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ABSTRACT

To increase the depth and appeal of computer games, the
intelligence of the characters they contain needs to be in-
creased. These characters should be played by intelligent
agents that are aware of how goals can be achieved and rea-
soned about. Existing AI methods struggle in the computer
game domain because of the real-time response required
from the algorithms and restrictive processor availability.
This paper discusses the CogAff architecture as the basis
for an agent that can display goal orientated behaviour un-
der real-time constraints. To aid performance in real-time
domains (e.g. computer games) it is proposed that both the
processes encapsulated by the architecture, and the infor-
mation it must operate on should be structured in a way that
encourages a fast yet flexible response from the agent. In
addition, anytime algorithms are discussed as a method for
planning in real-time.

INTRODUCTION

Computer games are particularly suited to agent based AI
because almost every computer game features characters.
Whether these characters are faceless guards in a top-secret
facility, players on a football pitch, or evil plumber-battling
princess-kidnapping despots, they can all be viewed as ex-
amples of (more or less) intelligent agents. The field of
agent building in AI is very wide ranging, incorporating
robotics, simulation, philosophy, vision and others. Com-
puter games need the application of these techniques if they
are to increase the intelligence of their characters, and con-
sequently the appeal and quality of the games (van Lent
et al., 1999).

There are currently two existing projects that aim to
produce intelligent agents specifically for computer games.
These are the EXCALIBUR project and the Soarbot project.
The Soarbot project aims to create bots (“human level” com-
puter characters) for Quake2 using the the Soar architectural
framework for intelligent agents. The EXCALIBUR project
is less game specific and is aimed more toward developing a

system for controlling intelligent agents in computer game-
like environments.

The rest of this paper will first briefly outline why agents
should demonstrate goal orientated behaviour, and then in-
troduce the CogAff architecture. This will be followed by
some thoughts on one part of the architecture, how the data
an agent processes should be structured, and how anytime
algorithms can be applied to real-time planning.

GOAL ORIENTATED BEHAVIOUR

When an agent is situated in an environment such as a com-
puter game, there are a number of things that the agent can
do to appear more intelligent (and hence a more believable
character). One of the most important of these is to act
in a way that demonstrates an awareness of goals. This
awareness can range from simply having “built-in” goals
(e.g. the hard-wired goal to eat when hungry), to generating
completely original goals when the situation requires it (e.g.
the goal to help the little old lady that has fallen over in
front of you), and reasoning about the relative importance
of different goals (e.g. deciding that helping the old lady is
more important than buying a sandwich).

By achieving goals the agent demonstrates that it is
proactive (not just responsive), that it can reason about what
should be important in the current situation (e.g. social in-
teraction, accumulation of important physical objects, pro-
tecting its family), and that it can find ways in which it can
affect the achievement of these goals. Goal orientated be-
haviour is also one of the more widely accepted properties
that distinguishes an agent from other artifacts
(Franklin and Graesser, 1997). A typical agent will have a
large number of interacting goals, ranging from the critical
(e.g. survival), to the obscure (e.g. collecting Pokemon
trading cards), to the mundane (e.g. getting to work).

THE COGAFF ARCHITECTURE

The CogAff architecture is a three-layer agent architecture
developed by the Cognition and Affect project at the Uni-
versity of Birmingham. Its structure can be seen in Figure 1.
The ideas and design decisions behind the architecture are
detailed in a number of the Cognition and Affect project’s
publications e.g. (Sloman, 2000; Sloman, to-appear). The
following list provides a shallow, whistle-stop tour of the
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Figure 1: The CogAff Architecture

architecture’s key features.� Reactive Layer: Reactive processes that act based on
the current world state or the agent’s internal state.� Variable Threshold Attention Filter: A filter that pre-
vents less-than-urgent goals from overloading the pro-
cessing of the deliberative layer (cf. (Logan, 2000)).� Deliberative Layer: Supports the agent’s “what-if”
reasoning and deliberative decision making.� Meta-management Layer: Monitors and evaluates in-
ternal control and processing issues.

