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Abstract 
This paper describes the implementation of the Shakey robot on a Magellan Pro hardware 
robot. The paper gives an account of the SNePS/GLAIR architecture which has been 
implemented for the Magellan Pro. It details a challenging task of reinventing Shakey in 
order to expand the horizons he has inhabited so far. The aim is to utilize prior knowledge 
about SNePS, build a GLAIR architecture and integrate this with the capabilities of the 
Magellan Pro so that we have a robot capable of sensing, planning and acting intelligently. 
The paper also describes in detail the Knowledge Level of the GLAIR architecture which is 
implemented in SNePS for the Magellan Pro hardware robot. 
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1. Introduction  

 
Shanahan [5] describes in his “Reinventing Shakey” paper, an implementation of the 
Shakey robot using event calculus [7] and a Khepera robot. The Shakey problem is 
described as a robot placed in a closed environment containing rectangular rooms and 
doors which open into adjacent rooms. In this environment there is also a package and the 
robot’s goal is to calculate a path to this package from the robot’s starting location. It then 
makes its way to the package using wall-following and turn-at-corner functions, and 
determines its state in the world using sensors like sonar sensors. In order to do this, the 
robot must have some internal representation of the world, or access to one. One problem 
which exists is that a door can be shut or opened at any time, and if the robot’s original 
path doesn’t work, it is up to the robot to decide which door was closed, and to calculate a 
new path from its present location. 
The goal of our project is to implement a Shakey robot using SNePS and iRobot’s [8] 
Magellan Pro hardware robot. We are using a substantially smaller environment, two 
rooms and one door connecting them, due to the size of our robot and our limited 
movement space. A subsequent goal of the project is to develop this paper, detailing the 
steps we took to accomplish this goal, and explaining our experiences with the systems 
used, which are new to us. 
 
2. SNePS and the GLAIR architecture 
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The GLAIR architecture consists of three layers [3] which is illustrated in Figure 1. 

  

“SNePS (the Semantic Network Processing System) is a system for building, using and 
retrieving information from propositional semantic networks.” [1]. SNePS is basically used 
for knowledge representation at various levels. It is called ‘propositional’ because every 
proposition is represented by a node in the semantic network. The arcs in the network 
represent relations between the nodes they connect. We also need to construct the GLAIR 
(Grounded Layered Architecture with Integrated Reasoning) for the Magellan Pro robot. 

Knowledge Level 

Perceptuo-Motor Level 

Sensory-Actuator Level 

NL 

Action Percepts 

SNePS 
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The KL has the knowledge base of the robot at the abstract level. It consists of what the 
robot is consciously aware of.  At this layer, the knowledge is represented using SNePS and 
its sub-system SNeRE so that actions can be executed by the robot based on what it 
be  is implemented in Common Lisp. 
 
2.2 Perceptuo-Motor Level 
 
The PML has the physical level representations of the objects. It has the most primitive 
actions. The PML has 3 sub-levels [3]: 
 
2.2a PMLa 
The PMLa is the highest level where the ideas that KL represents are translated into 
functions. This level has the functions which will be used for implementing the KL level. 
There are a set of primitive actions which determine the basic moves the robot is able to 
accomplish. These functions are implemented in SNePS. These include the follow-wall and 
go-straight actions by the robot.  
 

 PMLb 
ts role is fuzzy in this 

it is combined with PMLa and with PMLc. A mention of it is made 

hich take input from the 
d depending on the task, the robot behaves accordingly. The 

rdware and receive the sonar values. Based on predetermined 

d. 

-Actuator Level 

                                             Figure 1: GLAIR Architecture[4] 
.1 Knowledge Level 

lieves and perceives. SNePS

 performed 

2.2b
The PMLb plays a role in interfacing the PMLa and the PMLc. I
particular project since 
since the PML of the GLAIR architecture consists of 3 sub-levels.  
 
2.2c PMLc 
The PMLc level has been implemented in C++. It consists of the server program which will 
execute on the robot. The C++ program has a set of functions w
program running on a client an
sensor functions access the ha
threshold cut-off values, the variables front-high, front-low, left-high and left-low are set. 
These variables are accessed by the higher PML layers and functions like move-front, 
move-behind, turn-left and move-forwar
 
2.3 Sensory

 
The SAL consists of the actual sonar sensors which determine what the robot perceives. 
This input is given to the higher layers, and the plan made accordingly. The SAL can 
consist of any other hardware/software devices which enable perception in the intelligent 
entity with respect to the environment. 
 
 
 
 
 
 
 
 
 



 6

es [11], using a logic based approach. The idea 
 driven by the desire to provide a high-level cognitive 
hich is capable of mental skills attributed solely to human 

 
3. Introduction to Our Shakey 
 

he Shakey project started in the late sixtiT
for constructing Shakey was
implem ntation of a robot we
beings, such as planning, reasoning about oneself, reasoning about other agents, and 
communicating with other agents [5]. The Shakey project was revived and implemented for 
a Khepera [5] which is a real robot, and inhabits an environment depicted in Figure 2 which 
is a prototype for the environment that Magellan will inhabit which is depicted in Figure 3. 

 

 
 
 

Figure 2: Shakey’s original environment [5] 
 
 

The environment we will be adapting is a simpler version of the one shown in Figure 2. It 
is deliberately kept simple, because this will enable us to focus on implementing it for a 
much larger robot than the Khepera, and once this has been accomplished, the complexity 
can be incrementally increased. 
 
