
A Flexible Architecture for Customizing Web 
Streams for Wireless Clients 

Jesse Steinberg and Joseph Pasquale 
University of Cali fornia, San Diego 

Department of Computer Science and Engineering 
La Jolla, CA 92093 USA 

(1) 858-534-8604 

{ jsteinbe,pasquale} @cs.ucsd.edu 

 

 
Abstract—We present the design of the Web Stream 

Customizer Architecture, the basis for a middleware system that 
supports customization of Web content and streams. Our notion 
of customization is quite general, including functions such as 
fil tering, remote buffering, remote caching, flow regulation (e.g., 
for video playback), compression, and encryption, all of which 
are especially valuable for wireless resource-limited clients, 
which are a pr imary target of support. The system is highly 
deployable, as it works entirely within the Web’s common 
programming and communication frameworks, such as using 
HTTP and relying solely on standard proxy mechanisms, and 
therefore does not require any changes to existing Web servers 
and browsers. 
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I. INTRODUCTION 

While the popularity of wireless devices continues to 
increase, there remains a vast amount of content not designed 
for access by these devices.  Rather, the more typical 
expectation is that access will be from desktop computers with 
relatively plentiful resources, such as large, high-resolution 
displays, large memories, fast processors, and reliable high-
throughput network connections.   One approach to addressing 
this problem is to dynamically customize content to meet the 
requirements of a particular device that does not meet these 
assumptions, as well as to allow it to adapt to changing 
network conditions.  And since users of wireless devices may 
relocate at any time, this customization should take the user’s 
location into account to increase performance. 

Customization can provide significant benefits in terms of 
performance, reliabilit y, security, and power consumption for 
activities such as wireless Web browsing.  One of the most 
commonly discussed examples of improving performance is 
the use of remote filters that can reduce the sizes of objects 
being transferred over low-throughput connections.  In many 
cases, objects may require filtering anyway in order to be 
handled by resource-limited devices, such as those that cannot 
store, process, and display HTML pages containing large 
high-resolution images (or simply large fonts that are too big 
for the display). The benefit of filtering remotely is that the 
amount of data being transferred over the lower-throughput 
wireless link is reduced, and the filtering can be done on a 

machine with much greater processing power, while reducing 
power consumption at the client. 

The same arguments apply for reliabilit y. Consider that a 
connection failure during a Web transaction could lead the 
user to be unsure of the outcome of that transaction (e.g., if the 
user clicks to pay for something, but does not get a response 
because of a disconnection, did the request make it to the 
server or not?).  By storing the results of a transaction at a 
more reliable remote location, the user can easily check on its 
outcome once connectivity is reestablished. 

Regarding security, the susceptibilit y of wireless networks 
to eavesdropping may lead an unwary user to expose 
information that they would otherwise prefer to keep private, 
such as their phone number and address, unless the sensitive 
data is encrypted before crossing the wireless link.  Thus, 
whether for performance, reliabilit y, or security reasons, the 
abilit y to act remotely is critical. 

In many cases, it may be important that when remote 
customization is taking place, the location of the user be taken 
into account.  For example, envision a scenario of a user who 
has a mobile device at work, accessing Web resources from 
any location on the company campus. Remote customization 
may conveniently take place on a PC in the user’s off ice.  
When the user travels to meetings and conferences in other 
cities around the world, the user would like to use the device 
to access Web resources and customize the content in the 
same manner.  Performance may suffer if the customization 
were to still be done in the user’s off ice, since all of the HTTP 
transactions would have to go through the off ice PC.  Ideally, 
the location of the customization should move to a location 
closer to the user. 

The Web Stream Customizer Architecture is designed to 
improve the performance, reliabilit y, and security of Web 
browsing for wireless devices, with support for user 
relocation.  The main idea is the use of customization 
modules, called Customizers, which act remotely on behalf of 
a client.  An early version of the design was presented in [29].  
In this paper, we present a significantly improved design that 
supports new capabiliti es, including special-purpose (non-
HTTP) stream communication and processing, and support for 
the movement of Customizers in response to user relocation. 
We show that the overhead of the system is low and tolerable, 
and that the gains of remote customization can be significant, 



especially when transferring video streams that have high 
throughput and (soft) real-time response requirements. 

Our system is designed based on the following goals: 
Transparency:  For ease of integration, the system is 

transparent to the operation of current Web servers, requiring 
no changes to their structure, and is compatible with standard 
Web browsers.  The system is implemented using only 
existing Web mechanisms, such as HTTP and proxies. 

