D-4 Network Drivers ... 569

Table D-5 Network Board Hardware Configuration 569

Table D-6 Diskette Data Transfer Rates ... 571

Table D-7 Time Interval Parameters in fdTypes[] 571

List of Figures

Figure D-1 VxWorks System Memory Layout (x86 Upper Memory) 554

Figure D-2 VxWorks System Memory Layout (x86 Lower Memory) 555
540

D

D
Intel x86
D.1 Introduction

This appendix provides information specific to VxWorks development on Intel

i386, i486, and Pentium (x86) targets. It includes the following topics:

■ Building Applications: how to compile modules for your target architecture.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the x86 processors.

■ Architecture Considerations: special features and limitations of the x86

processors.

■ Board Support Packages: information on specific BSPs and device drivers.

For general information on the Tornado development environment’s cross-

development tools, see the Tornado User’s Guide: Cross-Development.

D.2 Building Applications

The following sections describe a configuration constant, an environment variable,

and compiler options that together specify the information the GNU ToolKit

requires to compile correctly for x86 targets.

Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

build with the appropriate architecture-specific features enabled. Define this

variable to either I80386 or I80486, to match the processor you are using.

For example, to define CPU for an i386 on the compiler command line, specify the

following command-line option when you invoke the compiler:

-DCPU=I80386
541

VxWorks 5.3.1
Programmer’s Guide
To provide the same information in a header or source file, include the following

line in the file:

#define CPU I80386

Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. Running the GNU

compiler requires that you define the environment variable GCC_EXEC_PREFIX.

No change is required to the execution path, because the compilation chain is

installed in the same bin directory as the other Tornado executables.

For developers using UNIX hosts, you must specifically define this variable. For

example, if you use the C-shell, add the following to your .cshrc:

setenv GCC_EXEC_PREFIX $WIND_BASE/host/$WIND_HOST_TYPE/lib/gcc-lib/

For developers using Windows hosts, if you are working through the Tornado IDE,

the appropriate variable(s) are set automatically. However, before invoking the

compiler from a DOS command line, first run the following batch file to set the

variable(s):

%WIND_BASE%/host/x86-win32/bin/torVars.bat

For more information, see the Tornado User’s Guide: Getting Started.

Compiling C and C++ Modules

The following is an example of a compiler command line for Intel x86 cross-

development. The file to be compiled in this example has the base name of applic.

% cc386 -DCPU=I80386 -I $WIND_BASE/target/h -fno-builtin -0 \
-mno-486 -fno-defer-pop -nostdinc -c applic. lang_id

The options shown in the example have the following meanings:1

1. For more information on these and other compiler options, see the GNU ToolKit User’s Guide.

WRS supports compiler options used in building WRS software; a list of these options is

included in the Guide. Other options are not supported, although they are available with the

tools as shipped.
542

D

D
Intel x86
cc386 Required; use cc386 for all supported x86 processors.

-DCPU=I80386 Required; defines the CPU type for the i386. If you are using the

i486 or Pentium, specify I80486.

-I $WIND_BASE/target/h
Required; includes VxWorks header files. (Additional -I flags may

be included to specify other header files.)

-fno-builtin Required; uses library calls even for common library routines.

-O Optional; performs standard optimizations. Note that

optimization is not supported for the Pentium.

-mno-486 Required for the i386; generates optimized code for the i386. For

the i486, the compiler automatically generates optimized code; no

additional flags are required.

-fno-defer-pop Required; pops the arguments to each subroutine call as soon as

that subroutine returns.

-nostdinc Required; searches only the directory(ies) specified with the -I flag

(see above) and the current directory for header files. Does not

search host-system include files.

-c Required; specifies that the module is to be compiled only, and not

linked for execution under the host.

applic.lang_id Required; the file(s) to compile. For C compilation, specify a suffix

of .c. For C++ compilation, specify a suffix of .cpp. The output is

an unlinked object module in a.out format with the suffix .o; for

the example, the output is applic.o.

During C++ compilation, the compiled object module (applic.o) is

munched. Munching is the process of scanning an object module

for non-local static objects, and generating data structures that

VxWorks run-time support can use to call the objects’ constructors

and destructors. For details, see the Tornado User’s Guide: Cross-
Development.
543

VxWorks 5.3.1
Programmer’s Guide
D.3 Interface Variations

This section describes particular features and routines that are specific to x86

targets in any of the following ways:

■ available only for x86 targets

■ parameters specific to x86 targets

■ special restrictions or characteristics on x86 targets

For complete documentation, see the reference entries.

Supported Routines in mathALib

For x86 targets, the following floating-point routines are supported. These routines

are also available without a hardware floating-point processor by defining

INCLUDE_SW_FP in config.h or configAll.h. For more information about

configuring the software floating-point emulation library, see Software Floating-
Point Emulation, p.552. See mathALib and the individual manual entries for

descriptions of each routine.

Architecture-Specific Global Variables

The file sysLib.c contains the global variables shown in Table D-1.

acos() asin() atan() atan2() ceil() cos()
exp() fabs() floor() fmod() infinity() irint()
iround() log() log10() log2() pow() round()
sin() sincos() sqrt() tan() trunc()

Table D-1 Architecture-Specific Global Variables

Global Variable Value Description

sysVectorIRQ0 0x20 (default) A mapping of the base vector for IRQ0.

sysIntIdtType 0x0000fe00

(default)

= trap gate

0x0000ee00

= interrupt gate

Used when VxWorks initializes the interrupt

vector table. The choice of trap gate vs. interrupt

gate affects all interrupts (vectors 0x20 through

0xff).
544

D

D
Intel x86
Architecture-Specific Routines

Register Routines

The following routines read x86 register values, and require one parameter, the

task ID:

Table D-2 shows additional architecture-specific routines. Other architecture-

specific routines are described throughout this section.

Breakpoints and the bh() Routine

VxWorks for the x86 supports both software and hardware breakpoints. When you

set a software breakpoint, VxWorks replaces an instruction with an int 3 software

interrupt instruction. VxWorks restores the original code when the breakpoint is

removed. The instruction queue is purged each time VxWorks changes an

instruction to a software break instruction.

A hardware breakpoint uses the processor’s debug registers to set the breakpoint.

The x86 architectures have four breakpoint registers. If you are using the target

shell, you can use the bh() routine to set hardware breakpoints. The routine is

declared as follows:

sysGDT[] 0x3ff limit (default) The Global Descriptor Table has five entries. The

first is a null descriptor. The second and third are

for task-level routines. The fourth is for interrupt-

level routines. The fifth is reserved.

sysProcessor 0 = i386

1 = i486

2 = Pentium

The processor type (set by VxWorks).

sysCoprocessor 0 = no coprocessor

1 = 387 coprocessor

2 = 487 coprocessor

The type of floating-point coprocessor (set by

VxWorks).

eax() ebx() ecx() edx() edi()
esi() ebp() esp() eflags()

Table D-1 Architecture-Specific Global Variables (Continued)

Global Variable Value Description
545

VxWorks 5.3.1
Programmer’s Guide
Table D-2 Architecture-Specific Routines

Routine Function Header Description

sysInByte() UCHAR sysInByte
(int port)

Read one byte from I/O.

sysInWord() USHORT sysInWord
(int port)

Read one word (two bytes) from I/O.

sysInLong() ULONG sysInLong
(int port)

Read one long word (four bytes) from I/O.

sysOutByte() void sysOutByte
(int port, char data)

Write one byte to I/O.

sysOutWord() void sysOutWord
(int port, short data)

Write one word (two bytes) to I/O.

sysOutLong() void sysOutLong
(int port, long data)

Write one long word (four bytes) to I/O.

sysInWordString() void sysInWordString
(int port, short *address,
int count)

Read word string from I/O.

sysInLongString() void sysInLongString
(int port, short *address,
int count

Read long string from I/O.

sysOutWordString() void sysOutWordString
(int port, short *address,

int count)

Write word string to I/O.

sysOutLongString() void sysOutLongString
(int port, short *address,
int count)

Write long string to I/O.

sysDelay() void sysDelay
(void)

Allow enough recovery time for port accesses.

sysIntDisablePIC() STATUS sysIntDisablePIC
(int intLevel)

Disable a Programmable Interrupt Controller

(PIC) interrupt level.

sysIntEnablePIC() STATUS sysIntEnablePIC
(int intLevel)

Enable a PIC interrupt level.

sysCpuProbe() UINT sysCpuProbe
(void)

Check for type of CPU (i386, i486, or Pentium).
546

D

D
Intel x86
STATUS bh
(
INSTR *addr, /* where to set breakpoint, or */
 /* 0 = display all breakpoints */
int task, /* task to set breakpoint; */
 /* 0 = set all tasks */
int count, /* number of passes before hit */
int type, /* breakpoint type; see below */
INSTR *addr0 /* ignored for x86 targets */
)

The bh() routine takes the following types in parameter type:

BRK_INST Instruction hardware breakpoint (0x1000)

BRK_DATAW1 Data write 1-byte breakpoint (0x1400)

BRK_DATAW2 Data write 2-byte breakpoint (0x1500)

BRK_DATAW4 Data write 4-byte breakpoint (0x1700)

BRK_DATARW1 Data read-write 1-byte breakpoint (0x1c00)

BRK_DATARW2 Data read-write 2-byte breakpoint (1d00)

BRK_DATARW4 Data read-write 4-byte breakpoint (1f00)

Disassembler: l()

If you are using the target shell, note that the VxWorks disassembler l() does not

support 16-bit code compiled for earlier generations of 80x86 processors.

However, the disassembler does support 32-bit code for both the i386 and i486

processors.

vxMemProbe()

The vxMemProbe() routine, which probes an address for a bus error, is supported

on the x86 architectures by trapping both general protection faults and page faults.
547

VxWorks 5.3.1
Programmer’s Guide
D.4 Architecture Considerations

This section describes the following characteristics of the Intel x86 architectures

that you should keep in mind as you write a VxWorks application:

■ Operating mode, privilege protection, and byte order
■ Memory segmentation and the MMU
■ Memory considerations for VME
■ Interrupts and exceptions
■ Context switching
■ ISA/EISA bus
■ PC104 bus
■ PCI bus
■ Software floating-point emulation
■ VxWorks memory layout

Consult Intel’s Intel486 Microprocessor Family Programmer’s Reference Manual for

details on the x86 architectures.

Operating Mode, Privilege Protection, and Byte Order

VxWorks for the x86 runs in the 32-bit protected mode.

No privilege protection is used, thus there are no call gates. The privilege level is

always 0, the most privileged level (Supervisor mode).

The x86 byte order is little-endian, but network applications must convert some

data to a standard network order, which is big-endian. In particular, in network

applications, be sure to convert the port number to network byte order using

htons().

See Network Byte Order, p.250 for more information about macros and routines to

convert byte order (from little-endian to big-endian or vice versa).

Memory Segmentation

The Intel x86 processors support both I/O-mapped devices and memory-mapped

devices.
548

D

D
Intel x86
I/O Mapped Devices

For I/O mapped devices, developers may use the following routines from

config/pcx86/sysALib.s:

Memory Mapped Devices

For memory mapped devices, there are two kinds of memory protection provided

by VxWorks: the Memory Management Unit and the Global Descriptor Table.

Because VxWorks operates at the highest processor privilege level, no “protection

rings” exist.

The x86 processors allow you to configure the memory space into valid and invalid

areas, even under Supervisor mode. Thus, you receive a page fault only if the

processor attempts to access addresses mapped as invalid, or addresses that have

not been mapped. Conversely, if the processor attempts to access a nonexistent

address space that has been mapped as valid, no page fault occurs.

■ Memory Management Unit (MMU)

If INCLUDE_MMU_BASIC is defined, then VxWorks enables the MMU with the

mmuPhysDesc[] table which includes PCI memory mapping information. This is

the default.

If you have other memory mapped devices and if INCLUDE_MMU_BASIC is

defined in config.h (the default), you may need to add your device address space

into the MMU table by manually editing the MMU configuration structure

sysPhysMemDesc[] in sysLib.c. For information on editing the

sysPhysMemDesc[] structure, see 7.3 Virtual Memory Configuration, p.407. Do not

overlap any existing MMU entries, and be sure all entries are page aligned. We

recommend that you also maintain a 1:1 correlation between virtual and physical

memory, since VxWorks and all tasks use a common address space.

sysInByte() – input one byte from I/O space

sysOutByte() – output one byte to I/O space

sysInWord() – input one word from I/O space

sysOutWord() – output one word to I/O space

sysInLong() – input one long word from I/O space

sysOutLong() – output one long word to I/O space

sysInWordString() – input a word string from I/O space

sysOutWordString() – output a word string to I/O space

sysInLongString() – input a long string from I/O space

sysOutLongString() – output a long string to I/O space
549

VxWorks 5.3.1
Programmer’s Guide
Attempts to access areas not mapped as valid in the MMU result in page faults.

NOTE: The i386 MMU does not have write-protect capability.

■ Global Descriptor Table (GDT)

The GDT is defined as the table sysGDT[] in sysALib.s. The table has five entries:

a null entry, an entry for program code, an entry for program data, an entry for

ISRs, and a reserved entry. It is initially set so that the available memory range is

0x0-0xffffffff. If INCLUDE_PCI is defined, VxWorks does not alter this setting. This

memory range is available at run-time with the MMU configuration.

If INCLUDE_PCI is not defined, VxWorks adjusts the GDT using the sysMemTop()
routine to check the actual memory size during system initialization and set the

table so that the available memory range is 0x0-sysMemTop. This causes a General

Protection Fault to be generated for any memory access outside the memory range

0x0-sysMemTop.

Memory Considerations for VME

The global descriptors for x86 targets are configured for a flat 4GB memory space.

If you are running VxWorks for the x86 on a VME board, be aware that addressing

nonexistent memory or peripherals does not generate a bus error or fault.

Interrupts and Exceptions

The Interrupt Descriptor Table (IDT) occupies the address range 0x0 to 0x800 (also

called the Interrupt Vector Table, see Figure D-1). Vector numbers 0x0 to 0x1f are

handled by the default exception handler. Vector numbers 0x20 to 0xff are handled

by the default interrupt handler.

By default, vector numbers 0x20 to 0x2f are mapped to IRQ levels 0 to 15. To

redefine the base address, edit sysVectorIRQ0 in sysLib.c.

For vector numbers 0x0 to 0x11, no task gates are used, only interrupt gates. By

default, vector numbers 0x12 to 0xff are trap gates, but this can be changed by

redefining the global variable sysIntIdtType.

The difference between an interrupt gate and a trap gate is its effect on the IF flag:

using an interrupt gate clears the IF flag, which prevents other interrupts from

interfering with the current interrupt handler.

!

550

D

D
Intel x86
Each vector of the IDT contains the following information:

offset offset to the interrupt handler

selector 0x0020, fourth descriptor (code) in GDT

descriptor privilege level 3

descriptor present bit 1

The interrupt handler calls intEnt() and saves the volatile registers (eax, edx, and

ecx). It then calls the ISR, which is usually written in C. Finally, the handler restores

the saved registers and calls intExit().

There is no designated interrupt stack. The interrupt’s stack frame is built on the

interrupted task’s stack. Thus, each task requires extra stack space for interrupt

nesting; the amount of extra space varies, depending on your ISRs and the

potential nesting level.

Some device drivers (depending on the manufacturer, the configuration, and so

on) generate a stray interrupt on IRQ7, which is used by the parallel driver. The

global variable sysStrayIntCount (see Table D-3) is incremented each time such an

interrupt occurs, and a dummy ISR is connected to handle these interrupts.

The chip generates an exception stack frame in one of two formats, depending on

the exception type: (EIP + CS + EFLAGS) or (ERROR + EIP + CS + EFLAGS).

Double-word Integers: long long

The double-word integer long long is not supported, except as an artifact of your

particular architecture and compiler. For more information about handling

unsupported features, please see the Customer Support User’s Guide.

Context Switching

Hardware multitasking and the TSS descriptor are not used. VxWorks creates a

dummy exception stack frame, loads the registers from the TCB, and then starts the

task.
551

VxWorks 5.3.1
Programmer’s Guide
ISA/EISA Bus

The optional PC-compatible hardware cards supported in this release (the

Ethernet adapter cards and the Blunk Microsystems ROM Card) use the ISA/EISA

bus architecture.

PC104 Bus

The PC104 bus is supported and tested with the NE2000-compatible Ethernet card

(4i24: Mesa Electronics). Ampro’s Ethernet card (Ethernet-II) is also supported.

PCI Bus

The PCI bus is supported and tested with the Intel EtherExpress PRO100B

Ethernet card. Several functions to access PCI configuration space are supported.

Functions addressed here include:

■ Locate the device by deviceID and vendorID.

■ Locate the device by classCode.

■ Generate the special cycle.

■ Access its configuration registers.

Software Floating-Point Emulation

The software floating-point library is supported for the x86 architectures; define

INCLUDE_SW_FP inconfigAll.h or config.h to include the library in your system

image. This library emulates each floating point instruction, by using the exception

“Device Not Available.” For other floating-point support information, see

Supported Routines in mathALib, p.544.
552

D

D
Intel x86
VxWorks Memory Layout

Two memory layouts for the x86 are shown in the following figures: Figure D-1

illustrates the typical upper memory configuration, while Figure D-2 shows a

lower memory option. These figures contain the following labels:

Interrupt Vector Table
Table of exception/interrupt vectors.

GDT Global descriptor table.

Anchor for the shared memory network (if there is shared

memory on the board).

Boot Line ASCII string of boot parameters.

Exception Message ASCII string of the fatal exception message.

FD DMA Area Diskette (floppy device) direct memory access area.

Initial Stack Initial stack for usrInit(), until usrRoot() gets allocated stack.

System Image Entry point for VxWorks.

WDB Memory Pool Size depends on the macro WDB_POOL_SIZE which defaults

to one-sixteenth of the system memory pool. This space is

used by the target server to support host-based tools.

Interrupt Stack Size defined in configAll.h. Location depends on system

image size. Note that although an interrupt stack is allocated,

it is not used.

System Memory Pool
Size depends on size of system image and interrupt stack.

The end of the free memory pool for this board is returned by

sysMemTop().

All addresses shown in Figure D-1 are relative to the start of memory for a

particular target board. The start of memory (corresponding to 0x0 in the memory-

layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS in config.h for each

target.

In general, the boot image is placed in lower memory and the VxWorks image is

placed in upper memory, leaving a gap between lower and upper memory. Some

BSPs have additional configurations which must fit within their hardware

constraints. For details, see the reference entry for each specific BSP.
553

VxWorks 5.3.1
Programmer’s Guide
Figure D-1 VxWorks System Memory Layout (x86 Upper Memory)

+0x0000 + LOCAL_MEM_LOCAL_ADRS

+800

+1100

+1200

Address

Interrupt Vector Table
(2KB)

System Memory Pool

sysMemTop()

= Available

KEY

GDT

SM Anchor

Exception Message

+1300
Boot Line

+2000

FD DMA Area

+5000

+100000
Initial Stack

+108000

System Image

= Reserved

_end

Interrupt Stack

(no memory)
+a0000

WDB Memory Pool
554

D

D
Intel x86
Figure D-2 VxWorks System Memory Layout (x86 Lower Memory)

Initial Stack

System Image

Interrupt Stack

System Memory Pool
sysMemTop()

+8000

_end
WDB Memory Pool

+0x0000 + LOCAL_MEM_LOCAL_ADRS

+800

+1100

+1200

Address

Interrupt Vector Table
(2KB)

= Available

KEY

GDT

SM Anchor

Exception Message

+1300
Boot Line

+2000

FD DMA Area

+5000

+100000

= Reserved

(no memory)
+a0000
555

VxWorks 5.3.1
Programmer’s Guide
D.5 Board Support Packages

Boot Considerations for pc386, pc486, and epc4

For general information on booting VxWorks, see the Tornado User’s Guide: Getting
Started.

This section describes how to build a boot disk, how to boot VxWorks, and how to

mount a DOS file system. Besides the standard tapes, VxWorks for x86 targets also

includes the following DOS diskettes (in both 5.25" (1.2MB) and 3.5" (1.44MB)

formats):

■ The diskette labeled “VxWorks Utility Disk” contains the DOS executables

vxsys.com, vxcopy.exe, vxload.com, and mkboot.bat.

■ The diskette labeled “VxWorks Boot Disk” contains the VxWorks boot sector

file, bootrom.sys; the minimal boot program, bootrom_uncmp (renamed

bootrom.dat); and standalone VxWorks, vxWorks.st (compiled with

BOOTABLE undefined in config.h). These files work for the i386, the i486, or

the Pentium.

These utilities help you build new boot disks and are described in the following

subsections.

NOTE: These utilities are also included in the Tornado tree at

usr/wind/host/x86-win32/bin.

Boot Process

Intel x86 targets that are IBM PC compatible have a BIOS ROM. The BIOS ROM is

not overwritten by VxWorks. The VxWorks executables that you build on the

development host—such as vxWorks.st_rom and bootrom_uncmp—are loaded

by the standard PC bootstrap mechanism2; that is, the PC BIOS (basic

input/output system) ROM.

In general terms, the PC BIOS boot process works as follows:

1. The BIOS boot process searches the first diskette drive’s (A:) boot sector for a

loader program.

2. You can use a boot ROM if you install the Blunk Microsystems ROM Card 1.0; see ROM Card
and EPROM Support, p.566.

!

556

D

D
Intel x86
2. If a loader program was not in drive A:’s boot sector, the process searches the

first hard disk’s (C:) boot sector for a loader program.

3. The loader program is loaded into memory and executed.

4. Typically, the loader program loads the operating system from disk and

executes it, completing the boot process.

For VxWorks, the process is the same except for step 4. Because the loader program

is specific to VxWorks, it loads and executes the file bootrom.sys.

To build a VxWorks boot disk (either diskette or hard drive), you must replace the

standard loader program with the VxWorks loader program and create the

appropriate bootrom.sys file. The following subsections describe how to do this

from VxWorks and from MS-DOS.

Building a Boot Disk/Diskette from VxWorks

The routine mkbootFd() produces a VxWorks boot diskette, and mkbootAta()
produces a VxWorks boot disk (an IDE or ATA hard disk). Both run on any

VxWorks x86 target. They are provided in config/bspname/mkboot.c. Use a DOS-

formatted disk or diskette.

NOTE: The mkbootFd() routine supports only high-density diskettes.

The mkbootFd() and mkbootAta() routines write the boot sector so that it

contains the VxWorks loader program, and make a boot image named

bootrom.sys. The boot image can be derived from one of the images listed in

VxWorks Images, p.565. Before making any version of the image, make sure that

DEFAULT_BOOT_LINE in config.h is set correctly (see the Tornado User’s Guide:
Getting Started), and that the size of the boot image (text+data+bss) is verified to be

less than 512KB. It cannot be larger than this, because it is written into lower

memory.

During the booting process, the VxWorks loader program reads bootrom.sys and

then jumps to the entry point of the boot image.

The mkbootFd() routine requires the following parameters:

STATUS mkbootFd (int drive, int fdType, char *filename)

The first two parameters specify the drive number and diskette type, specified as

in Booting VxWorks from a Diskette, an ATA/IDE Disk, or a PC Card, p.561. The third

parameter specifies the file name of the boot image.

The mkbootAta() routine requires the following parameters:

STATUS mkbootAta (int ctrl, int drive, char *filename)

!

557

VxWorks 5.3.1
Programmer’s Guide
The first two parameters specify the controller number and drive number,

specified as in Booting VxWorks from a Diskette, an ATA/IDE Disk, or a PC Card, p.561.

The third parameter specifies the file name of the boot image.

For example, to create a boot disk for the pc386 BSP, first use the following

commands to create the mkboot.o object from mkboot.c:

% cd /usr/wind/target/config/pc386
% make mkboot.o

Then, from the Tornado shell, move to the appropriate directory, load mkboot.o,

and then invoke mkbootFd() or mkbootAta(). Remember to place a formatted,

empty diskette in the appropriate drive if you use mkbootFd().

In this example, mkbootAta() builds a local IDE disk on drive C: from

bootrom_uncmp with the default ataResources[] table (see ATA/IDE Disk Driver,
p.572):

-> cd "/usr/wind/target/config/pc386"
-> ld < mkboot.o
-> mkbootAta 0,0,"bootrom_uncmp"

Building a Boot Disk/Diskette from MS-DOS

The VxWorks Utility Disk includes several utility programs for creating VxWorks

boot disks. These utilities write the VxWorks loader program on a diskette’s or a

hard disk’s boot sector, and then copy the VxWorks executables from the host to

the disk in a format suitable for the loader program. The utilities mimic the

corresponding MS-DOS utilities, but they must be run under a DOS session of

Windows, not “pure” DOS. They are summarized as follows and described in

more detail later in this section:

vxsys.com installs a VxWorks loader program in a disk’s boot sector.

vxcopy.exe copies a VxWorks a.out executable to the boot disk in the required

format.

vxload.com loads and executes VxWorks from MS-DOS.

mkboot.bat an MS-DOS batch file that creates boot disks.

■ Creating a Boot Disk for PC-Compatible Targets

To create a diskette or a bootable hard disk for PC-compatible targets, follow these

steps:

1. On the development host, change to the BSP directory, for example,

config/pc386. Use make to produce the minimal boot program (the target

bootrom_uncmp) or a bootable VxWorks (the target vxWorks_boot or
558

D

D
Intel x86
vxWorks_boot.st).3 We recommend you copy the resulting file to a legal MS-

DOS file name, such as bootrom.dat, to simplify the rest of the process.

The commands for this sequence are as follows:

% cd wpwr/target/config/pc386
% make bootrom_uncmp
% cp bootrom_uncmp bootrom.dat

2. Transfer the executable image to a PC running MS-DOS. In many cases, the PC

is networked with the workstation, using PC-NFS or a similar networking

package. For example:

C:\> copy drive:bootrom.dat c:

where drive refers to the mounted file system on your PC.

3. Use the mkboot utility (or a combination of vxsys and vxcopy) to create the

boot disk. If this boot disk is a diskette, it must be a high-density diskette. The

following example shows this step, assuming the diskette is in drive A:

C:\> mkboot a: bootrom.dat

The mkboot utility uses vxsys to create the VxWorks loader program in the

disk’s boot sector. mkboot then runs vxcopy to copy bootrom.dat to the boot

file bootrom.sys on the target disk, excluding the a.out header.

