
A Flexible Architecture for Customizing Web
Streams for Wireless Clients

Jesse Steinberg and Joseph Pasquale
University of Cali fornia, San Diego

Department of Computer Science and Engineering
La Jolla, CA 92093 USA

(1) 858-534-8604

{ jsteinbe,pasquale} @cs.ucsd.edu

Abstract—We present the design of the Web Stream

Customizer Architecture, the basis for a middleware system that
supports customization of Web content and streams. Our notion
of customization is quite general, including functions such as
fil tering, remote buffering, remote caching, flow regulation (e.g.,
for video playback), compression, and encryption, all of which
are especially valuable for wireless resource-limited clients,
which are a pr imary target of support. The system is highly
deployable, as it works entirely within the Web’s common
programming and communication frameworks, such as using
HTTP and relying solely on standard proxy mechanisms, and
therefore does not require any changes to existing Web servers
and browsers.

Index Terms—HTTP, M iddleware, Proxy, Wireless, Mobile

Code

I. INTRODUCTION

While the popularity of wireless devices continues to
increase, there remains a vast amount of content not designed
for access by these devices. Rather, the more typical
expectation is that access will be from desktop computers with
relatively plentiful resources, such as large, high-resolution
displays, large memories, fast processors, and reliable high-
throughput network connections. One approach to addressing
this problem is to dynamically customize content to meet the
requirements of a particular device that does not meet these
assumptions, as well as to allow it to adapt to changing
network conditions. And since users of wireless devices may
relocate at any time, this customization should take the user’s
location into account to increase performance.

Customization can provide significant benefits in terms of
performance, reliabilit y, security, and power consumption for
activities such as wireless Web browsing. One of the most
commonly discussed examples of improving performance is
the use of remote filters that can reduce the sizes of objects
being transferred over low-throughput connections. In many
cases, objects may require filtering anyway in order to be
handled by resource-limited devices, such as those that cannot
store, process, and display HTML pages containing large
high-resolution images (or simply large fonts that are too big
for the display). The benefit of filtering remotely is that the
amount of data being transferred over the lower-throughput
wireless link is reduced, and the filtering can be done on a

machine with much greater processing power, while reducing
power consumption at the client.

The same arguments apply for reliabilit y. Consider that a
connection failure during a Web transaction could lead the
user to be unsure of the outcome of that transaction (e.g., if the
user clicks to pay for something, but does not get a response
because of a disconnection, did the request make it to the
server or not?). By storing the results of a transaction at a
more reliable remote location, the user can easily check on its
outcome once connectivity is reestablished.

Regarding security, the susceptibilit y of wireless networks
to eavesdropping may lead an unwary user to expose
information that they would otherwise prefer to keep private,
such as their phone number and address, unless the sensitive
data is encrypted before crossing the wireless link. Thus,
whether for performance, reliabilit y, or security reasons, the
abilit y to act remotely is critical.

In many cases, it may be important that when remote
customization is taking place, the location of the user be taken
into account. For example, envision a scenario of a user who
has a mobile device at work, accessing Web resources from
any location on the company campus. Remote customization
may conveniently take place on a PC in the user’s off ice.
When the user travels to meetings and conferences in other
cities around the world, the user would like to use the device
to access Web resources and customize the content in the
same manner. Performance may suffer if the customization
were to still be done in the user’s off ice, since all of the HTTP
transactions would have to go through the off ice PC. Ideally,
the location of the customization should move to a location
closer to the user.

The Web Stream Customizer Architecture is designed to
improve the performance, reliabilit y, and security of Web
browsing for wireless devices, with support for user
relocation. The main idea is the use of customization
modules, called Customizers, which act remotely on behalf of
a client. An early version of the design was presented in [29].
In this paper, we present a significantly improved design that
supports new capabiliti es, including special-purpose (non-
HTTP) stream communication and processing, and support for
the movement of Customizers in response to user relocation.
We show that the overhead of the system is low and tolerable,
and that the gains of remote customization can be significant,

especially when transferring video streams that have high
throughput and (soft) real-time response requirements.

Our system is designed based on the following goals:
Transparency: For ease of integration, the system is

transparent to the operation of current Web servers, requiring
no changes to their structure, and is compatible with standard
Web browsers. The system is implemented using only
existing Web mechanisms, such as HTTP and proxies.

Remote processing: The system provides the ability to act
at a remote location relative to the client, e.g., beyond the
wireless link for an untethered user, which is crucial to
gaining significant benefits in performance, reliability and
security. Intermediaries between the client and server provide
remote locations for Customizer execution.

Adaptability: Content customization can be targeted for
the particular device being used, and the customization can be
adapted based on changing system/environment conditions,
including fluctuations in network throughput, and resource
availability on the client. To adapt dynamically to changing
conditions, each Customizer actually has two points of
control: the customization module acting remotely, and an
assistant that is closely coupled with the client device.