3.1 Magellan/Shakey’s environment 
 
As of December 2003, Shakey operated in a basic environment consisting of 2 rooms 
shown in Figure 3. Though the room was not large enough to have as many divisions as the 
original Shakey environment, it sufficed for our needs. 

 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
 

 
 
 
 

 
 
    Figure 3: Map of Room 329, Bel
Legend: 
(1) R1, R2 ----- Rooms 
(2) C1, C2, C3, C4, C5, C6 ----- Corners of R1 (where C2, C3
(3) C7, C8, C9, C10, C11, C12 ----- Corners of R2 (where C7,
(4) D1 --- Door connecting R1 and R2 
(5) Magellan ---- alias Shakey 
 
The Shakey robot is assumed to move beside the left wall (fol
in front of the robot in Figure 3 depicts the direction of m
Shakey’s sensing capabilities and reasoning power to make i
R1 (room 1). In order to do this, Shakey has to travel from 
detecting these corners, detect a door if one is encountered, a
into the second room.  
 
The following should be noted: 
 
1. The room is small. Hence, the speed of the robot has to be
level. A threshold has to be carefully chosen so that the robot 
moment it detects it is now approaching a corner of the room. 

C6

C8

C9 C10

Desk

Desk 

 

 

Magellan
D1 

C3 C4C2

C11C12 C7

R2 
C1

Actual 
Entrance
to room 
7

l Hall 

 are outer corners) 
 C12 are outer corners) 

lows the left wall). The arrow 
ovement. Our aim is to use 
t get out of R2 (room 2) into 
corner to corner of the room, 
nd go through the door to get 

 maintained at a manageable 
can take immediate action the 

C5
R1 
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. If it is ‘lost’, it will re ecause it will not ‘know’ where the 
 it is currently at. 

ion to its repertoire of functions, one functio be im
for Shakey will determine if it is moving away from the wall it is f
follows the left wall, so if for some reason (like, being a medium sized hardware robot, if 
the wheels are not aligned well)  it starts moving away from the wall, the so adi ill 
be incorrect and the robot has no idea of where it is. 
 
4. Aims for Magellan 
 
The ma  curren im for Magellan is to move along the left wall, and turning right when a 

room R1 through the connecting door D1. 
 
The sub tasks Magellan should be able to achieve for the above aim are 

1. Move forward, backward as the user instructs  

 When a door is detected through which he has to go, as part of the plan,  
 the outer corner and enters the other room. 

his is the  
p for 

oor to be present, but instead of passing a door, it 
safely assume that it passed the door, and the reason why it 

did not observe the door was because it was closed. The robot’s sensors are weak, 

 of the actual implementation process, involving design, coding and 

 tactile sensors, used to determine if the robot has 
ollided with an object, sixteen sonar sensors, used to determine distances from objects, 

 both the sensors and actuators can be 
one in two ways: either through user control or program control. Programming in the 

g the mobility package, which provides various data structures 

 
2. The robot is self-aware. At any given point of time, Shakey should be aware of its 
position in the room main lost b
door is or which corner
 
3. As an addit n proposed to 

ollowing. Shakey only 
plemented 

nar re ng w

in t a
corner is encountered, and getting to 

 
 2. Turn right when he detects a corner. 
 3.

    he turns left at
4. He stops when the door is closed and does not keep circling the room.(t
sign of an intelligent robot. The robot can determine this because it has a ma
reference. When it expects a d
reaches a corner, it can 

and when the door is closed, it cannot differentiate between the wall and the door.  
 
 
5. Implementing Shakey through Magellan 
 

his gives an overviewT
testing. 
 
5.1 Introduction to Magellan Pro and the MOM Interface 
 
5.1.1 Magellan Pro 
 
The Magellan Pro was developed by iRobot and is a recent addition (Fall 2003) to the 
University at Buffalo’s Computer Science and Engineering Department. Our Magellan Pro 
is equipped with several sensors: sixteen
c
and a camera for vision processing that can pan or tilt. As for actuators the robot is slightly  
limited in that it only comes with the ability to move forward, backward, and rotate right or 
left with its two wheels underneath the base. However, since the robot has an internal PC 
running Linux one is capable of adding their own hardware to the unit, as long as the robot 
can support the new hardware’s weight. Controlling
d
Magellan robot is done usin
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nd functions for accessing the three services our robot provides; base actuators, base 

re application entitled the MOM (Mobility 
ire data 

about t For the Magellan robot 
this me
effectiv
informa
camera
need to
accessi  

e sensor or actuator one can read or manipulate these features. Since the Mobility manual 
] covers this nicely we’ll leave it to the reader to research how. However, there are a few 

 can be started.  

nix machine which has SNePS (Lisp) installed on it. The operating system on 
to the robot server using the 
 able to log in. After logging 

 client programs can be compiled and loaded.  

a
sensors, and the camera. The mobility package is implemented using CORBA and C++, 
though a great deal of CORBA knowledge isn’t needed to program the robot. 
 
5.1.2 MOM Interface 
 
The Magellan package also includes a softwa
Object Manager) Interface. The MOM Interface allows users of Magellan to acqu

he various robot sensors and control the motors of the robot. 
ans one can view the tactile, sonar, and camera sensors dynamically. This is both 
e for debugging, and acquiring threshold values. One can also use the MOM 
tion to control the Magellan’s movements and the pan/tilt functionality of the 

. This allows one to navigate an environment getting an idea of what the robot will 
 do before jumping straight into programming. Once the MOM interface is running, 
ng these features is easy. By clicking a few drop-down menus and right clicking on

th
[9
steps that must be taken first before the MOM interface
 
5.1.3 Getting started 
 

here is a UT
the robot has the software required to run it. The user logs in
nix machine. The robot has to be powered on in order to beu

in, the server and the
 
Log into the system from which the robot can be accessed. The following example 
(Comments are in parenthesis) is with Michael Kandefer’s login name and directory path 
using csh. 
 