4. Check that bootrom.sys is contiguous on the boot disk, using the MS-DOS

chkdsk utility. (The mkboot utility runs chkdsk automatically.) If chkdsk
shows that there are non-contiguous blocks, delete all files from the disk and

repeat the vxcopy operation to ensure that MS-DOS lays down the file

contiguously.

The following example shows chkdsk output where the boot file is not

contiguous (note especially the last line of output):

C:\> chkdsk a:bootrom.sys

Volume Serial Number is 2A35-18ED
1457664 bytes total disk space
 895488 bytes in 11 user files
 562176 bytes available on disk

 512 bytes in each allocation unit
 2847 total allocation units on disk
 1098 available allocation units on disk

3. Before making either version of the image, make sure that DEFAULT_BOOT_LINE in

config.h is set correctly, and that the size of the boot image (text+data+bss) is less than

512KB. It cannot be larger than this, because it is written into lower memory.
559

VxWorks 5.3.1
Programmer’s Guide
 655360 total bytes memory
 602400 bytes free

A:\BOOTROM.SYS Contains 2 non-contiguous blocks

5. To test your boot disk, first make sure that the correct drive holds the boot disk

(in this example case, drive A: holds the boot diskette).

6. Reboot the PC.

Depending on the configuration of your VxWorks image, if the boot is

successful, the VxWorks boot prompt appears either on the VGA console or on

the COM1 serial port. You can boot VxWorks by entering @:

[VxWorks Boot]: @

■ The MS-DOS Boot Utilities in More Detail

vxsys drive:

This command installs a VxWorks loader program in a drive’s boot sector. The

drive can be either a diskette (drive A:), or a hard disk that is searched by the

BIOS bootstrap (drive C:).4 The VxWorks loader program searches for the file

bootrom.sys in the root directory and loads it directly into memory at 0x8000.

Execution then jumps to romInit() at 0x8000.

After a loader program is installed in the disk’s boot sector, you do not need to

repeat the vxsys operation for new ROM images. Just use vxcopy to make a new

version of bootrom.sys.

vxcopy source_file target_file
This command copies the VxWorks image file from source_file to target_file.

Normally this copies the bootrom_uncmp output to bootrom.sys on the boot

disk. vxcopy strips the 32-byte a.out header from source_file as it copies.

mkboot drive: source_file
This command is an MS-DOS batch file that uses vxsys to install the VxWorks

loader program in the drive’s boot sector, and then uses vxcopy to transfer

source_file to drive:bootrom.sys. It also runs the MS-DOS utility chkdsk to

check whether bootrom.sys is contiguous.

vxload [image_file]

This command is used during an MS-DOS session to load and execute the

VxWorks image (normally vxWorks.st or bootrom_uncmp). It can be more

convenient or quicker than loading the image via the PC boot cycle. vxload

4. For embedded applications, actual disk drives are often replaced by solid state disks.

Because there are no moving parts, boot performance and reliability are increased.
560

D

D
Intel x86
takes an optional parameter, the image file name; the default is vxWorks.st in
the current directory.

NOTE: vxload cannot be used to load VxWorks if the MS-DOS session has a

protected mode program in use. Typical examples include the MS-DOS RAM disk

driver, vdisk.sys, and the extended memory manager, emm386.exe. To use

vxload, remove or disable such facilities.

Because vxload must read the image file to memory at 0x8000, it checks to see

that this memory is not in use by MS-DOS, and generates an error if it is. If you

receive such an error, reconfigure your PC to make the space available by

loading MS-DOS into high memory and reducing the number of device

drivers. Or start vxload instead of the MS-DOS command interpreter

command.com. (If you take this approach, remember to first ensure that you

can restore your previous configuration.)

The following is a sample config.sys file that shows these suggestions:

device=c:\dos\himem.sys
dos=high,umb
shell=c:\vxload.com c:\bootrom.dat

The file bootrom.dat must have an a.out header, unlike the bootrom.sys file

made by mkboot.

Booting VxWorks from a Diskette, an ATA/IDE Disk, or a PC Card

Three boot devices are available in VxWorks for the x86, one for diskettes, one for

ATA/IDE hard disks, and one for PCMCIA PC cards. You can also build your own

VxWorks boot ROMs using optional hardware; see ROM Card and EPROM Support,
p.566. Alternatively, as with other VxWorks platforms, you can also boot over an

Ethernet (using one of the supported Ethernet cards), or over a SLIP connection.

NOTE: Because standard PC BIOS components do not support initial booting from

PCMCIA devices, systems which load VxWorks from PCMCIA devices must use

a VxWorks boot disk/diskette. See Building a Boot Disk/Diskette from VxWorks,

p.557 and Building a Boot Disk/Diskette from MS-DOS, p.558.

When booting from a diskette, an ATA/IDE disk, or a PC card, first make sure that

the boot device is formatted for an MS-DOS file system. The VxWorks boot

program mounts the boot device by automatically calling either usrFdConfig() in
src/config/usrFd.c for diskettes, usrAtaConfig() in src/config/usrAta.c for

ATA/IDE hard disks, or usrPcmciaConfig() in src/config/usrPcmcia.c for PC

cards.

!

!

561

VxWorks 5.3.1
Programmer’s Guide
In each case, a mount point name is taken from the file name specified as one of the

boot parameters. You might choose diskette zero (drive A:) to be mounted as /fd0
(by supplying a boot file name that begins with that string). Similarly, you might

choose ATA/IDE hard disk zero (drive C:) to be mounted as /ata0 or you might

choose the PC card in socket 0 to be mounted as /pc0. In each case, the name of the

directory mount point (fd0, ata0, or pc0 in these examples) can be any legal file

name. (For more information on usrFdConfig(), usrAtaConfig(), or

usrPcmciaConfig(), see Mounting a DOS File System, p.564.)

Because the PC hardware does not have a standard NVRAM interface, the only

way to change default boot parameters is to rebuild the bootstrap code with a new

definition for DEFAULT_BOOT_LINE in config.h. See Boot Process, p.556 for

instructions on how to rebuild the bootstrap code.

NOTE: To enable rebooting with CTRL+X, you must set some of the BSP-specific

global variables sysWarmType, sysWarmFdType, and sysWarmFdDrive,

sysWarmAtaCtrl, and sysWarmAtaDrive, depending on which boot device you

use. For more information, see Architecture-Specific Global Variables, p.544.

■ Booting from Diskette

To boot from a diskette, specify the boot device as fd (for floppy device). First,

specify the drive number on the boot device: line of the boot parameters display.

Then, specify the diskette type (3.5" or 5.25"). The format is as follows:

boot device: fd= drive number, diskette type

drive number
a digit specifying the diskette drive:

0 = default; the first diskette drive (drive A:)

1 = the second diskette drive (drive B:)

diskette type
a digit specifying the type of diskette:

0 = default; 3.5" diskette

1 = 5.25" diskette

Thus, to boot from drive B: with a 5.25" diskette, enter the following:

boot device: fd=1,1

The default value of the file-name boot parameter is /fd0/vxWorks.st. You can

specify another boot image; for example, assume that you have placed your

vxWorks and vxWorks.sym files in the root directory of the 5.25" diskette in drive

!

562

D

D
Intel x86
A: as the files A:\vxworks and A:\vxworks.sym, and that the mount point for this

drive is /fd0. To boot this image, enter the following in the boot parameters

display:

boot device: fd=0,1
...
file name: /fd0/vxworks

■ Booting from ATA/IDE Disk

To boot from an ATA/IDE disk, specify the boot device as ata. First, specify the

controller number on the boot device line of the boot parameters display. Then,

specify the drive number. The format is as follows:

boot device: ata= controller number, drive number

controller number
a digit specifying the controller number:

0 = a controller described in the first entry of the ataResources
table (in the default configuration, the local IDE disk is the

first controller)

1 = a controller described in the second entry of the ataResources
table (in the default configuration, the ATA PCMCIA PC card

is the second controller)

drive number
a digit specifying the hard drive:

0 = the first drive on the controller (drive C: or E:)
1 = the second drive on the controller (drive D: or F:)

If your vxWorks and vxWorks.sym files are in the root directory of your IDE hard

disk drive C: as the files C:\vxworks and C:\vxworks.sym, where C: is the first

IDE disk drive on the system and the mount point for the drive is /ata0, then enter

the following in the boot parameters display:

boot device: ata=0,0
...
file name: /ata0/vxworks

■ Booting from PCMCIA PC Card

To boot from a PCMCIA PC card, specify the boot device as pcmcia. Specify the

socket number on the boot device: line of the boot parameters display. The format

is as follows:

boot device: pcmcia= socket number
563

VxWorks 5.3.1
Programmer’s Guide
socket number
a digit specifying the socket number:

0 = the first PCMCIA socket

1 = the second PCMCIA socket

If your vxWorks and vxWorks.sym files are in the root directory of your ATA or

SRAM PCMCIA PC card drive E: as the files E:\vxworks and E:\vxworks.sym,

and the mount point for your PC card drive is /pc0, then enter the following:

boot device: pcmcia=0
...
file name: /pc0/vxworks

If you are using an Ethernet PC card, the boot device is the same and the file name

is:

file name: /usr/wind/target/config/pc386/vxWorks

Mounting a DOS File System

You can mount a DOS file system from a diskette, an ATA/IDE disk, or a PC card

(SRAM or ATA) to your VxWorks target.

Use the routine usrFdConfig() to mount the file system from a diskette. It takes the

following parameters:

drive number the drive that contains the diskette: MS-DOS drive A: is 0; drive B:
is 1.

diskette type 0 (3.5" 2HD) or 1 (5.25" 2HD).

mount point from where on the file system to mount, for example, /fd0/.

Use the routine usrAtaConfig() to mount the file system from an ATA/IDE disk. It

takes the following parameters:

controller number
the controller: a controller described in the first entry of the

ataResources[] table is 0; a controller described in the second

entry is 1. In the default configuration, the local IDE disk is 0; the

PCMCIA ATA drive is 1.

drive number the drive: the first drive of the controller is 0; the second drive of

the controller is 1. In the default configuration, MS-DOS drive C:
is 0; drive D: is 1.

mount point from where on the file system to mount, for example, /ata0/.
564

D

D
Intel x86
Use pccardMount() to mount the file system from a PC card (SRAM or ATA). This

routine differs from usrPcmciaConfig() in that pccardMount() uses the default

device. A default device is created by the enabler routine when the PC card is

initialized. The default device is removed automatically when the PC card is

removed. pccardMount() takes the following parameters:

socket number the socket that contains the PC card; the first socket is 0.

mount point from where on the file system to mount, for example, /pc0/.

Use pccardMkfs() to initialize a PC card and mount the file system from a PC card

(SRAM or ATA). It takes the following parameters:

socket number the socket that contains the PC card; the first socket is 0.

mount point from where on the file system to mount, for example, /pc0/.

The pccardMount() and pccardMkfs() routines are provided in source form in

src/drv/pcmcia/pccardLib.c.

DMA Buffer Alignment and cacheLib

If you write your own device drivers that use direct memory access into buffers

obtained from cacheLib, the buffer must be aligned on a 64KB boundary.

Support for Third-Party BSPs

To support third party pc386 and pc486 BSPs, the global variable sysCodeSelector
and the routines sysIntVecSetEnt() and sysIntVecSetExit() are defined in

sysLib.c.

VxWorks Images

The executable targets bootrom_uncmp, vxWorks, and vxWorks.st were tested

and verified on the pc386, pc486, and epc4 BSPs. The executable target

bootrom_uncmp uses lower memory (0x0 - 0xa0000), while vxWorks and

vxWorks.st use upper memory (0x100000 - pcMemSize). A minimum of 1MB of

memory in upper memory is required for vxWorks and vxWorks.st.

The VxWorks makefile targets listed below are supported in these BSPs. They

should be placed on a bootable diskette by mkboot (a DOS utility) or by

mkbootFd() or mkbootAta() (VxWorks utilities). The makefile target
565

VxWorks 5.3.1
Programmer’s Guide
vxWorks_low should be downloaded by the bootrom_high bootROM image; for

information on all VxWorks makefile targets, see the Tornado User’s Guide: Cross-
Development:

BSP-Specific Global Variables

The BSP-specific global variables shown in Table D-3 apply to pc386, pc486, and

epc4.

ROM Card and EPROM Support

A boot EPROM (type 27020 or 27040) is supported with Blunk Microsystems’ ROM

Card 1.0. For information on booting from these devices, see the Blunk

Microsystems documentation.

The following program is provided to support VxWorks with the ROM Card:

vxWorks_rom bootable VxWorks: upper memory

vxWorks_rom_low bootable VxWorks: lower memory

vxWorks.st_rom bootable VxWorks.st (compressed): upper memory

bootrom bootROM (compressed): lower memory

bootrom_uncmp bootROM: lower memory

bootrom_high bootROM (compressed): upper memory

Table D-3 BSP-Specific Global Variables

Location Global Variable Value Description

sysLib.c sysWarmType
sysWarmFdType
sysWarmFdDrive
sysWarmAtaCtrl
sysWarmAtaDrive

0 = ROMBIOS

1 (default) =

Diskette

2 = ATA

sysWarmType controls how CTRL+X is processed.

If 0, VxWorks asserts SYSRESET line, and CTRL+X
produces cold start. If 1, VxWorks reads a boot image

from the diskette specified by sysWarmFdType and

sysWarmFdDrive, and jumps to the boot image

entry point. If 2, VxWorks reads a boot image from

the ATA/IDE disk specified by sysWarmAtaCtrl
and sysWarmAtaDrive and jumps to the boot image

entry point.

sysFdBufAddr
sysFdBufSize

0x2000

0x3000

Address and size of diskette DMA buffer.

sysStrayIntCount VxWorks increments this when it catches a stray

interrupt on IRQ7.
566

D

D
Intel x86
config/bspname/romcard.s
a loader for code programmed in to the EPROM.

In addition, the following configurations are defined in the makefile to generate

Motorola S-record format from bootrom_uncmp or from vxWorks_boot.st:

romcard_bootrom_512.hex
boot ROM image for 27040 (512 KB)

romcard_bootrom_256.hex
boot ROM image for 27020 (256 KB)

romcard_vxWorks_st_512.hex
bootable VxWorks image for 27040 (512 KB)

Neither the ROM Card nor the EPROM is distributed with VxWorks. To contact

Blunk Microsystems, call or FAX 415–960–7190.

Device Drivers

VxWorks for the x86 includes a console driver, network drivers for several kinds

of hardware, a diskette driver, an ATA/IDE hard disk driver, and a line printer

driver.

NOTE: There is no support for a SCSI device driver in VxWorks 5.3.1.

VGA and Keyboard Drivers

The keyboard and VGA drivers are character-oriented drivers; thus, they are

treated as additional serial devices. Because the keyboard deals only with input

and the VGA deals only with output, they are integrated into a single driver in the

module src/drv/serial/pcConsole.c.

To include the console drivers in your configuration, define the config.h macro

INCLUDE_PC_CONSOLE. When this macro is defined, the serial driver

automatically initializes the console drivers.

The console drivers do not change any hardware initialization that the BIOS has

done. The I/O addresses for the keyboard and the console, and the base address of

the on-board VGA memory, are defined in config/bspname/pc.h.

The macro PC_KBD_TYPE in config/bspname/config.h specifies the type of

keyboard. If the keyboard is a portable PC keyboard with 83 keys, define the macro

as PC_XT_83_KBD.

!

567

VxWorks 5.3.1
Programmer’s Guide
In the default configuration, /tyCo/0 is serial device 1 (COM1), /tyCo/1 is serial

device 2 (COM2), and /tyCo/2 is the console.

You can define the following configuration macros for the console drivers in pc.h:

■ INCLUDE_ANSI_ESC_SEQUENCE supports the ANSI terminal escape

sequences. The VGA driver does special processing for recognized escape

sequences.

■ COMMAND_8042, DATA_8042, and STATUS_8042 refer to the I/O base

addresses of the various keyboard controller registers.

■ GRAPH_ADAPTER can be set to either VGA or MONOCHROME.

Network Drivers

Several network drivers are available, corresponding to an assortment of boards

from different manufacturers. For the list of macros to include specific network

drivers in your configuration, see 8.3 Configuring VxWorks, p.430.

For all network drivers, the I/O address, RAM address, RAM size, and interrupt

request (IRQ) levels are defined in config.h (the I/O address must match the value

recorded in the EEPROM). Use the configuration program supplied by the

manufacturer to set the I/O address; in some cases you can set IRQ levels with the

same configuration program.

You can set the board-specific macro listed in Table D-4 (defined in config.h) to

specify whether you are using EEPROM, thin coaxial cable (BNC), twisted-pair

cable (RJ45), thick coaxial cable (AUI), or some combination (for example,

RJ45+AUI and/or RJ45+BNC). The exceptions are the Intel EtherExpress32, which

uses EEPROM only, and the Novell/Eagle NE2000, which uses a hardware jumper.

For most network drivers, if INCLUDE_SHOW_ROUTINES is defined, a board-

specific routine boardShow() 5 displays statistics collected in the interrupt handler

on the standard output device. This routine requires two parameters: interface unit
and zap. For all boards currently supported, interface unit is 0; zap can be either 0

or 1. If zap is 1, all collected statistics are cleared to zero.

Table D-4 shows the software configuration details for each network driver.

5. The prefix board is an abbreviation for the corresponding network board. For example, the

abbreviation for the 3Com EtherLink III board is elt, so the corresponding show routine is

eltShow().
568

D

D
Intel x86
Certain network boards are also configurable in hardware. Use the jumper settings

shown in Table D-5 with the network drivers supplied.

* These routines are not built in to the Tornado shell. To use them from the

Tornado shell, you must define INCLUDE_SHOW_ROUTINES in your

VxWorks configuration; see 8. Configuration. When you invoke them, their

output is sent to the standard output device.

† Auto-detect mode is not supported for these boards.

Table D-4 Network Drivers

Network Board IRQ Levels Supported
Ethernet
Configuration
Macro

Show Routine

SMC Elite 16 2, 3, 4, 5, 7, 9, 10, 11, 15 CONFIG_ELC elcShow*()

SMC Elite 16 Ultra 2, 3, 5, 7, 10, 11 CONFIG_ULTRA ultraShow()*

Intel EtherExpress† 2, 3, 4, 5, 9, 10, 11 CONFIG_EEX (none)

Intel EtherExpress32✝ 3, 5, 7, 9, 10, 11, 12, 15 (EEPROM) (none)

Intel EtherExpress PRO100B 0 - 15 (EEPROM) (none)

3Com EtherLink III 3, 5, 7, 9, 10, 11, 12, 15 CONFIG_ELT eltShow()*

Novell/Eagle NE2000 2, 3, 4, 5, 10, 11, 12, 15 (jumper) eneShow()*

Ampro Ethernet-II 2, 3, 10, 11 CONFIG_ESMC esmcShow()*

Table D-5 Network Board Hardware Configuration

Network Board Jumpers Settings

SMC Elite 16 W1

W2

SOFT

NONE/SOFT

SMC Elite 16 Ultra W1 SOFT

Intel EtherExpress (none)

Intel EtherExpress32 (none)

Intel EtherExpress PRO100B (none)

3Com EtherLink III (none)

Novell/Eagle NE2000 various follow manufacturer’s instructions
569

VxWorks 5.3.1
Programmer’s Guide
Diskette Driver

To include the diskette driver in your configuration, define the macro

INCLUDE_FD in config.h (“fd” stands for floppy disk). When INCLUDE_FD is

defined, the initialization routine fdDrv() is called automatically from usrRoot()
in config/all/usrConfig.c. To change the interrupt vector and level used by

fdDrv(), edit the definitions of FD_INT_VEC and FD_INT_LVL in

config/bspname/pc.h.

The fdDevCreate() routine installs a diskette device in VxWorks. You must call

fdDevCreate() explicitly for each diskette device you wish to install; it is not called

automatically. The fdDevCreate() routine requires the following parameters:

drive number the diskette drive that corresponds to this device: MS-DOS

drive A: is 0; drive B: is 1.

diskette type 0 (3.5" 2HD) or 1 (5.25" 2HD). These numbers are indices to the

structure table fdTypes[] in config/bspname/sysLib.c, which is

described below.

number of blocks the size of the device.

offset the number of blocks to leave unused at the start of a diskette.

As shipped, the fdTypes[] table in sysLib.c describes two diskette types: the 3.5"

1.44MB 2HD diskette and the 5.25" 1.2MB 2HD diskette. (In particular, there is no

entry for low-density diskettes.) To use another type of diskette, add the

appropriate disk descriptions to the fdTypes[] table, shown below. Note that each

entry in the table is a structure. The entry dataRate is described in more detail in

Table D-6 and the entries stepRate, headUnload, and headLoad are described in

Table D-7.

int sectors; /* number of sectors */
int sectorsTrack; /* sectors per track */
int heads; /* number of heads */
int cylinders; /* number of cylinders */
int secSize; /* 128 << secSize gives bytes per sector */
char gap1; /* suggested gap value in read/write cmds */
 /* to avoid splice point between data field */
 /* and ID field of contiguous sections */
char gap2; /* suggested gap values for format-track cmd */

Ampro Ethernet-II W1

W3

W4

PROM size: 16K or 32K

No.0: 0x300

Select IRQ-10,11

Table D-5 Network Board Hardware Configuration (Continued)

Network Board Jumpers Settings
570

D

D
Intel x86
char dataRate; /* data transfer rate */
char stepRate; /* stepping rate */
char headUnload; /* head unload time */
char headLoad; /* head load time */
char mfm; /* 1-->MFM (double density),
 0--> FM (single density) */
char sk; /* if 1, skip bad sectors on read-data cmd */
char *name; /* name */

The dataRate field must have a value ranging from 0 to 3. The bit value controls

the data transfer rate by setting the configuration control register in some IBM

diskette controllers. The values correspond to transfer rates as shown in Table D-6.

The stepRate, headUnload, and headLoad parameters describe time intervals

related to physical operation of the diskette drive. The time intervals are a simple

function of the parameter value and of a multiplier corresponding to the data

transfer rate, except that 0 has a special meaning for headUnload and headLoad,

as shown in Table D-7.

Table D-6 Diskette Data Transfer Rates

dataRate MFM (double density) FM (single density)

3 1Mbps invalid

0 500Kbps 250Kbps

1 300Kbps 150Kbps

2 250Kbps 125Kbps

Table D-7 Time Interval Parameters in fdTypes[]

Description Field Value

Time (ms) by transfer rate

1M 500K 300K 250K

Transfer rate multiplier (T): 1 2 3.33 4

Interval between stepper

pulses

stepRate 0 8 16 26.7 32

0–15 (8 – 0.5 × stepRate) × T

Interval from end of read or

write to head unload

headUnoad 0 128 256 426 512

1–15 8 × headUnload × T

Interval from end of head

load to start of read or write

headLoad 0 128 256 426 512

1–127 headLoad × T
571

VxWorks 5.3.1
Programmer’s Guide
Interleaving is not supported when the driver formats a diskette; the driver always

uses a 1:1 interleave. Use the MS-DOS format program to get the recommended

DOS interleave factor.

The driver uses memory area 0x2000 to 0x5000 for DMA, for the following reasons:

■ The DMA chip has an addressing range of only 24 bits.

■ A buffer must fit in one page; that is, a buffer cannot cross the 64KB boundary.

Another routine associated with the diskette driver is fdRawio(). This routine

allows you to read and write directly to the device; thus, the overhead associated

with moving data through a file system is eliminated. The fdRawio() routine

requires the following parameters:

drive number the diskette drive that corresponds to this device: MS-DOS

drive A: is 0; drive B: is 1.

diskette type 0 (3.5" 2HD) or 1 (5.25" 2HD). These numbers are indices to the

structure table fdTypes[] in config/bspname/sysLib.c.

FD_RAW ptr pointer to the FD_RAW[] structure, where the data that is

being read and written is stored; see below.

The following is the definition of the FD_RAW[] structure:

typedef struct fdRaw
{
UINT cylinder; /* cylinder (0 -> (cylinders-1)) */
UINT head; /* head (0 -> (heads-1)) */
UINT sector; /* sector (1 -> sectorsTrack) */
UINT *pBuf; /* ptr to buff (bytesSector*nSecs) */
UINT nSecs; /* # of sectors (1-> sectorsTrack) */
UINT direction; /* read=0, write=1 */
} FD_RAW;

ATA/IDE Disk Driver

To include the ATA/IDE disk device driver in your configuration, define the macro

INCLUDE_ATA in config.h. When INCLUDE_ATA is defined, the initialization

routine ataDrv() is called automatically from usrRoot() in usrConfig.c for the

local IDE disk. To change the interrupt vector and level and the configuration type

used by ataDrv(), edit the definitions of the constants ATA0_INT_VEC,

ATA0_INT_LVL, and ATA0_CONFIG in pc.h. The default configuration is suitable

for the i8259 interrupt controller; most PCs use that chip. The ataDrv() routine

requires the following parameters:
572

D

D
Intel x86
controller number
the controller: a controller described in the first entry of the

ataResources[] table is 0; a controller described in the second

entry is 1. In the default configuration, the local IDE disk is 0; the

PCMCIA ATA drive is 1.

number of drives number of drives on the controller: maximum of two drives per

controller is supported.

interrupt vector interrupt vector

interrupt level IRQ level

configuration type
configuration type

semaphore timeout
timeout value for the semaphore in the device driver.

watchdog timeout
timeout value for the watchdog in the device driver.

The ataDevCreate() routine installs an ATA/IDE disk device in VxWorks. You

must call ataDevCreate() explicitly for each local IDE disk device you wish to

install; it is not called automatically. The ataDevCreate() routine requires the

following parameters:

controller number
the controller: a controller described in the first entry of the

ataResources[] table is 0; a controller described in the second

entry is 1. In the default configuration, the local IDE disk is 0; the

PCMCIA ATA drive is 1.

drive number the drive: the first drive of the controller is 0; the second drive of

the controller is 1. In the default configuration, MS-DOS drive C:
is 0 on controller 0.

number of blocks the size of the device.

offset the number of blocks to leave unused at the start of a disk.