Flexibility: Ideally, when a Customizer is loaded, it is
executed at the location that achieves the maximal benefit in
terms of performance, reliability, or security. It is also
possible to have multiple Customizers that are simultaneously
active, possibly at different locations, each handling requests
to different Web sites. Allowing third-party servers as well as
a personal server belonging to the user to host Customizers
provides flexibility of location.

User relocation: If the user relocates, it should be possible
for the Customizer to move to a new location, e.g., closer to
the user, to improve performance. Rather than moving the
Customizer in mid-execution by capturing, moving, and
reestablishing its execution state, such as is done with mobile
agents (based on a strong mobility model of movement), we
take a simpler approach based on a limited form of mobile
code in conjunction with a soft-state model of Customizer
execution. In this model, moving a Customizer reduces to the
case of reloading the Customizer on a new host. Furthermore,
the use of a personal server provides a central, well-connected
location for storing the Customizer, its configuration, and any
long-term state, to facilitate Customizer reloading.

Practicality: The user should not have to rely solely on the
provision of resources by third parties in order to run
Customizers. In fact, we expect that Customizers will
typically run on a personal server that is owned by the user,
thus reducing dependence on third parties, making deployment
simpler and more realistic.

The rest of the paper is organized as follows. We describe
the architecture in Section II. In Section III, we present some
example applications. In Section IV, we present the
performance results of the implementation, including a
regulated video buffer application. We review related work in
Section V, and present conclusions in Section VI.

WEB
BROWSER

CLIENT WEB SERVER
PROXY

Fig. 1. Using a proxy to customize Web transactions.

II. THE WEB STREAM CUSTOMIZER ARCHITECTURE

A common approach to remote Web customization is the
use of HTTP proxies as intermediaries between the client and
server, as shown in Figure 1. In this model, requests
generated by the client are sent to the proxy instead of to the
Web server. The proxy then forwards the request to the Web
server. The Web server receives the request, processes it, and
returns a response to the proxy. The proxy then has the
opportunity to customize the response before it is returned to
the client. This approach is transparent to Web servers since
they see the proxy as a client, and is also transparent to clients
since most popular Web browsers have a proxy mechanism
that allows them to automatically forward their requests to a
proxy.

In the Web Stream Customizer Architecture, the role of the
proxy is expanded. First, there is the Customizer Server (CS),
which provides an execution environment for running
Customizers. A user typically will have multiple Customizers
that are active, which depend on their function, e.g., filtering,
compression, encryption, caching, etc., and which may apply
only to specific sites, e.g., cnn.com, yahoo.com, etc. Figure 2
shows a client using multiple Customizers, each of which is
running on a separate CS (including a special one designated
as the PCMS, discussed below).

To support adaptability, each Customizer has an associated
helper module called a Customizer Assistant (CA). The CA
runs on a Client Integration Server (CIS), which tends to be
located on or near the client device, and acts primarily as an
extension of the browser (given that the browser code itself
cannot be modified). Serving as a proxy for the browser, all of
the browser’s requests are sent to the CIS.

WEB
BROWSER

CLIENT

CS

CUSTOMIZER

CIS

CA

CA

CA

CS

WEB SERVER

WEB SERVER

WEB SERVER

PCMS

CUSTOMIZER

CUSTOMIZER

Fig. 2. A client using multiple Customizers.

REQUEST
FROM

BROWSER
CUSTOMIZER

SELECTOR
(BASED ON

DA)

TO PCMS
OR CS

CIS

WWW.EBAY.COM

WWW.GOOGLE.COM

ESPN.GO.COM

CA

CA

CA

Fig. 3. Selecting a Customizer based on the DA (Domain of Applicability).

Thus, when a Customizer is being used, the request passes
from the client to a CA (which runs on the CIS), then to a
Customizer (which runs on a CS), and then to the Web server
(and vice-versa for responses in the opposite direction).
Despite the additional stops a request and response must
make, we have found the resulting overhead to be insignificant
relative to typical end-to-end Web request/response times
without Customizers, as reported in [29], and summarized in
Section IV.

Given its close coupling with the client, the CA is generally
responsible for tasks that require knowledge of resource
availability and system conditions at or near the client, which
may then be communicated to the Customizer (e.g., such as
relaying local system or network performance status so that
the Customizer can adapt, to improve performance). In
addition, the CA will also reverse data transformations done
by the Customizer, such as for compression/decompression or
encryption/decryption.

How does the CIS know which CA should be given a
request from the browser (and consequently, to which
Customizer the request should be passed to)? Associated with
each Customizer is its domain of applicability (DA), which is
a list of all of the sites for which the Customizer will act.
When a Customizer is deployed (described below), its DA,
along with its corresponding CA and the Customizer’s current
location, is downloaded to the CIS. The CIS then uses the
DAs to perform the matching of requests to CAs and
Customizers.