(Remote login to the robot itself using ssh.) 
[mwk3@oldred ~]> ssh irobot.cse.buffalo.edu 
 
(Source the mobility package.) 
[mwk3@irobot ~]$ source ~mobility/mobility.csh 
 
(Start the name service.) 
[mwk3@irobot ~]$ name -i 
 
(Start the sensor/actuator servers.) 
[mwk3@irobot ~]$ startup 
 
(Start MOM interface.) 
[mwk3@irobot ~]$ mom 
 
5.1.3.1 Server on Magellan 
The program running on Magellan is the server program which waits for input through 
sockets. The sockets connect it to the client program running on the Unix machine. The 
server on Magellan is written in C++ with CORBA objects which implement the robot 
motion commands. The task of the server is to parse the strings sent down the socket by the 
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 be many clients on 
ther machines, sending the server on the robot requests for achieving an aim. The client 

ritten as a Lisp program. A corresponding SNePS program uses the 
nctions defined in the Lisp program. 

 extremely useful and 
formative paper which provided information on creating a socket, sending strings across 

ing on the robot. 

er levels 

.2.1 Accessing sensors and actuators with Mobility (SAL/PMLc) 

ram the low level systems. To program 
hakey in the lower levels one has to know how to access the various hardware 

 and C++/CORBA.  What follows are the steps necessary and the 
 to access the various hardware components.  It is important to 

ote that the interface must be activated before a program will execute correctly; this is to 
/actuator servers. In addition to this the appropriate 

n the program that will manipulate the robot. This is done as 
llows: 

terface definitions and utilities. 
 This goes at the top of the PMLc C++ file 

nce the appropriate libraries are included, all that remains before the hardware 
 to initialize the CORBA C++ initialization and acquire 

 

Lisp/SNePS program. After parsing, the C++ program gets the primitive action which has 
to be executed.   
 
5.1.3.2 Client on Unix machine 
The client is on the Unix machine because it is requesting the server for an instruction to be 
executed. This is keeping in view of the fact that in the future, there will
o
program was initially w
fu
 
5.1.3.3 Socket Programming 
Sockets are the only means of communicating strings between the different processes. 
Multiprocessing, Semaphores and Networking with ACL [6] is an
in
and closing the socket. It also has information on running threads in the background which 
might be needed if more than one program will be sending strings down the sockets to the 
server runn
 
6.2 Programming Shakey in the low
 
6
 
One of our primary tasks for this project is to prog
S
components (PMLc/SAL)
program used ( cserver.c++)
n
say the name service and sensor
libraries must be included i
fo
 
// These includes pull in in
//
 
#include "mobilitycomponents_i.h" 
#include "mobilitydata_i.h" 
#include "mobilitygeometry_i.h" 
#include "mobilityactuator_i.h" 
#include "mobilityutil.h" 
 
O
components can be accessed is
access to the robot server(s) we are interested in accessing. Once setup, we can create the 
data structures for accessing the robot’s sensors and actuators. Since our robot only uses 
sonar sensors and the wheel actuators we will only discuss these. This is done as follows 
(some code segments below come from the Mobility manual [9]): 
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t can point to any CORBA object 
 within Mobility. 

obilityActuator::ActuatorState_var pDriveCommand; 

red for the C++ language mapping of CORBA. 
Helper = new mbyClientHelper(argc,argv); 

t to use to get sensor data. 
rintf(pathName,’’%s/Sonar/Segment’’,’’Robot0’’); // Robot0 is the robot server. 

ant. 
(pathName); 

 want from the object we found 
y 

 

 Build pathname to the component we want to use to drive the robot. 
printf(pathName,’’%s/Drive/Command’’,’’Robot0’’); // Robot0 is the robot server. 

thName); 

 We’ll send two axes of command. Axis[0] == translate, Axis[1] == rotate. 

 mean move backward/turn right 
 

// The following code comes from the PMLc C++ file on the robot.  
// This framework class simplifies setup and initialization for 
// client-only programs like this one. 
mbyClientHelper *pHelper; 
 
// This is a generic pointer tha
//
CORBA::Object_ptr ptempObj; 
 
// Used for accessing the robot’s actuators (wheels) 
M
MobilityActuator::ActuatorData OurCommand; 
 
// Used to access the sonar sensor data 
MobilityGeometry::SegmentState_var pSonarSeg; 
MobilityGeometry::SegmentData_var pSegData; 
 
// All Mobility servers and clients use CORBA and this initialization 
// is requi
p
 
// Build a pathname to the component we wan
sp
 
// Locate the component we w
ptempObj = pHelper->find_object
 
// Request the interface we
tr
{ 

pSonarSeg = MobilityGeometry::SegmentState::_narrow(ptempObj); 
} 
catch (...) 
{ 

return -1; // We’re through if we can’t use sensors. 
}
 
//
s
 
// Locate object within robot. 
ptempObj = pHelper->find_object(pa
 
//
// Positive numbers mean move forward/turn left 
// Negative numbers
OurCommand.velocity.length(2);
 
