
RheoStat : Real-time Risk Management

Ashish Gehani? and Gershon Kedem

Department of Computer Science, Duke University

Abstract. As the frequency of attacks faced by the average host connected to the
Internet increases, reliance on manual intervention for response is decreasingly
tenable. Operating system and application based mechanisms for automated re-
sponse are increasingly needed. Existing solutions have either been customized
to specific attacks, such as disabling an account after a number of authentication
failures, or utilize harsh measures, such as shutting the system down. In contrast,
we present a framework for systematic fine grained response that is achieved by
dynamically controlling the host’s exposure to perceived threats.
This paper introduces a formal model to characterize the risk faced by a host. It
also describes how the risk can be managed in real-time by adapting the exposure.
This is achieved by modifying the access control subsystem to let the choice
of whether to grant a permission be delegated to code that is customized to the
specific right. The code can then use the runtime context to make a more informed
choice, thereby tightening access to a resource when a threat is detected. The
running time can be constrained to provide performance guarantees.
The framework was implemented by modifying the Java Runtime. A suite of
vulnerable Jigsaw servlets and corresponding attacks was created. The follow-
ing were manually added: code for dynamic permission checks; estimates of the
reduction in exposure associated with each check; the frequencies with which in-
dividual permissions occurred in a typical workload; a global risk tolerance. The
resulting platform disrupted the attacks by denying the permissions needed for
their completion.

1 Introduction

This paper presents a new method of intrusion prevention. We introduce a mechanism
to dynamically alter the exposure of a host to contain an intrusion when it occurs. A
host’s exposure comprises the set exposures of all its resources. If access to a resource
is to be controlled, then a permission check will be present to safeguard it. The set of
permissions that are utilized in the process of an intrusion occurring can thus be viewed
as the system’s exposure to that particular threat.

By performing auxiliary checks prior to granting a permission, the chance of it being
granted in the presence of a threat can be reduced. By tightening the access control
configuration, the system’s exposure can be reduced. By relaxing the configuration, the
exposure can be allowed to increase. The use of auxiliary checks will introduce runtime
overhead. In addition, when permissions are denied, applications may be prevented
? Supported by a USENIX Association Research Grant and a North Carolina Networking Ini-

tiative Graduate Fellowship.

from functioning correctly. These two factors require that the use of the auxiliary checks
must be minimized.

We first investigate how the auxiliary checks can be performed by modifying the
access control subsystem. After that we introduce a model for measuring and managing
the risk by dynamically altering the host’s exposure. Finally, we demonstrate how the
approach can be used to contain attacks in real-time.

2 Predicated Permissions

One approach is to use a subset of the security policy that can be framed intuitively.
While this method suffers from the fact that the resulting specification will not be com-
plete, it has the benefit that it is likely to be deployed. The specific subset we consider is
that which constitutes the authorization policy. These consist of statements of the form
(�) p). Herep is a permission and� can be any legal statement in the policy,L. If
� holds true, then the permissionp can be granted. The reference monitor maintains an
access control matrix,M , which represents the space of all combinations of the set of
subjects,S, set of objects,O, and the set of authorization types,A.

M = S �O �A; where p(i; j; k) 2M (1)

Traditionally, the spaceM is populated with elements of the form:

p(i; j; k) = 1 (2)

if the subjectS[i] should be granted permissionA[k] to access objectO[j], and other-
wise with:

p(i; j; k) = 0 (3)

In our new paradigm, we can replace the elements ofM with ones of the form:

p(i; j; k) = �; where � 2 L (4)

Thus, a permission check can be the evaluation of a predicate framed in a suitable
language,L, which will be required to evaluate to either true or false, corresponding to
1 or 0, instead of being a lookup of a binary value in a static configuration.

3 Active Monitoring

To realize our model of evaluating predicates prior to granting permissions, we augment
a conventional access control subsystem by interceding on all permission checks and
transferring control to ourActiveMonitor as shown in Figure 1.1 If an appropriate
binding exists, it delegates the decision to code customized to the specific right. Such
bindings can be dynamically added and removed to the runningActiveMonitor through

1 The impact of interceding alone (without counting the effect of evaluating predicates) does not
impact the running time of SPECjvm98 [SPECjvm98] with any statistical significance.

a programming interface. This allows the restrictiveness of the system’s access control
configuration to be continuously varied in response to changes in the threat level.

Our prototype was created by modifying the runtime environment of Sun’s Java De-
velopment Kit (JDK 1.4), which runs on the included stack-based virtual machine. The
runtime includes a reference monitor, called theAccessController, which we altered
as described below.

3.1 Interposition

When an application is executed, each method that is invoked causes a new frame to be
pushed onto the stack. Each frame has its own access control context that encapsulates
the permissions granted to it. When access to a controlled resource is made, the call
through which it is made invokes theAccessController’s checkPermission()method.
This inspects the stack and checks if any of the frames’ access control contexts contain
permissions that would allow the access to be made. If it finds an appropriate permission
it returns silently. Otherwise it throws an exception of typeAccessControlException.
See [Koved98] for details.

We altered thecheckPermission()method so it first calls the activeActiveMonitor ’s
checkPermission()method. If it returns with anull value, theAccessController’s
checkPermission()logic executes and completes as it would have without modifica-
tion. Otherwise, the return value is used to throw a customized subclass ofAccessCon-
trolException which includes information about the reason why the permission was
denied. Thus, the addition of theActiveMonitor functionality can restrict the permis-
sions, but it can not cause new permissions to be granted. Note that it is necessary to in-
voke theActiveMonitor ’s checkPermission()first since the side-effect of invoking this
method may be the initiation of an exposure-reducing response. If it was invoked after
theAccessController’s checkPermission(), then in the cases that anAccessControlEx-
ceptionwas thrown, control would not flow to the Active Monitor’scheckPermission()
leaving any side-effect responses uninitiated.

