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Abstract

We consider the task of finding a mapping between two eNoses that employ two different sen-
sor technologies, quartz microbalance and conducting polymers. Such a mapping is a model that
predicts the response of one eNose based on the response of the other. eNose mappings are impor-
tant for odor communication and synthesis, as well as for eNose data integration. We investigated
a number of methods for performing this task, including principal components regression, partial
least squares, neural networks and tessellation-based linear interpolation. Our measure of success
is the percentage of predictions that are correctly-classifiable. Using two different techniques for
splitting our data set, we achieved success rates of 67% and 100%.

1 Introduction

Our group recently introduced a scheme that will enable odor communication [1]. Electronic noses
(eNoses) play a fundamental role in the scheme, at the basis of which lies the concept of an odor space.
An odor space is the collection of all possible response patterns of a nose, be it the human nose or an
eNose.

The odor communication system described in [1] requires the realization of an algorithm — the
mix-to-mimic (MTM) algorithm — which is as yet not fully realizable. One of its core components is
an algorithm capable of mapping from the space of an eNose into the space of the human perception,
termed the psychophysical space.

While eNose responses can be directly measured by applying chemical samples to them, the way to
obtain measurements from the psychophysical space is to conduct large-scale human panel experiments.
Due to the difficulty in carrying out these experiments and directly developing MTM, the suggestion in
[1] is to construct three sub-algorithms, each adding a further complication. Upon the completion of the
third, the full MTM will be available. The second of these sub-algorithms — the MTM2 algorithm —
involves the construction of a mapping between two different eNoses.

In this paper, we discuss our work on constructing a mapping between two eNoses that employ
two very different sensor technologies, quartz microbalance and conducting polymers. The technology
differences are important, as, in a way, they represent the differences between eNoses and the human
nose.

Mappings between eNoses are also important for purposes other than odor communication. Us-
ing such mappings we would be able to integrate response patterns of different eNoses into a unified
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database [4]. This would allow one to combine data from different types of eNoses, to maintain conti-
nuity when replacing sensor modules, and to overcome drift effects due to sensor aging.

It appears that there is almost no work done on eNose mappings. One example we found is [4],
which describes a linear mapping between two eNoses that share the same sensor technology. We have
not been able to find any research on mappings between eNoses with different sensor technologies.

2 Experimental

At the center of our laboratory setup are two eNoses: MOSESII ([6, 7]) with an eight-sensors quartz
microbalance (QMB) module, and Cyranose 320 ([8, 9]) which is a palm-top device that contains 32
conducting polymer (CP) sensors. CP and QMB are described in depth in [10].

The sample loop in our experiments consists of 3 components connected in a row: the HP7694
headspace sampler, followed by MOSESII, followed by Cyranose 320. The duration of sample exposure
that the headspace sampler dictated, approximately 20 seconds, is not long enough to reach saturation
at the sensors, thus we measure the transient response. Between sample injections, the sample loop is
purged for 20 minutes with synthetic air.

The MOSESII eNose is designed for connecting to the HP7694 headspace sampler. In contrast, the
connection of MOSESII to Cyranose 320 had to be improvised, and our solution is shown in Figure
1.The pressure in the headspace sampler was set to 1.52 bars, which is higher than the regular pressure
of 0.96-0.97 bars that we have regularly used when measuring with MOSESII alone. However, increas-
ing the pressure was necessary in order to achieve sufficiently strong responses of the CP sensors of
Cyranose 320.

Figure 1: The connection between MOSESII and Cyranose 320. The out-pipe of the QMB module is connected
to the 2” needle at the sample inlet of Cyranose 320. This connection is mediated by a tailor made non-sealing
adapter, which directs part of the sample into Cyranose 320, and allows the rest to evaporate in the room.