If the configuration type specified with ataDrv() is 0, the ATA/IDE driver does not

initialize drive parameters. This is the right value for most PC hardware, where the

ROMBIOS initialization takes care of initializing the ATA/IDE drive. If you have

custom hardware and the ATA/IDE drive is not initialized, set the configuration

type to 1 to cause the driver to initialize drive parameters.
573

VxWorks 5.3.1
Programmer’s Guide
The drive parameters are the number of sectors per track, the number of heads,

and the number of cylinders. The table has two other members used by the driver:

the number of bytes per sector, and the precompensation cylinder. For each drive,

the information is stored in an ATA_TYPE structure, with the following elements:

int cylinders; /* number of cylinders */
int heads; /* number of heads */
int sectorsTrack; /* number of sectors per track */
int bytesSector; /* number of bytes per sector */
int precomp; /* precompensation cylinder */

A structure for each drive is stored in the ataTypes[] table in sysLib.c. That table

has two sets of entries: the first is for drives on controller 0 (the local IDE disk) and

the second is for drives on controller 1 (the PCMCIA ATA card). The table is

defined as follows:

ATA_TYPE ataTypes[ATA_MAX_CTRLS][ATA_MAX_DRIVES] =
{
{{761, 8, 39, 512, 0xff}, /* ctrl 0 drive 0 */
 {761, 8, 39, 512, 0xff}}, /* ctrl 0 drive 1 */
{{761, 8, 39, 512, 0xff}, /* ctrl 1 drive 0 */
 {761, 8, 39, 512, 0xff}}, /* ctrl 1 drive 1 */
};

The ioctl() function FIODISKFORMAT always returns ERROR for this driver,

because ATA/IDE disks are always preformatted and bad sectors are already

mapped.

If INCLUDE_SHOW_ROUTINES is defined, the routine ataShow() displays the

table and other drive parameters on the standard output device. This routine

requires two parameters: controller number, which must be either 0 (local IDE) or 1

(PCMCIA ATA), and drive number, which must be either 0 or 1.

Another routine associated with the ATA/IDE disk driver is ataRawio(). This

routine allows you to read and write directly to the device; thus, the overhead

associated with moving data through a file system is eliminated. The ataRawio()
routine requires the following parameters:

controller number
the controller: a controller described in the first entry of the

ataResources[] table is 0; a controller described in the second

entry is 1. In the default configuration, the local IDE disk is 0; the

PCMCIA ATA drive is 1.

drive number the drive: the first drive of the controller is 0; the second drive of

the controller is 1. In the default configuration, MS-DOS drive C:
is 0 on controller 0.
574

D

D
Intel x86
ATA_RAW ptr pointer to the ATA_RAW structure, where the data that is being

read and written is stored; see below.

The following is the definition of the ATA_RAW structure:

typedef struct ataRaw
{
UINT cylinder; /* cylinder (0 -> (cylinders-1)) */
UINT head; /* head (0 -> (heads-1)) */
UINT sector; /* sector (1 -> sectorsTrack) */
UINT *pBuf; /* ptr to buff (bytesSector*nSecs) */
UINT nSecs; /* #of sectors (1 -> sectorsTrack) */
UINT direction; /* read=0, write=1 */
} ATA_RAW;

The resource table used by ataDrv(), ataResources[], is defined in sysLib.c as

follows:

ATA_RESOURCE ataResources[ATA_MAX_CTRLS] =
{
{
{
5, 0,
{ATA0_IO_START0, ATA0_IO_START1}, {ATA0_IO_STOP0, ATA0_IO_STOP1},
 0, 0, 0, 0, 0, 0
 }
IDE_LOCAL, 1, ATA0_INT_VEC, ATA0_INT_LVL, ATA0_CONFIG,
ATA_SEM_TIMEOUT, ATA_WDG_TIMEOUT, 0, 0
}, /* ctrl 0 */
{
{
5, 0,
{ATA1_IO_START0, ATA1_IO_START1}, {ATA1_IO_STOP0, ATA1_IO_STOP1},
 0, 0, 0, 0, 0, 0
 }
ATA_PCMCIA, 1, ATA1_INT_VEC, ATA1_INT_LVL, ATA1_CONFIG,
ATA_SEM_TIMEOUT, ATA_WDG_TIMEOUT, 0, 0
}, /* ctrl 1 */
};

Each resource in the table is an ATA_RESOURCE structure, defined as follows:

typedef struct ataResource /* PCCARD ATA resources */
{
PCCARD_RESOURCE resource; /* must be the first member */
int ctrlType; /* controller type: IDE_LOCAL */

/* or ATA_PCMCIA */
int drives; /* 1,2: number of drives */
int intVector; /* interrupt vector */
int intLevel; /* IRQ level */
int configType; /* 0,1: configuration type */
int semTimeout; /* timeout seconds for sync semaphore */
int wdgTimeout; /* timeout seconds for watch dog */
int sockTwin; /* socket number for twin card */
int pwrdown; /* power down mode */
} ATA_RESOURCE;
575

VxWorks 5.3.1
Programmer’s Guide
NOTE: This structure applies to both ATA PCMCIA PC cards and local IDE hard

disks. For the definition of PCCARD_RESOURCE, see PCMCIA for x86 Release Notes
and Supplement.

Line Printer Driver

This release of VxWorks for the x86 supports write operations to an LPT line

printer driver.

To include the line printer driver in your configuration, define the macro

INCLUDE_LPT in config.h. When INCLUDE_LPT is defined, the initialization

routine lptDrv() is called automatically from usrRoot() in usrConfig.c.

The resource table used by lptDrv() is stored in the structure lptResource[] in
sysLib.c. The resources are defined as follows:

int ioBase; /* IO base address */
int intVector; /* interrupt vector */
int intLevel; /* interrupt level */
BOOL autofeed; /* TRUE if enable autofeed */
int busyWait; /* loop count for BUSY wait */
int strobeWait; /* loop count for STROBE wait */
int retryCnt; /* timeout second for syncSem */

lptDrv() takes two arguments. The first argument is the number of channels (0, 1,

or 2). The second argument is a pointer to the resource table.

To change lptDrv()’s interrupt vector or interrupt level, change the value of the

appropriate constant (LPT_INT_VEC or LPT_INT_LVL) in pc.h.

Many of the LPT driver’s routines are accessible only through the I/O system.

However, the following routines are available (see the manual pages for details):

lptDevCreate() installs an LPT device into VxWorks. Call lptDevCreate()
explicitly for each LPT device you wish to install; it is not

called automatically. This routine takes the following

parameters:

name = device name

channel = physical device channel (0, 1, or 2)

lptAutofeed() enables or disables the autofeed feature; takes the parameter

channel (0, 1, or 2).

lptShow() if INCLUDE_SHOW_ROUTINES is defined, shows driver

statistics; takes the parameter channel (0, 1, or 2).

!

576

D

D
Intel x86
In addition, you can perform the following ioctl() functions on the LPT driver:

LPT_GETSTATUS
gets the value of the status register; takes an integer value where

status is stored

LPT_SETCONTROL
sets the control register; takes a value for the register
577

E
MIPS R3000, R4000, R4650
E.1 Introduction .. 580

E.2 Building Applications .. 580

Defining the CPU Type ... 581

Configuring the GNU ToolKit Environment 581

Compiling C or C++ Modules ... 582

E.3 Interface Variations .. 584

cacheR3kLib and cacheR4kLib ... 584

dbgLib ... 585

intArchLib .. 585

mathALib .. 585

taskArchLib .. 586

MMU Support .. 586

ELF-specific Tools .. 586

E.4 Architecture Considerations .. 587

Gprel Addressing ... 587

Reserved Registers ... 587

Floating-Point Support .. 587

Interrupts ... 588

Virtual Memory Mapping ... 590

64-bit Support (R4000 Targets Only) ... 590

Memory Layout .. 591
579

VxWorks 5.3.1
Programmer’s Guide
List of Figures

Figure E-1 VxWorks System Memory Layout (MIPS) 592

E.1 Introduction

This appendix provides information specific to VxWorks development on MIPS

targets. It includes the following topics:

■ Building Applications: how to compile modules for your target architecture.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the MIPS processors.

■ Architecture Considerations: special features and limitations of the MIPS

processors, including a figure showing the VxWorks memory layout for these

processors.

For general information on the Tornado development environment’s cross-

development tools, see the Tornado User’s Guide: Cross-Development.

E.2 Building Applications

The following sections describe a configuration constant, environment variables,

and compiler options that together specify the information the GNU toolkit

requires to compile correctly for the MIPS targets.
580

E

E
MIPS R3000, R4000, R4650
Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

build with the appropriate architecture-specific features enabled. Define this

variable to be R3000 (for the MIPS R3000 or R3500), R4000 (for the R4200 or R4600),

or R4650 (for the MIPS R4640 or R4650).

For example, to define CPU for an R3500 on the compiler command line, specify

the following command-line option when you invoke the compiler:

-DCPU=R3000

To provide the same information in a header or source file, include the following

line in the file:

#define CPU R3000

All VxWorks makefiles pass along the definition of this variable to the compiler.

You can define CPU on the make command line as follows:

% make CPU=R3000 ...

You can also set the definition directly in a makefile, with the following line:

CPU=R3000

Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. Running the GNU

compiler requires that you define the environment variable GCC_EXEC_PREFIX.

No change is required to the execution path, because the compilation chain is

installed in the same bin directory as the other Tornado executables.

For developers using UNIX hosts, you must specifically define this variable. For

example, if you use the C-shell, add the following to your .cshrc:

setenv GCC_EXEC_PREFIX $WIND_BASE/host/$WIND_HOST_TYPE/lib/gcc-lib/

For developers using Windows hosts, if you are working through the Tornado IDE,

the appropriate variable(s) are set automatically. However, before invoking the

compiler from a DOS command line, first run the following batch file to set the

variable(s):

%WIND_BASE%/host/x86-win32/bin/torVars.bat

For more information, see the Tornado User’s Guide: Getting Started.
581

VxWorks 5.3.1
Programmer’s Guide
Compiling C or C++ Modules

The following is an example of a compiler command line for R3000 cross-

development. The file to be compiled in this example has a base name of applic.

% ccmips -DCPU=R3000 -I/usr/vw/h -mcpu=r3000 -O2 -funroll-loops \
-nostdinc -G 0 -c applic.c
582

E

E
MIPS R3000, R4000, R4650
This is an example for the R4000:

% ccmips -DCPU=R4000 -I/usr/vw/h -mcpu=r4000 -mips3 -mgp32 \
-mfp32 -O2 -funroll-loops -nostdinc -G 0 -c applic.c

The options shown in the examples have the following meanings:1

-DCPU=R3000 Required; defines the CPU type for the R3000 or R3500. For the

R4200 or R4600, specify R4000. For the R4640 or R4650, specify

R4650.

-I $WIND_BASE/h
Required; gives access to the VxWorks include files. (Additional

-I flags may be included to specify other header files.)

-mcpu=r3000 Required; tells the compiler to produce code for the R3000 or

R3500. For the R4200 or R4600, specify r4000. For the R4640 or

R4650, specify r4650.

-mips3 Required for R4000 targets (R4200 and R4600) and R4650 targets

(R4640 and R4650); tells the compiler to issue instructions from

level 3 of the MIPS ISA (64-bit instructions). This compiler option

does not apply to R3000 or R3500 targets.

-mfp32 Required for R4000 and R4650 targets; tells compiler to issue

instructions assuming that fp registers are 32 bits, required for

compatibility with mathALib.

-mgp32 Required for R4000 and R4650 targets in code which makes calls

to varargs functions provided by VxWorks (printf(), sprintf(),
and so forth); tells the compiler to issue instructions assuming that

all general-purpose registers are 32 bits.

-msingle-float Required for R4640 and R4650; tells the compiler to assume that

the floating-point processor supports only single-precision

operations.

-m4650 Required for R4650 targets; sets -msingle-float and -mmad2 flags.

-O2 Optional; tells the compiler to use level 2 optimization.

NOTE: To specify optimization for use with GDB, use the -O0 flag.

1. For more information on these and other compiler options, see the GNU ToolKit User’s Guide.

WRS supports compiler options used in building WRS software; a list of these options is

included in the Guide. Other options are not supported, although they are available with the

tools as shipped.

2. Consult GNU Toolkit User’s Guide.

!

583

VxWorks 5.3.1
Programmer’s Guide
-funroll-loops Optional; tells the compiler to use loop unrolling optimization.

-nostdinc Required; searches only the directories specified with the -I flag

(see above) and the current directory for header files.

-msoft-float Required for software emulation, tells the compiler to issue

library callouts for floating point. For more information, see

Floating-Point Support, p.587.

-G 0 Required; tells the compiler not to use the global pointer. For more

information, see Gprel Addressing, p.587.

-c Required; specifies that the module is to be compiled only, not

linked for execution under the host.

The output is an unlinked object module in ELF format with the

suffix .o; for the example above, the output would be applic.o.

The default for ccmips is big-endian (set explicitly with -EB) and defines MIPSEB.

Use -EL to compile little-endian and automatically define MIPSEL. Users should

not define either MIPSEB or MIPSEL.

E.3 Interface Variations

This section describes particular routines and tools that are specific to MIPS targets

in any of the following ways:

■ available only on MIPS targets

■ parameters specific to MIPS targets

■ special restrictions or characteristics on MIPS targets

For complete documentation, see the reference entries for the libraries,

subroutines, and tools discussed below.

cacheR3kLib and cacheR4kLib

The libraries cacheR3kLib and cacheR4kLib are specific to the MIPS release. They

each contain a routine that initializes the R3000 or R4000 cache library.
584

E

E
MIPS R3000, R4000, R4650
dbgLib

In the MIPS release, the routine tt() displays the first four parameters of each

subroutine call, as passed in registers a0 through a3. For routines with less than

four parameters, ignore the contents of the remaining registers.

For a complete stack trace, use GDB.

intArchLib

In the MIPS release, the routines intLevelSet() and intVecBaseSet() have no effect.

For a discussion of the MIPS interrupt architecture, see Interrupts, p.588.

mathALib

VxWorks for MIPS supports the same set of mathALib functions using either

hardware facilities or software emulation.3

The following double-precision routines are supported for MIPS architectures:

The following single-precision routines are supported for MIPS architectures:

In addition, the single precision routines fmodf() and powf() are supported for

R4650 processors only.

The following math routines are not supported by VxWorks for MIPS:

3. To use software emulation, compile your application with the -msoft-float compiler option

as well as defining INCLUDE_SW_FP; see Floating-Point Support, p.587. Use of these func-

tions on the R4000 requires that your code be compiled with -mfp32.

acos() asin() atan() atan2() ceil() cos() cosh()
exp() fabs() floor() fmod() log10() log() pow()
sin() sincos() sinh() sqrt() tan() tanh() trunc()

acosf() asinf() atanf() atan2f() ceilf() cosf() coshf()
expf() floorf() logf() log2f() log10f() sinf() sinhf()
sqrtf() tanf() tanhf() truncf()

cbrt() cbrtf() infinity() infinityf() irint() irintf() iround()
iroundf() log2() round() roundf() sincosf()
585

VxWorks 5.3.1
Programmer’s Guide
taskArchLib

The routine taskSRInit() is specific to the MIPS release. This routine allows you to

change the default status register with which a task is spawned. For more

information, see Interrupt Support Routines, p.589.

MMU Support

MIPS targets do not support memory management units (MMUs). Thus, you do

not need to define the constants INCLUDE_MMU_BASIC or INCLUDE_MMU_FULL
in config.h, and you do not need to define sysPhysMemDesc[] in sysLib.c. For

more information, see Virtual Memory Mapping, p.590.

ELF-specific Tools

The following tools are specific to the ELF format. For more information, see the

reference entries for each tool.

elfHex converts an ELF-format object file into Motorola hex records. The

syntax is:

elfHex [-a adrs] [-l] [-v] [-p PC] [-s SP] file

elfToBin extracts text and data segments from an ELF file. The syntax is:

elfToBin < inFile > outfile

elfToBsd converts ELF object modules to BSD format. The syntax is:

elfToBsd < infile_elf > outfile_bsd

elfXsyms extracts the symbol table from an ELF file. The syntax is:

elfXsyms < objMod > symTbl
586

E

E
MIPS R3000, R4000, R4650
E.4 Architecture Considerations

This section describes the following characteristics of the MIPS architecture that

you should keep in mind as you write a VxWorks application:

■ Gprel addressing

■ Reserved registers

■ Floating-point support

■ Interrupts

■ Virtual memory mapping

■ 64-bit support

■ Memory layout

Gprel Addressing

The VxWorks kernel uses gprel (gp-relative) addressing. However, the VxWorks

module loader cannot dynamically load tasks that use gprel addressing.

To keep the loader from returning an error, compile application tasks with the -G 0
option. This option tells the compiler not to use the global pointer.

Reserved Registers

Registers k0 and k1 are reserved for VxWorks kernel use, following standard MIPS

usage. The gp register is also reserved for the VxWorks kernel, because only the

kernel uses gprel addressing, as discussed in above. Avoid using these registers in

your applications.

Floating-Point Support

R4650

For the R4650, single precision hardware floating-point support is included by

INCLUDE_HW_FP (the default). Double precision floating-point support is

provided by software emulation when you use -msoft-float. (Note that

INCLUDE_SW_FP is not required with -msoft-float for the R4650.)
587

VxWorks 5.3.1
Programmer’s Guide
R3000 and R4000

If your MIPS board includes a floating-point coprocessor (CP1), we recommend

you use it for best performance.

However, if this chip is not available, you can use the GNU compiler -msoft-float
option. This option keeps all floating-point values in integer registers (a pair of

them for double-precision) and emulates all floating-point arithmetic.

To use this software emulation support, define INCLUDE_SW_FP and undefine

INCLUDE_HW_FP. Then, in the BSP directory, build VxWorks with the following

command:

% make [CPU= cpuType] TOOL=sfgnu

Building your applications with the -msoft-float flag produces library callouts for

math routines. If you get unresolved references when downloading your applica-

tions, link your applications with the following library:

For R3000 targets:

$GCC_EXEC_PREFIX/mips-wrs-vxworks/cygnus-2.7.2-960126/msoft-float/libgcc.a

For R4000 targets:

$GCC_EXEC_PREFIX/mips-wrs-vxworks/cygnus-2.7.2-960126/mips3/msoft-float/libgcc.a

Interrupts

MIPS Interrupts

The MIPS architecture has inputs for six external hardware interrupts and two

software interrupts. In cases where the number of hardware interrupts is

insufficient, board manufacturers can multiplex several interrupts on one or more

interrupt lines.

The MIPS CPU treats exceptions and interrupts in the same way: it branches to a

common vector and provides status and cause registers that let system software

determine the CPU state. The MIPS CPU does not switch to an interrupt stack or

exception stack, nor does it generate an IACK cycle. These functions must be

implemented in software or board-level hardware (for example, the VMEbus

IACK cycle is a board-level hardware function). VxWorks for MIPS has

implemented a single interrupt stack, and uses task stacks for exception

conditions.

Because the MIPS CPU does not provide an IACK cycle, your interrupt handler

must acknowledge (or clear) the interrupt condition. If the interrupt handler does
588

E

E
MIPS R3000, R4000, R4650
not acknowledge the interrupt, VxWorks hangs while trying to process the

interrupt condition.

VxWorks for MIPS uses a 256-entry table of vectors. You can attach exception or

interrupt handlers to any given vector with the routines intConnect() and

intVecSet(). The files h/arch/mips/ivMips.h and bspname.h list the vectors used by

VxWorks.

Interrupt Support Routines

Because the MIPS architecture does not use interrupt levels, the intLevelSet()
routine is not implemented. The six external interrupts and two software

interrupts can be masked or enabled by manipulating eight bits in the status

register with intDisable() and intEnable(). Be careful to pass correct arguments to

these routines, because the MIPS status register controls much more than just

interrupt generation.

For interrupt control, the routines intLock() and intUnlock() are recommended.

All interrupts are blocked when calling intLock(). The routine intVecBaseSet()
has no meaning on the MIPS; calling it has no effect.

To change the default status register with which all tasks are spawned, use the

routine taskSRInit(). If used, call this routine before kernelInit() in sysHwInit().
taskSRInit() is provided in case your BSP must mask interrupts from all tasks. For

example, the FPA interrupt must be disabled for all tasks.

VMEbus Interrupt Handling

The processing of VMEbus interrupts is the only case where it is not necessary for

an interrupt handler to acknowledge the interrupt condition. If you define the

option VME_VECTORED as TRUE in configAll.h (and rebuild VxWorks), all
VMEbus interrupts are acknowledged by the low-level exception/interrupt

handling code. The VxWorks interrupt vector number corresponds to the VMEbus

interrupt vector returned by the VMEbus IACK cycle. With this interrupt handling

scheme, VxWorks for MIPS allows multiple VMEbus boards to share the same

VMEbus interrupt level without requiring further decoding by a user-attached

interrupt handler.

You can still bind to VMEbus interrupts without vectored interrupts enabled, as

long as the VMEbus interrupt condition is acknowledged with sysBusIntAck() (as

defined in sysLib.c). In this case, there is no longer a direct correlation with the

vector number returned during the VMEbus IACK cycle. The vector number used

to attach the interrupt handler corresponds to one of the seven VMEbus interrupt

levels as defined in bspname.h. The mapping of the seven VMEbus interrupts to a

single MIPS interrupt is board-dependent.
589

VxWorks 5.3.1
Programmer’s Guide
Vectored interrupts do not change the handling of any interrupt condition except

VMEbus interrupts. All the necessary interrupt-acknowledge routines are

provided in either sysLib.c or sysALib.s.

NOTE: Not all boards support VME-vectored interrupts. For more information, see

the BSP reference entries.

Virtual Memory Mapping

VxWorks for MIPS operates exclusively in kernel mode and makes use of the kseg0
and kseg1 address spaces. A physical addressing range of 512 MB is available. Use

of the on-chip translation lookaside buffer (TLB) is not supported.

■ kseg0 . When the most significant three bits of the virtual address are 100, the

229-byte (512 MB) kernel physical space labeled kseg0 is the virtual address

space selected. References to kseg0 are not mapped through the TLB; the

physical address selected is defined by subtracting 0x8000 0000 from the

virtual address. Caches are always enabled for accesses to these addresses.

■ kseg1. When the most significant three bits of the virtual address are 101, the

229-byte (512 MB) kernel physical space labeled kseg1 is the virtual address

space selected. References to kseg1 are not mapped through the TLB; the

physical address selected is defined by subtracting 0xa000 0000 from the

virtual address. Caches are always disabled for accesses to these addresses;

physical memory or memory-mapped I/O device registers are accessed

directly.

64-bit Support (R4000 Targets Only)

With VxWorks for MIPS, real-time applications have access to the MIPS R4000 64-

bit registers. This lets applications perform 64-bit math for enhanced performance.

To specify 64-bit integers in C, declare them as long long. Pointers, integers, and

longs are 32-bit quantities in this release of VxWorks.

!

590

E

E
MIPS R3000, R4000, R4650
Memory Layout

The memory layout of the MIPS is shown in Figure E-1. The figure contains the

following labels:

Exception Vectors Table of exception/interrupt vectors.

SM Anchor Anchor for the shared memory network (if there is shared

memory on the board).

Boot Line ASCII string of boot parameters.

Exception Message ASCII string of the fatal exception message.

Initial Stack Initial stack for usrInit(), until usrRoot() gets allocated stack.

System Image Entry point for VxWorks.

Host Memory Pool Memory allocated by host tools. The size depends on the

system image and is defined in config/all/configAll.h.

Interrupt Stack Size defined in configAll.h. Location depends on system

image size.

System Memory Pool
Size depends on size of system image and interrupt stack. The

end of the free memory pool for this board is returned by

sysMemTop().

All addresses shown in Figure E-1 depend on the start of memory for a particular

target board. The start of memory is defined as LOCAL_MEM_LOCAL_ADRS in

config.h for each target.
591

VxWorks 5.3.1
Programmer’s Guide
Figure E-1 VxWorks System Memory Layout (MIPS)

80000200

80000600

80000700

80000800

80000900

80000c00

80010000

Address

Initial Stack

Exception Vectors

Exception Message

Boot Line

SM Anchor

System Image

text

data

bss

Interrupt Stack

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

0x80000000

Host Memory Pool
end
592

F
PowerPC
F.1 Introduction .. 594

F.2 Building Applications .. 595

Defining the CPU Type ... 595

Configuring the GNU ToolKit Environment 596

Compiling C and C++ Modules .. 596

Compiling Modules for GDB ... 597

Unsupported Features ... 598

F.3 Interface Changes .. 598

Memory Management Unit .. 598

ELF-specific Tools .. 601

F.4 Architecture Considerations .. 601

Processor Mode .. 601

24-bit Addressing ... 602

Byte Order ... 602

PowerPC Register Usage .. 602

Caches ... 603

Memory Management Unit .. 604

Floating-Point Support .. 604

VxMP Support for Motorola PowerPC Boards 605

Memory Layout .. 607
593

VxWorks 5.3.1
Programmer’s Guide
List of Tables

Table F-1 PowerPC Registers .. 602

List of Figures

Figure F-1 VxWorks System Memory Layout (PowerPC) 608

F.1 Introduction

This appendix provides information specific to VxWorks development on

PowerPC targets. It includes the following topics:

■ Building Applications: how to compile modules for your target architecture.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the PowerPC processors.

■ Architecture Considerations: special features and limitations of the PowerPC

processors, including a figure showing the VxWorks memory layout for these

processors.

For general information on the Tornado development environment’s cross-

development tools, see the Tornado User’s Guide: Cross-Development.
594

F

F
PowerPC
F.2 Building Applications

NOTE: The compiler for PowerPC conforms to the Embedded Application Binary

Interface (EABI) protocol. Therefore type checking is more rigorous than for other

architectures.

The following sections describe a configuration constant, an environment variable,

and compiler options that together specify the information the GNU Toolkit

requires to compile correctly for PowerPC targets.

Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

are compiled with the appropriate architecture-specific features enabled. This

variable should be set to one of the following values, depending on the processor

you are using:

– PPC403
– PPC603
– PPC604
– PPC860

For example, to specify CPU for a PowerPC 603 on the compiler command line, use

the following command-line option when you invoke the compiler:

-DCPU=PPC603

To provide the same information in a header or source file, include the following

line in the file:

#define CPU PPC603

All VxWorks makefiles pass along the definition of this variable to the compiler.