 
 



 12

e found. 
y 

torState::_duplicate( 
narrow(ptempObj)); 

 

 

are hooks are set up, one just uses a series of function 
e examples are given below: 

 Then stop. Remember, negative 
eeds indicate rightward movement, while positive indicate leftward movement for  

elocity[1].  The same applies for velocity[0], where positive refers to forward motion  
// and n  program 

ince current constraints do not allow one to write to the velocity data structures outside  
in method.  

rCommand.velocity[0] = 0.0; 
OurCom

riveCommand->new_sample(OurCommand,0); 
mni_thread::sleep(duration); 

DriveCommand->new_sample(OurCommand,0); 

rom the front sonar sensor 
 to the nearest object infront of it 

SegData->org[0].x - pSegData->end[0].x)* 
SegData->org[0].x - pSegData->end[0].x)+ 
SegData->org[0].y - pSegData->end[0].y)* 

.2 MSocket: Working with Linux sockets in C++ (PMLb and PMLc) 
 
The other part unication from the 

per level to the lower level through PMLb. In our robot this is done in a client/server 
nvironment between the PMLb and the PMLc level using sockets. Two different 

ocket communication (C++ and LISP). We will discuss 
 first, which is part of PMLc. For the implementation of server side 

Lc we chose to use the MSocket class [12] and a simple parser to parse the input from 
kets. The MSocket has a variety of functions for creating sockets, 

// Request the interface we need from the object w
tr
{ 

pDriveCommand = MobilityActuator::Actua
MobilityActuator::ActuatorState::_

}
 
// Catch any errors that may occur 
catch (...) 
{
return -1; 
} 
 
After the data structures and hardw
calls to acquire data or manipulate the robot. Som
 
// Turn right for duration seconds at speed TURN_SPEED.
// sp
// v

egative to backwards motion. This is all done in the main thread of the
// s
// of the ma
Ou

mand.velocity[1] = -TURN_SPEED; 
pD
o
OurCommand.velocity[0] = 0.0; 
OurCommand.velocity[1] = 0.0; 
p
 
// Acquire sonar data and calculate the distance f
//
pSegData = pSonarSeg->get_sample(0); 
 
// Index 0 is the front sonar sensor 
float tempdist = sqrt( 
(p
(p
(p
(pSegData->org[0].y - pSegData->end[0].y)); 
 
6.2

 of the low level robot programming is the actual comm
up
e
languages are being used for our s
the server/C++ side
PM
these soc
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ding/receiving messages over sockets, and closing the connection and are too numerous 
 list, but here are the ones we used: 

 in C++ 
 To access the methods one includes msocket.h and makes the appropriate function calls  

s. 

n port thePort 

aits until it gets a connection 

.Close(); 

 buffer 

g in Buffer 

fter the command is read in from the socket it is parsed to see which action should be 

 

 
ry for parsing time data, and then move the robot forward  

 Similar code is used for moving backwards, turning right, and turning left 

sen
to
 
// The following are data structures and methods used in socket communication
//
// in whatever program they are using socket communication in. In our case this is  
// cserver.c++. This is not a full program, just the pertinent function calls and description
 
// Empty MSocket objects 
MSocket S, C; 
 
// Initialize socket on this server, o
S.Server(thePort); 
 
// Accept client’s connection, w
S.Accept(C); 
 
// Close server socket 
S
 
// read from client socket into string
C >> Buffer; 
 
// write to the client socket the strin
C << Buffer; 
 
// Close client 
C.Close(); 
 
A
executed by the robot. This is done as follows: 
 
char *command; // command to execute 
int duration; // duration to run the command 
 
// Parse the command 
command = strtok(Buffer, " "); 
 
// Check what the command is, and parse it if necessary. 
// Then execute the appropriate action 
if(strcmp(command, "quit")==0) 
{

cout << ‘‘Quit the program.’’ << endl; 
break; 

} 
else if(strcmp(command, "forward")==0) 
{
 // Run code necessa
} 
//
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ions and socket communication (PMLa/PMLb) 

ility to communicate with the 
tions implemented in the PMLc, this is done first by writing the primitive 

nctions in the PMLa and using the PMLb to communicate these actions to the robot using 
cket connections in C++ have already been described, and Santore 

has a paper on how to do multiprocessing and socket connection in LISP, so we 
ill just show a few of the PMLa/PMLb primitive functions we are using.  

terfaces with the robot.  

onnects to the robot.") 
ntHi* nil "If the front sensors are hi (t) or low (nil).") 

efvar *isLeftHi* nil "If the left sensors are hi (t) or low (nil).") 
ackage :mp)) 

 :process)) 

parate process, and take action” 
(let ((InString "") 

-process-lock))) 
p, loop and play with the input 

(loop do 
;;get the next input sentence - trim off nulls 

 beginning and the end (reading to the eol 
;;will leave behind a null) 

face-socket*) 
ring-trim ’(#\null) 

d-line *interface-socket*))) 
;; Determine the command sent, and set the appropriate variable 

((string= InString "front low") (setf *isFrontHi* nil)) 
((string= InString "front hi") (setf *isFrontHi* t)) 

tring "left low") (setf *isLeftHi* nil)) 
((string= InString "left hi") (setf *isLeftHi* t))) 

(close *interface-socket*)) 

efun OpenConnection () 

(let ((port ’()) (machine "irobot.cse.Buffalo.EDU")) 