The design of the architecture is such that an agent can
make the most of its limited processing resources, and is
able to react to important environmental events in a timely
fashion. Both these facts are crucial to the implementation
of intelligent agents in computer games. The use of pro-
cessing time is maximised by the attention filter. The filter
is used to inhibit the progress of goals (requests for process-
ing) generated by the reactive layer. Its basic operation can
be summarised as follows; every goal generated is assigned
a heuristic measure of insistence, if this level is greater than
the one encoded by the filter it is allowed to “surface” and
influence processing in the deliberative layer (Beaudoin and
Sloman, 1993). A timely (although not always optimal)
response to environmental change is guaranteed by having
concurrently operating layers. If the deliberative layer is
engaged in a processing task, the reactive layer will always
be available to react to the current situation.

An example of such concurrency in a game could be
demonstrated by a player in a football game running with
the ball in space. The reactive layer keeps the player run-
ning in the right direction and keeps the ball under control.
Whilst this is happening the deliberative layer can plan how
and when to pass the ball. Distinct levels of processing
can also be witnessed in a wide variety of human activities.
For example, our breathing is constantly controlled whilst
we happily contemplate our day to day problems. Existing
examples of agents using the CogAff architecture include
Ian Wright’s MINDER1 (Wright, 1997) and Steve Allen’s

concern-centric agents (Allen, 2000).

The Deliberative Layer

Within the CogAff architecture, decision making is carried
out in various ways. In the reactive layer, decision making is
based on selecting a “hard-coded” action rule that matches
the current situation. The deliberative layer’s “what-if”rea-
soning requires the generation and evaluation of possible
future states. Because of this, a processing method more
sophisticated than reactive rule execution is required. Re-
active processing cannot be used because purely reactive
methods have difficulty defining paths to future states when
their preceding situations cannot be accurately and wholly
anticipated. Such situations will often occur in complex
and dynamic computer game worlds. A suitable method
for deciding actions for future states is generative planning.
Examples of generative planners include
Cassandra (Pryor and Collins, 1993) and STRIPS
(Fikes and Nilsson, 1990). The behaviour of such systems
could theoretically be replicated by reactive rules, but such
a large set of rules would be required that (a) development
time would be extensive, and (b) the processing time re-
quired to match a rule to the current state would be
prohibitively large.

The deliberative layer is the driving force behind mak-
ing the decisions that ultimately direct the behaviour of the
computer game agent, therefore it is this layer that we must
focus on when aiming to develop goal-orientated behaviour.
Different instantiations of the CogAff architecture can con-
tain vastly different deliberative layers. At one extreme
it could feature some simple pattern matching that eval-
uates possible future states based on the current one, and
retrieves a stored plan from memory. At the other you may
see a complex system of interacting processes (i.e. belief
maintenance, generative planning, machine learning, plan
recognition, opponent modelling and goal management).
When using any vaguely complex reasoning system, the
deliberative layer is likely to become the agent’s processing
bottleneck. This is because planning in anything but simple
domains will have to deal with computationally intractable
search spaces (Chapman, 1985). The consequence of this
is that an agent may get caught up in “what-if” deliberation
when its attention is really required elsewhere. This will
prevent an agent from acting effectively in real-time, as in
the long-term its reactions will not be as successful as plans.
To combat this problem the functional elements within the
deliberative layer must (a) be structured and controlled in
a way that allows them to be highly responsive to the real-
time dynamics of the agent’s environment, and (b) provide
affective responses even when their processing time is lim-
ited or unpredictable.

STRUCTURAL CONSIDERATIONS

To enable deliberative processing to occur in real-time (at
run-time), it will be necessary to structure both the infor-
mation that the agent is to deliberate with, and the processes



that will perform the deliberation. This structuring should
aim to encourage fast responses from the deliberative layer
of an agent, preferably without the loss of expressive power.