Code that is invoked by theActiveMonitor should not itself cause newActiveMon-
itor calls, since this could result in a recursive loop. To avoid this, before theActive-
Monitor ’s checkPermission()method is invoked, the stack is traversed to ensure that
none of the frames is anActiveMonitor frame, since that would imply that the current
thread belonged to code invoked by theActiveMonitor . If an ActiveMonitor frame is
found, theAccessController’s checkPermission()returns silently, that is it grants the
permission with no further checks.

3.2 Invocation

When the system initializes, theActiveMonitor first creates a hash table which maps
permissions to predicates. It populates this by loading the relevant classes, using Java
Reflectionto obtain appropriate constructors and storing them for subsequent invoca-
tion. At this point it is ready to accept delegations from theAccessController.

Subject: i

Object: j

Right: k

Request Permission p(i,j,k)

Application

Access Control: M

p(i,j,k) Granted
Permission

p(i,j,k) Denied
Permission

Intrusion Detector

 (i,j,k)
Predicate

Threat Level: l

True

D(i,j,k)

False

False

True

Timer Expired

Default for
 p(i,j,k)

UndefinedDefined

MonitorException:

True

False

(i,j,k)
MonitorException:

σ

 (i,j,k)σ

σ

σ

σ > Cost[(i,j,k)]
Benefit[(i,j,k), l]

Fig. 1. Static permission lookups are augmented using anActiveMonitor which facilitates the
use of runtime context in deciding whether to grant a permission.ActiveMonitor predicated
permissions have 3 distinguishing features: (i) Constant running time, (ii) Dynamic activation if
expected benefit exceeds cost, (iii) Interrogatable for cause of denial.

public abstract class PredicateThread extends Thread{

protected PredicateThread(Permission permission,
Object lock);

public void run(){

if(condition) result=true;

synchronized(lock){
lock.notify();

}
}

public boolean getResult();
}

Fig. 2.Skeletal version ofPredicateThread

When theActiveMonitor ’s
checkPermsission()method is
invoked, it uses the permission
passed as a parameter to per-
form a lookup and extract any
code associated with the per-
mission. If code is found, it is
invoked in a new thread and
a timer is started. Otherwise,
the method returnsnull , in-
dicating theAccessController
use the static configuration de-
cide if the permission should
be granted. The code must be
a subclass of the abstract class
PredicateThread. A skeletal

version is presented in Figure 2. This ensures that it will store the result in a shared
location when the thread completes and notify theActiveMonitor of its completion via
a shared synchronization lock.

The shared location is inspected when the timer expires. If the code that was run
evaluated totrue , then anull is returned by theActiveMonitor ’s checkPermission()
method. Otherwise a string describing the cause of the permission denial is returned.
If the code had not finished executing when the timer expired, a string denoting this
is returned. As described above, when a string is returned, it is used by the modified
AccessControllerto throw anActiveMonitorException , our customized subclass of
AccessControlException, which includes information about the predicate that failed.
The thread forked to evaluate code can be destroyed once its timer expires. Care must be
taken when designing predicates so that their destruction midway through an evaluation
does not affect subsequent evaluations.

Finally, theActiveMonitor ’s own configuration can be dynamically altered. It ex-
posesenableSafeguard()anddisableSafeguard()methods for this. These can be used
to activate and deactivate the utilization of the auxiliary checks for a specific permis-
sion. If a piece of code is being evaluated prior to granting a particular permission
and there is no longer any need for this to occur, it can be deactivated with thedis-
ableSafeguard()method. Subsequently that permission will be granted using only the
AccessController’s static configuration using a lookup of a binary value. Similarly, if
it is deemed necessary to perform extra checks prior to granting a permission, this may
be enabled by invoking theenableSafeguard()method.

4 Risk

Given the ability to predicate permissions the successful verification of auxiliary con-
ditions, we now consider the problem of how to choose when to use such safeguards.

The primary goal of an intrusion response system is to guard against attacks. How-
ever, invoking responses arbitrarily may safeguard part of the system but leave other

weaker areas exposed. Thus, to effect a rational response, it is necessary to weigh all
the possible alternatives. A course of action must then be chosen which will result in
the least damage, while simultaneously assuring that cost constraints are respected. Risk
management addresses this problem.

4.1 Risk Factors

Threat

Vulnerabilities

Assets

Risk

Risk

Threshold
Consequences

Safeguards

Likelihood

YesReconfigure

Fig. 3. Risk can be analyzed as a function of the
threats, their likelihood, the vulnerabilities, the
safeguards, the assets and the consequences. Risk
can be managed by using safeguards to control the
exposure of vulnerable resources.

Analyzing the risk of a system re-
quires knowledge of a number of
factors. Below we describe each of
these factors along with its associ-
ated semantics. We define these in
the context of the operating system
paradigm since our goal is host-
based response.

The paradigm assumes the ex-
istence of an operating system
augmented with an access con-
trol subsystem that mediates ac-
cess by subjects to objects in the
system using predicated permis-
sions. In addition, a host-based
intrusion detection system is as-
sumed to be present and opera-
tional.