Recording the sensor readings was done differently in MOSESII and in Cyranose 320. The ability
of MOSESII to synchronize with the headspace sampler allowed us to start the recording in MOSESII
directly at the signal start. In Cyranose 320, which could not be synchronized with the headspace
sampler, we had to continuously record the entire batch of measurements. The number of vials in a
batch was up to 21, making a batch recording last as long as seven hours. We later detected the CP
signals within the continuous recordings using a sliding window algorithm. The time interval between
consecutive readings was 1.2 seconds in QMB, and one second in CP.

The list of samples for our measurements (Table 1) includes organic chemicals with varied chemical
properties, with the intention to obtain measurements from a wide portion of the eNose spaces. Each
chemical was measured in at least seven consecutive measurements (one vial per measurement).
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List of Chemicals
(1s)-(-)-alpha pinene (1s)-(-)-beta pinene
(r)-(+)-limonene (s)-(-)-limonene
1-propanol 2,6-dimethylpyridine
2-acetlpyridine 4-methylanisole
allyl hexanoate butyl butyrate
cis-3-hexen-1-ol cis-3-hexenyl acetate
decyl acetate dipentene
ethyl valerate heptyl alcohol
hexyl alcohol isoamyl propionate
n-hexane n-octane
pentyl acetate piperidine
terpiolene

Table 1: The 23 chemicals in our data set.

3 Methods

3.1 Feature Extraction

Prior to feature extraction, we gathered the raw data of both QMB and CP into a uniform database,
containing an entry per measurement. In addition to the sensors’ raw data, each entry holds the sensors’
baseline, which was calculated in advance in order to be used during the feature extraction step.

When choosing features to extract, the main objective is to represent the raw data as well as possible,
using as few features as possible. A central aspect of representation is the ability to discriminate between
different odorants. We considered two features: height, which is the difference between the signal
maximum and its baseline, and relative height, which is the height divided by the baseline. Both features
are widely used in eNoses for a variety of applications, and are simple to extract. For example, Our group
had successfully used the height feature of QMB for tasks that include classification and concentration
prediction [3]. For Cyranose 320, It is suggested by the designers of its CP sensors to use the relative
height feature [9].

We visualized the scatter of the data with height and relative height, using principal component
analysis (PCA), as shown in Figure 2. In order to compare the discrimination power of the two features,
we referred to repeated measurements of the same odorant as a cluster, and for each feature we calculated
a cluster discrimination measure (CDM), defined as:

CDM = tr(Sb)/tr(Sw), (1)

where Sb is the weighted covariance matrix of the cluster centroids (the between variance), and Sw is
the weighted sum of cluster covariance matrices (the within variance). The cluster weight in both Sb

and Sw is the fraction of the cluster size out of the total data. The higher the CDM value, the better the
discrimination.

height relative height
QMB 199.3 189.0

CP 31.7 30.2

Table 2: Cluster discrimination measure (CDM) for height and relative height.

Prior to CDM calculation, the variance of all sensors was unit-scaled, thus enabling the comparison
of CDM values between features and between sensor sets. The CDM values for height and relative
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Figure 2: The scatter of the data set with the height and relative height features, in CP and QMB. The colors
represent odorants. The data was unit-scaled prior to applying the principal component analysis (PCA).

height are shown in Table 2. Between the two features there is only a small difference; therefore we do
not expect the choice between them to have much influence on our results. There is, however, a large
CDM difference between QMB and CP; QMB has much higher CDM, in accordance with the visual
impression conveyed by Figure 2.

Since the CDM of the two features is roughly the same, we chose to use the ’traditional’ feature for
each of the sensor sets, namely the height for QMB and the relative height for CP.

3.2 Mapping Methods

Our task is to learn a mapping between two eNose spaces. Mappings are directional. Thus, in every
mapping one of the spaces is the source space and the other is the destination space. Denote by X and
Y the two matrices containing the readings in the source space and the destination space, respectively.
X is an n by dS matrix and Y is an n by dD matrix, where n is the number of measurements and dS ,
dD are the dimension (number of sensors) of the source space and the destination space, respectively. In
X and Y , each measurement is represented by a row that contains a single feature per sensor. We seek
a mapping model that will explain Y using X .