 
6.2.3 Primitive act
 
For our SNePS network to work it needs to have the capab
primitive func
fu
socket connections. So
[6] already 
w
 
;; Client that in
 
(defvar *interface-socket* nil "The socket that c
(defvar *isFro
(d
 (if (not (find-p
      (require
 
(defun ProcessSensorInput () 
“Listen for any messages from the server in a se

                  (socket-output-lock (mp:make
;;while we don’t read a hangu

;;from the

(mp:wait-for-input-available *inter
(setf InString (st

(rea

(cond 

((string= InS

until (equalp InString "Quit"))) 

 
(d
“Open up a connection to the robot server” 

(pprint "What port is the server being run on?> ") 
(setf port (read)) 
;;now actually make the socket, connecting at the same time 
(setf *interface-socket* (socket:make-socket :remote-host machine 

 :remote-port port))) 
(mp:process-run-function "Input Thread" #’ProcessSensorInput)) 
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efun move-forward (theTime) 
ns for move 

erface-socket*))  
ne (format *interface-socket* "forward ~A" theTime)) 

(force-output *interface-socket*)))) 

 
rimitive. They are the following 

which are impl ode. 
 
Making the robot mov
(1)Move forward: Mag ft wall.  

 
(2)Move backward: M der to ensure that it 
does not bump into an eadings from behind the robot, or 
the bump readings have to be ng has to be implemented. 

 
(3)Turn left: Magellan makes a left turn from its original position. He rotates by 90 degrees 
to face the left direction from t of the 
robot have to be observed. Th  a doorway 
and from one room to anothe untered an 
open door, hence it needs to t left turn at an 
outer corner). ough the doorway and turns left again. The 
robot is eside the left wall. 

 
ns 90 degrees to the right. When the robot encounters an inner 

the robot and the left of the robot are both high. 
Hence, following the left wall.  

 
(5)Stop: Mage
If the only doo room. It should 
stop after som  definite 
stopping condition which will eventually be satisfied if the f the plan 
are not  the robot be self 
ware. When the robot passes a closed door, it should know when at the next corner, that it 
issed a door because the door was closed. The logic can be programmed such that when 

llan Pro robot moves past the closed door, the robot just 

7. Representing the environment in SNePS 
 
7.1 Source Co
 

ith reference to the simple room which is being inhabited by Magellan, the following 
sidered. This is code from the Combined_KL.SNePS 

hich has the KL level SNePS code that we wrote. 
 

(d
“Moves the robot forward for a specified time. There are similar functio
backward, turn right, and turn left.” 

(cond 
((not (null *int
(write-li

 
6.2.4 Primitive functions needed 

Magellan has a set of moves which can be described as p
emented in Lisp. The primactions are called from the SNePS c

e  
ellan moves ahead in a straight line. It follows the le

agellan moves backwards in a straight line. In or
 obstacle/wall behind it, the sonar r

 observed and accordingly planni

 his original position. The sonar readings from the lef
is primitive allows the robot to go straight through
r. When the robots left sensors go low, it has enco
ake a left turn to get into the doorway (it takes a 

Then, the robot goes straight thr
 now in the adjacent room, b

(4)Turn right: Magellan tur
corner, the sonar readings from the front of 

 he has to take a right turn at the corner and continue 

llan stops. 
r in room R1 is closed, the robot should not keep circling the 
e time. This is because being a hardware robot, there has to be a

 goal(s) / sub goal(s) o
 being reached. One way in which this can be achieved is by letting

a
m
the door is closed, and the Mage
stops. Because until the room door opens, the robot will not get to its final goal plan. 
 

de in SNePS 

W
objects and relations are to be con
w
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upti Devdas Nayak 

;;; Base  on M. Shanahan's "Reimplementing Shakey" 

  

        object1 object2 object3 

        the-door room 

; Load required files 

Load 'Lisp files' 

; describe the environment consisting of a door, 12 corners, 2 rooms and 8 walls 
---------------------- 

escribe (assert member d1 class door)) 

 Assert relations between room parts 

;;; ================================================ 
;;; KL for Shakey Reimplementation 
 
;;; Lunarso Sutanto  & Tr
;;; (December 2, 2003) (November 21, 2003) 

d
;;; ================================================ 
 
(resetnet t) 

;;;----------------------------- 
;;; define objects and relations 
;;;----------------------------- 
 
 
(define agent act action 
        class member 

        lex arg1 rel arg2 
        proper-name property 
        room wall door corner 

        connected-by-door 
        next-corner 
        inner-corner 
        outer-corner 
        corner-before corner-after 
        sensor current 
        ) 
 
;;; ---------------------------- 
;;
;;; ---------------------------- 
 
;^^ 
; 
 
;;; :ld <path of the lisp files> 
(load “/home/csgrad/td23/irobot/pmla.lisp”) 
 
;^^ 
 
;;
;;; ----------------------------------------------------
 
(describe (assert member (r1 r2) class room)) 
(describe (assert member (c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12) class corner)) 
(d
 
;;;
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------ 

om r2 connected-by-door d1)) 

escribe (assert object1 c2 property outer-corner)) 
c3 property outer-corner)) 
c7 property outer-corner)) 

roperty outer-corner)) 

that the  
orners can be observed. Rather than a corner being a  

om, it is easier to think of corners as ‘before’ and ‘after’ other  
lock-wise ordering of the corners in the room. 

orner ordering 
------------------ 

ner1 between-corner2) 

escribe (assert room r1 corner-before c1 corner-after c2)) 
rner-before c2 corner-after c3)) 