Threats A threat is an agent that
can cause harm to an asset in
the system. We define a threat

to be a specific attack against any of the application or system software that is
running on the host. It is characterized by an intrusion detection signature. The set
of threats is denoted byT = ft1; t2; : : :g, wheret� 2 T is an intrusion detection
signature. Sincet� is a host-based signature, it is comprised of anordered setof
eventsS(t�) = fs1; s2; : : :g. If this set occurs in the order recognized by the rules
of the intrusion detector, it signifies the presence of an attack.

Likelihood The likelihoodof a threat is the hypothetical probability of it occurring. If
a signature has been partially matched, the extent of the match serves as a predictor
of the chance that it will subsequently be completely matched. A function� is used
to compute the likelihood of threatt�. � can be threat specific and will depend on
the history of system events that are relevant to the intrusion signature. Thus, if
E = fe1; e2; : : :g denotes the ordered set of all events that have occurred, then:

T (t�) = �(t�; E
�

\ S(t�)) (5)

where
�

\ yields the set of all events that occurin the same orderin each input set.
Our implementation of� is described in Section 7.1.

Assets An assetis an item that has value. We define the assets to be the data stored in
the system. In particular, each file is considered a separate objecto� 2 O, where
O = fo1; o2; : : :g is the set of assets. A set of objectsA(t�) � O is associated
with each threatt�. Only objectso� 2 A(t�) can be harmed if the attack that is
characterized byt� succeeds.

ConsequencesA consequenceis a type of harm that an asset may suffer. Three types
of consequences can impact the data. These are the loss of confidentiality, integrity
and availability. If an objecto� 2 A(t�) is affected by the threatt�, then the re-
sulting costs due to the loss of confidentiality, integrity and availability are denoted
by c(o�), i(o�), anda(o�) respectively. Any of these values may be0 if the attack
can not effect the relevant consequence. However, all three values associated with
a single object can not be0 since in that caseo� 2 A(t�) would not hold. Thus,
the consequence of a threatt� is:

C(t�) =
X

o�2A(t�)

c(o�) + i(o�) + a(o�) (6)

Vulnerabilities A vulnerability is a weakness in the system. It results from an error
in the design, implementation or configuration of either the operating system or
application software. The set of vulnerabilities present in the system is denoted by
W = fw1; w2; : : :g. W (t�) � W is the set of weaknesses exploited by the threat
t� to subvert the security policy.

Safeguards A safeguardis a mechanism that controls the exposure of the system’s as-
sets. The reference monitor’s set of permission checksP = fp1; p2; : : :g serve as
safeguards in an operating system. Since the reference monitor mediates access to
all objects, a vulnerability’s exposure can be limited by denying the relevant per-
missions. The setP (w) � P contains all the permissions that are requested in the
process of exploiting vulnerabilityw . The static configuration of a conventional
reference monitor either grants or denies access to a permissionp�. Thisexposure
is denoted byv(p�), with the value being either0 or 1. The active reference moni-
tor can reduce the exposure of a statically granted permission tov0(p�), a value in
the range[0; 1]. This reflects the nuance that results from evaluating predicates as
auxiliary safeguards.)
Thus, if all auxiliary safeguards are utilized, the total exposure to a threatt� is:

V(t�) =
X

p�2P̂ (t�)

v(p�)� v0(p�)

jP̂ (t�)j
(7)

where:
P̂ (t�) =

[

w2W (t�)

P (w) (8)

5 Runtime Risk Management

The risk to the host is the sum of the risks that result from each of the threats that it
faces. The risk from a single threat is the product of the chance that the attack will

occur, the exposure of the system to the attack, and the cost of the consequences of the
attack succeeding [NIST800-12]. Thus, the cumulative risk faced by the system is:

R =
X

t�2T

T (t�)� V(t�)� C(t�) (9)

If the risk posed to the system is to be managed, the current level must be contin-
uously monitored. When the risk rises past the threshold that the host can tolerate, the
system’s security must be tightened. Similarly, when the risk decreases, the restrictions
can be relaxed to improve performance and usability. This process is elucidated below.

The system’s risk can be reduced by reducing the exposure of vulnerabilities. This
is is effected through the use of auxiliary safeguards prior granting a permission. Simi-
larly, if the threat recedes, the restrictive permission checks can be relaxed.

5.1 Managed Risk

The set of permissionsP is kept partitioned into two disjoint sets,	(P) and
(P),
that is	(P) \
(P) = � and	(P) [
(P) = P . The set	(P) � P contains the
permissions for which auxiliary safeguards are currently active. The remaining permis-
sions
(P) � P are handled conventionally by the reference monitor, using only static
lookups rather than evaluating associated predicates prior to granting these permissions.

At any given point, when the set of safeguards	(P) is in use, the current riskR0 is
calculated with:

R0 =
X

t�2T

T (t�)� V
0(t�)� C(t�) (10)

where:

V 0(t�) =
X

p�2P̂ (t�)\
(P)

v(p�)

jP̂ (t�)j
(11)

+
X

p�2P̂ (t�)\	(P)

v(p�)� v0(p�)

jP̂ (t�)j

5.2 Risk Tolerance

While the risk must be monitored continuously, there is a computational cost incurred
each time it is recalculated. Therefore, the frequency with which the risk is estimated
must be minimized to the extent possible. Instead of calculating the risk synchronously
at fixed intervals in time, we exploit the fact that the risk level only changes when the
threat to the system is altered.