3.2.1 Linear regression methods

We tried three linear regression methods: multiple linear regression (MLR), principal component regres-
sion (PCR) and partial least squares (PLS). These methods are explained in detail in [11, 12], and a wide
statistical background for them can be found in [13].

4



3.2.2 Nonlinear neural networks

The actual nature of the mapping between eNose spaces is unknown to us, and we would like to be
able to account for nonlinear effects as well as for linear ones. Feed-forward back-propagation neural
networks (NN) are a powerful learning tool, which can be used for learning nonlinear functions. We
used a network with a sigmoid hidden layer and a linear output layer. This network architecture can
approximate arbitrarily well any function with a finite number of discontinuities, including nonlinear
ones, given sufficient neurons in the hidden layer [14]. In practice, we used networks whose hidden
layer size does not exceed 32.

Since we use NN for prediction, it is necessary to provide means for generalization; that is, avoiding
over-fitting the model to the calibration data. For this purpose, we used the Bayesian regularization
training method. In addition, we applied the early stopping technique, using a validation set consisting
of 40% of the calibration data. The description of these methods can be found in [14].

3.2.3 Tessellation-based linear interpolation

The Tessellation-based linear interpolation method (TLI) consists of two stages: Tessellation and pre-
diction. First, we tessellate the convex hull of the X points for which we know the corresponding Y

points (the calibration set) with (dS+1)-vertex shapes (namely, simplices; single: simplex). For example,
with dS=2, this means tessellating an area with triangles. In this tessellation, the vertices of all simplices
are calibration set X points. Figure 3 shows tessellations of the QMB space and the CP space.
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Figure 3: The two-dimensional Delaunay tessellation of QMB and CP. The axes are the first two principal
components.

We predict the Y point for a new X point in the following manner: we first locate the simplex
enclosing the new X point, which is assured to exist provided that the point is within the convex hull
of the calibration set. We then calculate the barycentric coordinates of the point relative to the vertices
of the simplex enclosing it. The barycentric coordinates of a point p within a simplex can be intuitively
described as weights, which, if placed at the simplex’s vertices, their center of mass will coincide with
p. We normalize the sum of coordinates to 1, achieving unique coordinates which can be used as
interpolation weights. The Y point we predict for the new X point is then the linear interpolation
from the simplex’s vertices, which are calibration set points with known Y values. In other words,
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the prediction is the average Y value of the simplex’s vertices, weighted according to the barycentric
coordinates.

The TLI method is local; this is the main property differentiating it from all the other methods we
use. By local, we mean that the prediction is based only on calibration set points in the vicinity of the
predicted point. This property protects TLI from global topological distortions in the mapping.

A method similar to TLI was recently presented in a different context in [5], termed there the Law of
Mixtures (LM). The difference between TLI and LM is in the tessellation method. TLI uses Delaunay
tessellation, which is the unique tessellation such that the circumsphere of each simplex has no vertices
in its interior. This property works to prevent, when possible, the use of elongated simplices, and thus
contributes to the locality of TLI.

We find that it is better to apply TLI in a low dimension, because the number of outliers (test
set points which lie outside the convex hull) rises quickly with the dimension. For that reason we
applied TLI in the space defined by only the first few principal components of the source space. As an
alternative, we used PLS weights instead of principal components (we termed this variant TLIPLS).
Furthermore, when applying TLI in two dimensions, we also predict the Y values of outliers, using
a method which was proposed in [5]. This method is based on mirroring the outlier into the convex
hull, predicting the Y value for the mirrored point using interpolation, as previously described, and then
predicting the Y value of the outlier by extrapolating from the mirrored point.

3.3 Assessment of the Prediction Quality

Our task is to map from the source space into the destination space. A way to evaluate our success is to
check whether the prediction of a sample from odorant o can be classified, in the destination space, as
odorant o. Specifically, we find the center of mass (centroid) in the destination space for all odorants.
Then, we calculate the distance from the prediction to all the odorant centroids. A prediction of a sample
from odorant o for which the closest centroid is the centroid of o is counted as a “hit”, since it can be
correctly classified. When assessing the prediction quality over the entire test set, our indicator is the
percent of predictions that gave a hit, which we term %hits. In all calculations, we use Euclidean
distance in the mean-centered and unit-scaled destination space.