Remote processing: The system provides the ability to act 
at a remote location relative to the client, e.g., beyond the 
wireless link for an untethered user, which is crucial to 
gaining significant benefits in performance, reliability and 
security.  Intermediaries between the client and server provide 
remote locations for Customizer execution. 

Adaptability:  Content customization can be targeted for 
the particular device being used, and the customization can be 
adapted based on changing system/environment conditions, 
including fluctuations in network throughput, and resource 
availability on the client.  To adapt dynamically to changing 
conditions, each Customizer actually has two points of 
control: the customization module acting remotely, and an 
assistant that is closely coupled with the client device. 

Flexibility:  Ideally, when a Customizer is loaded, it is 
executed at the location that achieves the maximal benefit in 
terms of performance, reliability, or security.  It is also 
possible to have multiple Customizers that are simultaneously 
active, possibly at different locations, each handling requests 
to different Web sites.  Allowing third-party servers as well as 
a personal server belonging to the user to host Customizers 
provides flexibility of location. 

User relocation:  If the user relocates, it should be possible 
for the Customizer to move to a new location, e.g., closer to 
the user, to improve performance.  Rather than moving the 
Customizer in mid-execution by capturing, moving, and 
reestablishing its execution state, such as is done with mobile 
agents (based on a strong mobility model of movement), we 
take a simpler approach based on a limited form of mobile 
code in conjunction with a soft-state model of Customizer 
execution. In this model, moving a Customizer reduces to the 
case of reloading the Customizer on a new host.  Furthermore, 
the use of a personal server provides a central, well-connected 
location for storing the Customizer, its configuration, and any 
long-term state, to facilitate Customizer reloading. 

Practicality: The user should not have to rely solely on the 
provision of resources by third parties in order to run 
Customizers.  In fact, we expect that Customizers will 
typically run on a personal server that is owned by the user, 
thus reducing dependence on third parties, making deployment 
simpler and more realistic. 

The rest of the paper is organized as follows.  We describe 
the architecture in Section II. In Section III, we present some 
example applications.  In Section IV, we present the 
performance results of the implementation, including a 
regulated video buffer application.  We review related work in 
Section V, and present conclusions in Section VI. 
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Fig. 1. Using a proxy to customize Web transactions. 

II. THE WEB STREAM CUSTOMIZER ARCHITECTURE 

A common approach to remote Web customization is the 
use of HTTP proxies as intermediaries between the client and 
server, as shown in Figure 1.  In this model, requests 
generated by the client are sent to the proxy instead of to the 
Web server. The proxy then forwards the request to the Web 
server.  The Web server receives the request, processes it, and 
returns a response to the proxy.  The proxy then has the 
opportunity to customize the response before it is returned to 
the client.  This approach is transparent to Web servers since 
they see the proxy as a client, and is also transparent to clients 
since most popular Web browsers have a proxy mechanism 
that allows them to automatically forward their requests to a 
proxy. 

In the Web Stream Customizer Architecture, the role of the 
proxy is expanded. First, there is the Customizer Server (CS), 
which provides an execution environment for running 
Customizers. A user typically will have multiple Customizers 
that are active, which depend on their function, e.g., filtering, 
compression, encryption, caching, etc., and which may apply 
only to specific sites, e.g., cnn.com, yahoo.com, etc. Figure 2 
shows a client using multiple Customizers, each of which is 
running on a separate CS (including a special one designated 
as the PCMS, discussed below). 

To support adaptability, each Customizer has an associated 
helper module called a Customizer Assistant (CA). The CA 
runs on a Client Integration Server (CIS), which tends to be 
located on or near the client device, and acts primarily as an 
extension of the browser (given that the browser code itself 
cannot be modified). Serving as a proxy for the browser, all of 
the browser’s requests are sent to the CIS.  
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Fig. 2. A client using multiple Customizers. 
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Fig. 3. Selecting a Customizer based on the DA (Domain of Applicability). 

Thus, when a Customizer is being used, the request passes 
from the client to a CA (which runs on the CIS), then to a 
Customizer (which runs on a CS), and then to the Web server 
(and vice-versa for responses in the opposite direction).  
Despite the additional stops a request and response must 
make, we have found the resulting overhead to be insignificant 
relative to typical end-to-end Web request/response times 
without Customizers, as reported in [29], and summarized in 
Section IV. 