An intrusion detector is assumed to be monitoring the system’s activity. Each time
it detects an event that changes the extent to which a signature has been matched, it
passes the evente to the intrusion response subsystem. The level of riskRb beforee
occurred is noted, and then the level of riskRa after e occurred is calculated. Thus,

Ra = Rb+ �, where� denotes the change in the risk. Since the risk is recalculated only
when it actually changes, the computational cost of monitoring it is minimized.

Each time an evente occurs, either the risk decreases, stays the same or increases.
Each host is configured to tolerate risk upto a threshold, denoted byR0. After each
evente, the system’s response guarantees that the risk will return to a level below this
threshold. As a result,Rb < R0 always holds. If� = 0, then no further risk manage-
ment steps are required.

If � < 0, thenRa < R0 sinceRa = Rb + � < Rb < R0. At this point, the sys-
tem’s security configuration is more restrictive than it needs to be. To improve system
usability and performance, the response system must deactivate appropriate safeguards,
while ensuring that the risk level does not rise past the thresholdR0.

If � > 0 andRa � R0, then no action needs to be taken. Even though the risk has
increased, it is below the threshold that the system can tolerate, so no further safeguards
need to be introduced. In addition, the system will not be able to find any set of unused
safeguards whose removal will increase the risk by less thanR0 � Rb � �, since the
presence of such a combination would also mean that the set existed beforee occurred.
It is not possible that such a combination of safeguards existed beforee occurred since
they would also have satisfied the condition of being less thanR0�Rb and would have
been utilized beforee occurred in the process of minimizing the impact on performance
in the previous step.

If � > 0 andRa > R0, then action is required to reduce the risk to a level below
the threshold of tolerance. The response system must search for and implement a set
of safeguards to this end. Since the severity of the response is dependent on the current
risk level, the risk recalculation can not be delayed despite the additional overhead it
imposes at a point when the system is already stressed.

5.3 Recalculating Risk

When the risk is calculated the first time, Equation 9 is used. Therefore, the cost is
O(jT j�jP j�jOj). Since the change in the risk must be repeatedly evaluated during real-
time reconfiguration of the runtime environment, it is imperative the cost is minimized.
This is achieved by caching all the valuesV 0(t�)�C(t�) associated with threatst� 2 T

during the evaluation of Equation 9. Subsequently, when an evente occurs, the change
in the risk� = Æ(R0; e) can be calculated with costO(jT j) as described below.

The ordered setE refers to all the events that have occurred in the system prior to
the evente. The change in the likelihood of a threatt� due toe is:

Æ(T (t�); e) = �(t�; (E [e)
�

\ S(t�))� �(t�; E
�

\ S(t�)) (12)

The set of threats affected bye is denoted by�(T; e). A threatt� 2 �(T; e) is con-
sidered to be affected bye if Æ(T (t�); e) 6= 0, that is its likelihood changed due to the
evente. The resultant change in the risk level is:

Æ(R0; e) =
X

t�2�(T;e)

Æ(T (t�); e)� V
0(t�)� C(t�) (13)

6 Cost / Benefit Analysis

After an evente occurs, if the risk levelRa increases past the threshold of risk tolerance
R0, the goal of the response engine is to reduce the risk byÆg � Ra �R0 to a level
below the threshold. To do this, it must select a subset of permissions�(
(P)) �

(P), such that adding the safeguards will reduce the risk to the desired level. By
ensuring that the permissions in�(
(P)) are granted only after relevant predicates are
verified, the resulting risk level is reduced to:

R00 =
X

t�2T

T (t�)� V
00(t�)� C(t�) (14)

where the new vulnerability measure, based on Equation 7, is:

V 00(t�) =
X

p�2(P̂ (t�)\
(P)��(
(P)))

v(p�)

jP̂ (t�)j
(15)

+
X

p�2(P̂ (t�)\	(P)[�(
(P)))

v(p�)� v0(p�)

jP̂ (t�)j

Instead, after an evente occurs, if the risk levelRa decreases, the goal of the re-
sponse engine is to allow the risk to rise byÆg � R0�Ra to a level below the threshold
of risk toleranceR0. To do this, it must select a subset of permissions�((P)) � 	(P),
such that removing the safeguards currently in use for the set will yield the maximum
improvement to runtime performance. After the safeguards are relaxed, the risk level
will rise to:

R00 =
X

t�2T

T (t�)� V
00(t�)� C(t�) (16)

where the new vulnerability measure, based on Equation 7, is:

V 00(t�) =
X

p�2P̂ (t�)\
(P)[�((P))

v(p�)

jP̂ (t�)j
(17)

+
X

p�2P̂ (t�)\	(P)��((P))

v(p� � v0(p�))

jP̂ (t�)j

There areO(2jP j) ways of choosing subsets�(
(P)) �
(P) for risk reduction
or subsets�((P)) � 	(P) for risk relaxation. When selecting from the possibilities,
the primary objective is the maintenance of the boundR00 < R0, whereR00 = Ra� Æg
in the case of risk reduction, andR00 = Ra + Æg in the case of risk relaxation.

The choice of safeguards also impacts the performance of the system. Evaluating
predicates prior to granting permissions introduces latency in system calls. A single
interrogation of the runtime, such as checking how much swap space is free, takes
about1ms. When file permission checks were protected with safeguard code that ran
for 150ms, 5 of 7 applications in [SPECjvm98] took less than2% longer to run on
average, while the other2 applications took37% longer. Hence, the choice of subsets

�(
(P)) or �((P)) is subject to the secondary goal of minimizing the overhead intro-
duced. (In practice, the cumulative effect is likely to be acceptable since useful predicate
functionality can be created with code that runs in just a few milliseconds.)