-before c3 corner-after c4)) 
rner-before c4 corner-after c5)) 

escribe (assert room r1 corner-before c5 corner-after c6)) 
cribe (assert room r1 corner-before c6 corner-after c1)) 

escribe (assert room r2 corner-before c7 corner-after c8)) 
er-before c8 corner-after c9)) 

rner-after c10)) 
escribe (assert room r2 corner-before c10 corner-after c11)) 

cribe (assert room r2 corner-before c11 corner-after c12)) 
escribe (assert room r2 corner-before c12 corner-after c7)) 

 c3)) 
escribe (assert the-door d1 between-corner1 c7 between-corner2 c12)) 

r-var) 
   ant (build the-door *door-var 

 *c1-var 
orner2 *c2-var) 

   cq (build the-door *door-var 

             between-corner2 *c1-var))) 

;;; ------------------------------
 
(describe (assert room r1 ro
 
(d
(describe (assert object1 
(describe (assert object1 
(describe (assert object1 c12 p
 
;;; I am including it here, so 
;;; relationship between the c
;;; property of the ro
;;; corners. This gives a c
 
;;; Description of c
;;; -------------------
 
(define between-cor
 
(d
(describe (assert room r1 co
(describe (assert room r1 corner
(describe (assert room r1 co
(d
(des
 
(d
(describe (assert room r2 corn
(describe (assert room r2 corner-before c9 co
(d
(des
(d
 
(describe (assert the-door d1 between-corner1 c2 between-corner2
(d
 
(describe 

 (add forall ($c1-var $c2-var $doo

               between-corner1
              between-c

             between-corner1 *c2-var 
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t  

s the action. 

) 
      " Moving forward." 

. ~%")) 

efine-primaction turn-left () 

      (format t "~&*** Turning right. ~%")) 

ttach-primaction 
ard move-forward move-backward move-backward turn-left turn-left 

 turn-ri isbelieve 
 sniterate snite
 snsequ quenc
 
;;; sense-left-pr ctions which use the sensor values  
;;; returned by ased on the values returned, the       
;;; next step is 

; Note that a high sensor value means that the associated sensor is CLOSE 
; to a wall and when the sensor value is low, it means that it is AWAY from a  
; wall. 

; ------- 

; to a wall 

front-prim () 

  (if (null (sense-front-lisp)) 
      (believe-low 'front) 

;;; These primactions call the Lisp functions which actually make the robot move. I
;;; is necessary to load the Lisp files before these functions are called. These  
;;; primactions print out the corresponding message as the robot perform
 
^^ 
(define-primaction move-forward (
  
        (format t "~&*** Moving forward now
 
 
(define-primaction move-backward () 
         "Moving backward." 
        (format t "~&*** Moving backward now. ~%")) 
 
 
(d
        "Turning right." 
        (format t "~&*** Turning left. ~%")) 
 
 
(define-primaction turn-right () 
        "Turning right." 
  
 
 
(a
 move-forw

ght turn-right believe believe disbelieve d
rate 

ence snse e) 

im and sense-right-prim are fun
the lisp functions sense-left-lisp. B
taken. 

 
;;
;;
;;
 
;;
;;; You figure out that doing the moving actions are complete when the 
;;; associated sensors fires. 
;;; Note that a high sensor value means that the associated sensor is CLOSE 
;;
 
^^ 
(define-primaction sense-
  ;; Let variable s be the sensor data, 0 for lo, 1 for hi 
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efine-primaction sense-left-prim () 
;; Let variable s be the sensor data, 0 for low, 1 for high 

 

; ---------------- 

efun believe-high (direction) 
#!((perform (build action believe 

tion current high))))) 

 action snsequence 
 action disbelieve 

                                  object1 (build sensor ~direction 

 object1 (build min 0 max 0 
                                                 arg (build sensor ~direction 

 
efun sense-front-lisp ()  5) 

ense-left-prim) 

; ======================================= 
OMPLEX ACTS 

are’, which means that in this KL level, it 
 already close to a corner. 

; Currently, this version of follow-wall will only work correctly when 
er corner. We will have to add an 

 moving towards an 
sor is expected to go high; but when moving 

er, the left sensor is expected to go from low to 

; 
all has these Preconditions: 

      (believe-high 'front) 
      ) 
 
(d
  
    (if (null (sense-left-lisp)) 
        (believe-low 'left)
      (believe-high 'left)) 
 
;;
;;; Helper functions 
;;; ---------------- 
 
(d
  
                     object1 (build sensor ~direc
 
(defun believe-low (direction) 
  #!((perform (build
                     object1 (build
  
                                                   current high)) 
                     object2 (build action believe 
                                   
  
                                                              current high))))))) 
 
;;; debug
(d
 
(attach-primaction sense-front-prim sense-front-prim 
                   sense-left-prim s
 
^^ 
;;
;;; C
 
;;; follow-wall 
;;; ----------- 
;;; Follow wall is ’self-aw
;;; will know whether it’s
;;; 
;;
;;; it’s following a wall towards an inn
;;; ’or’ clause to the sensor checking (remember that when
;;; inner corner, the front sen
;;; towards an outer corn
;;; high). 
;;
;;; Following a w
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er and *room are of the proper classes 
ner is defined 

; 3. the wall that the robot is next to is defined 
e next-corner to be an inner or outer 