Figure 3 shows how HTTP requests are handled by the CIS.
When the CIS gets a request from the browser, it first matches
the URL of the request to the DA of all loaded Customizers.
If there is a match with a Customizer, the request is passed to
the corresponding CA, and then to the CS for that Customizer.
The Customizer does not need to be explicitly loaded at that
location, as described below.

Typically, a user will own a personal computer at their
home or office (or at least have access to a machine at least as
powerful on which they have an account), that has reliable
Internet connectivity relative to the wireless PDAs we have
been considering as clients. To facilitate user relocation and
improve the practicality of our customization system, such a
machine can be configured to serve as the user’s P ersonal
Customizer Management Server (PCMS). The PCMS is a
storage place for the code modules of the user’s Customizers,
along with their preferences and state (collectively called a
Customizer Package).

The PCMS can make dynamic decisions about where the
Customizer code will run, based on the location of the user
and the constraints of the Customizer (such as security
restrictions), and it can carry out Customizer reloading
without any direct involvement by the low-powered client and
its possibly unreliable low-bandwidth wireless connection.
Customizer reloading provides a measure of fault tolerance,
because a Customizer may also be moved if there is a
significant lapse in response time from the current CS on
which the Customizer is running.

The PCMS contributes to practicality because it can also be
used as a (user-controlled) location for actually running
Customizers, which is especially useful if there is no available
CS that is willing to host the Customizer. Figure 2 shows an
instance of the complete Web Stream Customizer
Architecture, with Customizers running on Customizer
Servers and on a PCMS.

III. APPLICATIONS

We are currently experimenting with a number of
applications that focus on improving performance, reliability,
or security. These are an Image Filter (as part of a Filter-Saver
general application), a Transaction Recorder, an Encryptor,
and a Flow-Regulating Buffer (for high-bandwidth streaming
of video).

A. Remote Filtering

We have implemented an adaptive Image Filter Customizer
that can modify the resolution, color-depth and compression
rate of images. The CA measures the approximate throughput
at the client, and relays it to the Customizer. This allows the
Customizer to adapt its filtering to maintain consistent transfer
times as throughput fluctuates. We are also experimenting
with a more general Customizer, called the Filter-Saver, which
can be used for a number of applications. As the name
implies, it consists of two major components, a Filter and a
Saver. The Filter reduces the amount of data in an HTTP
response coming from the Web Server as it passes through the
Customizer, and the Saver takes advantage of the storage
available on the PCMS by saving original versions of the
objects before they are filtered.

Storing the objects at the PCMS ensures that they will be
available even if they are removed from the original source,
and allows the objects to be retrieved quickly regardless of
network problems between the PCMS and the original source.
(In fact, the objects are available immediately if the user
accesses them from the host on which they are running their
PCMS).

In addition to filtering objects based on their data type,
content-specific filtering can be done. For example, the Filter
could remove the commentary from a product review site and
return only the final score; research papers might be filtered so
that only the pages containing the abstract, introduction, and
bibliography are returned; scene change detection could be
used to reduce the frame rates of videos.

B. Transaction Recording for Reliability

The Transaction Recorder addresses the problem of
connection failures during a transaction by storing the results
of transactions on the PCMS. The user can easily check on the
outcome of the transaction once connectivity is reestablished
via the Customizer’s configuration page, which is accessible
by the user from a Customizer control Web page provided by
the CIS.

The Connection Smoother Customizer is an extension of
the Transaction Recorder. It stores objects requested by the
browser on the PCMS. If there is a short-term lapse in
connectivity before the browser receives a stored object, the
CA automatically repeats the request for that object, to mask
the connection failure from the user. Since objects are only
stored for short periods of time, this Customizer performs best
when it runs on the PCMS, or when the CS has a cache for the
data sent to the PCMS.

C. Security

The Selective Encryption Customizer encrypts sensitive
data (e.g., before it crosses a wireless link), and the CA
decrypts the data before it is passed to the browser. The
Customizer can be configured to match sensitive text given by
the user (such as their e-mail address, phone number, etc.) to
the document, and, to increase performance, encrypts only
those documents that contain sensitive data.

D. Flow-Regulating Buffer for Streaming

So far we have described applications that customize HTTP
transactions. It is also possible to use Customizers for
applications that use other protocols. To enable this,
Customizers that are trusted by a CS are given privileged
access to resources that are persistent across multiple HTTP
transactions, including memory for data, hard disk storage,
and threads of execution. The Customizer must also have
network I/O privileges.

One non-HTTP application that especially benefits from the
ability to reload a Customizer near the client is video
streaming. For example, a wireless resource-limited device
may not have enough memory to adequately buffer streams,
whereas a Customizer running near the client can buffer the
stream and periodically feed the client. The Customizer can
also filter the stream to match the capabilities of the client
device, or regulate the flow of data to the client device.
Potential benefits include decreasing client buffering
requirements, improving playback quality, reducing
interruptions to playback, reducing the window of time that
the playback is susceptible to WAN and server failures,
overcoming the protocol limitations of Web servers, reducing
restart latency, and reducing power consumption.