You can define CPU on the make command line as follows:

% make CPU=PPC603 …

You can also set the definition directly in a makefile, with the following line:

CPU=PPC603

NOTE: If you are using a PowerPC 821 processor, define CPU to be PPC860.

!

!

595

VxWorks 5.3.1
Programmer’s Guide
Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. Running the GNU

compiler requires that you define the environment variable GCC_EXEC_PREFIX.

No change is required to the execution path, because the compilation chain is

installed in the same bin directory as the other Tornado executables.

For developers using UNIX hosts, you must specifically define this variable. For

example, if you use the C-shell, add the following to your .cshrc:

setenv GCC_EXEC_PREFIX $WIND_BASE/host/$WIND_HOST_TYPE/lib/gcc-lib/

NOTE: A trailing slash is important in the value of GCC_EXEC_PREFIX (as shown in

the previous examples). If you do not include the slash, compilation fails.

For developers using Windows hosts, if you are working through the Tornado IDE,

the appropriate variable(s) are set automatically. However, before invoking the

compiler from a DOS command line, first run the following batch file to set the

variable(s):

%WIND_BASE%/host/x86-win32/bin/torVars.bat

For more information, see the Tornado User’s Guide: Getting Started.

Compiling C and C++ Modules

The following is an example of a compiler command line for PowerPC 603 cross-

development. The file to be compiled in this example has a base name of applic.

% ccppc -O2 -mcpu=603 -I$WIND_BASE/target/h -fno-builtin \
-fno-for-scope -nostdinc -DCPU=PPC603 -D_GNU_TOOL -c applic. language_id

The options shown in the example have the following meanings:

-O2 Optional; performs level 2 optimization.

-mcpu=603 Optional for 603 and 604; required for other processors (specify

the appropriate processor values: 601, 403, 860, or 821); instructs

the compiler to produce code for the specified PowerPC

architecture. The default is 604, which applies to 603 as well.

-I$WIND_BASE/target/h
Required; gives access to the VxWorks include files. (Additional

-I flags may be included to specify other header files.)

-fno-builtin Required; uses library calls even for common library subroutines.

!

596

F

F
PowerPC
-fno-for-scope Required; allows the scope of variables declared within a for loop

to be outside of the for loop.

-nostdinc Required; searches only the directory or directories specified with

the -I flag (see above) and the current directory for header files. It

does not search host-system include files.

-DCPU=PPC603 Required; defines the CPU type. If you are using another

PowerPC processor, specify the appropriate value (see Defining the
CPU Type, p.595).

-D_GNU_TOOL Required; defines the compilation toolkit used to compile

VxWorks or applications.

-c Required; specifies that the module is to be compiled only, and not

linked for execution under the host.

applic.language_id
Required; specifies the file(s) to compile. For C compilation,

specify a suffix of .c. For C++ compilations, specifies a suffix of

.cpp. The output is an unlinked object module in ELF format with

the suffix .o. For the example above, the output would be applic.o.

Compiling Modules for GDB

To compile C modules for debugging in GDB, we recommend using the -gdwarf
flag to generate DWARF debug information instead of the -g flag, which generates

STABS information. For example:

% ccppc -mcpu=603 -I$WIND_BASE/target/h -fno-builtin -nostdinc \
-DCPU=PPC603 -c -gdwarf test.c

where $WIND_BASE is the location of your Tornado tree and -DCPU specifies the

CPU type.

The compiler does not support DWARF debug information for C++. If you are

using C++, you must use the -g flag:

% ccppc -mcpu=603 -I$WIND_BASE/target/h -fno-builtin -nostdinc \
-DCPU=PPC603 -c -g test.cpp
597

VxWorks 5.3.1
Programmer’s Guide
Unsupported Features

Prefixed Underscore

In the PowerPC architecture, the compiler does not prefix underscores to symbols.

In other words, symbol is not equivalent to _symbol as it is in other architecture

implementations.

Small Data Area

The compiler supports the small data area. However, for this release of Tornado for

PowerPC, VxWorks does not support the small data area. Therefore the -msdata
compiler flag must not be used.

F.3 Interface Changes

This section describes particular routines and tools that are specific to PowerPC

targets in any of the following ways:

■ available only for PowerPC targets

■ parameters specific to PowerPC targets

■ special restrictions or characteristics on PowerPC targets

For complete documentation, see the online documentation.

Memory Management Unit

VxWorks provides two levels of virtual memory support: the basic level bundled

with VxWorks, and the full level that requires the optional product VxVMI.Check

with your sales representative for the availability of VxVMI for PowerPC.

For detailed information on VxWorks MMU support, see 7. Virtual Memory
Interface. The following subsections augment the information in that chapter.

Instruction and Data MMU

The PowerPC MMU introduces a distinction between instruction and data MMU

and allows them to be separately enabled or disabled. Two new macros,
598

F

F
PowerPC
USER_I_MMU_ENABLE and USER_D_MMU_ENABLE, are defined in

config/all/configAll.h. To enable/disable one or both MMUs, define/undefine the

corresponding macros in either configAll.h or in your BSP’s config.h file.

60X Memory Mapping

The PowerPC 603 and 604 MMU supports two models for memory mapping. The

first, the BAT model, allows mapping of a memory block ranging in size from

128KB to 256MB into a BAT register. The second, the segment model, gives the

ability to map the memory in pages of 4KB. Tornado for PowerPC supports both

memory models.

■ 603/604 Block Address Translation Model

The size of a BAT register is two words of 32 bits. For the PowerPC 603 and

PowerPC 604, eight BAT registers are implemented: four for the instruction MMU

and four for the data MMU.

The data structure sysBatDesc[], defined in sysLib.c, handles the BAT register

configuration. The registers will be set by the initialization software in the MMU

library. By default these registers are cleared and set to zero.

All the configuration constants used to fill the sysBatDesc[] are defined in

h/arch/ppc/mmu603Lib.h for both the PowerPC 603 and the PowerPC 604.

■ 603/604 Segment Model

This model specifies the configuration for each memory page. The entire physical

memory is described by the data structure sysPhysMemDesc[], defined in

sysLib.c. This data structure is made up of configuration constants for each page

or group of pages. All the configuration constants defined in Table 7-1 of 7. Virtual
Memory Interface are available for PowerPC virtual memory pages.

Use of the VM_STATE_CACHEABLE constant listed in Table 7-1 for each page or

group of pages, sets the cache to copy-back mode.

In addition to VM_STATE_CACHEABLE, the following additional constants are

supported:

– VM_STATE_CACHEABLE_WRITETHROUGH
– VM_STATE_MEM_COHERENCY
– VM_STATE_MEM_COHERENCY_NOT
– VM_STATE_GUARDED
– VM_STATE_GUARDED_NOT
599

VxWorks 5.3.1
Programmer’s Guide
The first constant sets the page descriptor cache mode field in cacheable write-

through mode. Cache coherency and guarded modes are controlled by the other

constants.

For more information regarding cache modes, refer to PowerPC Microprocessor
Family: The Programming Environments.

For more information on memory page states, state flags, and state masks,

see7. Virtual Memory Interface.

The page table size depends on the total memory to be mapped. The larger the

memory to be mapped, the bigger the page table will be. The VxWorks

implementation of the segment model follows the recommendations given in

PowerPC Microprocessor Family: The Programming Environments. During MMU

library initialization, the total size of the memory to be mapped is computed,

allowing dynamic determination of the page table size. The following table shows

the correspondence between the total amount of memory to map and the page

table size.

Table 10-2 Page table size

Total Memory to map Page table size

8 MB or less 64 KB

16 MB 128 KB

32 MB 256 KB

64 MB 512 KB

128 MB 1 MB

256 MB 2 MB

512 MB 4 MB

1 GB 8 MB

2 GB 16 MB

4 GB 32 MB
600

F

F
PowerPC
ELF-specific Tools

The following tools are specific to the ELF format. For more information, see the

reference entries for each tool.

elfHex converts an ELF-format object file into Motorola hex records. The

syntax is:

elfHex [-a adrs] [-l] [-v] [-p PC] [-s SP] file

elfToBin extracts text and data segments from an ELF file. The syntax is:

elfToBin < inFile > outfile

elfToBsd converts ELF object modules to BSD format. The syntax is:

elfToBsd < infile_elf > outfile_bsd

elfXsyms extracts the symbol table from an ELF file. The syntax is:

elfXsyms < objMod > symTbl

F.4 Architecture Considerations

This section describes the following characteristics of the PowerPC processors that

will affect your VxWorks application:

■ supervisor/user mode
■ 24-bit addressing
■ byte order
■ PowerPC register usage
■ caches
■ memory management unit (MMU)
■ floating-point support
■ memory layout

For a more comprehensive documentation of PowerPC architectures, see the

appropriate Motorola microprocessor user’s manual or the IBM user’s manual.

Processor Mode

VxWorks always runs in Supervisor mode on processors in the PowerPC family.
601

VxWorks 5.3.1
Programmer’s Guide
24-bit Addressing

The PowerPC architecture limits its relative addressing to 24-bit offsets to conform

to the EABI (Embedded Application Binary Interface) standard.

Byte Order

The byte order used by VxWorks for the PowerPC family is big-endian.

PowerPC Register Usage

The PowerPC conventions regarding register usage, stack frame formats,

parameter passing between routines, and other factors involving code inter-

operability, are defined by the ABI (Application Binary Interface) and the EABI

(Embedded Application Binary Interface) protocols. The VxWorks

implementation for the PowerPC follows these protocols. Table F-1 shows

PowerPC register usage in VxWorks.

Table F-1 PowerPC Registers

Register Name Usage

gpr0 Volatile register which may be modified during function linkage.

gpr1 Stack frame pointer, always valid.

gpr2 Second small data area pointer register (_SDA2_BASE_).

gpr3 -gpr4 Volatile registers used for parameter passing and return value.

gpr5-gpr10 Volatile registers used for parameter passing.

gpr11-gpr12 Volatile registers that may be modified during function linkage.

gpr13 Small data area pointer register (_SDA_BASE_).

gpr14-gpr30 Non-volatile registers used for local variables.

gpr31 Used for local variables or “environment pointers.”

fpr0 Volatile floating-point register.

fpr1 Volatile floating-point register used for parameter passing and return

value.
602

F

F
PowerPC
Caches

The following subsections augment the information in 3. I/O System.

PowerPC processors contain an instruction cache and a data cache. In the default

configuration, VxWorks enables both caches. To disable the instruction cache,

undefine USER_I_CACHE_ENABLE in config/all/configAll.h. To disable the data

cache, undefine USER_D_CACHE_ENABLE in configAll.h.

For most boards, the cache capabilities must be used with the MMU to resolve

cache coherency problems. The page descriptor for each page selects the cache

mode. This page descriptor is configured by filling the data structure

sysPhysMemDesc[] defined in sysLib.c. (For more information about cache

coherency, see the reference entry for cacheLib. For information about the MMU

and VxWorks virtual memory, see 7. Virtual Memory Interface. For MMU

information specific to the PowerPC family, see Memory Management Unit, p.604.)

The state of both data and instruction caches is controlled by the WIMG1

information saved either in the BAT (Block Address Translation) registers or in the

segment descriptors. Since a default cache state cannot be supplied, each cache

may be enabled separately after the corresponding MMU is turned on. For more

information on these cache control bits, refer to PowerPC Microprocessor Family: The
Programming Environments, published jointly by Motorola and IBM.

NOTE: The cache library for the PowerPC 860 is provided with Tornado 1.0.1.

Caching may be used with any CPU of revision A.1 or later. However, due to

problems with the chip hardware, VxWorks must be run with the cache disabled

on any processor earlier than revision A.1.

1. W: the WRITETHROUGH or COPYBACK attribute.

I: the inhibited attribute.

M: the memory coherency attribute

G: the guarded attribute

fpr2-fpr8 Volatile floating-point registers used for parameter passing.

fpr9-fpr13 Volatile floating-point registers.

fpr14-fpr31 Non-volatile floating-point registers used for local variables.

Table F-1 PowerPC Registers (Continued)

Register Name Usage

!

603

VxWorks 5.3.1
Programmer’s Guide
Memory Management Unit

The PowerPC MMU architecture required some extensions to the standard

VxWorks MMU interface. See Memory Management Unit, p.598.

Floating-Point Support

PowerPC 403 and 860

The PowerPC 403 and 860 do not support hardware floating-point instructions.

However, VxWorks provides a floating-point library that emulates these

mathematical functions. All ANSI floating-point functions have been optimized

using libraries from U. S. Software.

PowerPC 60X

A subset of the ANSI functions is optimized using libraries from Motorola:

Handling of floating-point exceptions is supported for PowerPC 60X processors.

Tasks spawned with the VX_FP_TASK option have the following default floating-

point exception environment:

– Divide by zero, Overflow, and Underflow exceptions are enabled.

– The rounding mode is “Round to nearest.”

– The floating-point exception mode selected is “imprecise and

nonrecoverable.”

To change the default for a specific task, modify the values of the Machine State

Register (MSR) and the Floating Point Status and Control Register (FPSCR) at the

beginning of the task code.

– The MSR’s FE0 and FE1 bits select the floating-point exception mode.

– The FPSCR’s VE, OE, UE, ZE, XE, NI, and RN bits enable or disable the

corresponding floating-point exceptions and rounding mode. (See archPpc.h
for the macros PPC_FPSCR_VE and so forth.)

Register values may be accessed by the routines vxMsrGet(), vxMsrSet(),
vxFpscrGet(), and vxFpscrSet().

acos() asin() atan() atan2()
cos() exp() log() log10()
pow() sin() sqrt()
604

F

F
PowerPC
VxMP Support for Motorola PowerPC Boards

VxMP is an optional VxWorks component that provides shared-memory objects

dedicated to high-speed synchronization and communication between tasks

running on separate CPUs. For complete documentation of the optional

component VxMP, see 6. Shared-Memory Objects.

Normally, boards that make use of VxMP must support hardware test-and-set

(TAS: atomic read-modify-write cycle). Motorola PowerPC boards do not provide

atomic (indivisible) TAS as a hardware function. VxMP for PowerPC provides

special software routines which allow these Motorola boards to make use of VxMP.

Boards Affected

The current release of VxMP provides a software implementation of a hardware

TAS for PowerPC-based VME boards of the 1300, 1600, and 2600 families

manufactured by Motorola. No other PowerPC boards are affected.

NOTE: Some PowerPC board manufacturers, for example Cetia, claim to equip

their boards with hardware support for true atomic operations over the VME bus.

Such boards do not need the special software written for the Motorola boards.

Implementation

The VxMP product for Motorola PowerPC boards has special software routines

which compensate for the lack of atomic TAS operations in the PowerPC and the

lack of atomic instruction propagation to and from these boards. This software

consists of the routines sysBusTas() and sysBusTasClear().

The software implementation uses ownership of the VME bus as a semaphore; in

other words, no TAS operation can be performed by a task until that task owns the

VME bus. When the TAS operation completes, the VME bus is released. This

method is similar to the special read-modify-write cycle on the VME bus in which

the bus is owned implicitly by the task issuing a TAS instruction. (This is the

hardware implementation employed, for example, with a 68K processor.)

However, the software implementation comes at a price. Execution is slower

because, unlike true atomic instructions, sysBusTas() and sysBusTasClear()
require many clock cycles to complete.

Configuring Hardware TAS

To invoke this feature, define SM_TAS_TYPE as SM_TAS_HARD in configAll.h or

in config.h for your BSP.

!

605

VxWorks 5.3.1
Programmer’s Guide
Restrictions for Multi-Board Configurations

Systems using multiple VME boards where at least one board is a Motorola

PowerPC board must have a Motorola PowerPC board as the board with a

processor ID equal to 0 (the board whose memory is allocated and shared). This is

because a TAS operation on local memory by, for example, a 68K processor does

not involve VME bus ownership and is, therefore, not atomic as seen from a

Motorola PowerPC board.

This restriction does not apply to systems that have globally shared memory

boards which are used for shared memory operations. Specifying

SM_OFF_BOARD as TRUE in config.h for the processor with ID of 0 and setting the

associated parameters will enable you to assign processor IDs in any

configuration.
606

F

F
PowerPC
Memory Layout

The VxWorks memory layout is the same for all PowerPC processors. Figure F-1

shows the memory layout, labeled as follows:

Interrupt Vector Table
Table of exception/interrupt vectors.

SM Anchor Anchor for the shared memory network and VxMP shared

memory objects (if there is shared memory on the board).

Boot Line ASCII string of boot parameters.

Exception Message
ASCII string of the fatal exception message.

Initial Stack Initial stack for usrInit(), until usrRoot() gets allocated stack.

System Image VxWorks itself (three sections: text, data, bss). The entry point for

VxWorks is at the start of this region, which is BSP dependent. The

entry point for each BSP is as follows:

Host Memory Pool
Memory allocated by host tools. The size depends on the system

image and is defined in config/all/configAll.h.

Interrupt Stack Stack for the interrupt handlers. The size is defined in configAll.h.

The location depends on the system image and host memory pool

sizes.

System Memory Pool
Size depends on the size of the system image. The sysMemTop()
routine returns the address of the end of the free memory pool.

All addresses shown in Figure F-1 are relative to the start of memory for a

particular target board. The start of memory (corresponding to 0x0 in the memory-

layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS in config.h for each

target.

cetCvme604 0x100,000

evb403, ads850 0x10,000

mv1603/4 0x30,000

ultra60X 0x10,000
607

VxWorks 5.3.1
Programmer’s Guide
Figure F-1 VxWorks System Memory Layout (PowerPC)

+0x0000

+0x3000
+0x4100

+0x4200

+0x4300

+0x4c00

BSP dependent value

Address

Initial Stack

Interrupt Vector Table
(12KB)

Exception Message

Boot Line

SM Anchor

System Image

text

data

bss

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

LOCAL_MEM_LOCAL_ADRS

_end

Interrupt Stack

Host Memory Pool
608

Index
Numerics
24-bit addressing (PowerPC) 602

64-bit support (MIPS R4000) 590

68000, 68K, see MC680x0

80386, see x86

80486, see x86

80960, see i960

A
abort character (target shell) (CTRL+C) 132, 134,

460–461

changing default 460

accept() 252

Address Resolution Protocol, see ARP

address(es), memory

gprel (MIPS) 587

probing ASI space (SPARC) 513

address(es), network

broadcast (Internet) 247–248, 296

Internet, see Internet addresses

sequential 309–310

code example 370

target board, determining 365

advertising (VxMP option) 375

AIO, see asynchronous I/O

aio_cancel() 123, 126

AIO_CLUST_MAX 124

aio_error() 123, 125

AIO_IO_PRIO_DFLT 124

AIO_IO_STACK_DFLT 124

AIO_IO_TASKS_DFLT 124

aio_read() 123, 125

aio_return() 123, 125

aio_suspend() 123, 128

AIO_TASK_PRIORITY 124

AIO_TASK_STACK_SIZE 124

aio_write() 123, 125

aiocb 124

see also control block (AIO)

aioPxLib 123

aioPxLibInit() 123, 124

aioShow() 123

aioSysDrv 124

aioSysInit() 124

ANSI C

buffered I/O 120–121
609

NOTE: Index entries of the form “see also bootLib(1)” refer to the module’s reference entry in the VxWorks
Reference Manual or the equivalent entry in the Tornado Online Manuals.

VxWorks 5.3.1
Programmer’s Guide
libraries 16–17

ansiCtype 17

ansiMath 17

ansiSetjmp 17

ansiStdarg 17

ansiStdio 17

ansiStdlib 17

applic compiler option

i960 529

MC680x0 491

PowerPC 598

SPARC 509

x86 543

application modules

building

i960 527–529

MC680x0 489–491

MIPS 581–584

PowerPC 595–598

SPARC 507–509

x86 541–543

loader 465–466

symbol table, target 464–466

see also symLib(1)

unloader 465–466

architecture-specific development

see also specific target architectures
i960 527–537

MC680x0 489–503

MIPS 581–592

PowerPC 595–608

SPARC/SPARClite 507–523

x86 541–577

archive file attribute (dosFs) 209

ARP (Address Resolution Protocol) 247, 316–318

see also proxy ARP

and shared-memory networks 309

asynchronous I/O (POSIX) 122–130

code examples 126–130

completion, determining 128

control block 124–125

drivers 124

initializing 123–124

constants 124

routines 124

requests

multiple, submitting 125

routines 123–124

return values 125

status, getting 126

ATA/IDE hard disks (x86) 572–575

booting from 561–562, 563

dosFs file systems, mounting 564

ATA_RAW 575

ATA_RESOURCE structure 575

ATA0_CONFIG 572

ATA0_INT_LVL 572

ATA0_INT_VEC 572

ataDevCreate() (x86) 573

ataDrv() (x86) 572–573, 575

ataRawio() (x86) 574–575

ataResources[] table (x86) 573, 574, 575

ataShow() (x86) 574

ataTypes[] table (x86) 574

B
backplane

input queues, processor 307

Internet network bus, as 301

processor numbers 302, 361, 366

shared-memory networks 301

shared-memory pool 302–307

backplane network, see shared-memory networks

backspace character, see delete character

bALib (SPARC) 510

bcopyDoubles() (SPARC) 510

bd() (i960) 531

bdall() (i960) 531

bfillDoubles() (SPARC) 510

bh()
i960 530

x86 545–547

big-endian numbers 250

binary semaphores 58–61

bind() 252

BLK_DEV 172, 197, 221, 226

see also direct-access devices

fields 175
610

IX

Index
block address translation (BAT) registers

(PowerPC) 599

block devices 140–151, 153, 171–185, 193

see also BLK_DEV; direct-access devices; disks;

SCSI devices; SEQ_DEV; sequential

devices

adding 158

drivers 155, 171–185

and file systems 140, 191

implementing 171–185

interface conventions 171

naming 111

RAM disks 140–141

SCSI devices 141–151

board support package (BSP) 18, 427–429

see also BSP Porting Kit; sysALib(1); sysLib(1)

documentation 429

initialization modules 429

x86 556–577

boards, see target board

Booch Components (C++) 481–484

code examples

instantiating templates 484

makefile 483–484

boot ROMs

and boot parameters 366

ROM-resident images 450

and SCSI booting 218

boot sector (dosFs) 193

boot utilities (x86)

DOS utilities 556, 558–561

chkdsk 559

mkboot 559, 560, 565

vxcopy 559, 560

vxload 560–561

vxsys 559, 560

VxWorks utilities

mkbootAta() 557–558, 565

mkbootFd() 557–558, 565

booting

see also BOOTP

BOOTP 363–370

CSLIP, using 332–333

networks, initializing 361, 442

parameters 363

and boot ROMs 366

setting 329, 366–367

shared-memory anchor address,

specifying 304

PPP, using 345–346

SCSI devices, from 218–219

shared-memory networks 303, 329

master processor 303

SLIP, using 332–333

startup scripts 444

x86 BSPs 556–565

ATA/IDE hard disks, from 561–562, 563

boot disks, building 556–561

diskettes, from 561–563

dosFs file systems, mounting 564–565

mount points 562

PCMCIA PC cards, from 561–562, 563

BOOTP 13, 363–370

boot parameters 366–367

database 364–366

debugging 368

instructions, step-by-step booting 366–368

protocols, using with other 369–370

code example 370

registering targets 364–366

server 363

multiple servers 369

bootrom 566

bootrom.hex 218

bootrom_high 566

bootrom_res 450

bootrom_uncmp 566

x86 565, 567

bootstrap protocol, see BOOTP

branch cache (MC68060) 497

BRANCH_CACHE 492, 497

breakpoints

i960 530

x86 545–547

broadcast (Internet) addresses 247–248, 296

bss segment 436

buffers

linear 16

see also bALib(1); bLib(1)

SPARC 510
611

VxWorks 5.3.1
Programmer’s Guide
network

mbufs 298–299

zbufs 264–278

ring 16

see also rngLib(1)

byte locations (zbufs) 265–266

byte order

i960 533

networks 250–251

PowerPC 602

shared-memory objects (VxMP option) 374

x86 548

bzeroDoubles() (SPARC) 510

C
-c compiler option

i960 529

MC680x0 491

MIPS 584

PowerPC 597

SPARC 509

x86 543

c() (SPARC) 510

C++ support 15, 471–484

see also Booch Components; Iostreams;

Tools.h++; Wind Foundation Classes;

Wrapper Class library; cplusLib(1)

application size, controlling 474

Booch Components 481–484

calling strategy 473

compiling applications 474–475

configuring 475

CrossWind (Tornado) 473

header files 474

initializing 443

Iostreams 476

munching 473

static constructors 473–474

template instantiation 473, 484

Tools.h++ 480

VxWorks Wrapper Class library 477–480

WindSh (Tornado) 472

cache

see also data cache; instruction cache;

cacheLib(1)

branch (MC68060) 497

coherency 168–171

copyback mode 168

PowerPC 600

writethrough mode 168

initializing 436

locking

MC68040 495

MC68060 496, 497

SPARClite 520

MC680x0 495–497

microSPARC 510

MIPS 584

PowerPC 603

shared-memory networks 306

SPARClite 510, 520

CACHE_DMA_FLUSH 170

CACHE_DMA_INVALIDATE 170

CACHE_DMA_PHYS_TO_VIRT 170

CACHE_DMA_VIRT_TO_PHYS 170

CACHE_INH_IMPRECISE 496

CACHE_INH_PRECISE 496

cacheClear() (MC68040) 495

cacheDmaMalloc() 169

cacheFlush() 169

cacheInvalidate() 169

MC68040 495

cacheLib
DMA buffer alignment (x86) 565

cacheLock()
MC68040 492, 495

MC68060 496, 497

cacheMb930Lib (SPARClite) 510

cacheMb930LockAuto() (SPARClite) 520

cacheMicroSparcLib (microSPARC) 510

cacheR3kLib (MIPS) 584

cacheR4kLib (MIPS) 584

cacheStoreBufDisable() (MC68060) 492, 496

cacheStoreBufEnable() (MC68060) 492, 496

cacheUnlock()
MC68040 492, 495

MC68060 496, 497

cc386 compiler option (x86) 543
612

IX

Index
cc68k compiler 501

ccmips compiler 584

Challenge-Handshake Authentication Protocol

(CHAP) 342–343, 354–355

character devices 153, 155–157

see also drivers

adding 158

naming 111

characters, control (CTRL+x)

target shell 459–460

tty 133–134

checkStack() 95

MC68060 492, 494

chkdsk utility (x86) 559

client-server communications 87–88

CLOCK_REALTIME 100

clocks

see also system clock; clockLib(1)