3.4 Splitting the Data Set into Calibration and Test Parts

Our data set contains multiple samples from each odorant. Naturally, samples of the same odorant are
generally closer to each other than samples of different odorants. When applying a mapping model to a
new sample (a sample from the test set), the proximity of the calibration set samples to the new sample
affects the prediction’s accuracy. It is not desirable to blur this effect by disregarding the heterogenic
nature of the data set. Therefore, we separately examined the two extremes of the proximity range, by
using two different techniques for splitting the data set into calibration and test parts: the representative
test set (REP) and leave-one-out (LO). In the REP technique, the test set consists of a random represen-
tative from each odorant in the data set. The LO technique, on the other hand, does not take a random
odorant, but iterates through all odorants, using - in each iteration - all samples of that odorant as the
test set. In this way, LO actually ”leaves out” one odorant each time around. A crude way of viewing
the difference is this: REP tests the mapping on samples that are ”close” to the calibration set, while LO
tests the mapping on more ”distant” samples.
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4 Results

Following the feature extraction step described in Section 3.1, and after excluding from the data set
odorants with responses that are too weak and other types of noisy samples, the data set consisted of
141 different samples from 23 odorants, with some six repeats per odorant. To this data set we applied
the methods described in Section 3.2 for learning mappings in both directions, that is, both from QMB
into CP and from CP into QMB. In PCR, PLS, NN and TLI we tested a range of model dimensionalities.
The size of the test set was 23 with the REP technique (one sample from each odorant) and 141 with the
LO technique (the agglomeration of test sets from all iterations). The results are summarized in Table 3.

Mapping Direction MLR PCR PLS NN TLI TLIPLS

From QMB into CP LO 21% 23% 23% 27% 21% 26%
REP 35% 43% 39% 65% 96% 91%

From CP into QMB LO 57% 67% 64% 65% 15% 16%
REP 83% 91% 91% 100% 78% 78%

Table 3: Prediction results of the mapping methods. The entries are the %hits values of each mapping method,
in each of the two data splitting techniques. In PCR, PLS and NN the results are those of the most accurate model
in the dimensionality range tested. In TLI, The results are those of the two-dimensional model, and they include
the prediction for outliers.

In mapping from QMB to CP, the best prediction performance is 27% hits in LO and 96% hits in
REP. In mapping from CP to QMB, the best prediction performance is 67% hits in LO and 100% hits in
REP. Based on these results, we estimate that mapping from QMB into CP is harder than in the opposite
direction. Illustrations for the predictions from CP into QMB are shown in Figure 4.
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Figure 4: Prediction from CP into QMB. Colors represent odorants. Actual measurements are marked with
circles, predictions are marked with diamonds, and the dashed lines link measurements to their corresponding
predictions. In LO, the best method was PCR, achieving 67% hits. In REP, the best method was NN, achieving
100% hits.

The comparison of the results of PCR and PLS in Table 3 shows that the performance of the two
methods is equivalent. A closer look into the differences can be obtained from inspecting the %hits

performance of PCR and PLS simultaneously as a function of the model dimensionality. This analysis
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for mappings from CP into QMB is shown in Figure 5. The best model dimensionality of PCR and
PLS was similar in most of our experiments. Furthermore, the performance of PCR and PLS does not
significantly differ in any place along the dimensionality range. Based on this analysis, we can conclude
that despite the theoretical advantage of PLS over PCR, the methods are practically equivalent in the
context of the current challenge.
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Figure 5: The dependency of the %hits performance of PCR and PLS on the model dimensionality, in mappings
from CP into QMB. The best dimensionality with LO was 18/17 and with REP 15/12, in PCR/PLS respectively.

Another view into the performance difference between PCR and PLS can be obtained from com-
paring the results of TLI and TLIPLS . The results do not exhibit any consistent advantage of either
method over the other.