On the Web, video streams are typically initiated either
from a link within a page that contains a URL that causes the
browser to launch the video client, or by a page having a link
to a metafile that contains information about the stream, and
which is downloaded by the browser using HTTP and then
passed to the appropriate streaming client. Customizers can be
used to intercept video streams for filtering by using the
initiating Web page or metafile as a hook.

WEB
SERVER

2. REQUEST
FORWARDED

TO WEB SERVER

3. SERVER RETURNS
DOCUMENT WITH
EMBEDDED VIDEOCS

CUSTOMIZER

4. CUSTOMIZER REPLACES
VIDEO SERVER IN

DOCUMENT WITH ITSELF

7C. CUSTOMIZER
FILTERS
VIDEO

FOR CLIENT

WEB
BROWSER

1. CLIENT
REQUESTS

DOCUMENT

5. MODIFIED
DOCUMENT

FORWARDED TO
CLIENT

VIDEO
PLUG-IN

6. CLIENT LAUNCHES
PLUG-IN AND PASSES
LOCATION OF VIDEO

7A. CLIENT STREAMS
FILTERED VIDEO

FROM CUSTOMIZER

VIDEO
SERVER

7B. FULL VIDEO STREAMED
FROM VIDEO SERVER

Fig. 4. Using Customizers to filter video streams.

When a Web server replies to a request with a page linking
a stream, or a request for a metafile specifying the location of
a video file, the Customizer modifies the location of the video
stream. It replaces the identity of the source of the video with
itself, so that the client' s video application tries to retrieve the
video stream from the Customizer. The Customizer then acts
as a proxy for the video streaming protocol. The Customizer
appears to the video server to be the video client, while the
client sees the Customizer as the video server. This is shown
in Figure 4.

For customization that requires local action before being
sent to the client, the Customizer can use a CA, and they can
act in concert as a pipelined pair of proxies operating on the
data. This approach allows Customizers to act on streams
between the video client and server if it is able to implement
the appropriate protocol.

It is also possible for Customizers to use their own video
client, and even stream objects that were not initially set up for
streaming by the content provider, by use of Customizer-
specific helper-applications pre-installed at the client. This
allows the Customizer to control the streaming more directly.
In this case, when the Customizer gets a request for a video
object or a metafile representing a video stream, instead of
modifying the server directly in the document, the Customizer
replaces the requested document in the response with a
specialized metafile type associated with the Customizer-
specific helper application. The specialized metafile will
specify the Customizer as the video server. When the browser
receives the specialized metafile, it will launch the
Customizer-specific helper application, which will then act in
concert with the Customizer to stream the data and display it
to the user.

This mechanism can be used to create streams out of
objects that would normally be downloaded fully by the
browser. For example, suppose the user clicks on an HTTP
request for an MPEG file. Since the HTTP protocol is being
used, the standard browser behavior is to download the entire
file and hand it to the appropriate helper application (in this
case, a video player). However, if the Customizer responds
with a specialized metafile that it generates on the fly, instead
of the MPEG clip, the browser will open the Customizer-
specific helper application associated with the metafile’s
extension (or the HTTP content type header field sent with the
metafile). The Customizer-specific helper application will

then contact the Customizer to stream the video, which the
Customizer retrieves from the Web server specified in the
URL of the initial browser request. If the user relocates, the
Customizer can be reloaded on a nearby CS to provide the
best possible playback of the video stream.

IV. PERFORMANCE

We briefly summarize some past results that demonstrate
basic performance characteristics of our system, and then we
describe a new experiment that highlights the advantages of
using Customizers to improve the performance of video
streaming.

A. Basic Customizer Overhead

The performance advantages derived from the abilit y to do
remote customization can be negated if the underlying
execution and communication mechanisms are slow. The use
of Customizers introduces overhead because there are now
two additional service points between Web client and Web
server that operate in both directions. While we would like
this overhead to be low in absolute terms, the primary goal is
that it should be low relative to typical Web transaction times.
Indeed, our measurements (presented in [29]) show that the
overhead of our system when processing Web requests using a
“null ” Customizer (which simply passes them through) is less
than 5ms on PCs with 933 MHz Pentium III processors
running Solaris x86 release 2.8. This is small compared to
Web transaction times that are typically 100-500ms (and these
are for small requests; the overhead is completely negligible
when transferring, say, images).

In the same study, we also measured the performance of an
adaptive image filter Customizer, which highlights the end-to-
end performance benefits of using a Customizer to provide
adaptive image compression for a wireless client. The
experiment simulated the common scenario in which a mobile
client communicates with an access point over a wireless link,
and the access point has a wired path to the rest of the Internet.
We showed that using the CA to provide feedback regarding
the available bandwidth at the client was effective for
maintaining consistent transfer times as the wireless
bandwidth changed.