Information Structure

It is important to structure the data that an agent must rea-
son with. This allows search to be performed in a more
efficient and directed manner. For example, using heuris-
tics when performing search represents a way of structuring
data. Heuristics structure the search space into regions of
“good” and “bad” solutions or partial solutions. The follow-
ing paragraphs will discuss two possible ways of structuring
the search space an agent faces in a computer game.

The first method of imposing structure is plan waypoints.
These are a similar concept to navigation waypoints: a point
(in plan space) that the agent must pass through in order to
progress. If we imagine a hierarchy of abstractions span-
ning the entire of an agent’s operation (i.e. a plan from the
start of a game to the end of a game), waypoints represent
subgoals very high up in this hierarchy. They could be
generated in various ways (not just through planning), or
could be specified offline to generate desired behaviour (e.g.
collect 100 gold coins - buy a sword - find player X - engage
in combat). By focusing an agent’s deliberative functions
on achieving waypoints we can reduce the time an agent
must spend planning. This is because the agent will only
have to tackle easily manageable chunks of planning, and
hence will be able to return a result quicker. Waypoints
will also increase the efficiency of the planning process. By
strictly limiting the future projection of an agent’s plans,
we reduce the probability that intended actions will become
invalid because of changes due to the dynamic nature of
computer game worlds.

A second possibility for structuring the information an
agent faces is through the role it plays in the game. If we
use the idea of a theatrical role (i.e. a part that an actor must
play, and that defines their behaviour), we can view agents
as actors playing roles in computer games. A role will
determine superficial features of an agent like appearance
and voice, but roles can also be used to specify behaviour-
relevant characteristics. These can include physical proper-
ties such as strength or speed, or more interestingly, cogni-
tive properties such as intelligence, perceptiveness, or pref-
erences for or against objects or behaviours (e.g. a hatred
of spiders or a love of guns that make loud noises). These
characteristics can be used in a similar manner to search
heuristics, in defining and focusing processing on regions
within the search space that will more readily offer suitable
solutions. Such characteristics could also lead to very var-
ied behaviour being produced by similar agents with differ-
ent roles.

Architectural Structure

The essence of an agent architecture is the presence of var-
ious heterogeneous processes linked together by a flow of
information. To produce an agent that can deliberate in

real-time, whilst staying responsive to its environment, we
must take full advantage of architectural structure. At one
structural extreme an agent could have a monolithic deliber-
ative layer which dealt serially with every different type of
reasoning and kept track of all the changes in the environ-
ment. The problem this presents is that it would risk lagging
behind the world if it was processing a problem when it
really should be updating its representation, or monitoring
important events. The other structural extreme would be a
deliberative layer consisting of an independent intelligent
process for each necessary job (e.g. a process that did all
the planning in isolation, a process that maintained beliefs
in isolation etc.). This would lack efficiency because pro-
cesses would need to have duplicate features (e.g. envi-
ronmental monitoring, goal representations) if they were to
operate successfully, and such a level of functional indepen-
dence would no doubt throw up a number of conflicts when
processes acted concurrently.

Luckily we only have to use such extremes as scare
tactics when making a point, and are not restricted to them
when developing agent architectures. To create a successful
deliberative layer we need to combine the key feature of the
first extreme (control over a variety of integrated processes),
with the key feature of the second (concurrently active pro-
cesses), and create something better than both of them.

The asynchronous operation of architectural elements
is an idea commonly used to facilitate real-time operation
(cf. qualities for real-time success in (Hayes-Roth, 1990)).
The advantage of this is demonstrated by the concurrent
independent layers of the CogAff architecture. If we apply
the concept to the elements within a single layer, a similar
advantage can be gained. If we divide the functions of the
deliberative layer into a number of independent yet com-
municating modules, each gets the advantage of a relatively
autonomous operation (e.g. allowing it to manage its own
resources), and the agent gets the advantage of a responsive
and flexible deliberative layer. The structure of the delib-
erative layer should allow for asynchronous processes for
at least planning, belief maintenance, and motive mainte-
nance. Motive maintenance should handle the adoption,
management and deliberative generation of goals, as well
as dealing with roles and waypoints (this could easily be
decomposed further).