; The Plan is to keep on moving forward until (FrontSensor <-> Left Sensor). 
 high, then Cassie knows it is at an inner 

low, then Cassie knows it is at 
ing this to only checking the 

ed to be High, 

; and believe that robot is at-corner *next-corner 

or if *next-corner is an inner corner 
; and associated sensor = left sensor if *next-corner is an outer corner 

(assert forall ($c1 $c2 $room) 
&ant   ((build member *c1 class corner) 

(build member *room class room) 
(build room *room corner-before *c1 corner-after *c2) 
(build beside-wall (build corner1 *c1 corner2 *c2))) ;redundant? 

cq (build act (build action follow-wall) 

on 
(build min 0 max 0 

nt high)) 

rim) 
)))  

(build else 
(build action snsequence 

(build action disbelieve 
eside-wall  

(build corner1 *c1 corner2 *c2))) 
ct2 (build action believe 

corner *c2))))))))) 
ht 

--------- 

 

;;; 1. variables *corn
;;; 2. the next-cor
;;
;;; 4. *not yet* Cassie expects th
;;; corner 
;;; 
;;
;;; If FrontSensor/LeftSensor is
;;; corner. If FrontSensor/LeftSensor is 
;;; an outer corner. Right now, we’re simplify
;;; front sensor. 
;;; 
;;; While the associated sensor is not believ
;;; perform primitive action move-forward 
;;; and update associated sensor status 
;;; Once completed, disbelieve that robot is beside-wall 
;;
;;; 
;;; The associated sensor = front sens
;;
 
(describe 

(build member *c2 class corner) 

  plan(build action sniterate 
object1 ((build conditi

arg (build sensor front curre
then 

(build action snsequence 
object1 (build action move-forward-p
object2 (build action sense-front-prim

object1 
object1 (build b

obje
object1 (build at-

;;; turn-rig
;;; -
;;; This act will make the robot turn 90 degrees. Because of current 
;;; time constraints, We have not made the turning "self-aware" as we did
;;; for follow-wall. Thus this turn-right function assumes that the robot 
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ght correctly. 

f the proper classes 

xt corner define 
he door that it want to turn towards. 

(assert forall ($c1 $c2 $door $room) 
&ant ((build member *c1 class corner) 

c2 class corner) 

 

cq ((bu ht) 
    plan( m)) 
    (build a

object1
(build action b  

 *door room *room1)))))) 
 
 
;;; turn-left - when in doorway 
;;; ---------- 
;;; Similar to turn-right, this function 
;;; it assumes that the PML levels make the r
;;; right and completes the action correctly. 
;;; 
;;; This is an snsequence of these actions in order: 

 90 degrees 
orward 4 times 

(assert forall ($c1 $c2 $c3 $door $room1 $room2) 
mber *c1 class corner) 

(build member *c2 class corner) 
(build member *c3 class corner) 
(build member *door class door) 

room) 

oor between-corner1 *c1 between-corner2 *c2) 
(build room *room1 room *room2 connected-by-door *door) 
(build room *room2 corner-before *c2 corner-after *c3)) 

;;; always turn ri
;;; 
;;; 
;;; Preconditions: 
;;; 1. variables *corner and *room are o
;;; 2. Cassie knows it’s currently at an outer corner 
;;; 3. Cassie knows that the corner it’s at and the ne
;;; t
 
(describe 

(build member *
(build member *door class door) 
(build member *room class room) 
(build at-corner *corner1) 
(build room *room corner-before *c1 corner-after *c2) 
(build the-door *door between-corner1 *c1 between-corner2 *c2)

  
ild act (build action sturn-rig

build action turn-right-pri
ction disbelieve 

 (build at-corner *c1)) 
elieve

object1 (build in-doorway

is currently *not* self-aware; 
obot turn 90 degrees to the 

;;; 1. turn left
;;; 2. move-f
;;; 3. turn left 90 degrees 
 
(describe 

&ant ((build me

(build member *room1 class room) 
(build member *room2 class 
(build in-doorway *door room *room1) 
(build the-door *d
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rn-left) 
   

left-prim) 
-forward-prim) 
forward-prim) 

n move-forward-prim) 

ay *door room *room1)) 

(build corner1 c2 corner2 c3)))))) 
 

he comments are self-explanatory, though we hope to include diagrams of their logic in a 
vised paper. The format of these complex actions is basically a bunch of antecedents 

 performing that act, and then what happens when the act is 
he act is described as a plan consisting of a sequence of primitive actions and 

and note how the act is 
is actually quite an 

discussed further in the next section. Note also 
 there are two turn-lefts: one is for turning into a doorway and the other is for turning 

ak, is possible since the preconditions to 

obot Planning 
’s planning is actually a simple snsequence of follow-wall and turn actions, 

depend hat the robot starts at the wall in 
between corne all, turn-left, follow-wall, turn-left, 
follow-wall, turn-left is simplistic goal-plan is sufficient 
for this stage. 
 
;;; The robot needs to ng input through the  
;;; sensor and changing
 
;;; Initially, front senso
(perform (build action
                object1 (bui
                               arg (build sensor front current high)))) 

;;; Initially, left sensor is high
(perform (build action believe
                object1 (build senso
 
(perform (build action believe
                object1 (build besid
                               (build corn  corner2 c10)))) 
 

cq ((build act (build action stu
     plan(build action snsequence 

object1 (build action turn-
object2 (build action move
object3 (build action move-
object4 (build actio
object5 (build action move-forward-prim) 
object6 (build action turn-left-prim))) 
 
(build action disbelieve 

object1 (build in-doorw
(build action believe 

object1  (build beside-wall  

T
re
describing the preconditions of
performed. T
then updates of the fluents. Do take a close look at Follow-Wall 
performed as a loop of sensor-detection and forward movement. This 
awful way of performing the action and is 
that
out of a doorway. This “polymorphism”, so to spe
the actions are dfferent. 
 