B. Improving Video Streaming using an NFB Customizer

We now present an experiment that shows the benefits of
using a Customizer that supports Network Flow Buffering
(NFB) [30] to improve video retrieval and playback
performance. The NFB Customizer is an implementation of a
flow-regulating buffer, as described in Section III .D.

During a video session, the effective network bandwidth
seen by the user may change as the result of changing network
or server conditions. Reasons for this include changes in
packet loss rate in, say, a wireless connection as the user
roams, router congestion, or the server becoming overloaded
and being forced to reduce the transmission rate. A NFB
Customizer can be used to mask (from the client) dynamic
changes in relative bandwidth between the WAN and LAN
that can cause the effective bandwidth seen by the user to be

lower than the video playback rate. The result is improved
video playback performance by reducing the frequency and
duration of interruptions to playback when the WAN and
LAN bandwidths are highly variable relative to each other.

1. NFB Customizer Experiment

We performed the following experiment to validate the
benefits of using a NFB Customizer. The experimental setup
is shown in Figure 5. For the client, we used a notebook
computer with a 500MHz Intel Pentium III processor running
the RealOne™ Player on Windows 98. The server was a P3
933MHz PC running Windows 2000. The intermediate
machine used to host the NFB Customizer (via a Customizer
Server) was a Pentium II 450MHz PC running FreeBSD. To
simulate a network with a given bandwidth, we used
DummyNet in FreeBSD (IP Firewall kernel module), which
supports the creation of pipes to control bandwidth, delay, and
packet loss between two communication endpoints. Four
pipes are used in total, one pair for symmetric bi-directional
LAN control and another for symmetric bi-directional WAN
control.

In this experiment, we show how a NFB Customizer
provides improved playback that would otherwise be
interrupted multiple times. In addition to the performance
improvement, the NFB Customizer requires no more
application-layer buffering than is required when streaming
directly from server to client. In fact, under normal
circumstances it is expected to use less. The video clip used
for this experiment was 202 seconds (about 3.4 minutes) in
length, with a bit rate of 38.5 KBps (308 Kbps).

DummyNet was used to create cyclical client/gateway
“LAN” and gateway/server “WAN” bandwidths as shown in
Figure 6. The figure shows the cycle repeating twice; the
pattern actually continues repeating for the duration of the
experiment. The averages for the WAN and LAN for each
cycle are 41.75 KBps, which is above the average video
playback rate of 38.5 KBps. Without the smoothing effect of
the NFB Customizer, the effective bandwidth seen by the
client is the minimum at any point in time of the bandwidth
cycles, averaging 25 KBps, and we expect the video player to
have to interrupt playback so that the network can catch up to
the video.

Client
(P3 500 MHz,
Windows 98
RealPlayer™)

REGULATED
LAN

(Switched 100 Base-T)

NFB
Customizer

Customizer Server
(“Gateway”, p2 450MHZ,

FreeBSD, dummynet
Regulates WAN/LAN B/W)

REGULATED
WAN

(Switched 100 Base-T)

Video Server
(P3 933MHZ,

HTTP And RTSP Server)

Fig. 5. Experimental setup.

Fig. 6. Bandwidth for the video streaming experiment.

Figure 7 shows the video playback as amount of data
played over time for direct HTTP, direct Real™, and NFB-
enhanced HTTP, i.e., using a NFB Customizer. With NFB-
enhanced HTTP, the player buffers for 17 seconds before
playback begins. Once playback begins, the video plays
smoothly and at full quality for its entirety without any
additional buffering by the player. This is due to smoothing
effect of the NFB Customizer, which allows a higher average
bandwidth to be sustained to the client. For direct HTTP (i.e.,
without the NFB Customizer), the player buffers for 28
seconds before playback begins. During playback, the video
plays at full quality, but the player interrupts the video three
times to refill it s buffer, for a total of 124 seconds of buffering
after playback has started, and 152 seconds of total buffering,
as compared to just 17 seconds with NFB-enhanced HTTP.

When the Real™ protocol is used, there is an initial 5
seconds of buffering before playback begins. The player
quickly recognizes that bandwidth is inadequate and attempts
to adapt accordingly. In doing so, it reduces the frame rate
and picture quality, and ends up only retrieving 1.97MB
(1966954 bytes), or about 25%, of the video. This results in a

Fig. 7. Video playback for each of the three scenarios.

choppy, “slide show” resul ting in very poor-quality playback.
Despite this adaptation, the video playback is still i nterrupted
7 times for a total of 165 seconds of additional buffering.

The extra buffering that occurs when there is no NFB
Customizer is required because the player' s buffer is suffering
from underflow, as the average bandwidth is lower than the
video bit rate. Note that even if the player had perfect
knowledge of the future, it would have to delay the start of the
video by 152 seconds to ensure smooth playback under direct
HTTP. Not only would this frustrate the user, it would also
require a buffer size of nearly 6MB (152 x 38.5 KBps). Given
that the player cannot anticipate network traff ic bursts, or that
it may not be desirable to delay the start of the video for so
long and force the user to wait, or to reduce memory
consumption, the player is forced to interrupt the video for
two periods of half a minute or more to complete playback.