The adverse impact of a safeguard is proportional to the frequency with which it is
utilized in the system’s workload. Given a typical workload, we can count the frequency
f(p�) with which permissionp� is requested in the workload. This can be done for
all permissions. The cost of utilizing subset�(
(P)) for risk reduction can then be
calculated with:

�(�(
(P))) =
X

p�2�(
(P))

f(p�) (18)

Similarly, if the safeguards of subset�((P)) are relaxed, the resulting reduction in
runtime cost can be calculated with:

�(�((P))) =
X

p�2�((P))

f(p�) (19)

The ideal choice of safeguards will minimize the impact on performance, while
simultaneously ensuring that the risk remains below the threshold of tolerance. Thus,
for risk reduction we wish to find:

min �(�(
(P))); R00 � R0 (20)

In the context of risk relaxation, we wish to find:

max �(�((P))); R00 � R0 (21)

Both these problems are equivalent to the NP-complete0-1 Knapsack Problem.
Although approximation algorithms exist [Kellerer98], they are not suitable for our use
since we need to make a choice in real-time. Instead, we will use a heuristic which
guarantees that the risk is maintained below the threshold. The heuristic is based on the
greedy algorithm for the0-1 Knapsack Problemwhich picks the item with the highest
benefit-to-cost ratio repeatedly till the knapsack’s capacity is reached. This yields a
solution that is always within a factor of2 of the optimal choice [Garey79].

6.1 Response Heuristic

When the risk needs to be reduced, the heuristic uses the greedy strategy of picking
the response primitive with the highest benefit-to-cost ratio repeatedly till the constraint
is satisfied. By maintaining the choices in aheapdata structure keyed on the benefit-
to-cost ratio, each primitive in the response set can be chosen inO(1) time. This is
significant since implementing a single response primitive is often sufficient for dis-
rupting an attack in progress. When the risk needs to be relaxed, the active safeguards
with the highest cost-to-benefit ratios can be selected since these will be yield the best
improvement to system performance. A separateheapis utilized to maintain these.

Risk Reduction We outline the algorithm for the case where the risk needs to be
reduced. The first two steps constitute pre-processing and therefore only occur during
system initialization. Risk relaxation is analogous and therefore not described explicitly.

Step 1 The benefit-to-cost ratio of each candidate safeguard permissionp� 2
(P)

can be calculated by:

�(p�) =
X

t�:p�2(P̂ (t�)\
(P))

fT (t�)� (22)

v(p�)� (1� v0(p�))

jP̂ (t�)j
� C(t�)g

f(p�)

Step 2 The response set is defined as empty, that is�(
(P)) = �.
Step 3 The single risk reducing measure with the highest benefit-to-cost can be

selected, that is:

pmax = max �(p�); p� 2
(P) (23)

The permission is added to�(
(P)).
Step 4 The risk before the candidate responses were utilized isRa. If the responses

were activated the resulting riskR00 is given by:

R00 = Ra �
X

p�2�(
(P))

�(p�)� f(p�) (24)

This is equivalent to using Equations 14 and 15. While the worst case complex-
ity is the same, when few protective measures are added the cost of the above
calculation is significantly lower.

Step 5 If R00 > R0 then the system repeats the above from Step 3 onwards. If
R00 � R0 then proceed to the next step.

Step 6 The set of safeguards�(
(P)) must be activated and�(
(P)) should be
transferred from
(P) to 	(P).

The time complexity isO(j�(
(P))j). In the worst case, this isO(j
(P)j) �

O(jP j). Unless a large variety of attacks are simultaneously launched against the target,
the response set will be small.

Risk Relaxation In the case of risk relaxation, the algorithm becomes:

Step 1 Forp� 2 	(P) calculate:

�(p�) =
X

t�:p�2(P̂ (t�)\	(P))

fT (t�)� (25)

v(p�)� (1� v0(p�))

jP̂ (t�)j
� C(t�)g

f(p�)

Step 2 Set�((P)) = �.
Step 3 Find the safeguard which yields the least risk reduction per instance of use:

pmin = min �(p�); p� 2 	(P) (26)

Add it to �((P)).
Step 4 CalculateR00:

R00 = Ra +
X

p�2�((P))

�(p�)� f(p�) (27)

Step 5 If R00 < R0, repeat from Step 3. IfR00 = R0, proceed to the next step. If
R00 > R0, undo the last iteration of Step 3.

Step 6 Relax all measures in�((P)) and transfer them to
(P).

7 Implementation

Our prototype augments Sun’s Java Runtime Environment (version 1.4.2) running on
Redhat Linux 9 (with kernel 2.4.20). Security in the Java 2 model is handled by the
AccessControllerclass, which in turn invokes the legacySecurityManager. We in-
strumented the latter to invoke anInitialize class which constructs and initializes an
instance of theRheoStatclass [Gehani03]. A shutdown hook is also registered with
theSecurityManagerso that the intrusion detector is terminated when the user appli-
cation exits. TheActiveMonitor class initializes the first time theAccessController’s
checkPermission()method is invoked.

RheoStatimplements a limited state transition analysis intrusion detector, based on
the methodology of [Ilgun95]. It adds apre-match timerandpost-match timerfor each
signature. The first handles false partial matches by reseting the signature if the match
doesn’t complete in a pre-determined interval. The second is used to reset the system
after a signature match completes and sufficient time has elapsed to deem that the threat
has passed.