POSIX 100–101

system 40, 444

close() 112, 115, 156, 163, 212, 227, 252

fd, freeing obsolete 212

closedir() 208

clusterConfig structure 298

clusters (dosFs) 192, 201–202

and files 196

and subdirectories 196

code

interrupt service, see interrupt service routines

pure 49

shared 48

write protecting 410

code examples

asynchronous I/O (POSIX) 126–130

Booch Components (C++) makefile 483–484

booting a slave processor 370

contiguous files (dosFs) 215, 216

data cache coherency 169, 170–171

dosFs file system file attributes, setting 210

drivers 154

instantiating templates (C++) 484

message queues

attributes, examining (POSIX) 85–86

checking for waiting message

(POSIX) 81–84

POSIX 78–80

shared (VxMP option) 383

Wind 76

mutual exclusion 60

partitions

system (VxMP option) 388

user-created (VxMP option) 391

PPP hooks, using 355–356

SCSI devices, configuring 146–150

select facility, implementing 166–167

semaphores

binary 60

named 72

recursive 64

shared (VxMP option) 379

unnamed (POSIX) 69

shared-memory objects, configuring (VxMP

option) 401

sockets

datagram (UDP) 260–263

stream (TCP) 254–259

tape devices, configuring 149, 232

tasks

deleting safely 39

round-robin time slice (POSIX) 45

scheduling (POSIX) 44

setting priorities (POSIX) 43

synchronization 60–61

virtual memory (VxVMI option)

private 415

write protecting 421

watchdog timers

creating and setting 100

wrapper classes, using (C++) 479–480

zbufs

data structures, manipulating 272–273

socket calls, using 274–278

COMMAND_8042 568

compiler environment

see also GNU ToolKit User’s Guide
i960 527–529

MC680x0 489–491

MIPS 581–584

PowerPC 595–598

SPARC 507–509
613

VxWorks 5.3.1
Programmer’s Guide
x86 541–543

config.h 432–434

see also configuration

CONFIG_ALL 430

configAll.h 431–434

see also configuration

configuration 427–453

alternatives 447–453

and booting 363, 366–367

C++ support 475

CSLIP 332

disks (dosFs) 199–205

reconfiguring 203

sector values 201–202

showing current configuration 205

standard configurations 202–203

volume configuration 199–205

files 430

see also config.h, configAll.h
host for shared-memory networks 311–314

mbufs 298–299

module (usrConfig.c) 434

networks 280–300

at startup 361–362

option dependencies 449

options (INCLUDE constants) 432–434

PPP (Point-to-Point Protocol) 336–340

proxy ARP 326–330

proxy clients 323

remote file access

NFS file systems, mounting exported 287

user IDs and group IDs 288

SCSI devices 142–150

shared-memory networks 302, 304, 305–307,

308

shared-memory objects (VxMP option) 396–

403

signals 93

SLIP 331–332

subnetworks 297–298

tape devices 232–233

virtual memory 408–409

VxVMI option 408–409

configuration header files 431–434

see also INCLUDE constants

connect() 252

connectWithTimeout() 252

console devices 440

CONSOLE_BAUD_RATE 440

CONSOLE_TTY 440

contexts

task 30

creating 35

floating-point (SPARC) 518

switching (x86) 551

virtual memory (VxVMI option) 411–413

CONTIG_MAX 216

contiguous files

dosFs file systems 215–216

code example 215, 216

rt11Fs file systems 220

fragmented disk space, reclaiming 223

control block (AIO) 124–125

fields 125

control characters (CTRL+x)

target shell 459–460

tty 133–134

conventions

device naming 111–112

documentation 21

file naming 111–112

task names 36

copyback mode, data cache 168

counting semaphores 65, 68

cplusCtors() 473

cplusDtors() 473

cplusXtorSet() 473

CPU preprocessor variable, see -DCPU
CPU type, defining

i960 527

MC680x0 489

MIPS 581

PowerPC 596

SPARC 507

x86 541

crashes

initialization, during 409

creat() 112, 115

cret() (SPARC) 510

CSLIP (compressed SLIP) 244, 331–333
614

IX

Index
see also SLIP

booting 332–333

configuring 332

and networks 244

CSLIP_ALLOW 332

CSLIP_ENABLE 332

CTRL+C (abort character) 132, 134, 460–461

CTRL+D (end-of-file character) 133

CTRL+H (delete character) 133, 460

CTRL+Q (resume character) 132, 133, 460

CTRL+S (suspend character) 132, 133, 460

CTRL+U (delete-line character) 133, 460

CTRL+X (reboot character) 132, 133, 460, 562

customer services (WRS) 20

D
-D_GNU_TOOL compiler option (PowerPC) 597

daemons

network tNetTask 53

remote login tRlogind 53

remote shell rshd 279, 283

routing routed 293

RPC tPortmapd 54

target agent tWdbTask 53

telnet tTelnetd 54

TFTP server 292

data cache

see also cache; cacheLib(1)

coherency 168–171

code example 169, 170–171

and device drivers 168–171

copyback mode 168

disabling for interprocessor

communication 420

flushing 169

initializing 436

invalidating 169

MC68040 495

MC68060 496

PowerPC 603

shared-memory objects (VxMP option) 396

writethrough mode 168

data structures, shared 55

data transfer rates (x86) 571

DATA_8042 568

datagrams 89

see also sockets; UDP

broadcast 321–322

dbgArchLib (SPARC) 512

dbgInit()
abort facility 460

dbgLib
MIPS 585

SPARC 510–511

-DCPU compiler option

i960 529

MC680x0 491

MIPS 583

PowerPC 597

SPARC 508

x86 543

debugging

BOOTP 368

error status values 45–47

remote debugging server tRdbTask 54

routing problems 330

SCSI configuration 147

SPARC routines 510–512

target shell 459

virtual memory (VxVMI option) 424

VxGDB 598

DEFAULT_BOOT_LINE 562

delayed tasks 31

delayed-suspended tasks 31

delete character (CTRL+H) 133, 460

delete-line character (CTRL+U) 133, 460

demangling (C++) 472

DEV_HDR 158

development environment 430

development tools, see tools, development

device descriptor 158

device header 158

device list 158

devices 109–112, 131–151, 158–159

see also drivers and specific device types
adding 158–159

block 111, 140–151, 153, 158, 171–185, 193

character 111, 153, 155–157, 158
615

VxWorks 5.3.1
Programmer’s Guide
creating 156

NFS 137

non-NFS 139

pipes 135

RAM 140

default 111

descriptors 158

dosFs 112

and I/O system 158–159

lists 158

naming 111–112

network 137–140

NFS 111, 137–139

non-block, see character

non-NFS 111, 138–140

pipes 135–136

pseudo-memory 136–137

pty (pseudo-terminal) 131–135

RAM disk 140–141

SCSI 141–151

selecting, see select facility

serial I/O 131, 429

sockets 152

tty 429

tty (terminal) 131–135

direct-access devices 171–185

disks, changing 213

drivers

creating devices 174–176

initialization routine 173–174

installing 173

I/O control 179

reading blocks 176–177

ready status change 181–182

resetting devices 180

status, checking device 180–181

write protection 181

writing blocks 178

initializing

for dosFs 197–198

for rawFs 226

for rt11Fs 221

RAM disks 140–141

disassembler

and x86 547

diskette drivers (x86) 570–572

disks

see also block devices; dosFs file systems; rawFs

file systems; rt11Fs file systems

changing

and device drivers 181–182

dosFs file systems 211–216

rawFs file systems 227–229

rt11Fs file systems 223–224

without notification 213, 224, 228

clusters (dosFs) 192, 196, 201–202

configuring

standard formats (dosFs) 202–203

volumes (dosFs) 199–205

and file systems 191

initialized, using (dosFs) 204

mounting volumes 205, 222, 226

organization

dosFs file systems 192–197

rawFs file systems 225

rt11Fs file systems 220

RAM 140–141

ready-change mechanism 212–213, 223, 228

reconfiguring (dosFs) 203

sectors 192

synchronizing 213–214, 229

volumes

configuring (dosFs) 199–205

mounting 205, 222, 226

unmounting 211, 227

displaying system information 424, 466

DMA devices 407

buffer alignment (x86) 565

documentation

conventions 21

online man pages (on host) 21, 429

DOS_ATTR_ARCHIVE 209

DOS_ATTR_DIRECTORY 209

DOS_ATTR_HIDDEN 209

DOS_ATTR_RDONLY 208, 290

DOS_ATTR_SYSTEM 209

DOS_ATTR_VOL_LABEL 209

DOS_OPT_AUTOSYNC 200, 214

DOS_OPT_CHANGENOWARN 200, 213

DOS_OPT_EXPORT 200, 201, 288, 289
616

IX

Index
DOS_OPT_LONGNAMES 200, 201, 291

DOS_OPT_LOWERCASE 200, 201, 289

DOS_VOL_CONFIG 195, 199–202

fields 199–202

DOS_VOL_DESC 203

dosFs file systems 9, 142, 191–219

see also dosFsLib(1)

auto-sync mode 214

boot sector 193

booting from, with SCSI 218–219

clusters 192, 196, 201–202

configuring

disk volume 199–205

showing current configuration 205

standard formats 202–203

contiguous files 215–216

code examples 215, 216

devices, naming 112

directory structure 207–208, 210–211

disk changes 211–216

ready-change mechanism 212–213

unmounting volumes 211

disk organization 192–197

disk volume 199–205

configuration 199–205

accessing information about 205

changing 203–204

label 196–197

mounting 205

FAT tables 202

file attributes 208–210

setting (code example) 210

file I/O 206

file names, extending 291

file permissions 291

files 196

initialized disks, using 204

initializing 197, 441

and ioctl() requests 217–218

NFS

exporting via 288–290

limitations 291

open(), creating files with 115

opening an entire volume 206

raw mode 206

reconfiguring 203

root directory 195, 196–197

subdirectories 195, 207–208

synchronizing volumes 213–214

auto-sync mode 214

timestamp 210–211

UNIX-compatible file names, using 214

volume label 196–197

adding 197

dosFsConfigGet() 205

dosFsConfigInit() 199

dosFsConfigShow() 205, 216

dosFsDateSet() 210, 290

dosFsDateTimeInstall() 211

dosFsDevInit() 144, 195, 198, 203, 290, 441

dosFsDrvNum global variable 197

dosFsFileMode global variable 290, 291

dosFsGroupId global variable 290, 291

dosFsInit() 197, 441

dosFsLib
file truncation 116

dosFsMkfs() 198, 290

dosFsMkfsOptionsSet() 198

dosFsReadyChange() 212

dosFsTimeSet() 210, 290

dosFsUserId global variable 290, 291

dosFsVolUnmount() 211

and interrupt handlers 212

dosvc_options 199

dosvc_secPerClust 201–202

dosvc_secPerFat 202

driver number 156

driver table 156

drivers 109–112, 131–151, 153–157

see also devices and specific driver types
asynchronous I/O 124

ATA/IDE hard disks (x86) 572–575

block device 155, 171–185

character 155–157, 158

code example 154

console (x86) 567–568

and data cache coherency 168–171

diskette (x86) 570–572

and file systems 191

installing 156–157, 173, 440, 441
617

VxWorks 5.3.1
Programmer’s Guide
interrupt service routine limitations 97

keyboard (x86) 567–568

libraries, support 186

line printer (x86) 576–577

memory 136–137

network (x86) 568–569

NFS 137–139

non-NFS network 138–140

pipe 135–136

RAM disk 140–141

SCSI 141–151

serial 429

shared-memory network 301

tty 429

tty (terminal) 131–135

VGA (x86) 567–568

x86 567–577

DWARF debug information (PowerPC) 598

E
eax() (x86) 545

ebp() (x86) 545

ebx() (x86) 545

ecx() (x86) 545

edi() (x86) 545

edit mode (target shell) 459

edx() (x86) 545

eflags() (x86) 545

EISA bus (x86) 552

elcShow() (x86) 569

ELF utilities

MIPS 586

PowerPC 601

elfHex tool

MIPS 586

PowerPC 601

elfToBin tool

MIPS 586

PowerPC 601

elfToBsd tool

MIPS 586

PowerPC 601

elfXsyms tool

MIPS 586

PowerPC 601

eltShow() (x86) 569

encapsulation (PPP) 341

encryption

login password 462

PPP password 337

end-of-file character (CTRL+D) 133

eneShow() (x86) 569

entry point 435

ROM-based VxWorks 452

environment variables, VxWorks 430

displaying for tasks 466

envShow() 466, 467

EPROM support (x86) 566

__errno() 46

errno 45–47, 97

and task contexts 46

example 47

return values 46–47

error status values 45–47

ESCAPE key 460

esi() (x86) 545

esmcShow() (x86) 569

esp() (x86) 545

etc/hosts 311

etc/hosts.equiv 292

etc/hosts/equiv 284, 311

Ethernet 244

see also etherLib(1)

exception handling 48, 90

see also signals; excLib(1); sigLib(1)

floating-point (SPARC) 518–519

simulation 519

initializing 441

and interrupts 97

MC68060 and integer instructions 493

MIPS 588–589

signal handlers 48

task tExcTask 53

x86 550–551

exception stack frames (ESF)

SPARC 516

x86 551

exception vector table (VxVMI option) 410
618

IX

Index
excInit() 441

excTask() 441

abort facility 461

SPARC 518

excVecInit() 437

exit() 38

F
FAT tables (dosFs) 194–195, 202

fd table 160

fd, see file descriptors

FD_CLR 118

FD_INT_LVL 570

FD_INT_VEC 570

FD_ISSET 118

FD_RAW[] (x86) 572

FD_SET 118

FD_ZERO 118

fdDevCreate() (x86) 570

fdDrv() (x86) 570

fdopen() 120

fdprintf() 122

fdRawio() (x86) 572

fdTypes[] (x86) 570–572

FIFO

message queues, Wind 75

POSIX 42, 44

file allocation table, see FAT tables

file descriptors (fd) 113–121, 159–171

see also files; ioLib(1)

and device drivers 159

freeing obsolete

dosFs file systems 212

rawFs file systems 227

and I/O system 160

pending on, see select facility

standard input/output/error 113, 121

redirecting global assignments of 113

file pointers (fp) 120

file systems 9–11, 191–235

alternative 11

drivers 191

and block devices 191

DOS, see dosFs file systems

initializing 197, 220–221, 225, 231, 441

and RAM disks 141

raw disk, see rawFs file systems

RT-11, see rt11Fs file systems

SCSI sequential, see tapeFs file systems

File Transfer Protocol, see FTP

files

attributes 208–210

flags (dosFs) 208–209

read-only (dosFs) 208

subdirectory flag 209

volume label (dosFs) 209

closing 115

example 163

configuration header 431–434

contiguous

dosFs file systems 215–216

rt11Fs file systems 220

creating 115

deleting 115

dosFs file systems 196

exporting to remote machines 137

IDs, specifying 290, 291

I/O

and dosFs file systems 206

and rawFs file systems 227

and rt11Fs file systems 222

and tapeFs file systems 233

and I/O system 109–112, 159–163

modes, specifying 290, 291

naming 111–112

and NFS 137

opening 114–115

example 160–163

reading from 116

example 163–164

remote machines, on 137

remote access, see remote file access

timestamp 210–211

truncation 116

see also dosFsLib(1)

writing to 116

FIOATTRIBSET 209

FIOBAUDRATE 135
619

VxWorks 5.3.1
Programmer’s Guide
FIOBLKSIZEGET 232

FIOBLKSIZESET 232

FIOCANCEL 135

FIOCONTIG 215

FIODISKCHANGE 212, 223, 228

FIODISKFORMAT 198, 221, 226

x86 574

FIODISKINIT 194, 198, 204, 221

FIOFLUSH 135, 136, 234

FIOFSTATGET 139

FIOGETNAME 135, 136, 139

FIOGETOPTIONS 135

FIOLABELGET 197

FIOLABELSET 197

fioLib 121

FIOMKDIR 207

FIONBIO 253

FIONMSGS 136

FIONREAD 135, 136, 139, 253

FIONWRITE 135

FIOREADDIR 139, 140

FIORMDIR 207

FIOSEEK 137, 139, 227

FIOSELECT 165

FIOSETOPTIONS 135

tty options 132

FIOSQUEEZE 223

FIOSYNC 139, 140, 229, 234

FIOTRUNC 216

FIOUNMOUNT 212, 227

FIOUNSELECT 165

FIOWHERE 137, 139

floating-point support

contexts, task (SPARC) 518

emulation library (SPARClite) 520

exceptions (SPARC) 518–519

i960 531, 532

initializing 442

interrupt service routine limitations 97

math coprocessor, restoring (SPARC) 512

MC680x0 498–501

compiling 501

MIPS 585, 587

PowerPC 604

SPARC 512, 512–513, 518–519

SPARClite 512, 512–513, 518–519, 520

task options 36

x86 544, 552

floatInit() 442

flow-control characters (CTRL+Q and S) 132, 133,

460

-fno-builtin compiler option

i960 529

MC680x0 491

PowerPC 597

SPARC 509

x86 543

-fno-defer-pop compiler option (x86) 543

-fno-for-scope compiler option (PowerPC) 597

fopen() 120

fppArchLib 97

SPARC 512

fppFsrDefault global variable (SPARC) 518

fread() 121

free() 96

fsrShow() (SPARC) 512

fstat() 208, 209

FTP (File Transfer Protocol) 13, 279

see also ftpdLib(1); ftpLib(1)

network devices for, creating 139, 284–285

password, user 283, 367

user IDs, setting 285

ftpLib 283

ftruncate() 116, 216

-funroll-loops compiler option (MIPS) 584

-fvolatile compiler option (i960) 529

fwrite() 121

G
-G 0 compiler option (MIPS) 584, 587

gateway processors

see also routeLib(1)

adding 292–295

and shared-memory networks 301

GCC_EXEC_PREFIX
i960 528

MC680x0 490

MIPS 582
620

IX

Index
PowerPC 596

SPARC 508

x86 542

GDB, see VxGDB

-gdwarf compiler option (PowerPC) 598

getc() 121

getpeername() 252

getsockname() 252

Global Descriptor Table (GDT) (x86) 550

global variables 50

x86 architecture-specific 544–545, 566

GNU ToolKit, see compiler environment; GNU
ToolKit User’s Guide

gp-relative addressing (MIPS gprel) 587

GRAPH_ADAPTER 568

guarded mode, cache (PowerPC) 600

H
hardware

initializing 437

interrupts, see interrupt service routines

hashLibInit() 465

header files, see configuration header files;

INCLUDE constants

heartbeat, shared-memory 304–305, 403, 404

hidden files (dosFs) 209

hooks, task 40

hop count 293

host shell

target shell, differences from 463–464

host utilities

MIPS 586

PowerPC 601

hostAdd() 281

hostShow() 281

htonl() 250

shared-memory objects (VxMP option) 376

htons() 250

I
-I compiler option

i960 529

MC680x0 491

MIPS 583

PowerPC 597

SPARC 508

x86 543

i386/i486, see x86

i960 525–537

see also i960CA; i960JX; i960KA/i960KB

breakpoints 530

byte order 533

compiler environment, configuring 528

compiler options 528–529

CPU type, defining 527

floating-point support 531, 532

interface differences, VxWorks 530–532

interrupt handling, VMEbus 533

intLevelSet(), parameter change for 531

long long 533

and malloc() 531

math routines 531

and memLib 531

memory layout, VxWorks 534–537

ROM-based VxWorks 530

routines, handling unresolved 531

sysInit(), using 530

i960CA

see also i960

memory layout, VxWorks 535

i960JX

see also i960

memory layout, VxWorks 536

i960KA/i960KB

see also i960

memory layout, VxWorks 537

IACK

and MIPS 588–589

and SPARC 515

iam() 285

IBM PC, see x86

ICMP (Internet Control Message Protocol) 247

IDE hard disks, see ATA/IDE hard disks
621

VxWorks 5.3.1
Programmer’s Guide
ifAddrSet() 281, 309

ifBroadcastSet() 297

ifFlagChange() 324

ifMaskSet() 297

ifShow() 365

INCLUDE constants 432–434

see also specific constants
include files

configuration headers 430

SCSI devices 142

INCLUDE_ANSI_ESC_SEQUENCE 568

INCLUDE_ATA 572

INCLUDE_CPLUS 443, 473, 475

INCLUDE_CPLUS_BOOCH 476, 481

INCLUDE_CPLUS_IOSTREAMS 475, 476

INCLUDE_CPLUS_MIN 443, 473, 475

INCLUDE_CPLUS_TOOLS 476, 480

INCLUDE_CPLUS_VXW 476, 477

INCLUDE_DEBUG 459

INCLUDE_DOSFS 142, 197, 441

INCLUDE_EXC_HANDLING 441

INCLUDE_EXC_TASK 441

INCLUDE_FD 570

INCLUDE_FLOATING_POINT 442

INCLUDE_FTP_SERVER 284

INCLUDE_HW_FP 442, 499

INCLUDE_INSTRUMENTATION 443

INCLUDE_LOADER 465

INCLUDE_LOGGING 441

INCLUDE_LPT 576

INCLUDE_MMU_BASIC 408, 443, 549, 586

INCLUDE_MMU_FULL 408, 443, 586

INCLUDE_NET_INIT 442

INCLUDE_NET_SHOW 467

INCLUDE_NET_SYM_TBL 464

INCLUDE_NFS 138, 288

INCLUDE_NFS_MOUNT_ALL 287

INCLUDE_NFS_SERVER 288

INCLUDE_PC_CONSOLE 567

INCLUDE_PCI 550

INCLUDE_PIPE 441

INCLUDE_POSIX_AIO 123

INCLUDE_POSIX_AIO_SYSDRV 123, 124

INCLUDE_POSIX_MEM 102

INCLUDE_POSIX_MQ 77

INCLUDE_POSIX_SCHED 42

INCLUDE_POSIX_SEM 67

INCLUDE_POSIX_SIGNALS 93

INCLUDE_PPP_CRYPT 337

INCLUDE_PROTECT_TEXT 408, 443

INCLUDE_PROTECT_VEC_TABLE 408, 443

INCLUDE_PROXY_DEFAULT_ADDR 328

INCLUDE_PROXY_SERVER 326

INCLUDE_RAWFS 225, 441

INCLUDE_RPC 448

INCLUDE_RT11FS 221, 441

INCLUDE_SCSI 142, 218

INCLUDE_SCSI_BOOT 142, 143, 218

INCLUDE_SCSI_DMA 142

INCLUDE_SCSI2 142

INCLUDE_SECURITY 462, 463

INCLUDE_SHELL 457, 459

INCLUDE_SHOW_ROUTINES 466, 569

INCLUDE_SIGNALS 93, 441

INCLUDE_SLIP 332

INCLUDE_SM_OBJ 396, 403, 443

INCLUDE_SM_SEQ_ADDR 310, 327

INCLUDE_SOCK_ZBUF 273

INCLUDE_SPY 442

INCLUDE_STANDALONE_SYM_TBL 465

INCLUDE_STARTUP_SCRIPT 443

INCLUDE_STDIO 441

INCLUDE_SW_FP 442, 544, 552

INCLUDE_SYM_TBL 464

INCLUDE_TAPEFS 142, 231

INCLUDE_TFTP_CLIENT 292

INCLUDE_TFTP_SERVER 292

INCLUDE_TIMEX 442

INCLUDE_UNLOADER 465

INCLUDE_ZBUF_SOCK 264

inet, see Internet addresses

initialization 435–446

see also usrConfig(1)

asynchronous I/O (POSIX) 123–124

board support package 429

C++ support 443

cache 436

dosFs file systems 197, 441

drivers 440

exception handling facilities 441
622

IX

Index
file systems 441

floating-point support 442

hardware 437

interrupt vectors 436

I/O system 440

kernel 437–438

logging 441

memory pool 438

MMU support 443

multitasking environment 437–438

network 361–362, 442

pipes 441

rawFs file systems 225, 441

rt11Fs file systems 220–221, 441

SCSI interface 144

sequence of events, VxWorks 435, 444–446

ROM-based 452–453

sequential addressing 309

sequential devices 231–232

shared-memory objects (VxMP option) 398–

401, 402, 443

standard I/O 441

sysInit() 435

system clock 439

tapeFs file systems 231

usrInit() 436–438, 445, 453

usrRoot() 439–444, 446, 453

vector tables (SPARC) 514

virtual memory (VxVMI option) 411, 443

WindView 443

input queues, backplane processor 307

installation

drivers 156–157, 173, 440, 441

instantiation, template (C++) 473, 484

instruction cache

initializing 436

MC68040 495

MC68060 496

PowerPC 603

intArchLib
MIPS 585

SPARC 512

intConnect() 94

MIPS 589

intCount() 94

intDisable() (MIPS) 589

integers

64-bit (MIPS R4000) 590

Intel 80386, see x86

Intel 80486, see x86

Intel 80960, see i960

intEnable() (MIPS) 589

intEnt() (x86) 551

interleaving (x86) 572

Internet

addresses 247–248, 280

see also inetLib(1)

broadcast 247–248, 296

classes of 248

of host 361

host names, associating with 281–282

network interfaces, configuring 281

see also ifLib(1)

sequential addressing 309

shared-memory network master

processor 303

and subnetworks 297

of target 361

File Transfer Protocol, see FTP

packet routing 249–250

protocols 246–247

see also ARP; ICMP; IP; TCP; UDP

and sockets 251–263

Internet Control Message Protocol (ICMP) 247

Internet Protocol, see IP

interprocessor communication 407–424

Interrupt Descriptor Table (IDT) (x86) 550–551

interrupt handling

see also interrupt service routines; interrupts;

intArchLib(1); intLib(1)