Given its close coupling with the client, the CA is generally 
responsible for tasks that require knowledge of resource 
availability and system conditions at or near the client, which 
may then be communicated to the Customizer (e.g., such as 
relaying local system or network performance status so that 
the Customizer can adapt, to improve performance).  In 
addition, the CA will also reverse data transformations done 
by the Customizer, such as for compression/decompression or 
encryption/decryption. 

How does the CIS know which CA should be given a 
request from the browser (and consequently, to which 
Customizer the request should be passed to)?  Associated with 
each Customizer is its domain of applicability (DA), which is 
a list of all of the sites for which the Customizer will act.  
When a Customizer is deployed (described below), its DA, 
along with its corresponding CA and the Customizer’s current 
location, is downloaded to the CIS.  The CIS then uses the 
DAs to perform the matching of requests to CAs and 
Customizers. 

Figure 3 shows how HTTP requests are handled by the CIS.  
When the CIS gets a request from the browser, it first matches 
the URL of the request to the DA of all loaded Customizers.  
If there is a match with a Customizer, the request is passed to 
the corresponding CA, and then to the CS for that Customizer.  
The Customizer does not need to be explicitly loaded at that 
location, as described below. 

Typically, a user will own a personal computer at their 
home or office (or at least have access to a machine at least as 
powerful on which they have an account), that has reliable 
Internet connectivity relative to the wireless PDAs we have 
been considering as clients. To facilitate user relocation and 
improve the practicality of our customization system, such a 
machine can be configured to serve as the user’s P ersonal 
Customizer Management Server (PCMS). The PCMS is a 
storage place for the code modules of the user’s Customizers, 
along with their preferences and state (collectively called a 
Customizer Package). 

The PCMS can make dynamic decisions about where the 
Customizer code will run, based on the location of the user 
and the constraints of the Customizer (such as security 
restrictions), and it can carry out Customizer reloading 
without any direct involvement by the low-powered client and 
its possibly unreliable low-bandwidth wireless connection.  
Customizer reloading provides a measure of fault tolerance, 
because a Customizer may also be moved if there is a 
significant lapse in response time from the current CS on 
which the Customizer is running. 

The PCMS contributes to practicality because it can also be 
used as a (user-controlled) location for actually running 
Customizers, which is especially useful if there is no available 
CS that is willing to host the Customizer.  Figure 2 shows an 
instance of the complete Web Stream Customizer 
Architecture, with Customizers running on Customizer 
Servers and on a PCMS.  

III. APPLICATIONS 

We are currently experimenting with a number of 
applications that focus on improving performance, reliability, 
or security. These are an Image Filter (as part of a Filter-Saver 
general application), a Transaction Recorder, an Encryptor, 
and a Flow-Regulating Buffer (for high-bandwidth streaming 
of video). 

A. Remote Filtering 

We have implemented an adaptive Image Filter Customizer 
that can modify the resolution, color-depth and compression 
rate of images. The CA measures the approximate throughput 
at the client, and relays it to the Customizer.  This allows the 
Customizer to adapt its filtering to maintain consistent transfer 
times as throughput fluctuates.   We are also experimenting 
with a more general Customizer, called the Filter-Saver, which 
can be used for a number of applications.  As the name 
implies, it consists of two major components, a Filter and a 
Saver.  The Filter reduces the amount of data in an HTTP 
response coming from the Web Server as it passes through the 
Customizer, and the Saver takes advantage of the storage 
available on the PCMS by saving original versions of the 
objects before they are filtered. 

Storing the objects at the PCMS ensures that they will be 
available even if they are removed from the original source, 
and allows the objects to be retrieved quickly regardless of 
network problems between the PCMS and the original source. 
(In fact, the objects are available immediately if the user 
accesses them from the host on which they are running their 
PCMS).   

In addition to filtering objects based on their data type, 
content-specific filtering can be done.  For example, the Filter 
could remove the commentary from a product review site and 
return only the final score; research papers might be filtered so 
that only the pages containing the abstract, introduction, and 
bibliography are returned; scene change detection could be 
used to reduce the frame rates of videos.   



B. Transaction Recording for Reliability 

The Transaction Recorder addresses the problem of 
connection failures during a transaction by storing the results 
of transactions on the PCMS. The user can easily check on the 
outcome of the transaction once connectivity is reestablished 
via the Customizer’s configuration page, which is accessible 
by the user from a Customizer control Web page provided by 
the CIS. 