7.1 Risk Manager

A RiskManager class uses events generated byRheoStatand invokes theActiveMon-
itor ’s enableSafeguard()anddisableSafeguard()methods as required. The� matching
function, described in Section 4.1, is used for estimating the threat from a partial match.
We use:

�(t�; E
�

\ S(t�)) =
jE

�

\ S(t�)j

jS(t�)j
(28)

The new risk level is calculated with the updated threat levels. If the risk level increases
above or decreases below the risk tolerance threshold, the following course of action
occurs.

TheRiskManagermaintains two heap data structures as illustrated in Figure 4. The
first one contains all the permissions for which theActiveMonitor has predicates but

Key =
Frequency in Workload

Risk Reduction

Disabled

Heap
Responses

Enabled

Heap
Responses

Key =
Frequency in Workload

Risk Relaxation

Activate response

Deactivate response

Safeguard
Safeguard

Fig. 4.When the Risk Manager needs to activate a response to effect risk reduction, it attempts to
select the one which will minimize the runtime overhead while maximizing the risk reduction.

are currently unused. The objects are stored in the heap using the cost-to-benefit ratios
as the keys. The second heap contains all the permissions for which theActiveMonitor
is currently evaluating predicates before it grants permissions. The objects in this heap
are keyed by the benefit-to-cost ratios. When the risk level rises, theRiskManager
extracts the minimum value element from the first heap, and inserts it into the second
heap. The corresponding predicate evaluation is activated. The risk level is updated. If
it remains above the risk tolerance threshold the process is repeated until the risk has
reduced sufficiently. Similarly, when an event causes the risk to drop, theRiskManager
extracts the minimum element repeatedly from the second heap, inserting it into the first
heap, disabling predicate checks for the permission, while the risk remains below the
threshold of tolerance. In this manner, the system is able to adapt its security posture
continuously.

8 Evaluation

The NIST ICAT database [ICAT] contains information on over6; 200 vulnerabilities in
application and operating system software from a range of sources. These are primarily
classified into seven categories. Based on the database, we have constructed a suite of
attacks, with each attack illustrating the exploitation of a vulnerability from a different
category. In each case, the system component which includes the vulnerability is a Java
servlet that we have created and installed in the W3C’s Jigsaw web server (version

2.2.2) [Jigsaw]. While our approach is general, we focus below only on4 categories for
brevity. We describe a scenario that corresponds to each attack, including a description
of the vulnerability that it exploits, the intrusion signature used to detect it and the way
the system responds. The global risk tolerance threshold is set at20.

8.1 Configuration Error

Fig. 5.Attack exploiting a configuration er-
ror.

A configuration error introduces a vul-
nerability into the system due to setting
that are controlled by the user. Although
the configuration is implemented faith-
fully by the system, it allows the secu-
rity policy to be subverted. In our exam-
ple, the servlet authenticates the user be-
fore granting access to certain documents.
The password used is a permutation of
the username. As a result, an attacker can
guess the password after a small number
of attempts. The flaw here is the weak
configuration.

When the following sequence of
events is detected, an attack that exploits
this vulnerability is deemed to have oc-
curred. First, the web server accepts a

connection to port8001. Second, it serves the specific HTML document which includes
the form which requests authentication information as well as the desired document.
Third, the server receives another connection. Fourth, the servlet that verifies if the file
can be served to the client, based on the authentication information provided, will exe-
cute. Fifth, the decision to deny the request is logged. If this sequence of events repeats
twice again within the pre-match timeout of the signature, which is1 minute, an intru-
sion attempt is deemed to have occurred.

In Figure 5, events7�18 and20�22 correspond to this signature. Events1�6 are
of other signatures that cause the risk level to rise. Event18 causes the risk threshold
to be crossed. As a result, theRiskManager searches for and finds the risk reduction
measure which has the lowest cost-benefit ratio. The system enables a predicate for
the permission that controls whether the servlet can be executed. This is event19 and
reduces the risk. The predicate checks whether the current time is within the range of
business operating hours. It allows the permission to be granted only if it evaluates to
true . During operating hours, it is likely that the intrusion will be flagged and seen by
an administrator and it is possible that the event sequence occurred accidentally, so the
permission continues to be granted. Outside those hours, it is likely that this is an attack
attempt and no administrator is present, so the permission is denied thereafter, till the
post-match timer expires after one hour and the threat is reset.

8.2 Design Error

A design erroris a flaw that introduces a weakness in the system despite a safe config-
uration and correct implementation. In our example, the servlet allows a remote node
to upload data to the server. The configuration specifies the maximum size file that can
be uploaded. The servlet implementation ensures that each file uploaded is limited to
the size specified in the configuration. However, the design of the restriction did not ac-
count for the fact that repeated uploads can be performed by the same remote node. This
effectively allows an attacker to launch the very denial-of-service (that results when the
disk is filled) that was being guarded against when the upload file size was limited.

When the following sequence of events is detected, an attack that exploits this vul-
nerability is deemed to have occurred. First, the web server accepts a connection to
port8001. Second, it serves the specific HTML document which includes the form that
allows uploads. Third, the server receives another connection. Fourth, it executes the
servlet that accepts the upload and limits its size. Fifth, a file is written to the uploads
directory. If this sequence of events repeats twice again within the pre-match timeout
of the signature, which is1 minute, an intrusion attempt is deemed to have occurred.

Fig. 6.Attack exploiting a design error.