application code, connecting to 94

callable routines 94

disks, changing

ready-change mechanism 213, 223, 228

unmounting volumes 212, 227

and exceptions 97

hardware, see interrupt service routines

pipes, using 135

SPARC 515–517

stacks 95
623

VxWorks 5.3.1
Programmer’s Guide
VMEbus

i960 533

MIPS 589

SPARC 517

interrupt latency 56

interrupt levels 98

interrupt masking 98

interrupt service routines (ISR) 93–99

see also interrupt handling; interrupts;

intArchLib(1); intLib(1)

limitations 95–97

logging 97

see also logLib(1)

and message queues 99

and pipes 99

routines callable from 96

and semaphores 98

and shared-memory objects (VxMP

option) 395

and signals 92, 99

interrupt stacks 95

MC680x0 494, 502

MIPS 588–589

x86 551

interrupt vector table, see Interrupt Descriptor Table

interrupts

interprocessor 307–308

locking 56

mailbox 308

MIPS 588–590

routines, supporting 589

shared-memory objects (VxMP option) 397

SPARC 515–517

task-level code, communicating to 98

thrashing 439

vectored

initializing 436

MIPS 589

SPARC 516–517

VMEbus 95, 307, 308

x86 550–551

intertask communications 7–8, 54–93

see also message queues; pipes; semaphores;

shared-memory objects; signals;

sockets; tasks; taskLib(1)

network 89–90

intExit() (x86) 551

intLevelSet() 94

i960 531

MIPS 585, 589

SPARC 512

intLock() 94

MIPS 589

SPARC 512

intLockLevelSet() 98, 438

intUnlock() 94

MIPS 589

intVecBaseGet() 94

intVecBaseSet() 94, 436

MIPS 585, 589

intVecGet() 94

intVecSet() 94

MIPS 589

I/O system 8, 109–186

asynchronous I/O 122–130

see also asynchronous I/O; aioPxLib
basic I/O 112–119

see also ioLib(1)

buffered I/O 120–121

control functions, see ioctl()
and devices 158–159

differences between VxWorks and host

system 152

driver writers 9

see also iosLib(1); tyLib(1)

and files 159–163

formatted I/O 121

see also ansiStdio(1); fioLib(1)

implementing 153–186

initializing 440

redirection 113

serial devices 131, 429

standard input/output/error 113, 440

standard I/O 120–121

initializing 441

ioctl() 112, 117, 252

dosFs file system support 217–218

line printers (x86) 577

memory drivers 137

NFS client devices 138
624

IX

Index
non-NFS devices 140

pipes 136

raw file system support 229

rt11Fs file system support 224

socket functions 253

tapeFs file system support 234–235

tty
functions 134

options 132

ioGlobalStdSet() 113, 440

ioMmuMicroSparcLib (microSPARC) 512

iosDevAdd() 158, 221

iosDrvInstall() 156, 197, 231

iosInit() 440

Iostreams (C++) 476

ioTaskStdSet() 114

IP (Internet Protocol) 246

packet routing 249–250

IP Control Protocol (IPCP) 342

ISA/EISA bus (x86) 552

ISR, see interrupt service routines

ISR_STACK_SIZE 494

K
kernel 7

see also Wind facilities

excluding facilities 447–448

execution, start of 436

gprel addressing (MIPS) 587

initializing 437–438

and multitasking 30

POSIX and Wind features, comparison of 29

message queues 86–87

scheduling 41–42

semaphores 68

priority levels 32

registers, reserved

MIPS 587

SPARC 514

kernelInit() 437–438, 446

kernelTimeSlice() 32, 33, 44

keyboard drivers (x86) 567–568

kill() 91, 92

killing

target shell, see abort character

tasks 38

L
l() (x86) 547

latency

interrupt locks 56

preemptive locks 56

libraries

ANSI C 16–17

driver support 186

floating-point emulation (SPARClite) 520

general utility 15–17

hardware interface 18

NFS

client 286

server 286

line editor (target shell) 459

line mode (tty devices) 132

line printer drivers (x86) 576–577

Link Control Protocol (LCP) 336, 341

linked lists 16

see also lstLib(1)

lio_listio() 123, 125

listen() 252

little-endian numbers 250

loader, module 465–466

loadSymTbl() 465

local objects 373

LOCAL_MEM_LOCAL_ADRS 452

i960 534

MC680x0 502

PowerPC 607

SPARC 521

x86 553

location monitors 308

locking

cache

MC68040 495

MC68060 496

SPARClite 520

interrupts 56
625

VxWorks 5.3.1
Programmer’s Guide
page (POSIX) 102

semaphores 67, 72

shared-memory test-and-set 307

spin-lock mechanism (VxMP option) 395–404

target shell access 462

task preemptive locks 34, 56

logging facilities 16, 122

see also logLib(1)

initializing 441

and interrupt service routines 97

task tLogTask 53

login

password, encrypting 462

remote

daemon tRlogind 53

and RSH 284

security 462–463

shell, accessing target 461–462

VxWorks to host 292

logInit() 441

loginUserAdd() 462

logLib 122

logTask() 441

long long
i960 533

MC680x0 493

MIPS 590

SPARC 515

x86 551

LPT_GETSTATUS 577

LPT_INT_LVL 576

LPT_INT_VEC 576

LPT_SETCONTROL 577

lptAutofeed() (x86) 576

lptDevCreate() (x86) 576

lptDrv() (x86) 576

lptResource[] (x86) 576

lptShow() (x86) 576

M
-m4650 compiler option (MIPS R4650) 583

M68000 family, see MC680x0

-m68881 compiler option 499

mailbox interrupts 308

make command (UNIX)

MIPS 582

PowerPC 596

x86 558

malloc() 438

i960 531

interrupt service routine limitations 96

man command (UNIX) 429

mangling (C++) 472

math routines

see also floating-point support; mathALib(1)

i960 531

MC680x0 498–500

MIPS 585

SPARC 512–513

SPARClite 513

x86 544

mathHardInit() 442

MC680x0 499

mathSoftInit() 442

MAX_AIO_SYS_TASKS 124

MAX_LIO_CALLS 124

mbufConfig structure 298

mbufs 298–299

configuring 298–299

partitions, creating memory 298

MC68040

see also MC680x0

cache 495–496

locking, unimplemented 495

modes 498

floating-point support 498, 499, 500

interrupt stacks 494

MMU 497–498

MC68060

see also MC680x0

buffer, FIFO 496

cache 496–497

branch 497

cache-inhibited precise mode 496

locking 496

modes 498

floating-point support 498, 499, 500

integer instructions, emulated 493
626

IX

Index
interrupt stack, unimplemented 494

MMU 498

address tables, searching 498

superscalar pipeline 494

MC680x0 489–503

see also MC68040; MC68060

architecture-specific development 489–503

cache 495–497

branch (MC68060) 497

compiler environment, configuring 490

compiler options 490–491

CPU type, defining 489

floating-point support 498–501

interface differences, VxWorks 492

interrupt stacks 494, 502

long long 493

memory layout, VxWorks 502–503

MMU 497–498

routines, architecture-specific 492

cacheStoreBufDisable() 492, 496

cacheStoreBufEnable() 492, 496

vxSSDisable() 492, 494

vxSSEnable() 492, 494

and virtual memory 497–498

-mca compiler option (i960) 529

-mcpu compiler option

MIPS 583

PowerPC 597

MEM_BLOCK_CHECK 394

memAddToPool() 438

memDrv 131, 136–137

memLib (i960) 531

memory

see also shared-memory networks; shared-

memory objects (VxMP option);

shared-memory pool; strings; virtual

memory

allocation 16, 438

see also memLib(1), memPartLib(1)

availability of, determining 438

driver 136–137

layout

i960 534–537

i960CA 535

i960JX 536

i960KA/i960KB 537

MC680x0 502–503

microSPARC 523

MIPS 591–592

PowerPC 607–608

SPARC/SPARClite 520–523

x86 553–555

lower memory 555

upper memory 554

loading, required for 465

locking (POSIX) 101–102

see also mmanPxLib(1)

mbuf partitions, creating 298

paging (POSIX) 101

pool 50

adding to 438

initializing 438

pseudo-I/O devices 136–137

segmentation (x86) 548–550

shared-memory networks 301–316

shared-memory objects (VxMP option) 373–

404

shared-memory pool 302–307

start of, see LOCAL_MEM_LOCAL_ADRS
swapping (POSIX) 101

virtual 407–424

write protecting 410, 421–423

memory management unit, see MMU

memPartLib 438

and shared-memory partitions 391

memPartShow() 466, 467

memPartSmCreate() 391

memShow() 466, 467

message logging, see logging facilities

message queues 74–88

see also msgQLib(1)

client-server example 88

displaying attributes 87

and interrupt service routines 99

POSIX 77–87

see also mqPxLib(1)

attributes 84–86

code examples

attributes, examining 85–86

checking for waiting message 81–84
627

VxWorks 5.3.1
Programmer’s Guide
communicating by message

queue 78–80

notifying tasks 80–84

unlinking 78

Wind facilities, differences from 86–87

priority setting 76

shared (VxMP option) 381–386

code example 383

creating 381

local message queues, differences

from 382

Wind 75–76

code example 76

creating 75

deleting 75

receiving messages 75

sending messages 75

timing out 75

waiting tasks 75

-mfp32 compiler option (MIPS R4000, R4650) 583

-mgp32 compiler option (MIPS R4000, R4650) 583

microSPARC

see also SPARC/SPARClite

cache 510

I/O MMU 512

memory layout, VxWorks 523

MIPS 581–592

cache, initializing 584

compiler environment, configuring 582

compiler options 582–584

CPU type, defining 581

floating-point support 585, 587

gprel addressing 587

interface differences, VxWorks 584–586

interrupts 585, 588–590

routines, supporting 589

VMEbus 589

math routines 585

memory layout, VxWorks 591–592

MMU, unsupported 586

registers, reserved 587

routine parameters, displaying 585

64-bit support (R4000) 590

stack traces 585

task traces 585

tasks, spawning 586

tools, ELF 586

virtual memory mapping 590

and VxGDB 583, 585

-mips3 compiler option (MIPS R4000, R4650) 583

-mka compiler option (i960) 529

-mkb compiler option (i960) 529

mkboot utility (x86) 559, 560, 565

mkbootAta() 565

mkbootAta() (x86) 557–558

mkbootFd() 565

mkbootFd() (x86) 557–558

mlock() 102

mlockall() 102

mmanPxLib 102

MMU

see also virtual memory - VxVMI option;

vmLib(1)

address tables, searching (MC68060) 498

initializing 443

MC680x0 497–498

cache-inhibited imprecise mode 498

cache-inhibited non-serialized mode 498

states, architecture-specific 492

MIPS 586

PowerPC 599–601, 604

shared-memory networks 306

shared-memory objects (VxMP option) 399

using programmatically 410–424

x86 549–550

mmuPhysDesc[] table (x86) 549

-mno-486 compiler option (x86) 543

modules

see also application modules

optional (INCLUDE constants) 432–434

moduleShow() 466

mount points (x86) 562

mountd server task 286

mounting volumes

dosFs file systems 205

rawFs file systems 226

rt11Fs file systems 222

tapeFs file systems 184, 233

mq_close() 77, 78

mq_getattr() 77, 84
628

IX

Index
mq_notify() 77, 80–84

mq_open() 77

mq_receive() 77, 78

mq_send() 77

mq_setattr() 77, 84

mq_unlink() 77, 78

mqPxLib 77

mqPxLibInit() 77

-msdata compiler option (PowerPC) 598

MS-DOS

boot disks, building (x86) 558–560

file systems, see dosFs file systems

interleaving (x86) 572

msgQCreate() 75

msgQDelete() 75

msgQReceive() 75

msgQSend() 75

msgQShow() 383, 466

msgQSmCreate() 381

-msingle-float compiler option (MIPS R4650) 583

-msoft-float compiler option

MC680x0 491, 499, 501

MIPS 584, 588

SPARC 509

-msparclite compiler option (SPARClite) 509, 520

-mstrict-align compiler option (i960) 529

MTIOCTOP 235

MTWEOF 233

multitasking 7–8, 30, 48

see also taskLib(1)

example 52

munching (C++) 473

munlock() 102

munlockall() 102

mutual exclusion 55–56

see also semLib(1)

code example 60

counting semaphores 65

interrupt locks 56

NFS, initializing 290

preemptive locks 56

and reentrancy 50

and shared-memory networks 307

Wind semaphores 57, 62–65

binary 60

deletion safety 64

priority inheritance 62

priority inversion 62–63

recursive use 64

N
name database (VxMP option) 375–376

accessing objects in 375

adding objects 375

displaying 376

name mangling, see mangling

named semaphores (POSIX) 67, 71–73

nanosleep() 39, 40, 101

net masks 297

netDevCreate() 139, 284

netDrv 131, 138, 282

and FTP 283

and RSH 283

netLibInit() 442

network buffers

mbufs 298–299

zbufs 264–278

Network Control Protocol (NCP) 342

network devices 137–140

see also FTP; NFS; RSH

creating

for NFS 287

for RSH and FTP 284–285

NFS 137–139

non-NFS 138–140

Network File System, see NFS

network task tNetTask 53

networks 11–12, 243–370

see also hostLib(1); netLib(1)

byte order 250–251

components, hierarchy of 244

configuring 280–300

drivers (x86) 568–569

excluding from VxWorks 448

gateways, adding 292–295

initializing 361–362, 442

interfaces 280

see also ifLib(1)
629

VxWorks 5.3.1
Programmer’s Guide
Internet addresses, specifying 280

Internet, see Internet

intertask communications 89–90

proxy 319–322

shared-memory 246, 301–316

see also shared-memory networks

and sockets 251–263

subnetworks 297–298

and proxy ARP 318, 325

testing connections 295–296

transparency 137

NFS (Network File System) 12, 13, 115, 137–139,

286–291

see also nfsDrv(1); nfsLib(1)

authentication parameters 138

clients

ioctl requests 138

library 286

devices 137–139

creating 137, 287

naming 111

open(), creating with 115

dosFs file systems

exporting 288–290

mutual exclusion 290

server 286, 288–291

configuring 288

libraries 286

limitations 291

transparency 137

user authentication 287–288, 291

user IDs, setting 287–288

NFS_GROUP_ID 288

NFS_USER_ID 288

nfsAuthUnixPrompt() 138, 288

nfsAuthUnixSet() 138, 287

nfsd server task 286

nfsDrv 131, 137, 286

nfsExport() 288, 289

nfsMount() 137, 287

non-block devices, see character devices

-nostdinc compiler option

i960 529

MC680x0 491

MIPS 584

PowerPC 597

SPARC 509

x86 543

ntoh() 250

ntohl() 250

shared-memory objects (VxMP option) 376

NUM_DOSFS_FILES 197

NUM_RAWFS_FILES 225

NUM_RT11FS_FILES 221

NUM_SIGNAL_QUEUES 93

NUM_TTY 440

O
-O compiler option

i960 529

MC680x0 491

PowerPC 597

x86 543

-O0 compiler option (MIPS) 583

-O2 compiler option

MIPS 583

SPARC 508

O_CREAT 71, 77

O_EXCL 71

O_NONBLOCK 77, 84

object ID (VxMP option) 374

offset (zbufs) 265–266

online documentation

man pages (on host) 21, 429

open() 112, 114, 115, 123, 160, 207, 233

opendir() 208

operating system 29–102

OPT_7_BIT 132

OPT_ABORT 132

OPT_CRMOD 132

OPT_ECHO 132

OPT_LINE 132

OPT_MON_TRAP 132

OPT_RAW 132

OPT_TANDEM 132

OPT_TERMINAL 132, 440

optimizing, see performance monitoring

optional VxWorks features (INCLUDE
630

IX

Index
constants) 432–434

optional VxWorks products

VxMP shared-memory objects 14, 373–404

VxSim simulator 19

VxVMI virtual memory 13, 408–409, 410–424

Wind Foundation Classes 471–484

WindNet SNMP 12, 279

P
packet routing 249–250

page locking 102

see also mmanPxLib(1)

page states (VxVMI option) 412

paging 101

Password Authentication Protocol (PAP) 337, 342,

353–354

password encryption

login 462

PPP 337

pause() 91

PC, see x86

PC_KBD_TYPE 567

PC_XT_83_KBD 567

PC104 bus (x86) 552

pc386/pc486 support (x86) 565

PCCARD_RESOURCE 576

pccardMkfs() 565

pccardMount() 565

PCI bus (x86) 552

PCMCIA PC cards (x86)

booting from 561–562, 563

dosFs file systems, mounting 565

pended tasks 31

pended-suspended tasks 31

Pentium, see x86

performance monitoring 17

see also spyLib(1); timexLib(1)

tools for, including 442

PHYS_MEM_DESC 408, 429

see also sysPhysMemDesc[]
ping() 295–296

PING_OPT_DONTROUTE 296

PING_OPT_SILENT 296

pipeDevCreate() 88, 441

pipeDrv 131, 135

pipeDrv() 441

pipes 88–89, 135–136

see also pipeDrv(1)

creating 135

initializing 441

interrupt handling 135

interrupt service routines 99

ioctl requests 136

select(), using with 89

Point-to-Point Protocol (PPP) 246, 334–360

authentication 347, 347–356

link-layer 336

secrets 347–355

booting VxWorks 345–346

Challenge-Handshake Authentication Protocol

(CHAP) 342–343, 354–355

configuring environment for 336–340

and debugging 358

encapsulation 341

encryption 337

errors, detecting 335

extensibility 335

header protocol field 335

hooks, using 355–356

code example 355–356

IP addresses, negotiating 336

IP Control Protocol (IPCP) 342

Link Control Protocol (LCP) 336, 341

links

deleting 344

initializing 343–344

managing 335–336

Network Control Protocol (NCP) 342

network interface, as

additional 357

default target 357–358

network protocols, supporting multiple 335

newsgroup, online 360

optional features 337–340, 347–351

precedence 347

setting

configuration constants, with 337–

339
631

VxWorks 5.3.1
Programmer’s Guide
options files, with 339–340

options structures, with 339

turning on 338

options, negotiating 336

Password Authentication Protocol (PAP) 337,

342, 353–354

peers 335

Requests for Comments (RFCs) 360

SLIP, versus 335–336

troubleshooting 358–360

authentication 359

links, establishing 359

polling 307, 308

shared-memory objects (VxMP option) 397

ports 18

see also sysALib(1); sysLib(1)

enabling and disabling 321

and sockets 251

POSIX 8

asynchronous I/O 123–130

routines 123–124

clocks 100–101

see also clockLib(1)

file truncation 116

and kernel 29

memory-locking interface 101–102

message queues 77–87

see also message queues; mqPxLib(1)

page locking 102

see also mmanPxLib(1)

paging 101

priority numbering 42

scheduling 41–45

see also scheduling; schedPxLib(1)

semaphores 67–73

see also semaphores; semPxLib(1)

signal functions 92–93

see also signals; sigLib(1)

routines 91

swapping 101

task priority, setting 43–44

code example 43

timers 100–101

see also timerLib(1)

Wind features, differences from 29

message queues 86–87

scheduling 41–42

semaphores 68

posixPriorityNumbering global variable 42

PowerPC 595–608

architecture-specific development 595–608

byte order 602

cache 603

modes 600

compiler environment, configuring 596

compiler options 597–598

CPU type, defining 596

floating-point support 604

GDB, compiling modules for 598

interface differences, VxWorks 599–601

memory layout, VxWorks 607–608

memory mapping

block address translation registers 599

memory page, by 600

MMU 599–601, 604

operating mode 602

registers, using 602–603

shared-memory objects (VxMP option) 605–

606

small data area 598

tools, ELF 601

24-bit addressing 602

underscores, handling 598

virtual memory 599–601

PPP, see Point-to-Point Protocol

PPP_BAUDRATE 345

PPP_CONNECT_DELAY 338, 359

PPP_OPTIONS 339

PPP_OPTIONS_FILE 347

PPP_OPTIONS_STRUCT 338

PPP_TTY 338, 345

pppDelete() 344

pppInfoGet() 344

pppInit() 337, 339, 340, 344

pppSecretAdd() 352, 353

preemptive locks 34, 56

preemptive priority scheduling 32, 33, 44

printErr() 122

printErrno() 47

printf() 121
632

IX

Index
priority

inheritance 62

inversion 62–63

message queues 76

numbering 42

preemptive, scheduling 32, 33, 44

scheduling parameters 45

task, setting

POSIX 43–44

Wind 32

privilege protection (x86) 548

processes (POSIX) 41

processor number 302, 361, 366

zero 303

protocols

see also individual protocols
ARP (Address Resolution Protocol) 247, 309

backplanes, communicating over 301

BOOTP (bootstrap protocol) 363–370

example 369

CSLIP (compressed SLIP) 244, 331–333

FTP (File Transfer Protocol) 279

ICMP (Internet Control Message Protocol) 247

IP (Internet Protocol) 246

PPP (Point-to-Point Protocol) 334–360

proxy ARP 320–321

example 369

and shared-memory networks 301

SLIP (Serial Line Internet Protocol) 244–246,

331–333

TCP (Transmission Control Protocol) 247

TFTP (Trivial File Transfer Protocol)

example 369

UDP (User Datagram Protocol) 247

proxy ARP 13, 316–331

clients 320–324

and broadcasts 324

configuring 323

multi-homed 323–324

registering 329

routing tables 323–324

see also routeLib(1)

configuring 326–330

debugging 330

network 319–322

protocol 320–321

protocols, using with other 369–370

server 318–320

routing issues on 319–320

shared-memory networks, tiers of 324–328

and subnetworks 318, 325

proxyPortFwdOff() 322

proxyPortFwdOn() 321

psrShow() (SPARC) 512

pty devices 131–135

see also ptyDrv(1)

ptyDrv 131

pure code 49

putc() 121

Q
queued signals 92

queues

see also message queues

input, backplane processor 307

ordering (FIFO vs. priority) 66–75

semaphore wait 66

R
R3000, see MIPS

R4000, see MIPS

R4650, see MIPS

raise() 91

RAM disks 140–141

see also ramDrv(1)

RAM_HIGH_ADRS 452

RAM_LOW_ADRS 435, 452

ramDevCreate() 140

ramDrv 131, 136, 140

raw mode

dosFs file systems 206

rt11Fs file systems 222

tty devices 132

rawFs file systems 225–230

see also rawFsLib(1)
633

VxWorks 5.3.1
Programmer’s Guide
disk changes 227–229

ready-change mechanism 228

unmounting volumes 227

without notification 228

disk organization 225

disk volume, mounting 226

fd, freeing obsolete 227

file I/O 227

initializing 225, 441

and ioctl() requests 229

and rt11Fs file systems 222

synchronizing disks 229

rawFsDevInit() 226, 441

rawFsDrvNum global variable 225

rawFsInit() 225, 442

rawFsLib 225

rawFsReadyChange() 228

rawFsVolUnmount() 227

interrupt handling 227

read() 112, 116, 163, 252

readdir() 208

read-only files (dosFs) 208

ready tasks 31

ready-change mechanism

dosFs file systems 212–213

rawFs file systems 228

rt11Fs file systems 223

reboot character (CTRL+X) 132, 133, 460

recv() 252

recvfrom() 252

recvmsg() 252

redirection 113

reentrancy 48–52

registers

gp (MIPS) 587

PowerPC 602–603

reserved

MIPS 587

SPARC 514

64-bit (MIPS R4000) 590

x86 routines 545

remote command execution, see RSH

remote file access 12, 13, 278–279, 282–291

see also FTP; NFS; RSH; TFTP; ftpdLib(1);

ftpLib(1); nfsDrv(1); remLib(1);

tftpdLib(1); tftpLib(1)

file permissions 286

mounting remote file systems 287

NFS 279, 286–291

devices for, creating 287

user IDs, setting 287–288

RSH and FTP 279, 283

remote file transfer (TFTP) 291–292

remote login

and RSH 284

daemon tRlogind 53

security 462–463

shell, accessing target 461–462

VxWorks to host 292

remote procedure calls, see RPC

remote shell, see RSH

remove() 112, 115, 156, 207

reserved registers

MIPS 587

SPARC 514

restart character (target shell) (CTRL+C) 132, 134,

460–461

changing default 460

resume character (CTRL+Q) 132, 133, 460

rewinddir() 208

.rhosts 284, 292, 311

ring buffers 16, 97, 98

see also rngLib(1)

rlogin (UNIX) 461

rlogin() (VxWorks) 292

ROM

monitor trap (CTRL+X) 132, 133, 460

VxWorks in 449–453

and i960 530

ROM cards (x86) 566

romInit() 452, 530

romInit.s 429

romStart() 452, 530

root directory (dosFs) 195, 196–197

root task tUsrRoot 52

round-robin scheduling 33–34, 44–45

code example 45

route command 293
634

IX

Index
routeAdd() 250, 294, 324, 330

routed routing daemon 293

routeDelete() 250, 324

routeNetAdd() 250, 294

routes

see also routeLib(1)

adding 292–295

UNIX 293–294

VxWorks 294

Windows 293

debugging 330

multi-homed proxy clients 323

proxy server 319–320

RPC (Remote Procedure Calls) 12, 90, 278

see also rpcLib(1)

daemon tPortmapd 54

excluding from VxWorks 448

RSH (Remote Shell protocol) 13

see also remLib(1)

daemon rshd 279, 283

network devices for, creating 139, 284–285

and UNIX 284

user IDs, setting 285

rt11Fs file systems 10, 220–224

see also rt11FsLib(1)

contiguous files 220

fragmented disk space, reclaiming 223

disk changes 223–224

ready-change mechanism 223

without notification 224

disk organization 220

disk volume, mounting 222

file I/O 222

initializing 220–221, 441

and ioctl() requests 224

open(), creating files with 115

raw mode 222

rt11FsDevInit() 144, 221, 441

rt11FsDrvNum global variable 220

rt11FsInit() 220, 442

rt11FsLib 220

rt11FsReadyChange() 223

S
s() (SPARC) 510

scalability 4

VxWorks features 432–434

scanf() 122

SCHED_FIFO 44

sched_get_priority_max() 42, 45

sched_get_priority_min() 42, 45

sched_getparam() 42

sched_getscheduler() 42, 44

SCHED_RR 44

sched_rr_get_interval() 42, 45

sched_setparam() 42, 44

sched_setscheduler() 42, 44

sched_yield() 42

schedPxLib 41, 42

scheduling 32–34

POSIX 41–45

see also schedPxLib(1)