In Figure 8, we show the amount of buffering at the player
for direct HTTP, Real™, and NFB-enhanced HTTP (in the
latter case, the combined amount buffered at both the player
and NFB Customizer is presented).

The large spikes in buffering for direct HTTP result from
the player trying to manage its buffer when the bandwidth is
bursty. The maximum buffer size for the player in this case is
1.1 MB (1103346 bytes). The buffering when using the
Real™ protocol is also bursty. However, the drastic reduction
in amount of video data played, at the cost of playback
quality, results in a maximum client buffer size of 258 KB
(257805 bytes). Finally, the effect of the NFB Customizer in
NFB-enhanced HTTP can be seen by the significantly reduced
burstiness of its (combined) buffering.

The combined buffering when NFB-enhanced HTTP is
being used is further broken down into its two components,
the client buffering and NFB Customizer buffering, in Figure
9. When the NFB Customizer buffer is peaking because the
WAN bandwidth is higher than that of the LAN, the client
buffer is draining because the LAN bandwidth is lower than
the video rate. When the LAN bandwidth increases, the client

Fig. 8. Buffering during the video streaming experiment.

Fig. 9. Breakdown of combined buffering at client and NFB Customizer.

buffer will start to increase, but the NFB Customizer buffer
begins to drain since the WAN is now the bottleneck. The
maximum combined buffering (client + NFB Customizer)
peaks at 785 KB (785057 bytes), less than the maximum
buffer requirement at the client when direct HTTP is used.
The maximum buffering at the client when the NFB
Customizer is used is 660 KB (660514 bytes). This is due to
the fact that without the NFB Customizer, the average
effective bandwidth over the course of the playback is lower,
so more buffering is required to compensate.

V. RELATED WORK

Our work is premised on the idea that Web applications
would greatly benefit from the remote customization
capabilities of our system. In fact, there exists a large body of
research results verifying the benefits of remote customization
of Web content using proxies, mobile code, or some
combination thereof [2, 7, 9, 27, 29]. Furthermore, there is a
large body of research on the benefits of multimedia filtering,
such as [9, 12, 21, 34]. We build on these results, as our
distributed architecture allows these methods to be exploited
more effectively.

A number of systems use a single remote proxy for
customizing the Web, with communication initiated through
the browser’s proxy mechanism, including some in which the
proxy is a personal server. This includes image and video
filtering (sometimes called multimedia gateways), HTTP
request modifications, HTML filtering, user interface
improvements especially for small screens, remote caching,
and support for disconnected operation and user-selected
background retrieval [1, 5, 7, 8, 13, 22, 28]. Other systems
have made use of the two-proxy (local and remote) concept
for such customizations as filtering, prefetching, and
intelligent cache management at the local proxy [22, 23]. In
[11, 19] the server either on its own, or in cooperation with
specialized proxies, works to customize content for clients or
to improve the performance of prefetching and caching.

In [15] a pair of intermediaries is used to transparently
provide fault tolerance, security, and timeliness in distributed
object systems.

Research that is closest to ours combines the use of proxies
or multimedia gateways with mobile code to support dynamic
downloading of filters to a remote host [16, 25, 35]. There are
also customization systems that do not use proxies per se, but
rather use more general mobile code mechanisms to support
remote processing at arbitrary hosts, typically at the servers
themselves [14, 18, 20, 26, 27, 31, 32, 33].

A related issue is adaptability, where information is
provided to the client application, typically from the operating
system, to help it adapt to changes in resource availability and
network connectivity [2, 4, 24]. Some of these systems
include applications using an adaptable interface, including
adaptable protocols.

The Internet Content Adaptation Protocol (ICAP) [17] is a
solution developed by an industry coalition for distributing
Internet content to edge servers. ICAP is server-centric in that
distribution of functionality is controlled by content providers.
This differs from the Web Stream Customizer Architecture,
where the client controls the deployment of Customizers.
Open Pluggable Edge Services (OPES) [3] is an IETF effort to
standardize the tracing and control of proxies for content
adaptation. Multiple edge services can be chained together,
and callout servers can be used to offload computation. Their
services can be server-centric or client-centric. Simple
Object Access Protocol (SOAP) [6] is a simple XML-based
protocol for exchange of information and RPC for Internet
applications. None of the above approaches take advantage of
mobile code to dynamically deploy a service, nor do they
include the dynamic downloading of a local component on or
near the client.

Our work differs from that of others in a number of ways.
First, we optionally use personal servers (in addition to third-
party servers) to store Customizers and their configurations,
which facilitates Customizer reloading and provides
dependable and trusted resources for the user’s Customizers.
Using third party and personal servers together enhances
flexibility of the system, benefits performance, satisfies
security needs of both the user and the Customizer authors,
and provides a measure of fault tolerance.