ANYTIME PLANNING

Even with an architecture that is flexible with regard to time
demands, any planning process will pose possible perfor-
mance related problem. This is because planning in com-
plex environments is, as mentioned previously, intractable.
To be a manageable and fully integrated part of the structure
of the deliberative layer, a planning algorithm requires some
additional features. Primarily we would like a planner that
can be monitored and controlled (interrupted, redirected,
etc.) without hindering its performance. This would, for
example, allow an agent to interrupt planning how to attack
an enemy when it needed to plan to escape from imminent
danger. It would also be desirable to have a planner that



could be executed for a fixed amount of time and then have
it return a result. This could be used, for example, if the
agent knew how long it would have until certain environ-
mental features changed. Anytime algorithms (Dean and
Boddy, 1988) lend themselves ideally to these desired be-
haviours.

The underlying concept of an anytime algorithm is that
as processing time increases, so does the quality of the re-
sult returned. For example, drawing a picture could be con-
sidered an anytime algorithm; the longer the artist has to
spend on the work, the higher the quality of the result. An
example of a non-anytime algorithm is searching for your
car keys; either you’ve found them or you haven’t. Be-
cause of the steady improvement in the results of process-
ing, it is possible to interrupt the algorithm at any time to
return a solution (the earlier you interrupt the lower the
solution quality). To produce an algorithm that can function
in this manner, a number of desirable properties must be
present (Zilberstein, 1996). One of the most important of
these properties is consistency of improvement. A consis-
tent algorithm provides output quality that correlates well
with computation time, allowing a performance profile to
be built (Dean and Boddy, 1988). A performance profile is
a graph of output quality against time which can be used to
probabilistically determine the outcome of an anytime algo-
rithm. Performance profiles are needed to allow reasoning
about the operations of anytime algorithms (e.g. whether it
is worth interrupting a process yet or if an interruption is
forced, whether the resulting plan will be of a usable stan-
dard). Unfortunately knowledge-based algorithms such as
planning are not always “well-behaved”; their output does
not correlate well to their computation time. This makes it
difficult to construct performance profiles for them
(Mouaddib and Zilberstein, 1995). Some previous work has
presented different approaches to this problem.

Work done on the EXCALIBUR project has produced
a planning model based on structural constraint satisfaction
problems (SCSPs) (Nareyek, 2000a). Local search tech-
niques are used to explore the constraints that define the
planning problem. Structural constraints allow the local
search method to modify not just the instantiations of the
constraints on the plan (as in traditional constraint satisfac-
tion problems), but the entire structure of the plan. The
use of local search means the increase in complexity of the
plan occurs in an iterative manner and hence results in a
predictable performance profile. The early results of this
method look promising (Nareyek, 2000b).

(Mouaddib and Zilberstein, 1995) present the concept
of progressive processing. This method groups together the
knowledge and operators that represent a particular level of
granularity. Operators at one level of granularity can only
process data that have the same level of granularity, thus
limiting the immediate search space. After every reasoning
cycle an evaluation is made about whether to continue rea-
soning at the current level, or to use more specific operators.
Processing in this way gives the knowledge based algorithm
a much more predictable performance profile because the
solution quality increases steadily with the granularity of

the processing.
Of these two methods, the concept of progressive pro-

cessing is most suited to agent-based real-time planning.
This is because it lends itself to the use of hierarchical plan-
ning techniques (each level of the hierarchy represents a
level of granularity). This is important because it allows the
agent to take advantage of goal-subgoal instability (Wood,
1993, p27). This method specifies stable high-level goals
first, and then does not specify their less stable subgoals
and action primitives until it is absolutely necessary. This
is useful in dynamic environments because plans can be
generated that encode the goal being planned for without
setting in stone the precise (primitive) details of how it isto
be achieved (the part of the plan that will probably change).
To reflect the situated nature of a computer game agent (i.e.
that it is directly effected by the results of its actions, and
not an unaffected advisor) it may be necessary to modify
the progressive planning model slightly. Instead of always
planning at uniform levels of granularity, it may benefit the
agent to expand early plan subgoals to a greater degree of
specificity before expanding later ones. This would mean
that if a planning process gets terminated prematurely, the
agent will have concrete actions to execute immediately.
Unfortunately such a modification presents two problems.
The first is that it may not provide such a predictable perfor-
mance profile as the original algorithm. This is because the
purely progressive nature would be replaced with a series
of progressions and regressions. The second is the issue
of subgoal interaction. If early subgoals are expanded to a
greater degree than later ones, this may prohibit important
choices later in the planning process.