The Connection Smoother Customizer is an extension of 
the Transaction Recorder. It stores objects requested by the 
browser on the PCMS.  If there is a short-term lapse in 
connectivity before the browser receives a stored object, the 
CA automatically repeats the request for that object, to mask 
the connection failure from the user.  Since objects are only 
stored for short periods of time, this Customizer performs best 
when it runs on the PCMS, or when the CS has a cache for the 
data sent to the PCMS.   

C. Security 

The Selective Encryption Customizer encrypts sensitive 
data (e.g., before it crosses a wireless link), and the CA 
decrypts the data before it is passed to the browser.  The 
Customizer can be configured to match sensitive text given by 
the user (such as their e-mail address, phone number, etc.) to 
the document, and, to increase performance, encrypts only 
those documents that contain sensitive data. 

D. Flow-Regulating Buffer for Streaming 

So far we have described applications that customize HTTP 
transactions.  It is also possible to use Customizers for 
applications that use other protocols.  To enable this, 
Customizers that are trusted by a CS are given privileged 
access to resources that are persistent across multiple HTTP 
transactions, including memory for data, hard disk storage, 
and threads of execution.   The Customizer must also have 
network I/O privileges.   

One non-HTTP application that especially benefits from the 
ability to reload a Customizer near the client is video 
streaming.  For example, a wireless resource-limited device 
may not have enough memory to adequately buffer streams, 
whereas a Customizer running near the client can buffer the 
stream and periodically feed the client.  The Customizer can 
also filter the stream to match the capabilities of the client 
device, or regulate the flow of data to the client device.   
Potential benefits include decreasing client buffering 
requirements, improving playback quality, reducing 
interruptions to playback, reducing the window of time that 
the playback is susceptible to WAN and server failures, 
overcoming the protocol limitations of Web servers, reducing 
restart latency, and reducing power consumption. 

On the Web, video streams are typically initiated either 
from a link within a page that contains a URL that causes the 
browser to launch the video client, or by a page having a link 
to a metafile that contains information about the stream, and 
which is downloaded by the browser using HTTP and then 
passed to the appropriate streaming client. Customizers can be 
used to intercept video streams for filtering by using the 
initiating Web page or metafile as a hook. 
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Fig. 4. Using Customizers to filter video streams. 

When a Web server replies to a request with a page linking 
a stream, or a request for a metafile specifying the location of 
a video file, the Customizer modifies the location of the video 
stream.   It replaces the identity of the source of the video with 
itself, so that the client' s video application tries to retrieve the 
video stream from the Customizer.  The Customizer then acts 
as a proxy for the video streaming protocol.  The Customizer 
appears to the video server to be the video client, while the 
client sees the Customizer as the video server.  This is shown 
in Figure 4. 

For customization that requires local action before being 
sent to the client, the Customizer can use a CA, and they can 
act in concert as a pipelined pair of proxies operating on the 
data.  This approach allows Customizers to act on streams 
between the video client and server if it is able to implement 
the appropriate protocol. 

It is also possible for Customizers to use their own video 
client, and even stream objects that were not initially set up for 
streaming by the content provider, by use of Customizer-
specific helper-applications pre-installed at the client.  This 
allows the Customizer to control the streaming more directly.  
In this case, when the Customizer gets a request for a video 
object or a metafile representing a video stream, instead of 
modifying the server directly in the document, the Customizer 
replaces the requested document in the response with a 
specialized metafile type associated with the Customizer-
specific helper application.   The specialized metafile will 
specify the Customizer as the video server.  When the browser 
receives the specialized metafile, it will launch the 
Customizer-specific helper application, which will then act in 
concert with the Customizer to stream the data and display it 
to the user. 

This mechanism can be used to create streams out of 
objects that would normally be downloaded fully by the 
browser.  For example, suppose the user clicks on an HTTP 
request for an MPEG file.  Since the HTTP protocol is being 
used, the standard browser behavior is to download the entire 
file and hand it to the appropriate helper application (in this 
case, a video player).  However, if the Customizer responds 
with a specialized metafile that it generates on the fly, instead 
of the MPEG clip, the browser will open the Customizer-
specific helper application associated with the metafile’s 
extension (or the HTTP content type header field sent with the 
metafile).  The Customizer-specific helper application will 



then contact the Customizer to stream the video, which the 
Customizer retrieves from the Web server specified in the 
URL of the initial browser request.  If the user relocates, the 
Customizer can be reloaded on a nearby CS to provide the 
best possible playback of the video stream. 