Second, we have focused on a customization system
designed specifically for the Web, allowing us to make a
number of simplifying assumptions regarding the
programming model, the user model, and the system design
and implementation. We use a very restricted, and therefore
more simplified, form of mobile code, rather than providing a
generalized mobile code solution that, while more powerful, is
less practical and is more complex in terms of usability and
security. Other unique features of our system include the use
of a CIS (Customizer Integration Server) that supports
dynamic selection of multiple, simultaneously active,
Customizers, and the use of CAs (Customizer Assistants)
running on the CIS to support client-side processing and
adaptability.

VI. CONCLUSIONS

We described the design of the Web Stream Customizer
Architecture that provides the following capabilities:

• Dynamic placement of customization modules that can
process and buffer data at intermediate points between
a browser client and Web server

• The abilit y to adapt to network conditions because of
its distributed control

• Support for user relocation by allowing eff icient
movement of customization modules

The architecture is tightly integrated with existing Web
programming and communication models, and provides a
customization framework that is ideal for wireless client
devices. Reliance on a user-owned server, the PCMS, for
execution of customization modules as well as their storage,
increases practicality. The PCMS also plays an important role
in providing support for Customizer relocation for execution
on third-party servers that may be closer to the user. A soft-
state execution model for Customizers simpli fies the overall
design, including Customizer relocation.

For future work, we plan to experiment with additional
Customizer applications, especially those that rely on non-
HTTP protocols for their basic communication.

REFERENCES

[1] E. Amir, S. McCanne, and R. Katz, "An Active Service framework
and its application to real-time multimedia transcoding," In Proceedings
of ACM SIGCOMM, pp. 178-189, Vancouver, Canada, August 1998.

[2] D. Andersen, D. Bansal, D. Curtis, S. Seshan, and H. Balakrishnan,
"System support for bandwidth management and content adaptation in
Internet applications," Proceedings of 4th Symposium on Operating
Systems Design and Implementation, pp. 213-226, San Diego, CA, USA,
October 2000. USENIX Association.

[3] A. Barbir, R. Chen, M. Hofmann, H. Orman, and R. Penno, "An
Architecture for Open Pluggable Edge Services (OPES)," Network
Working Group Internet Draft. http://www.ietf.org/internet-drafts/draft-
ietf-opes-architecture-04.txt

[4] V. Bharghavan and V. Gupta, "A Framework for Application
Adaptation in Mobile Computing Environments, Proceedings of IEEE
Compsac ‘97, Washington, D.C., USA, August 1997

[5] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul, "An active
transcoding proxy to support mobile web access," Proceedings of 17th
IEEE Symposium on Reliable Distributed Systems, West Lafayette, IN,
USA, October 1998.

[6] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer, "Simple Object Access Protocol
(SOAP) 1.1," http://www.w3.org/TR/SOAP/.

[7] C. Brooks, M. S. Mazer, S. Meeks, and J. Miller, "Application-specific
proxy servers as HTTP stream transducers," Proceedings of 4th Intl.
World Wide Web Conference, pp. 539-548, Boston, MA, USA,
December 1995.

[8] O. Buyukkokten, H. Garcia-Molina, A. Paepcke, and T. Winograd,
"Power Browser: Eff icient Web Browsing for PDAs," Proceedings of
CHI 2000, The Hague, Netherlands, April 2000.

[9] S. Chandra, A. Gehani, C. S. Ell is, and A. Vahdat, "Transcoding
Characteristics of Web Images," Proceedings of Multimedia Computing
and Networking, San Jose, California, USA, January 2001.

[10] D. Clark, S. Shenker, and L. Zhang, "Supporting Real-Time
Applications in an Integrated Services Packet Network: Architecture and
Mechanism," Proceedings of ACM SIGCOMM, pp. 14-26, Baltimore,
Maryland, USA, August 1992.

[11] E. Cohen, B. Krishnamurthy, and J. Rexford, "Improving End-to-End
Performance of the Web Using Server Volumes and Proxy Filters,"
Proceedings of ACM SIGCOMM, pp. 241-253, Vancouver, Briti sh
Columbia, September 1998.

[12] S. Deshpande and W. Zeng, "Scalable Streaming of JPEG2000 Images
using Hypertext Transfer Protocol," Proceedings of ACM Multimedia
2001, Ottowa, Ontario, Canada, October 2001.

[13] A. Fox, S. Gribble, Y. Chawathe and E. A. Brewer, "Adapting to
Network and Client Variation Using Active Proxies: Lessons and
Perspectives," IEEE Personal Communications, Special Issue on
Adaptation, vol. 5, no. 4, August 1998.

[14] R. S. Gray, "Agent Tcl: A transportable agent system," Proceedings of
the CIKM Workshop on Intell igent Information Agents, Fourth
International Conference on Information and Knowledge Management
(CIKM 95), Baltimore, MD, USA, December 1995.