algorithms 42

code example 44

FIFO 42, 44

policy, displaying current 44

preemptive priority 44

priority limits 45

priority numbering 42

round-robin 44–45

code example 45

routines 42

time slicing 45

Wind facilities, differences from 41–42

Wind

preemptive locks 34, 56

preemptive priority 32, 33

round-robin 33–34

scripts, startup 443

SCSI devices 141–151

see also scsiLib(1)

booting from 218–219

ROM size, adjusting 143

configuring 142–150

code examples 146–150

options 144–146

constants 142
635

VxWorks 5.3.1
Programmer’s Guide
initializing support 144

libraries, supporting 143–144

SCSI bus ID

changing 150

configuring 143

SCSI-1 vs. SCSI-2 143–144, 151

tagged command queuing 146

troubleshooting 151

VxWorks image size, effecting 142

wide data transfers 146

x86, unsupported on 567

SCSI_AUTO_CONFIG 142

SCSI_OPTIONS structure 145

scsi1Lib 143

scsi2Lib 143

scsiBlkDevCreate() 144

scsiCommonLib 143

scsiDirectLib 143

scsiLib 131, 142, 143

scsiPhysDevCreate() 144, 218

scsiSeqDevCreate() 231

scsiSeqLib 144

scsiTargetOptionsSet() 145

security 462–463

segment ID (zbufs) 265–266

SEL_WAKEUP_LIST 165

SEL_WAKEUP_NODE 165

select facility 117–119

see also selectLib(1)

code example 118–119

implementing 163–167

code example 166–167

macros 118

select() 118, 252

implementing 163–167

and pipes 89

selectLib.h 117

selNodeAdd() 165

selNodeDelete() 165

selWakeup() 165

selWakeupAll() 165

selWakeupListInit() 165

selWakeupType() 165

sem_close() 68, 72

SEM_DELETE_SAFE 64

sem_destroy() 68

sem_getvalue() 68

sem_init() 68, 69

SEM_INVERSION_SAFE 62

sem_open() 68, 71

sem_post() 68, 69, 72

sem_trywait() 68, 69, 72

sem_unlink() 68, 72

sem_wait() 68, 69, 72

semaphores 7, 57–73

see also semLib(1)

counting 68

example 65

deleting 58, 68

and drivers 156

giving and taking 58–59, 67

and interrupt service routines 98, 96

locking 67, 72

POSIX 67–73

see also semPxLib(1)

named 67, 71–73

code example 72

unnamed 67, 68, 69–70

code example 69

Wind facilities, differences from 68

posting 67, 72

recursive 64

code example 64

shared (VxMP option) 376–381

code example 379

creating 378

displaying information about 378

local semaphores, differences from 377

synchronization 57, 65

code example 60–61

unlocking 67, 72

waiting 67, 72

Wind 57–66

binary 58–61

code example 60

control 57–58

counting 65

mutual exclusion 60, 62–65

queuing 66

synchronization 60–61
636

IX

Index
timing out 66

semBCreate() 58

semBSmCreate() (VxMP option) 378

semCCreate() 58

semCSmCreate() (VxMP option) 378

semDelete() 58

shared semaphores (VxMP option) 377

semFlush() 58, 62

semGive() 58

semInfo() 378

semMCreate() 58

semPxLib 67

semPxLibInit() 68

semShow() 378, 466

semTake() 58

send() 252

sendmsg() 252

sendto() 252

SEQ_DEV 172, 231

see also sequential devices

fields 175

sequential addressing 309–310, 327, 369–370

code example 370

enabling 310

starting address, determining 309

sequential devices 171–185

see also block devices; SEQ_DEV; tape devices;

tapeFs file systems

drivers

creating devices 174–176

erasing tapes 185

file marks, writing 182

initializing 173–174

installing 173

I/O control 179

loading/unloading 184

physical block limits, polling for 183–184

reading blocks 177

ready status change 181–182

releasing tape device access 183

reserving tape device access 183

resetting devices 180

spacing tape media 185

status, checking device 180–181

tape volumes, mounting 184

tapes, rewinding 182

write protection 181

writing blocks 178–179

initializing for tapeFs 231–232

serial drivers 131, 429

Serial Line Internet Protocol, see SLIP

server, proxy, see proxy ARP

setsockopt() 252

shared code 48

shared data structures 55

shared message queues (VxMP option) 381–386

code example 383

creating 381

displaying queue status 383

local message queues, differences from 382

shared semaphores (VxMP option) 376–381

code example 379

creating 378

displaying information about 378

local semaphores, differences from 377

shared-memory allocator (VxMP option) 386–394

shared-memory anchor 303–304

see also shared-memory networks; shared-

memory pool

address 304, 305

shared-memory objects, configuring (VxMP

option) 397

shared-memory networks 246, 301–316

see also shared-memory anchor; shared-memory

pool

accessing, see proxy ARP

anchor 303–304

and ARP 309

cacheability 306

configuring 302, 304, 305–307, 308

example 311–314

host support for 311–314

driver 301

gateway processors 301

heartbeat 304–305

Internet addresses, self-configuring 309

interrupts

interprocessor 307–308

mailbox 308

VMEbus 307, 308
637

VxWorks 5.3.1
Programmer’s Guide
location monitors 308

master processor 303

see also usrConfig
heartbeat, maintaining 304–305

polling 307, 308

protocols

alternative, running 302

higher-level, running 301

sequential addressing 309–310

and shared-memory objects (VxMP

option) 397

test-and-set instructions 307

troubleshooting configuration of 314–316

shared-memory objects (VxMP option) 14, 373–404

see also msgQSmLib(1); semSmLib(1);

smMemLib(1); smNameLib(1);

smObjLib(1); smObjShow(1)

advertising 375

anchor, configuring shared-memory 397

and backplane network 397

cacheability 396, 399

configuring 396–403

code example 401

constants 401

displaying number of used objects 400

heartbeat 403, 404

initializing 398–401, 402, 443

interrupt latency 395

interrupt service routines 395

interrupts

bus 397

mailbox 397

layout 398

limitations 395–396

locking (spin-lock mechanism) 395–404

memory

allocating 386–394

insufficient 396

running out of 396

message queues, shared 381–386

see also shared message queues

code example 383

name database 375–376

object ID 374

partitions 386–394

routines 387–388

side effects 394

system 386–391

code example 388

user-created 387, 391–393

code example 391

polling 397

PowerPC support 605–606

semaphores, shared 376–381

see also shared semaphores (VxMP option)

code example 379

shared-memory pool 398

single- and multiprocessors, using with 374

system requirements 394–395

troubleshooting 403

types 376

shared-memory pool 302–307

see also shared-memory anchor; shared-memory

networks

address, defining (VxMP option) 398

anchor 303–304

initialized, determining whether 304–305

locating 303, 305

on-board/off-board options 306–307

size, determining 306

shared-memory region (VxMP option) 398

shell task (tshell) 458

shell, see host shell; target shell

shellInit() 457

shellLock() 462

show routines 466–467

x86-specific 569

show() 71, 87, 466

shutdown() 252

sigaction() 91, 92

sigaddset() 91

sigblock() 91, 92

sigdelset() 91

sigemptyset() 91

sigfillset() 91

sigInit() 91, 441

sigismember() 91

sigLib 17

sigmask() 91

signal handlers 92
638

IX

Index
signal() 91

signals 90–93

see also sigLib(1)

configuring 93

and interrupt service routines 92, 99

POSIX 92–93

queued 92

routines 91

signal handlers 92

UNIX BSD 91

routines 91

sigpending() 91

sigprocmask() 91, 92

sigqueue() 92, 93

sigqueueInit() 93

sigsetmask() 91, 92

sigsuspend() 91

sigtimedwait() 92

sigvec() 91, 92

sigwaitinfo() 92

Simple Network Management Protocol, see WindNet

SNMP

single-stepping (SPARC) 510–511

SIOCATMARK 253

68000, 68K, see MC680x0

64-bit support (MIPS R4000) 590

SLIP (Serial Line Internet Protocol) 244–246, 331–

333

see also CSLIP (compressed SLIP)

booting 332–333

configuring 331–332

and networks 244–246

PPP, versus 335–336

SLIP_BAUDRATE 332

SLIP_TTY 332

sm driver 301, 303

SM_ANCHOR_ADRS 304, 397

SM_INT_ARGn 308

SM_INT_TYPE 308, 397

SM_MEM_SIZE 306

SM_OBJ_MAX_MEM_PART 401

SM_OBJ_MAX_MSG_Q 401

SM_OBJ_MAX_NAME 401

SM_OBJ_MAX_SEM 401

SM_OBJ_MAX_TASK 401

SM_OBJ_MEM_ADRS 398

SM_OBJ_MEM_SIZE 400

SM_OFF_BOARD 306, 606

SM_TAS_HARD 394, 606

SM_TAS_TYPE 307, 606

small computer system interface, see SCSI devices

smCpuInfoGet() (VxMP option) 397

smIfVerbose global variable (VxMP) 404

smMemAddToPool() (VxMP option) 388

smMemCalloc() (VxMP option) 388

smMemFindMax() (VxMP option) 388

smMemFree() (VxMP option) 388

smMemMalloc() (VxMP option) 388

smMemOptionsSet() (VxMP option) 388

smMemRealloc() (VxMP option) 388

smMemShow() (VxMP option) 388

smNameAdd() (VxMP option) 375

smNameFind() (VxMP option) 375

smNameFindByValue() (VxMP option) 375

smNameLib.h 376

smNameRemove() (VxMP option) 375

smNameShow() (VxMP option) 375

smNetShow() 309, 315

smObjAttach() (VxMP option) 402

smObjInit() (VxMP option) 402

smObjLib.h 388

smObjSetup() (VxMP option) 402

smObjShow() (VxMP option) 400, 404

smObjTimeoutLogEnable() (VxMP option) 404

SNMP, see WindNet SNMP

so() (SPARC) 511

socket() 152, 252

sockets 11, 89–90, 251–263

see also zbufs; sockLib(1); zbufSockLib(1)

datagram 251, 259–263

code example 260–263

and Internet protocols 251–263

I/O control 253

as I/O device 152

routines for manipulating 252

stream 251, 253–259

code example 254–259

TCP, using 251, 253–259

code example 254–259

UDP, using 259–263
639

VxWorks 5.3.1
Programmer’s Guide
code example 260–263

zbufs 264–278

socket calls 273–278

SPARC/SPARClite 505–523

see also microSPARC

ASI addresses, probing 513

buffer manipulation, linear 510

cache 510

microSPARC 510

SPARClite 520

compiler environment, configuring 508

compiler options 508–509

CPU type, defining 507

debugging 510–512

floating-point support 512, 518–519

emulation library (SPARClite) 520

I/O MMU 512

interface differences, VxWorks 509–513

interrupt handling 515–517

VMEbus 517

long long 515

math routines 512–513

memory layout, VxWorks 520–523

microSPARC 510, 512, 523

operating mode 514

reserved registers 514

routines, architecture-specific 513

bcopyDoubles() 510

bfillDoubles() 510

bzeroDoubles() 510

cacheMb930LockAuto() 520

fsrShow() 512

psrShow() 512

single-stepping 510–511

SPARClite enhancements 519–520

stack pointer, using the 519

task traces 511

test-and-set instructions 513

traps, enabling 514

vector table, initializing the 514

SPARCmon 519

spawning tasks 35, 51–52

spin-lock mechanism (VxMP option) 395–404

interrupt latency 395

sprintf() 121

spy utility 17

see also spyLib(1)

sscanf() 121

stack traces (MIPS) 585

stacks

interrupt 95

no fill 37

standard I/O 113, 120–121

see also ansiStdio(1)

initializing 441

omitting 121

standard input/output/error 440

startup

see also initialization

entry point 435

networks, initializing 361–362

scripts 443

VxWorks, sequence of events 435–446

ROM-based 452–453

stat() 208, 209

static constructors (C++) 473–474

STATUS_8042 568

stdioShow() 466

strings, formatting 16

see also ansiStdio(1); fioLib(1)

subdirectories (dosFs) 195, 207–208

file attributes 209

subnetworks 297–298

and proxy ARP 318, 325

superscalar pipeline (MC68060) 494

suspended tasks 31

swapping 101

symbol table

and BOOTP 367

target shell 464–466

see also symLib(1)

symLibInit() 465

symTblCreate() 465

synchronization (task) 57

code example 60–61

counting semaphores, using 65

semaphores 60–61

synchronizing disks

dosFs file systems 213–214

auto-sync mode 214
640

IX

Index
rawFs file systems 229

sysALib.s 429

entry point 435

sysBusIntAck() (MIPS) 589

sysBusTas() 307

sysClkConnect() 439

sysClkRateSet() 439

sysCodeSelector global variable (x86) 565

sysCoprocessor global variable (x86) 545

sysCpuProbe() (x86) 546

sysDelay() (x86) 546

sysFdBuf global variable (x86) 566

sysFdBufSize global variable (x86) 566

sysGDT[] table(x86) 545

sysGDT[]table (x86) 550

sysHwInit() 437

sysInByte() (x86) 546, 549

sysInit() 435, 444

i960 530

sysInLong() (x86) 546, 549

sysInLongString() (x86) 546, 549

sysIntDisable() 95

sysIntDisablePIC() (x86) 546

sysIntEnable() 95

sysIntEnablePIC() (x86) 546

sysIntIdtType global variable (x86) 544, 550

sysIntVecSetEnt() (x86) 565

sysIntVecSetExit() (x86) 565

sysInWord() (x86) 546, 549

sysInWordString() (x86) 546, 549

sysLib.c 428

sysMemTop() 438

sysOutByte() (x86) 546, 549

sysOutLong() (x86) 546, 549

sysOutLongString() (x86) 546, 549

sysOutWord() (x86) 546, 549

sysOutWordString() (x86) 546, 549

sysPhysMemDesc[] 306, 408–409, 411, 429

MC68040 495, 497

MIPS 586

page states 408

PowerPC 600, 603

shared-memory objects (VxMP option) 399

virtual memory mapping 409

x86 549

sysProcessor global variable (x86) 545

sysScsiInit() 144

sysSerial.c 429

sysStrayIntCount global variable (x86) 566

system clock 40, 444

initializing 439

system files (dosFs) 209

system image 427

downloading 435

excluding facilities 447

ROM-based VxWorks 452

and x86 BSPs 565–566

system information, displaying 424, 466–467

system library 428

system tasks 52–54

sysVectorIRQ0 global variable (x86) 544, 550

sysWarmAtaCtrl global variable (x86) 566

sysWarmAtaDrive global variable (x86) 566

sysWarmFdDrive global variable (x86) 566

sysWarmFdType global variable (x86) 566

sysWarmType global variable (x86) 566

T
T_SM_BLOCK 376

T_SM_MSG_Q 376

T_SM_PART_ID 376

T_SM_SEM_B 376

T_SM_SEM_C 376

tape devices

see also sequential devices; tapeFs file systems

changing 234

configuring 232–233

code example 149, 232

SCSI, supporting 142

volumes 10

mounting 184, 233

unmounting 234

TAPE_CONFIG 232

tapeFs file systems 142, 230–235

configuring devices

code example 149, 232

file I/O 233

fixed block size transfers 232–233
641

VxWorks 5.3.1
Programmer’s Guide
initializing 231

and ioctl() requests 234–235

operating modes 233

tape changes 234

tape organization 230

tape volumes 10, 184, 233

variable block size transfers 232–233

tapeFsDevInit() 231

tapeFsDrvNum global variable 231

tapeFsInit() 231

tapeFsVolUnmount() 234

target agent 18

task (tWdbTask) 18, 53

target board

see also board support package; sysALib(1);

sysLib(1)

address, determining hardware 365

BOOTP registration 364–366

configuration header for 432

interface 428

processor number 302, 361, 366

target shell 457–467

see also dbgLib(1); shellLib(1); symLib(1);

usrLib(1)

aborting (CTRL+C) 132, 134, 460–461

changing default 460

accessing from host 461–462

banner, sign-on 458

control characters (CTRL+x) 459–460

creating 457–458

debugging 459

demo, initializing the 459

host shell, differences from 463–464

line editing 459

loader, defining module 465–466

locking access 462

remote login 461–462

restarting 460–461

symbol table, defining 464–466

task tShell 53

unloader, defining module 465–466

using 459

target.nr 429

target-specific development

see also specific target architectures

i960 527–537

MC680x0 489–503

MIPS 581–592

PowerPC 595–608

SPARC/SPARClite 507–523

x86 541–577

task control blocks (TCB) 30, 37, 40, 51, 95

taskActivate() 35

taskArchLib (MIPS) 586

taskCreateHookAdd() 40

taskCreateHookDelete() 40

taskCreateHookShow() 466

taskDelay() 39

taskDelete() 38

taskDeleteHookAdd() 40

taskDeleteHookDelete() 40

taskDeleteHookShow() 466

taskIdListGet() 37

taskIdSelf() 36

taskIdVerify() 36

taskInfoGet() 37

taskInit() 35

taskIsReady() 37

taskIsSuspended() 37

taskLock() 32

taskName() 36

taskNameToId() 36

taskOptionsGet() 37

taskOptionsSet() 37

taskPriorityGet() 37

taskPrioritySet() 32, 33

taskRegsGet() 37

taskRegsSet() 37

taskRestart() 39

taskResume() 39

tasks 30–54

blocked 34

communicating at interrupt level 135

contexts 30

creating 35

floating-point (SPARC) 518

switching (x86) 551

control blocks 30, 37, 40, 51, 95

creating 35

delayed 31
642

IX

Index
delayed-suspended 31

delaying 30, 31, 39, 99–100

deleting safely 38–39

code example 39

semaphores, using 64

displaying information about 37

environment variables, displaying 466

error status values 45–47

see also errnoLib(1)

exception handling 48

see also signals; sigLib(1); excLib(1)

tExcTask 53

executing 39

hooks 40

see also taskHookLib(1)

extending with 40–41

IDs 35

interrupt level, communicating at 98

logging (tLogTask) 53

names 35

automatic 36

network (tNetTask) 53

option parameters 36

pended 31

pended-suspended 31

priority, setting

POSIX 43–44

code example 43

Wind 32

ready 31

remote debugging server (tRdbTask) 54

remote login (tRlogind, tRlogInTask,

tRlogOutTask) 53

root (tUsrRoot) 52

RPC server (tPortmapd) 54

scheduling

POSIX 41–45

preemptive locks 34, 56

preemptive priority 32, 33, 44

round-robin 33–34, 44–45

Wind 32–34

shared code 48

shell (tshell) 458

and signals 48, 90–93

spawning 35, 51–52

states 30–31

suspended 31

suspending and resuming 39

synchronization 57

code example 60–61

counting semaphores, using 65

system 52–54

target agent (tWdbTask) 18, 53

target shell (tShell) 53

telnet (tTelnetd, tTelnetInTask,

tTelnetOutTask) 54

variables 51

see also taskVarLib(1)

context switching 51

taskSafe() 38

taskShow() 466

taskSpawn() 35

taskSRInit() (MIPS) 586, 589

taskStatusString() 37

taskSuspend() 39

taskSwitchHookAdd() 40

taskSwitchHookDelete() 40

taskSwitchHookShow() 466

taskTcb() 37

taskUnlock() 32

taskUnsafe() 38, 39

taskVarAdd() 51

taskVarDelete() 51

taskVarGet() 51

taskVarSet() 51

TBR, see Trap Base Register

TCP (Transmission Control Protocol) 89, 247, 251

stream sockets 251, 253–259

code example 254–259

zero-copy 264

TCP/IP, see ARP; ICMP; IP; TCP; UDP

technical support (WRS) 20

telnet 461–462

daemon tTelnetd 54

terminal characters, see control characters

text protection, see VxVMI option

TFTP (Trivial File Transfer Protocol) 13, 279, 363

see also tftpdLib(1); tftpLib(1)

client 292

protocols, using with other 369–370
643

VxWorks 5.3.1
Programmer’s Guide
code example 370

remote file transfer 291–292

server 291, 292

tftpCopy() 292

tftpXfer() 292

TGT_DIR 430

thrashing 439

tickAnnounce() 444

time slicing 33, 45

timeout

message queues 75

semaphores 66

timers

see also timerLib(1)

code execution 17

see also timexLib(1)

for message queues (Wind) 75

POSIX 100–101

for semaphores (Wind) 66

watchdog 99–100

see also wdLib(1)

code examples 100, 479–480

timestamp 210–211

tools, development

host

C++ support 472–473

target 14

see also target shell

Tools.h++ (C++) 480

training classes (WRS) 20

Transmission Control Protocol, see TCP

Trap Base Register (SPARC) 514

traps, enabling (SPARC) 514

Trivial File Transfer Protocol, see TFTP

troubleshooting

see also debugging

PPP 358–360

SCSI devices 151

shared-memory networks 314–316

shared-memory objects (VxMP option) 403

truncation of files 116

tt()
MIPS 585

SPARC 511

tty devices 131–135, 429

see also tyLib(1)

control characters (CTRL+x) 133–134

and ioctl() requests 134

line mode, selecting 132

options 132

raw mode 132

X-on/X-off 132

ttyDevCreate() 440

ttyDrv 131–135, 429

ttyDrv() 440

tuning, see performance monitoring

24-bit addressing (PowerPC) 602

tyAbortSet() 134, 460

tyBackspaceSet() 134

tyDeleteLineSet() 134

tyEOFSet() 134

tyMonitorTrapSet() 134

U
UDP (User Datagram Protocol) 89, 247, 251, 363

broadcasts 321–322

datagram sockets 259–263

code example 260–263

enabling and disabling ports 321

ultraShow() (x86) 569

#undef 447

UNIX

simulator, VxWorks (VxSim) 19

unloader, module 465–466

unlocking, see locking

unnamed semaphores (POSIX) 67, 68, 69–70

-Ur compiler option (C++) 475

User Datagram Protocol, see UDP

user IDs

dosFs file systems 291

remote file access

NFS, setting for 287–288

UNIX, setting for 288

RSH and FTP, setting for 285

USER_B_CACHE_ENABLE 492, 497

USER_D_CACHE_ENABLE 396, 495, 603

USER_D_CACHE_MODE 495

USER_D_MMU_ENABLE 599
644

IX

Index
USER_I_CACHE_ENABLE 495, 603

USER_I_CACHE_MODE 495

USER_I_MMU_ENABLE 599

usrAtaConfig() (x86) 564

usrClock() 444

usrConfig.c 430, 434

usrDepend.c 449

usrFdConfig() (x86) 561, 564

usrIdeConfig() (x86) 561

usrInit() 436–438

usrKernelInit() 445

usrMmuInit() 411, 443

usrNetInit() 442

gateways, adding 295

host names, adding 282

initializing network 361

Internet addresses, setting 281

network devices, creating 285

NFS 287

user IDs, setting 285

usrNetwork.c 303

usrPcmciaConfig() 561

usrPPPInit() 337, 338, 340, 343–344

usrRoot() 439–444

usrScsiConfig() 144

usrSlipInit() 332

usrSmObjInit() 443

usrSmObjInit() (VxMP option) 396, 398

USS floating-point emulation library 520

utilities, host

MIPS 586

PowerPC 601

V
valloc() (VxVMI option) 413

variables

global 50

x86 architecture-specific 544–545, 566

static data 50

task 51

uninitialized 436

vector tables

exception, write-protecting 410

initializing (SPARC) 514

protecting, see VxVMI option

vectored interrupts

MIPS 589

SPARC 516–517

VGA drivers (x86) 567–568

virtual circuit protocol, see TCP

virtual memory 13, 407–424

see also virtual memory mapping

configuration 408–409

MC680x0 497–498

PowerPC 599–601

VxVMI option 13, 408–409, 410–424

configuration 408–409

contexts 411–413

debugging 424

global 411

initializing 411, 443

and MC680x0 497, 498

page states 412

private 413–420

code example 415

restrictions 424

write protecting 410, 421–423

code example 421

virtual memory mapping 408–409, 429

aliasing 414

MIPS 590

VM_CONTEXT 411

VM_PAGE_SIZE 408

VM_STATE_CACHEABLE constants 412

MC68040 497

PowerPC 600

VM_STATE_GUARDED 600

VM_STATE_GUARDED_NOT 600

VM_STATE_MASK_CACHEABLE 412

VM_STATE_MASK_VALID 412

VM_STATE_MASK_WRITABLE 412

VM_STATE_MEM_COHERENCY 600

VM_STATE_MEM_COHERENCY_NOT 600

VM_STATE_VALID 412

VM_STATE_VALID_NOT 412

VM_STATE_WRITABLE 412

VM_STATE_WRITABLE_NOT 412

vmContextCreate() (VxVMI option) 413
645

VxWorks 5.3.1
Programmer’s Guide
vmContextShow() (VxVMI option) 424

vmCurrentSet() (VxVMI option) 413

VME_VECTORED 589

VMEbus interrupt handling 95

i960 533

MIPS 589

SPARC 517

vmGlobalInfoGet() (VxVMI option) 414

vmGlobalMap() (VxVMI option) 411, 424

vmGlobalMapInit() (VxVMI option) 411

vmMap() (VxVMI option) 413, 424

vmStateSet() (VxVMI option) 412, 420, 421

volume label (dosFs) 196–197

adding 197

file attribute 209

volumes

tape 10

volumes, see disks; tape devices

VX_FP_TASK 37

i960 532

SPARC 518

VX_NO_STACK_FILL 37

VX_PRIVATE_ENV 37

VX_UNBREAKABLE 37, 458

vxALib (SPARC) 513

vxcopy utility (x86) 559, 560

vxencrypt 462

VxGDB

and MIPS 583, 585

and PowerPC 598

vxLib (SPARC) 513

vxload utility (x86) 560–561

vxMemProbe() (x86) 547

vxMemProbeAsi() (SPARC) 513

VxMP, see shared-memory objects (VxMP option)

VxSim 19

vxSSDisable() (MC68060) 492, 494

vxSSEnable() (MC68060) 492, 494

vxsys utility (x86) 559, 560

vxTas() (SPARC) 513

VxVMI (option) 13, 408–409, 410–424, 443

see also virtual memory; vmLib(1)