IV. PERFORMANCE 

We briefly summarize some past results that demonstrate 
basic performance characteristics of our system, and then we 
describe a new experiment that highlights the advantages of 
using Customizers to improve the performance of video 
streaming. 

A. Basic Customizer Overhead 

The performance advantages derived from the abilit y to do 
remote customization can be negated if the underlying 
execution and communication mechanisms are slow.  The use 
of Customizers introduces overhead because there are now 
two additional service points between Web client and Web 
server that operate in both directions. While we would like 
this overhead to be low in absolute terms, the primary goal is 
that it should be low relative to typical Web transaction times. 
Indeed, our measurements (presented in [29]) show that the 
overhead of our system when processing Web requests using a 
“null ” Customizer (which simply passes them through) is less 
than 5ms on PCs with 933 MHz Pentium III processors 
running Solaris x86 release 2.8.  This is small compared to 
Web transaction times that are typically 100-500ms (and these 
are for small requests; the overhead is completely negligible 
when transferring, say, images). 

In the same study, we also measured the performance of an 
adaptive image filter Customizer, which highlights the end-to-
end performance benefits of using a Customizer to provide 
adaptive image compression for a wireless client. The 
experiment simulated the common scenario in which a mobile 
client communicates with an access point over a wireless link, 
and the access point has a wired path to the rest of the Internet.  
We showed that using the CA to provide feedback regarding 
the available bandwidth at the client was effective for 
maintaining consistent transfer times as the wireless 
bandwidth changed. 

B. Improving Video Streaming using an NFB Customizer 

We now present an experiment that shows the benefits of 
using a Customizer that supports Network Flow Buffering 
(NFB) [30] to improve video retrieval and playback 
performance. The NFB Customizer is an implementation of a 
flow-regulating buffer, as described in Section III .D. 

During a video session, the effective network bandwidth 
seen by the user may change as the result of changing network 
or server conditions.  Reasons for this include changes in 
packet loss rate in, say, a wireless connection as the user 
roams, router congestion, or the server becoming overloaded 
and being forced to reduce the transmission rate. A NFB 
Customizer can be used to mask (from the client) dynamic 
changes in relative bandwidth between the WAN and LAN 
that can cause the effective bandwidth seen by the user to be 

lower than the video playback rate.  The result is improved 
video playback performance by reducing the frequency and 
duration of interruptions to playback when the WAN and 
LAN bandwidths are highly variable relative to each other. 

1. NFB Customizer Experiment 

We performed the following experiment to validate the 
benefits of using a NFB Customizer.  The experimental setup 
is shown in Figure 5. For the client, we used a notebook 
computer with a 500MHz Intel Pentium III  processor running 
the RealOne™ Player on Windows 98.  The server was a P3 
933MHz PC running Windows 2000.  The intermediate 
machine used to host the NFB Customizer (via a Customizer 
Server) was a Pentium II 450MHz PC running FreeBSD.  To 
simulate a network with a given bandwidth, we used 
DummyNet in FreeBSD (IP Firewall kernel module), which 
supports the creation of pipes to control bandwidth, delay, and 
packet loss between two communication endpoints.  Four 
pipes are used in total, one pair for symmetric bi-directional 
LAN control and another for symmetric bi-directional WAN 
control.   

In this experiment, we show how a NFB Customizer 
provides improved playback that would otherwise be 
interrupted multiple times.  In addition to the performance 
improvement, the NFB Customizer requires no more 
application-layer buffering than is required when streaming 
directly from server to client. In fact, under normal 
circumstances it is expected to use less.  The video clip used 
for this experiment was 202 seconds (about 3.4 minutes) in 
length, with a bit rate of 38.5 KBps (308 Kbps). 

DummyNet was used to create cyclical client/gateway 
“LAN” and gateway/server “WAN” bandwidths as shown in 
Figure 6. The figure shows the cycle repeating twice; the 
pattern actually continues repeating for the duration of the 
experiment. The averages for the WAN and LAN for each 
cycle are 41.75 KBps, which is above the average video 
playback rate of 38.5 KBps.  Without the smoothing effect of 
the NFB Customizer, the effective bandwidth seen by the 
client is the minimum at any point in time of the bandwidth 
cycles, averaging 25 KBps, and we expect the video player to 
have to interrupt playback so that the network can catch up to 
the video.  
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Fig. 5. Experimental setup. 