A problem that arises when considering anytime pro-
gressive processing in a situated agent is: how does the
agent execute the incompletely specified plans that are re-
turned after the planner has been interrupted? If we only
allow the planner to only return any complete plans found,
we lose the predictable performance profile (a
similar method to this was used in
(Blythe and Reilly, 1993)). But not doing this means that
some parts of the plan may still be in an unexpanded or
abstract form. A possible (yet far from satisfactory) answer
to this would be to take advantage of the architecture that
the planner is implemented within. The reactive layer of the
agent (assuming a CogAff architecture) must have access
to a number of precompiled reactive plans (e.g. the run-
away quick plan or the pick up health plan) for use when
the planning process is not available. If this plan library
was to contain some sketch plans for more abstract actions
(e.g. clear the area of enemies, or get to a higher floor in the
building), then the agent would be able to act with some
degree of intelligence. Some definite restrictions would
have to be placed on this method. The sketch plans should
be fairly low in specific detail thus allowing them to be
executed in many different circumstances. This would also
maintain the importance of agents producing more com-
plete plans; a complete plan would still have a higher likeli-
hood of success than an incomplete one. There should also
be a restriction on the level of abstraction that the sketch



plans can describe. It would be thoroughly pointless for an
agent builder to develop a planner and then give the agent
reactive implementations of all the possible actions anyway.

CONCLUSIONS & FUTURE WORK

So far there are very few solid conclusions to draw from this
work. This paper has outlined more a direction for research
than an account of its results. What has been made clear
is that to increase the intelligence, and hence the appeal
of computer game agents, it is necessary to give them the
ability to make goal orientated decisions in real-time. This
equates to planning in real-time. Planning on its own will
be ineffective, so it must be embedded in an architecture
that allows the agent maximum real-time flexibility. The ar-
chitecture proposed is the CogAff architecture. It is suitable
because it is geared toward agents with limited resources in
dynamic environments. The deliberative layer of the archi-
tecture, and the data it will process should be structured to
facilitate real-time operation by the agent. It is clear that
the planning system for a computer game agent should be
based on an anytime algorithm (or possibly a collection of
them), but knowledge based systems do not often display
the necessary properties required for a “well-behaved” any-
time algorithm. The concept of progressive planning is used
as the solution to this, although alterations may need to be
made for situated planning. Planning concepts that were
not mentioned but need to be addressed are the problems
caused by a dynamic environment. These are problems
such as information uncertainty and the variable success of
actions. Solutions to these will involve interleaving plan-
ning and plan execution, and monitoring the environment
and the outcomes of processes and actions. All concepts
will benefit from prototype implementations and design re-
finements. The initial implementations will be done using
POP-11 and the SIMAGENT toolkit because the language
allows very quick and easy incremental development. A
working implementation within a commercial game would
require a language that executed a lot faster. A possibility
for this would be the RC++ language developed at Sony. It
has a number of similarities to SIMAGENT and so porting
the code should not pose any major problems.

NOTES

This research is supported by sponsorship from Sony Com-
puter Entertainment Europe. The Cognition and Affect
project’s homepage and publications can be found at
http://www.cs.bham.ac.uk/˜axs/cogaff.html. The homepage
for the EXCALIBUR project can be found at
http://www.ai-center.com/projects/excalibur/, and theSoar-
bot project at http://ai.eecs.umich.edu/˜soarbot/.
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