[15] J. He, M. A. Hiltunen, M. Rajagopalan, and R. D. Schlichting,
"Providing QoS Customization in Distributed Object Systems",
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware 2001, pp. 351-372, Heidelberg,
Germany, November 2001, LNCS 2218

[16] A. Hokimoto and T. Nakajima, "An Approach for Constructing Mobile
Applications Using Service Proxies," Proceedings of the 16th
International Conference on Distributed Computing Systems, Hong
Kong, May 1996.

[17] Internet Content Adaptation Protocol. http://www.i-cap.org/home.html
[18] D. Johansen, R. van Renesse, and F. B. Schnieder, "Operating system

support for mobile agents," Proceedings of 5th IEEE Workshop on Hot
Topics in Operating Systems, Orca Island, WA, USA, May 1995.

[19] B. Krishnamurthy, C. E. Wills, "Improving Web performance by client
characterization driven server adaptation," Proceedings of the 11th
International World Wide Web Conference. Honolulu, Hawaii , USA,
May 7-11, 2002.

[20] T. Kunz and J. P. Black, "An architecture for adaptive mobile
applicatios," Proceedings of 11th International Conference on Wireless
Communications, pp. 27-38, Calgary, Alberta, Canada, July 1999.

[21] J. Li, G. Chen, J. Xu, Y. Wang, H. Zhou, K. Yu, K. T. Ng, and H. Shum,
"Bi-level Video: Video Communication at Very Low Bit Rates",
Proceedings of ACM Multimedia 2001, Ottowa, Ontario, Canada,
October 2001.

[22] M. Liljeberg, T. Alanko, M. Kojo, H. Laamanen, and K. Raatikainen,
"Optimizing World-Wide Web for Weakly-Connected Mobile
Workstations: An Indirect Approach," Proceedings of 2nd International
Workshop on Services in Distributed and Networked Environments
(SDNE), pp. 132--139, Whistler, Canada, June 1995.

[23] T. S. Loon and V. Bharghavan, "Alleviating the latency and bandwidth
problems in www browsing," Proceedings of the 1997 USENIX
Symposium on Internet Technology and Systems, Monterey, CA, USA
December 1997. URL: http:/timely.crhc.uiuc.edu/.

[24] B. Noble, "System support for mobile, adaptive applications," IEEE
Personal Computing Systems, vol. 7, no. 1, pp. 44-49, February 2000.

[25] W. T. Ooi, and R. van Renesse, "Distributing Media Transformation
Over Multiple Media Gateways," In Proceedings of ACM Multimedia
2001, Ottowa, Ontario, Canada, October 2001.

 [26] H. Peine and T. Stolpmann, "The Architecture of the Ara Platform for
Mobile Agents," Rothermel K., Popescu-Zeletin R. (Eds.), Mobile
Agents, Proceedings of MA ‘97, pp. 50-61, Springer Verlag, Berlin,
Germany, April 7-8, 1997, LNCS 1219.

[27] S. Perret and A. Duda, "Implementation of MAP: A system for mobile
assistant programming," Proceedings of IEEE International Conference
on Parallel and Distributed Systems, Tokyo, Japan, June 1996.

[28] H. Rao, Y. Chen, M. Chen, J. Chang, "A Proxy-Based Personal Portal",
Proceedings of the WebNet99 Conference. Hawaii , USA October, 1999.

[29] J. Steinberg and J. Pasquale, "A Web Middleware Architecture for
Dynamic Customization of Content for Wireless Clients," Proceedings
of the 11th International World Wide Web Conference. Honolulu,
Hawaii , USA, May 7-11, 2002.

[30] J. Steinberg and J. Pasquale, "Using Network Flow Buffering to
Improve the Performance of Video over HTTP," University of
California,, San Diego Technical Report number CS2004-0776. January
14, 2004.

[31] M. Straßer, J. Baumann, and F. Hohl, "Mole - A Java Based Mobile
Agent System," Proceedings of the ECOOP’96 workshop on Mobile
Object Systems, Linz, Austria, July 1996.

[32] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal, "Active Names:
Flexible Location and Transport of Wide-Area Resources," Proceedings
of the Second Usenix Symposium on Internet Technologies and Systems,
Boulder, CO, USA, October 1999.

[33] Y. Villate, D. Gil, A. Goni, and A. Illarramendi, "Mobile agents for
providing mobile computers with data services," Proceedings of the

Ninth IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management (DSOM 98), Newark, DE, USA, October
1998.

[34] N. Yeadon, A. Mauthe, D. Hutchison, and F. Garcia., "QoS filters:
Addressing the heterogeneity gap," In Proceedings of IDMS ' 96,

European Workshop on Interactive Distributed Multimedia Systems and
Services, Berlin, Germany, March 1996.

[35] Zenel and D. Duchamp, "A general purpose proxy filtering mechanism
applied to the mobile environment," Proceedings of the Third Annual
ACM/IEEE International Conference on Mobile Computing and
Networking, pp. 248-259, Budapest, Hungary, September 1