 

Fig. 6. Bandwidth for the video streaming experiment. 

Figure 7 shows the video playback as amount of data 
played over time for direct HTTP, direct Real™, and NFB-
enhanced HTTP, i.e., using a NFB Customizer. With NFB-
enhanced HTTP, the player buffers for 17 seconds before 
playback begins.  Once playback begins, the video plays 
smoothly and at full quality for its entirety without any 
additional buffering by the player. This is due to smoothing 
effect of the NFB Customizer, which allows a higher average 
bandwidth to be sustained to the client. For direct HTTP (i.e., 
without the NFB Customizer), the player buffers for 28 
seconds before playback begins.  During playback, the video 
plays at full quality, but the player interrupts the video three 
times to refill it s buffer, for a total of 124 seconds of buffering 
after playback has started, and 152 seconds of total buffering, 
as compared to just 17 seconds with NFB-enhanced HTTP. 

When the Real™ protocol is used, there is an initial 5 
seconds of buffering before playback begins.   The player 
quickly recognizes that bandwidth is inadequate and attempts 
to adapt accordingly.  In doing so, it reduces the frame rate 
and picture quality, and ends up only retrieving 1.97MB 
(1966954 bytes), or about 25%, of the video.   This results in a 

 

 
Fig. 7. Video playback for each of the three scenarios. 

 

choppy, “slide show” resul ting in very poor-quality playback.  
Despite this adaptation, the video playback is still i nterrupted 
7 times for a total of 165 seconds of additional buffering. 

The extra buffering that occurs when there is no NFB 
Customizer is required because the player' s buffer is suffering 
from underflow, as the average bandwidth is lower than the 
video bit rate.  Note that even if the player had perfect 
knowledge of the future, it would have to delay the start of the 
video by 152 seconds to ensure smooth playback under direct 
HTTP.  Not only would this frustrate the user, it would also 
require a buffer size of nearly 6MB (152 x 38.5 KBps).  Given 
that the player cannot anticipate network traff ic bursts, or that 
it may not be desirable to delay the start of the video for so 
long and force the user to wait, or to reduce memory 
consumption, the player is forced to interrupt the video for 
two periods of half a minute or more to complete playback.  

In Figure 8, we show the amount of buffering at the player 
for direct HTTP, Real™, and NFB-enhanced HTTP (in the 
latter case, the combined amount buffered at both the player 
and NFB Customizer is presented). 

The large spikes in buffering for direct HTTP result from 
the player trying to manage its buffer when the bandwidth is 
bursty.   The maximum buffer size for the player in this case is 
1.1 MB (1103346 bytes). The buffering when using the 
Real™ protocol is also bursty.  However, the drastic reduction 
in amount of video data played, at the cost of playback 
quality, results in a maximum client buffer size of 258 KB 
(257805 bytes). Finally, the effect of the NFB Customizer in 
NFB-enhanced HTTP can be seen by the significantly reduced 
burstiness of its (combined) buffering. 

The combined buffering when NFB-enhanced HTTP is 
being used is further broken down into its two components, 
the client buffering and NFB Customizer buffering, in Figure 
9.  When the NFB Customizer buffer is peaking because the 
WAN bandwidth is higher than that of the LAN, the client 
buffer is draining because the LAN bandwidth is lower than 
the video rate.  When the LAN bandwidth increases, the client 
  

 
Fig. 8. Buffering during the video streaming experiment. 



 
Fig. 9. Breakdown of combined buffering at client and NFB Customizer. 

buffer will start to increase, but the NFB Customizer buffer 
begins to drain since the WAN is now the bottleneck.  The 
maximum combined buffering (client + NFB Customizer) 
peaks at 785 KB (785057 bytes), less than the maximum 
buffer requirement at the client when direct HTTP is used. 
The maximum buffering at the client when the NFB 
Customizer is used is 660 KB (660514 bytes).  This is due to 
the fact that without the NFB Customizer, the average 
effective bandwidth over the course of the playback is lower, 
so more buffering is required to compensate.  

V. RELATED WORK 

Our work is premised on the idea that Web applications 
would greatly benefit from the remote customization 
capabilities of our system.  In fact, there exists a large body of 
research results verifying the benefits of remote customization 
of Web content using proxies, mobile code, or some 
combination thereof [2, 7, 9, 27, 29]. Furthermore, there is a 
large body of research on the benefits of multimedia filtering, 
such as [9, 12, 21, 34]. We build on these results, as our 
distributed architecture allows these methods to be exploited 
more effectively. 