VxWorks

customer services 20

optional products 12, 13, 19, 373–404, 408–424,

471–484

overview 3–21

scalable features (INCLUDE constants) 432–

434

simulator (VxSim) 19

and Tornado 3–4

Wrapper Class library (C++) 477–480

vxWorks (x86) 565

vxWorks.res_rom 450

vxWorks.res_rom_nosym 450

vxWorks.st (x86) 565, 567

vxWorks.st_rom 566

vxWorks.sym 465

vxWorks_low 566

vxWorks_rom 566

vxWorks_rom_low 566

W
WAIT_FOREVER 66

watchdog timers 99–100

see also wdLib(1)

code examples

creating a timer 100

wrapper classes, using (C++) 479–480

WDB_POOL_SIZE
i960 534

MC680x0 502

SPARC 520

x86 553

wdCancel() 99, 100

wdCreate() 99

wdDelete() 99

wdShow() 466

wdStart() 99

WIMG (PowerPC) 604

Wind facilities 29

message queues 75–76

POSIX, differences from 29

message queues 86–87

scheduling 41–42

semaphores 68

scheduling 32–34
646

IX

Index
semaphores 57–66

Wind Foundation Classes (option) 15, 471–484

see also Booch Components; C++ support;

Iostreams; Tools.h++; Wrapper Class

library; cplusLib(1)

wind kernel, see kernel

$WIND_BASE 430

WindNet SNMP (option) 12, 279

WindView

initializing 443

workQPanic 97

Wrapper Class library (C++) 477–480

header files 477

write protection 410, 421–423

and device drivers 181

write() 112, 116, 136, 252

writethrough mode, cache 168

MC68040 498

PowerPC 600

X
x86 541–577

BIOS ROM 556

board support packages 556–577

booting 556–565

ATA/IDE hard disks, from 561–562, 563

boot disks, building 556–561

diskettes, from 561–563

dosFs file systems, mounting 564–565

PCMCIA PC cards, from 561–562, 563

breakpoints 545–547

BSP support, third party 565

byte order 548

compiler environment, configuring 542

compiler options 542–543

context switching 551

CPU type, defining 541

data transfer rates, diskette 571

DMA buffer alignment 565

drivers 567–577

ATA/IDE hard disks 572–575

console 567–568

diskette 570–572

keyboard 567–568

line printer 576–577

network 568–569

SCSI, unsupported 567

VGA 567–568

EPROM support 566

exception handling 550–551

and fdTypes[] 570–572

floating-point support 544, 552

Global Descriptor Table (GDT) 550

global variables 544–545, 566

interface differences, VxWorks 544–547

interrupts 550–551

I/O mapped devices 549

ISA/EISA bus 552

long long 551

math routines 544

memory

layout, VxWorks 553–555

mapped devices 549

segmentation 548–550

MMU 549–550

network boards in hardware,

configuring 569–570

operating mode 548

PC compatibility 552, 556, 558

PC104 bus 552

pc386/pc486 support 565

PCI bus 552

privilege protection 548

register values, reading 545

routines, architecture-specific 545–546

eax() 545

ebp() 545

ebx() 545

ecx() 545

edi() 545

edx() 545

eflags() 545

elcShow() 569

eltShow() 569

eneShow() 569

esi() 545

esmcShow() 569

esp() 545
647

VxWorks 5.3.1
Programmer’s Guide
sysCpuProbe() 546

sysDelay() 546

sysInByte() 546, 549

sysInLong() 546, 549

sysInLongString() 546, 549

sysIntDisablePIC() 546

sysIntEnablePIC() 546

sysInWord() 546, 549

sysInWordString() 546, 549

sysOutByte() 546, 549

sysOutLong() 546, 549

sysOutLongString() 546, 549

sysOutWord() 546, 549

sysOutWordString() 546, 549

ultraShow() 569

SCSI device driver, unsupported 567

system images, VxWorks 565–566

VME-specific conditions 550

Y
yacc (UNIX) 458

Z
ZBUF_BEGIN 266

ZBUF_END 266

zbufCreate() 266

zbufCut() 267

zbufDelete() 266

zbufDup() 267

zbufExtractCopy() 267

zbufInsert() 267

zbufInsertBuf() 267

zbufInsertCopy() 267

zbufLength() 267

zbufs 11, 264–278

see also zbufLib(1); zbufSockLib(1)

byte locations 265–266

creating 266

data buffers, sending 264

data structures, manipulating 265–273

examples 269–273

data, handling 267

deleting 266, 268

dividing in two 268

inserting 268

length, determining 268

offset 265–266

removing bytes 268

routines 266–278

segment ID 265–266

segments 265, 268–269

freeing 268

routines 268–269

sharing 268

socket calls 273–278

zbufSegData() 269

zbufSegFind() 269

zbufSegLength() 269

zbufSegNext() 269

zbufSegPrev() 269

zbufSockBufSend() 264, 273

zbufSockBufSendto() 264, 273

zbufSockLibInit() 273

zbufSockRecv() 273

zbufSockRecvfrom() 273

zbufSockSend() 273

zbufSockSendto() 273

zbufSplit() 267
648

	Overview
	1.1� Introduction
	1.2� Getting Started with the Tornado Development ...
	1.3� VxWorks: A Partner in the Real-time Developme...
	1.4� VxWorks Facilities: An Overview
	Multitasking and Intertask Communications
	POSIX Interfaces
	I/O System
	Local File Systems
	Network
	Virtual Memory (Including VxVMI Option)
	Shared-Memory Objects (VxMP Option)
	Target-Resident Tools
	C++ Development (including Wind Foundation Classes...
	Utility Libraries
	Performance Evaluation
	Target Agent
	Board Support Packages (BSPs)
	VxWorks Simulator (VxSim Option)

	1.5� Customer Services
	1.6� Documentation Conventions

	Basic OS
	2.1� Introduction
	2.2� Wind Features and POSIX Features
	2.3� Tasks
	2.3.1� Multitasking
	2.3.2� Task State Transition
	2.3.3� Wind Task Scheduling
	Preemptive Priority Scheduling
	Round-Robin Scheduling
	Preemption Locks

	2.3.4� Tasking Control
	Task Creation and Activation
	Task Names and IDs
	Task Options
	Task Information
	Task Deletion and Deletion Safety
	Task Control

	2.3.5� Tasking Extensions
	2.3.6� POSIX Scheduling Interface
	Differences Between POSIX and Wind Scheduling
	Getting and Setting POSIX Task Priorities
	Getting and Displaying the Current Scheduling Poli...
	Getting Scheduling Parameters: Priority Limits and...

	2.3.7� Task Error Status: errno
	Layered Definitions of errno
	A Separate errno Value for Each Task
	Error Return Convention
	Assignment of Error Status Values

	2.3.8� Task Exception Handling
	2.3.9� Shared Code and Reentrancy
	Dynamic Stack Variables
	Guarded Global and Static Variables
	Task Variables
	Multiple Tasks with the Same Main Routine

	2.3.10� VxWorks System Tasks
	The Root Task: tUsrRoot
	The Logging Task: tLogTask
	The Exception Task: tExcTask
	The Network Task: tNetTask
	The Target Agent Task: tWdbTask
	Tasks for Optional Components

	2.4� Intertask Communications
	2.4.1� Shared Data Structures
	2.4.2� Mutual Exclusion
	Interrupt Locks and Latency
	Preemptive Locks and Latency

	2.4.3� Semaphores
	Semaphore Control
	Binary Semaphores
	Mutual-Exclusion Semaphores
	Counting Semaphores
	Special Semaphore Options
	POSIX �Semaphores

	2.4.4� Message Queues
	Wind Message Queues
	POSIX Message Queues
	Comparison of POSIX and Wind Message Queues
	Displaying Message Queue Attributes
	Servers and Clients with Message Queues

	2.4.5� Pipes
	2.4.6� Network Intertask Communication
	Sockets
	Remote Procedure Calls (RPC)

	2.4.7� Signals
	Basic Signal Routines
	POSIX Queued Signals
	Signal Configuration

	2.5� Interrupt Service Code
	2.5.1� Connecting Application Code to Interrupts
	2.5.2� Interrupt Stack
	2.5.3� Special Limitations of ISRs
	2.5.4� Exceptions at Interrupt Level
	2.5.5� Reserving High Interrupt Levels
	2.5.6� Additional Restrictions for ISRs at High In...
	2.5.7� Interrupt-to-Task Communication

	2.6� Watchdog Timers
	2.7� POSIX Clocks and Timers
	2.8� POSIX Memory-Locking Interface

	I/O System
	3.1� Introduction
	3.2� Files, Devices, and Drivers
	3.2.1� File Names and the Default Device

	3.3� Basic I/O
	3.3.1� File Descriptors
	3.3.2� Standard Input, Standard Output, and Standa...
	Global Redirection
	Task-Specific Redirection

	3.3.3� Open and Close
	3.3.4� Create and Remove
	3.3.5� Read and Write
	3.3.6� File Truncation
	3.3.7� I/O Control
	3.3.8� Pending on Multiple File Descriptors: The S...

	3.4� Buffered I/O: Stdio
	3.4.1� Using Stdio
	3.4.2� Standard Input, Standard Output, and Standa...

	3.5� Other Formatted I/O
	3.5.1� Special Cases: printf(�), sprintf(�), and s...
	3.5.2� Additional Routines: printErr(�) and fdprin...
	3.5.3� Message Logging

	3.6� Asynchronous Input/Output
	3.6.1� The POSIX AIO Routines
	3.6.2� AIO Control Block
	3.6.3� Using AIO
	AIO with Periodic Checks for Completion
	Alternatives for Testing AIO Completion

	3.7� Devices in VxWorks
	3.7.1� Serial I/O Devices (Terminal and Pseudo-Ter...
	Tty Options
	Raw Mode and Line Mode
	Tty Special Characters
	I/O Control Functions

	3.7.2� Pipe Devices
	Creating Pipes
	Writing to Pipes from ISRs
	I/O Control Functions

	3.7.3� Pseudo Memory Devices
	Installing the Memory Driver
	I/O Control Functions

	3.7.4� Network File System (NFS) Devices
	Mounting a Remote NFS File System from VxWorks
	I/O Control Functions for NFS Clients

	3.7.5� Non-NFS Network Devices
	Creating Network Devices
	I/O Control Functions

	3.7.6� Block Devices
	File Systems
	RAM Disk Drivers
	SCSI Drivers

	3.7.7� Sockets

	3.8� Differences Between VxWorks and Host System I...
	3.9� Internal Structure
	3.9.1� Drivers
	The Driver Table and Installing Drivers
	Example of Installing a Driver

	3.9.2� Devices
	The Device List and Adding Devices
	Example of Adding Devices

	3.9.3� File Descriptors
	The Fd Table
	Example of Opening a File
	Example of Reading Data from the File
	Example of Closing a File
	Implementing select(�)
	Cache �Coherency

	3.9.4� Block Devices
	General Implementation
	Low-Level Driver Initialization Routine
	Device Creation Routine
	Read Routine (Direct-Access Devices)
	Read Routine (Sequential Devices)
	Write Routine (Direct-Access Devices)
	Write Routine (Sequential Devices)
	I/O Control Routine
	Device-Reset Routine
	Status-Check Routine
	Write-Protected Media
	Change in Ready Status
	Write-File-Marks Routine (Sequential Devices)
	Rewind Routine (Sequential Devices)
	Reserve Routine (Sequential Devices)
	Release Routine (Sequential Devices)
	Read-Block-Limits Routine (Sequential Devices)
	Load/Unload Routine (Sequential Devices)
	Space Routine (Sequential Devices)
	Erase Routine (Sequential Devices)

	3.9.5� Driver Support Libraries

	Local File Systems
	4.1� Introduction
	4.2� MS-DOS-Compatible File System: dosFs
	4.2.1� Disk Organization
	Clusters
	Boot Sector
	File Allocation Table
	Root Directory
	Subdirectories
	Files
	Volume Label

	4.2.2� Initializing the dosFs File System
	4.2.3� Initializing a Device for Use with dosFs
	4.2.4� Volume Configuration
	DOS_VOL_CONFIG Fields
	Calculating Configuration Values
	Standard Disk Configurations

	4.2.5� Changes In Volume Configuration
	4.2.6� Using an Already Initialized Disk
	4.2.7� Accessing Volume Configuration Information
	4.2.8� Mounting Volumes
	4.2.9� File I/O
	4.2.10� Opening the Whole Device (Raw Mode)
	4.2.11� Creating Subdirectories
	4.2.12� Removing Subdirectories
	4.2.13� Directory Entries
	4.2.14� Reading Directory Entries
	4.2.15� File Attributes
	4.2.16� File Date and Time
	4.2.17� Changing Disks
	Unmounting Volumes
	Announcing Disk Changes with Ready-Change
	Disks with No Change Notification
	Synchronizing Volumes
	Auto-Sync Mode

	4.2.18� Long Name Support
	4.2.19� Contiguous File Support
	4.2.20� I/O Control Functions Supported by dosFsLi...
	4.2.21� Booting from a Local dosFs File System Usi...

	4.3� RT-11-Compatible File System: rt11Fs
	4.3.1� Disk Organization
	4.3.2� Initializing the rt11Fs File System
	4.3.3� Initializing a Device for Use with rt11Fs
	4.3.4� Mounting Volumes
	4.3.5� File I/O
	4.3.6� Opening the Whole Device (Raw Mode)
	4.3.7� Reclaiming Fragmented Free Disk Space
	4.3.8� Changing Disks
	Disks with No Change Notification

	4.3.9� I/O Control Functions Supported by rt11FsLi...

	4.4� Raw File System: rawFs
	4.4.1� Disk Organization
	4.4.2� Initializing the rawFs File System
	4.4.3� Initializing a Device for Use with the rawF...
	4.4.4� Mounting Volumes
	4.4.5� File I/O
	4.4.6� Changing Disks
	Unmounting Volumes
	Announcing Disk Changes with Ready-Change
	Disks with No Change Notification
	Synchronizing Volumes

	4.4.7� I/O Control Functions Supported by rawFsLib...

	4.5� Tape File System: tapeFs
	4.5.1� Tape Organization
	4.5.2� Using the tapeFs File System
	Initializing the tapeFs File System
	Initializing a Device for Use with the tapeFs File...
	Mounting Volumes
	Modes of Operation
	File I/O
	Changing Tapes
	I/O Control Functions Supported by tapeFsLib

	Network
	5.1� Introduction
	5.2� Network Components
	5.2.1� Ethernet
	5.2.2� Serial Line Interface Protocol (SLIP and CS...
	5.2.3� Point-to-Point Protocol (PPP)
	5.2.4� Shared-Memory Network
	5.2.5� TCP/IP Internet Protocols and Addresses
	Protocols
	Internet Addresses
	Packet Routing
	Network Byte Order

	5.2.6� Sockets
	Stream Sockets (TCP)
	Datagram Sockets (UDP)

	5.2.7� The Zbuf Socket Interface
	Zbuf Calls to Send Existing Data Buffers
	Manipulating the Zbuf Data Structure
	Zbuf Socket Calls

	5.2.8� Remote Procedure Calls
	5.2.9� Remote File Access
	5.2.10� Remote Command Execution
	5.2.11� Simple Network Management Protocol (WindNe...

	5.3� Configuring the Network
	5.3.1� Associating Internet Addresses with Network...
	5.3.2� Associating Internet Addresses with Host Na...
	5.3.3� Transparent Remote File Access
	Transparent Remote File Access with RSH and FTP
	Transparent Remote File Access with NFS
	Allowing Remote Access to VxWorks Files through NF...

	5.3.4� Remote File Transfer Using TFTP
	5.3.5� Remote Login from VxWorks to the Host: rlog...
	5.3.6� Adding Gateways to a Network
	Adding a Route on Windows
	Adding a Route on UNIX
	Adding a Route on VxWorks

	5.3.7� Testing Network Connections
	5.3.8� Broadcast Addresses
	5.3.9� Using Subnets
	5.3.10� Configuration of Mbufs

	5.4� Shared-Memory Networks
	5.4.1� The Backplane Shared-Memory Pool
	Backplane Processor Numbers
	The Shared-Memory Network Master: Processor 0
	The Shared-Memory Anchor
	The Shared-Memory Heartbeat
	Shared Memory Location
	Shared Memory Size
	On-Board and Off-Board Options
	Test-and-Set to Shared Memory

	5.4.2� Interprocessor Interrupts
	5.4.3� Sequential Addressing
	5.4.4� Configuring the Host
	5.4.5� Example Configuration
	5.4.6� Troubleshooting

	5.5� Proxy ARP
	5.5.1� ARP Introduction
	5.5.2� Proxy ARP Overview
	5.5.3� Routing Issues on the Proxy Server
	5.5.4� Proxy ARP Protocol
	ARP Requests for Proxy Clients
	ARP Requests from Proxy Clients for Non-proxy Clie...
	ARP Replies from the Main Network

	5.5.5� Broadcast Datagrams
	5.5.6� Multi-Homed Proxy Clients
	Routing
	Broadcasts

	5.5.7� Single-Tier Support
	5.5.8� Subnets
	5.5.9� Configuration
	Sequential and Default Addressing
	VxWorks Images for Proxy ARP with Shared Memory an...
	Setting Up Boot Parameters and Booting
	Creating Network Connections
	Debugging the Network

	5.6� Serial Line Internet Protocol (SLIP and CSLIP...
	5.6.1� SLIP Configuration
	5.6.2� Booting VxWorks and Accessing Files Using S...

	5.7� Point-to-Point Protocol (PPP)
	5.7.1� Introduction
	PPP for Tornado Features
	The Point-to-Point Protocol Compared to SLIP

	5.7.2� Configuration
	Selecting PPP Options by Using Configuration Const...
	Selecting PPP Options by Using an Options Structur...
	Setting PPP Options by Using an Options File

	5.7.3� The Point-to-Point Protocol (PPP)
	Encapsulation
	Link Control Protocol (LCP)
	Internet Protocol Control Protocol (IPCP)
	Password Authentication Protocol (PAP)
	Challenge-Handshake Authentication Protocol (CHAP)...

	5.7.4� Using PPP
	Initializing a PPP Link
	Deleting a PPP Link
	Booting VxWorks Using PPP
	PPP Options
	PPP Authentication
	Connect and Disconnect Hooks

	5.7.5� PPP with Tornado
	PPP Link as an Additional Network Interface
	PPP Link as a Network Back End for the Target Serv...

	5.7.6� Troubleshooting PPP
	Link Establishment
	Authentication

	5.7.7� PPP Reference List
	Requests for Comments (RFC)
	PPP Newsgroup

	5.8� Network Initialization on Startup
	5.9� BOOTP (Bootstrap Protocol)
	5.9.1� The BOOTP Server
	5.9.2� The BOOTP Database
	Registering the VxWorks Target
	Obtaining the Target Ethernet Address

	5.9.3� The VxWorks Boot Parameters
	5.9.4� Booting a VxWorks Target with BOOTP/TFTP
	Booting Example
	Troubleshooting

	5.10� Using TFTP, BOOTP, Sequential Addressing, Pr...

	Shared-Memory Objects
	6.1� Introduction
	6.2� Using Shared-Memory Objects
	6.2.1� Name Database
	6.2.2� Shared Semaphores
	6.2.3� Shared Message Queues
	6.2.4� Shared-Memory Allocator
	Shared-Memory System Partition
	User-Created Partitions
	Using the Shared-Memory System Partition
	Using User-Created Partitions
	Side Effects of Shared-Memory Partition Options

	6.3� Internal Considerations
	6.3.1� System Requirements
	6.3.2� Spin-lock Mechanism
	6.3.3� Interrupt Latency
	6.3.4� Restrictions
	6.3.5� Cache Coherency

	6.4� Configuration
	6.4.1� Shared-Memory Objects and Shared-Memory Net...
	6.4.2� Shared-Memory Region
	6.4.3� Initializing the Shared-Memory Objects Pack...
	6.4.4� Configuration Example
	6.4.5� Initialization Steps

	6.5� Troubleshooting
	6.5.1� Configuration Problems
	6.5.2� Troubleshooting Techniques

	Virtual Memory Interface
	7.1� Introduction
	7.2� Basic Virtual Memory Support
	7.3� Virtual Memory Configuration
	7.4� General Use
	7.5� Using the MMU Programmatically
	7.5.1� Virtual Memory Contexts
	Global Virtual Memory
	Initialization
	Page States

	7.5.2� Private Virtual Memory
	7.5.3� Noncacheable Memory
	7.5.4� Nonwritable Memory
	7.5.5� Troubleshooting
	7.5.6� Precautions

	Configuration
	8.1� Introduction
	8.2� The Board Support Package (BSP)
	The System Library
	Virtual Memory Mapping
	The Serial Driver
	BSP Initialization Modules
	BSP Documentation

	8.3� Configuring VxWorks
	8.3.1� The Environment Variables
	8.3.2� The Configuration Header Files
	The Global Configuration Header File: configAll.h
	The BSP-specific Configuration Header File: config...
	Selection of Optional Features

	8.3.3� The Configuration Module: usrConfig.c
	8.3.4� VxWorks Initialization Timeline
	The VxWorks Entry Point: sysInit(�)
	The Initial Routine: usrInit(�)
	Initializing the Kernel
	Initializing the Memory Pool
	The Initial Task: usrRoot(�)
	The System Clock Routine: usrClock(�)
	Initialization Summary

	8.4� Alternative VxWorks Configurations
	8.4.1� Scaling Down VxWorks
	Excluding Kernel Facilities
	Excluding Network Facilities
	Option Dependencies

	8.4.2� Executing VxWorks from ROM
	8.4.3� Initialization Sequence for ROM-Based VxWor...

	Target Shell
	9.1� Introduction
	9.2� Target-Resident Shell
	9.2.1� Creating the Target Shell
	9.2.2� Spawning an Application Instead of the Targ...
	9.2.3� Using the Target Shell
	9.2.4� Debugging with the Target Shell
	9.2.5� Aborting the Target Shell
	9.2.6� Remote Login to the Target Shell
	Remote Login From Host: telnet and rlogin
	Remote Login Security

	9.2.7� Summary of Target and Host�Shell Difference...

	9.3� Other Target-Resident Facilities
	9.3.1� Target Symbol Table, Module Loader, and Mod...
	9.3.2� Show Routines

	C++ Development
	10.1� Introduction
	10.2� C++ Development Under Tornado
	10.2.1� Tools Support
	WindSh
	CrossWind

	10.2.2� Programming Issues
	Static Constructors
	Template Instantiation
	Application Size
	Header Files

	10.2.3� Compiling C++ Applications
	10.2.4� Configuration Constants

	10.3� Iostreams Library
	10.4� Wind Foundation Classes
	10.4.1� VxWorks Wrapper Class Library
	10.4.2� Tools.h++ Library
	10.4.3� Booch Components Library
	Booch Components Source Code
	Building Booch Components Applications
	Booch Components Examples

	Motorola MC680x0
	A.1� Introduction
	A.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C or C++ Modules

	A.3� Interface Variations
	A.4� Architecture Considerations
	MC68060 Unimplemented Integer Instructions
	Double-word Integers: long long
	Interrupt Stack
	MC68060 Superscalar Pipeline
	Caches
	Memory Management Unit
	Floating-Point Support
	Memory Layout

	Sun SPARC, SPARClite
	B.1� Introduction
	B.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C or C++ Modules

	B.3� Interface Variations
	bALib
	cacheMb930Lib
	cacheMicroSparcLib
	dbgLib
	dbgArchLib
	fppArchLib
	intArchLib
	ioMmuMicroSparcLib
	mathALib
	vxALib
	vxLib

	B.4� Architecture Considerations
	Reserved Registers
	Processor Mode
	Vector Table Initialization
	Double-word Integers: long long
	Interrupt Handling
	Floating-Point Support
	Stack Pointer Usage
	SPARClite �Overview
	Memory Layout

	Intel i960
	C.1� Introduction
	C.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C or C++ Modules

	C.3� Interface Variations
	Initialization
	Data Breakpoint Routine bh(�)
	Parameter Change for intLevelSet(�)
	Results Change for memLib
	Math Routines
	Adding in Unresolved Routines
	Floating-Point Task Option: VX_FP_TASK

	C.4� Architecture Considerations
	Byte Order
	Double-word Integers: long long
	VMEbus Interrupt Handling
	Memory Layout

	Intel x86
	D.1� Introduction
	D.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C and C++ Modules

	D.3� Interface Variations
	Supported Routines in mathALib
	Architecture-Specific Global Variables
	Architecture-Specific Routines

	D.4� Architecture Considerations
	Operating Mode, Privilege Protection, and Byte Ord...
	Memory Segmentation
	I/O Mapped Devices
	Memory Mapped Devices
	Memory Considerations for VME
	Interrupts and Exceptions
	Double-word Integers: long long
	Context Switching
	ISA/EISA Bus
	PC104 Bus
	PCI Bus
	Software Floating-Point Emulation
	VxWorks Memory Layout

	D.5� Board Support Packages
	Boot Considerations for pc386, pc486, and epc4���
	DMA Buffer Alignment and cacheLib
	Support for Third-Party BSPs
	VxWorks Images
	BSP-Specific Global Variables
	ROM Card and EPROM Support
	Device Drivers

	MIPS R3000, R4000, R4650
	E.1� Introduction
	E.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C or C++ Modules

	E.3� Interface Variations
	cacheR3kLib and cacheR4kLib
	dbgLib
	intArchLib
	mathALib
	taskArchLib
	MMU Support
	ELF-specific Tools

	E.4� Architecture Considerations
	Gprel Addressing
	Reserved Registers
	Floating-Point Support
	Interrupts
	Virtual Memory Mapping
	64-bit Support (R4000 Targets Only)
	Memory Layout

	PowerPC
	F.1� Introduction
	F.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C and C++ Modules
	Compiling Modules for GDB
	Unsupported Features

	F.3� Interface Changes
	Memory Management Unit
	ELF-specific Tools

	F.4� Architecture Considerations
	Processor Mode
	24-bit Addressing
	Byte Order
	PowerPC Register Usage
	Caches
	Memory Management Unit
	Floating-Point Support
	VxMP Support for Motorola PowerPC Boards
	Memory Layout

	Index