 
R
The robot

ing on where the robot starts. For example, given t
rs c1 and c2, its plan will be to follow-w

twice and be at the goal room. Th

be in an initial start state prior to taki
 the beliefs. 

r not high, so it believes it is not in front of a wall 
 believe 
ld min 0 max 0 

 
, so it believes it is beside a wall 
 
r left current high))) 

 
e-wall 
er1 c9
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7.2 Problems Encountered 
 
A few problems were encountered during the implem

s during the implementation of other cognitive entities. The fact 
that in software, instructions are executed in very less time, whereas in hardware, in 
the read world, it takes a non-negligible amount of time to actually execute the 

 issued.  

input will be recorded after the move has been completed, and based on the 
new sensor input, the client on the Unix side can issue the next command. The 

uld send a 
d check for changes in sensor input and issue a move-

forward command again. The looping was too fast for the real world 
ands. Too many 

ds were queuing up on the server side (robot) because of 
ere not what was expected. 

which was to take care of the 
changes in sensor input on the server side itself. (robot side). Hence, when a move-

ntil a change in sensor input, 
 at a corner or beside an open door. Then the client SNePS 

sue the next command. We are working 
on implementing this.  

nly be accessed from the main thread it seems. 

4. The robot is currently tethered to the wall by an ethernet cable, which limits the 
mobility of the robot. 

5. Learn X11 libraries in C++ to work with the camera. 

 
 
 
 

entation phase: 
  

1. The original Shakey design does not take into account the fact that the robot might 
go off course if it moves away from the wall it is following. This is a likely event in 
the case where the robot wheels are not perfectly aligned and there is a chance of 
the path the robot is following will be skewed. In this case, the solution would be to 
have a cut-off for the sensor input from the left sensors, which would indicate if the 
robot was moving too far away from the wall. If the sensor input went low, below 
this threshold, it will indicate that the robot is not very near the wall. 

 
2. Another major problem that came up was one which has been encountered on 

previous occasion

command
The commands which were issued by the client program (the process on the 

Unix machine) were sent through the socket to the server process running on the 
robot. For example, the move-forward command. The server process on the robot is 
supposed to issue to command to make the hardware robot move-forward and the 
sensor 

problem being faced was that the client process was in a loop where it wo
move-forward command, an

implementation to complete executing the move-forward comm
move-forward comman
which the actions performed w

A few solutions were suggested. One of 

forward command is issued, the robot moves forward u
which will indicate it’s
program can follow appropriate logic and is

 
3. Mobility data structures can o
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8 Inte
 
The final step of the project is the integration of all the modules each participant of the 
sem
of envi
base (K
course 
primactions through SNePS. The robot is goal-oriented and keeps planning and replanning 
till it reaches it
 
During
functio
 
9. Fut
 
There i
wide ra
 

1. 

 knowledge of the floor(s), (he might even use the elevator) 

ts.  

2. Learn X11 libraries in C++ to work with the camera. 

orward, move-backward,  
    move-left and move-right.  

.2 Ideas for implementing a wider range of tasks 

ecause the hardware robot provides an excellent way of hands on programming, it is 
portant to list the different hardware features which can be used to enhance the 

robot. 

l language 
ommands along with command strings through the Unix client. 

gration  

inar has produced. One is the PML level code. Another is the KL SNePS representation 
ronment and rules. These should be integrated for the robot to use its knowledge 
L) to determine a goal and subsequently build a plan to reach that goal. During the 
of executing that plan, it also uses the Lisp functions which are linked to 

s goal, or its goal is deemed unreachable, at which point it stops. 

 integration of the various modules, there was not much difficulty. The SNePS 
ns call the Lisp functions and the variables for sensor input are accessible to SNePS.  

ure enhancements 

s immense scope for future implementations being more ambitious because of the 
nge of capabilities possessed by Magellan. Some of the future aims are 

The initial aim was the more ambitious implementation of a delivery agent. Given a  
packet and a destination where the packet has to be delivered, Magellan uses prior 
knowledge, and mapping techniques to chart out a path from his current position to 
the destination. The proposed use for the onboard camera was identification of 
people based on the color of their clothes. Every person will be identified by a blob 
of color on top (shirt) and a blob of color on the bottom (jeans).  
Magellan will reach the person to whom the packet has to be delivered, using the 
mapping techniques and
.The m  from either topological mapping or grid 
based mapping or a combinational algorithm which makes use of both concep

apping techniques are to be chosen

 
 

 
3. Develop follow wall primitive instead of just having move-f

 
9
 
B
im
capabilities of the 
 
8.2.1 Camera 
Identify people through blobs of color 
 
8.2.2. Mapping 
Robust Topological mapping (explore and learn) 
 
8.2.3. Speech driven robot. 

 sound card has to be fitted onto the robot, so that it can respond to naturaA
c
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o overcome with these new systems we are working with, 
espite the many that have been overcome already. This has been an extremely good 

11.
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10. Summary 
 
There are still many obstacles t
d
learning experience. We hope to successfully implement all the proposed ideas. Magellan 
is the reinvented Shakey.  
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