A number of systems use a single remote proxy for 
customizing the Web, with communication initiated through 
the browser’s proxy mechanism, including some in which the 
proxy is a personal server.  This includes image and video 
filtering (sometimes called multimedia gateways), HTTP 
request modifications, HTML filtering, user interface 
improvements especially for small screens, remote caching, 
and support for disconnected operation and user-selected 
background retrieval [1, 5, 7, 8, 13, 22, 28].  Other systems 
have made use of the two-proxy (local and remote) concept 
for such customizations as filtering, prefetching, and 
intelligent cache management at the local proxy [22, 23]. In 
[11, 19] the server either on its own, or in cooperation with 
specialized proxies, works to customize content for clients or 
to improve the performance of prefetching and caching. 

In [15] a pair of intermediaries is used to transparently 
provide fault tolerance, security, and timeliness in distributed 
object systems. 

Research that is closest to ours combines the use of proxies 
or multimedia gateways with mobile code to support dynamic 
downloading of filters to a remote host [16, 25, 35]. There are 
also customization systems that do not use proxies per se, but 
rather use more general mobile code mechanisms to support 
remote processing at arbitrary hosts, typically at the servers 
themselves [14, 18, 20, 26, 27, 31, 32, 33]. 

A related issue is adaptability, where information is 
provided to the client application, typically from the operating 
system, to help it adapt to changes in resource availability and 
network connectivity [2, 4, 24].    Some of these systems 
include applications using an adaptable interface, including 
adaptable protocols.   

The Internet Content Adaptation Protocol (ICAP) [17] is a 
solution developed by an industry coalition for distributing 
Internet content to edge servers.  ICAP is server-centric in that 
distribution of functionality is controlled by content providers. 
This differs from the Web Stream Customizer Architecture, 
where the client controls the deployment of Customizers.  
Open Pluggable Edge Services (OPES) [3] is an IETF effort to 
standardize the tracing and control of proxies for content 
adaptation.  Multiple edge services can be chained together, 
and callout servers can be used to offload computation.  Their 
services can be server-centric or client-centric.    Simple 
Object Access Protocol (SOAP) [6] is a simple XML-based 
protocol for exchange of information and RPC for Internet 
applications. None of the above approaches take advantage of 
mobile code to dynamically deploy a service, nor do they 
include the dynamic downloading of a local component on or 
near the client.   

Our work differs from that of others in a number of ways.  
First, we optionally use personal servers (in addition to third-
party servers) to store Customizers and their configurations, 
which facilitates Customizer reloading and provides 
dependable and trusted resources for the user’s Customizers. 
Using third party and personal servers together enhances 
flexibility of the system, benefits performance, satisfies 
security needs of both the user and the Customizer authors, 
and provides a measure of fault tolerance. 

Second, we have focused on a customization system 
designed specifically for the Web, allowing us to make a 
number of simplifying assumptions regarding the 
programming model, the user model, and the system design 
and implementation.   We use a very restricted, and therefore 
more simplified, form of mobile code, rather than providing a 
generalized mobile code solution that, while more powerful, is 
less practical and is more complex in terms of usability and 
security.  Other unique features of our system include the use 
of a CIS (Customizer Integration Server) that supports 
dynamic selection of multiple, simultaneously active, 
Customizers, and the use of CAs (Customizer Assistants) 
running on the CIS to support client-side processing and 
adaptability.  

VI. CONCLUSIONS 

We described the design of the Web Stream Customizer 
Architecture that provides the following capabilities: 



• Dynamic placement of customization modules that can 
process and buffer data at intermediate points between 
a browser client and Web server 

• The abilit y to adapt to network conditions because of 
its distributed control 

• Support for user relocation by allowing eff icient 
movement of customization modules 

The architecture is tightly integrated with existing Web 
programming and communication models, and provides a 
customization framework that is ideal for wireless client 
devices. Reliance on a user-owned server, the PCMS, for 
execution of customization modules as well as their storage, 
increases practicality.  The PCMS also plays an important role 
in providing support for Customizer relocation for execution 
on third-party servers that may be closer to the user. A soft-
state execution model for Customizers simpli fies the overall 
design, including Customizer relocation. 

For future work, we plan to experiment with additional 
Customizer applications, especially those that rely on non-
HTTP protocols for their basic communication. 
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