In Figure 6, events7� 21 correspond
to this signature. Events1 � 6 are of
other signatures that cause the risk level
to rise. Event21 causes the risk thresh-
old to be crossed. The system responds
by enabling a predicate for the permission
that controls whether files can be writ-
ten to the uploads directory. This is event
22 and reduces the risk. The predicate
checks whether the current time is within
the range of business operating hours. It
allows the permission to be granted only
if it evaluates totrue . During operating
hours, it is likely that the denial-of-service
attempt will be flagged and seen by an ad-

ministrator, so the permission continues to be granted on the assumption that manual
response will occur. Outside those hours, it is likely that no administrator is present, so
the permission is denied thereafter, till the post-match timer expires after one hour and
the threat is reset.

8.3 Environment Error

An environment erroris one where an assumption is made about the runtime environ-
ment which does not hold. In our example, the servlet authenticates a user, then stores
the user’s directory in a cookie that is returned to the client. Subsequent responses uti-
lize the cookie to determine where to serve files from. The flaw here is that the server
assumes the environment of the cookie is safe, which it is not since it is exposed to
manipulation by the client. An attacker can exploit this by altering the cookie’s value to
reflect a directory that they should not have access to.

Fig. 7. Attack exploiting an environment
error.

When the following sequence of
events is detected, an attack that exploits
this vulnerability is deemed to have oc-
curred. First, the web server accepts a
connection to port8001. Second, it serves
the specific HTML document which in-
cludes the form that authenticates a user.
Third, the server receives another connec-
tion. Fourth, it executes the servlet that
authenticates the user and maps users to
the directories that they are allowed to
access. It sets a cookie which includes
the directory from which files will be
retrieved for further requests. Fifth, the
server receives another connection. Sixth,

it serves the specific HTML document that includes the form which accepts the file re-
quest. Seventh, the server receives another connection. Eighth, the servlet that processes
the request, based on the form input as well as the cookie data, is executed. Ninth, a file
is served from a directory that was not supposed to be accessible to the user. The events
must all occur within the pre-match timeout of the signature, which is1 minute.

In Figure 7, event3, events8�14 and event16 correspond to this signature. Events
1�2 and4�7 are of other signatures. Event14 causes the risk threshold to be crossed.
The system responds by enabling a predicate for the permission that controls whether
the file download servlet can be executed. This is event15 and reduces the risk. The
predicate simply denies the permission. As a result, the attack can not complete since
no more files can be downloaded till the safeguard is removed when the risk reduces at
a later point in time (when a threat’s timer expires).

8.4 Input Validation Error

Fig. 8. Attack exploiting an input valida-
tion error.

An input validation error is one that re-
sults from the failure to conduct neces-
sary checks on the data. A common ex-
ample of this type of error is the failure to
check that the data passed in is of length
no greater than that off the buffer in which
it is stored. The result is a buffer over-
flow which can be exploited in a variety of
ways. In our example, the servlet allows a
file on the server to be updated remotely.
The path of the target file is parsed and a
check is performed to verify that it is in
a directory that can be updated. The file
’Password.cfg’ is used in each directory
to describe which users may access it. By
uploading a file named ’Password.cfg’, an

attacker can overwrite and alter the access configuration of the directory. As a result,
they can gain unlimited access to the other data in the directory.

When the following sequence of events is detected, an attack that exploits this vul-
nerability is deemed to have occurred. First, the web server accepts a connection to
port8001. Second, it serves the specific HTML document which includes the form that
allows uploads to selected directories. Third, the server receives another connection.
Fourth, it executes the servlet that checks that the uploaded file is going to a legal di-
rectory. Fifth, the ’Passwords.cfg’ file in the uploads directory is written to. The events
must all occur within the pre-match timeout of the signature, which is1 minute.

In Figure 8, event1 and events7 � 10 correspond to this signature. Events2 � 6

are of other signatures. Event10 causes the risk threshold to be crossed. The system
responds by enabling a predicate for the permission that controls write access to the
’Passwords.cfg’ file in the uploads directory. This is event11 and reduces the risk. The
predicate simply denies the permission. As a result, the attack can not complete since
the last step requires this permission to upload and overwrite the ’Passwords.cfg’ file.
Enabling this safeguard does not affect legitimate uploads since they do not need to
write to this file.

9 Related Work

We describe below the relationship of our work to previous research on intrusion detec-
tors and risk management systems.

9.1 Intrusion Detection

Early systems developed limited ad-hoc responses, such as limiting access to a user’s
home directory or logging the user out [Bauer88], or terminating network connections
[Pooch96]. This has also been the approach of recent commercial systems. For exam-
ple, BlackICE [BlackICE] allows a network connection to be traced, Intruder Alert
[IntruderAlert] allows an account to be locked, NetProwler [NetProwler] can update
firewall rules, NetRanger [Cisco] can reset TCP connections and RealSecure [ISS] can
terminate user processes.

Frameworks have been proposed for adding response capabilities. DCA [Fisch96]
introduced a taxonomy for response and a tool to demonstrate the utility of the taxon-
omy. EMERALD’s [Porras97] design allows customized responses to be invoked au-
tomatically, but does not define them by default. AAIR [Carver01] describes an expert
system for response based on an extended taxonomy.

Our approach creates a framework for systematically choosing a response in real-
time, based on the goal of reducing exposure by reconfiguring the access control sub-
system. This allows an attack to be contained automatically instead of being limited to
raising an alarm, and does not require a new response subsystem to be developed for
each new class of attack discovered.