The performance of the NN method is consistently good, relative to the other methods, in all exper-
iments. In one of the experiments, the mapping from CP into QMB with the REP splitting technique, it
turned out to be the best method, achieving 100 %hits (Table 3). The NN performance monotonically
increases as additional nodes are added to the network’s hidden layer, up to a certain level (Figure 6
(a)). This is expected, since generally a larger network possesses a better expressive power. However,
we observe that a hidden layer size of eight or 16 is sufficient, and beyond this size the performance
does not improve. It can be estimated that this network size reflects the complexity of the underlying
mapping from CP into QMB.

The performance of the TLI method (including the TLIPLS variant) is outstanding in the mappings
from QMB to CP with the REP technique, achieving 96 %hits, while the next best method in this
experiment is NN with only 65 %hits (Table 3). However, in other situations the performance of TLI is
relatively low, such as in mappings from CP into QMB with the LO technique, where it achieves only
16 %hits, while all the other methods achieve 57-67 %hits. We attribute both the high performance in
REP and the low performance in LO to the local nature of TLI, as discussed in Section 3.2.3.

The TLI performance does not change significantly, nor consistently, in the model dimensionality
range that we tried (between two and five). The number of outliers rises quickly with the dimensionality,
and with five dimensions over 50% of the test set were outliers. We can thus conclude that complicating
the TLI model beyond two dimensions does not seem necessary.
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Figure 6: %hits performance of the NN method as a function of the network’s hidden layer size. Note that the
hidden layer sizes tested are powers of two.

5 Conclusions and Future Work

In this paper we investigated methods for learning mappings between Cyranose 320, a conducting poly-
mers eNose, and the quartz microbalance module of the MOSESII eNose. In mappings from CP into
QMB, the percent of predictions that could have been classified correctly (%hits) was 67% for samples
that are “distant” from the calibration set (LO) and 100% for samples that are “close” to the calibration
set (REP). This mapping direction gave higher prediction accuracy than the opposite direction. A possi-
ble explanation for this is that QMB possesses a high power of odor discrimination, thus with QMB as
a target space more predictions can be correctly classified. The prediction results provide information
about the appropriateness of the different mapping methods to this task, as well as information about
the nature of the underlying mapping.

Some of the mapping methods we evaluated did not have consistent performance in all experiments.
The most prominent example is the TLI method, which in the REP experiments was far better than
in the LO experiments. We concluded that TLI exploits the proximity of new samples to calibration
set samples better than the other methods. From a practical point of view, it would be advisable to
dynamically choose a mapping method for the prediction of each new sample, based on the proximity
of that sample to the calibration set.

The advantage of the nonlinear method we used, NN, over the linear regression methods, is apparent
from the results, even though the gaps are not always large. This does not suffice for determining
whether the underlying mapping is a nonlinear one. However, the results support the preference of NN
over the linear regression methods as a general strategy.

Another indication as to the nature of the underlying mapping is obtained from inspecting the model
dimensionality. In PCR and PLS, the optimal prediction accuracy was achieved using a dimensionality
that was lower than the total number of sensors. Similarly, in NN we identified the hidden layer size be-
yond which the accuracy did not improve. This type of information is helpful in choosing an appropriate
mapping model.

We have some ideas for improved mappings between eNoses. Feature extraction approaches which
capture more information, such as the one presented in [2], could be applied. In addition, changes in the
current mapping methods or application of new ones may yield an improvement. In the context of NN,
different network architectures may prove better.

Mapping between eNoses is important as a preliminary step to mapping an eNose into the psy-
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chophysical (human panel) space, which is a key task to realizing odor communication. The encourag-
ing results we have achieved confirm the viability of mapping between odor spaces. The representation
of the psychophysical odor space that eventually will be obtained from human panel experiments will
no doubt have different characteristics than an eNose space, and will thus probably require different
mapping methods. Nevertheless, we expect the conclusions we have drawn from the current work to be
helpful in the next stage.
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