9.2 Risk Management

Risk analysis has been utilized to manage the security of systems for several decades
[FIPS31]. However, its use has been limited to offline risk computation and manual re-
sponse. [SooHoo02] proposes a general model using decision analysis to estimate com-
puter security risk and automatically update input estimates. [Bilar03] uses reliability
modeling to analyze the risk of a distributed system. Risk is calculated as a function
of the probability of faults being present in the system’s constituent components. Risk
management is framed as an integer linear programming problem, aiming to find an
alternate system configuration, subject to constraints such as acceptable risk level and
maximum cost for reconfiguration.

In contrast to previous approaches, we use the risk computation to drive changes in
the operating system’s security mechanisms. This allows risk management to occur in
real-time and reduces the window of exposure.

10 Future Directions

We utilized a simple� function that assumed independent probabilities for successive
events. However,� functions can be defined even when pre-conditions are known. By
measuring the frequencies of successive events occurring in typical and attacked work-
loads, conditional probabilities can be derived. A tool to automate the process could be
constructed.

The exposure reduction values, workload frequencies, consequence costs and risk
threshold were all manually calculated in our prototype. All such parameters will need
to be automatically derived for our approach to be practical. The frequencies with which
permissions are utilized can be estimated by instrumenting the system to measure these
with a typical workload.

A similar approach could be used to determine the average inherent risk of a work-
load. An alternative would be the creation of a tool to visualize the effect of varying
the risk threshold on (i) the performance of the system and (ii) the cost of intrusions
that could successfully occur below the risk threshold. Policy would then dictate the
trade-off point chosen.

The problem of labeling data with associated consequence values can be addressed
with a suitable user interface augmentation - for example, it could utilize user input
when new files are being created by application software. The issue could also be par-
tially mitigated by using pre-configured values for all system files.

Finally, some attacks may utilize few or no permission checks. Such scenarios fall
into two classes. In the first case, this points to a design shortcoming where new per-
missions need to be introduced to guard certain resources such as critical subroutines
in system code. The other case is when the attack has a very small footprint, in which
case our approach will fail (as it can’t recognize the threat in advance).

11 Conclusion

We have introduced a formal framework for managing the risk posed to a host. The
model calculates the risk based on the threats, exposure to the threats and consequences

of the threats. The threat likelihoods are estimated in real-time using output from an
intrusion detector. The risk is managed by altering the the exposure of the system. This
is done by dynamically reconfiguring the modified access control subsystem. The utility
of the approach is illustrated with a set of attack scenarios in which the risk is managed
in real-time and results in the attacks being contained. Automated configuration of the
system’s parameters, either analytically or empirically, remains an open research area.

References

[Bauer88] D. S. Bauer and M. E. Koblentz, NIDX - A Real-Time Intrusion Detection Expert
System, Proc. of USENIX Technical Conference, p261-273, 1988.

[Bilar03] Daniel Bilar, Quantitative Risk Analysis of Computer Networks, PhD thesis, Dart-
mouth College, 2003.

[BlackICE] http://documents.iss.net/literature/BlackICE/BISP-UG36.pdf
[Carver01] Curtis Carver, Adaptive, Agent-based Intrusion Response, PhD thesis, Texas A and

M University, 2001.
[Cisco] http://www.cisco.com/application/pdf/en/us/guest/products/ps2113/c1626/ ccmigra-

tion 09186a00800ee98e.pdf
[FIPS31] Guidelines for Automatic Data Processing Physical Security and Risk Management,

National Bureau of Standards, 1974.
[Fisch96] Eric Fisch, Intrusive Damage Control and Assessment Techniques, PhD thesis, Texas

A and M University, 1996.
[Garey79] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, Freeman, San Francisco, 1979.
[Gehani03] Ashish Gehani, Support for Automated Passive Host-based Intrusion Response, PhD

thesis, Duke University, 2003.
[ICAT] http://icat.nist.gov/icat.cfm
[Ilgun95] Koral Ilgun, Richard A. Kemmerer and Phillip A. Porras, State Transition Analysis: A

Rule-Based Intrusion Detection Approach, IEEE Transactions on Software Engineering,
21(3), p181-199, March 1995.

[IntruderAlert] http://enterprisesecurity.symantec.com/content/ProductJump.cfm? Product=171
[ISS] http://documents.iss.net/literature/RealSecure/RSDP-UG70.pdf
[Jigsaw] http://www.w3.org/Jigsaw
[Kellerer98] H. Kellerer and U. Pferschy, A new fully polynomial approximation scheme for

the knapsack problem, Proceedings of the APPROX 98, Lecture Notes in Computer
Science, v1444, p123-134, Springer, 1998.

[Koved98] Larry Koved, Anthony J. Nadalin, Don Neal, and Tim Lawson, The Evolution of Java
Security, IBM Systems Journal 37(3), p349-364, 1998.

[NetProwler] http://symantec.com
[NIST800-12] Guidelines for Automatic Data Processing Physical Security and Risk Manage-

ment, National Institute of Standards and Technology, 1996.
[Pooch96] U. Pooch and G. B. White, Cooperating Security Managers: Distributed Intrusion

Detection System, Computer and Security, (15)5, p441-450, September/October 1996.
[Porras97] P.A. Porras and P.G. Neumann, EMERALD: Event Monitoring Enabling Responses

to Anomalous Live Disturbances, Proceedings of the Nineteenth National Computer
Security Conference, p353-365, Baltimore, MD, October 1997.

[SooHoo02] Kevin Soo Hoo, Guidelines for Automatic Data Processing Physical Security and
Risk Management, PhD Thesis, Stanford University, 2002.

[SPECjvm98] http://www.specbench.org/osg/jvm98/

