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Blind Equalization of Nonlinear Channels From
Second-Order Statistics
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Abstract—This paper addresses the blind equalization problem
for single-input multiple-output nonlinear channels, based on the
second-order statistics (SOS) of the received signal. We consider
the class of “linear in the parameters” channels, which can be
seen as multiple-input systems in which the additional inputs
are nonlinear functions of the signal of interest. These models
include (but are not limited to) polynomial approximations of
nonlinear systems. Although any SOS-based method can only
identify the channel to within a mixing matrix (at best), sufficient
conditions are given to ensure that the ambiguity is at a level that
still allows for the computation of linear FIR equalizers from the
received signal SOS, should such equalizers exist. These conditions
involve only statistical characteristics of the input signal and the
channel nonlinearities and can therefore be checkeda priori.
Based on these conditions, blind algorithms are developed for the
computation of the linear equalizers. Simulation results show that
these algorithms compare favorably with previous deterministic
methods.

Index Terms—Blind equalization, nonlinear channels, second-
order statistics.

I. INTRODUCTION

B LIND methods are of interest in digital communications
as they permit channel identification/equalization at the

receiver without training signals. The topic of blind equaliza-
tion of single-input multiple-output (SIMO) linear channels in
particular has received considerable attention (see [17] and the
references therein), motivated by the facts that these channels
can be perfectly equalized if the subchannels are coprime and
the equalizer is long enough and that channel estimation/equal-
ization can be performed from the second-order statistics (SOS)
of the received signal. (SOS-based methods are often preferred
to higher order statistics approaches since they usually require
shorter data records).

By contrast, there is relatively little work in the area of blind
equalization of nonlinear channels. (Some exceptions are [6],
[15], and [19]). This problem, however, is of considerable prac-
tical interest since many communication systems, such as dig-
ital satellite and radio links [2], high-density magnetic [3], [7],
and optical [1] storage channels exhibit significant nonlinearity.
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Further many physiological systems are also nonlinear [13]. In
this paper, we consider nonlinear SIMO channels modeled as

(1)

where is the scalar stationary channel input, the
terms for are
scalar nonlinear causal functions of , are coef-
ficient vectors, and and are signal vectors
representing an additive disturbance and the observed channel
output, respectively; the number of subchannels is. The noise

and the signal are assumed to be independent. This
model accommodates, for example, polynomial approximations
of nonlinear channels (Volterra models), although the “basis
functions” need not be monomials in principle. It is as-
sumed that the functions generating the nonlineari-
ties are known. This multichannel configuration can be obtained
at the receiving end by using a sensor array, by fractional sam-
pling the channel output [18], or by injecting cyclic redundancy
at the channel input [16].

In this paper, we ask the following question. What informa-
tion can be obtained about the channel from the SOS of its
output? In the linear channel case, it is well known that under
certain coprimeness conditions, the channel coefficients can be
estimated from SOS up to a multiplicative constant [17]. We
will show that this is not true in general for the nonlinear model
(1) but that nevertheless, zero-forcing (ZF) linear equalizers for
this class of channels can still be designed using only the SOS
of , provided certain conditions are satisfied. The fact that
linear finite impulse response (FIR) systems can perform ZF
equalization of nonlinear SIMO channels under certain condi-
tions was first pointed out in [6], where a blind, deterministic
approach for equalizer design was also presented. Although this
algorithm is elegant and relatively simple, it has several draw-
backs. First, it assumes that an associated channel matrix is
full rank and square, claiming that squareness can always be
achieved, if necessary, by decreasing the number of channels
and increasing the equalizer length. However, a longer equalizer
would increase the computational complexity; further, if some
channels are to be dropped, it is not possible to ensurea priori
that the surviving channels satisfy the corresponding full-rank
condition, even if the original set did. Thus, the selection of the
channels to drop is a difficult problem. The first issue motivating
this paper is whether this squareness assumption can be relaxed.

Second, in the event the linear kernel has the same length
as another kernel, [6] has to resort to higher order methods to
equalize the channel. The theory developed in this paper shows
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that this restriction on the linear kernel length is not necessary
for SOS methods to apply.

Third, when a kernel other than the linear one has the largest
memory, then the techniques of [6] only resolve this largest
kernel. In our case, we show that under the right conditions, even
the linear kernel is resolvable, despite the violation of this par-
ticular length condition.

Fourth, the algorithm from [6] only provides equalizers with
zero and maximal delays, whereas in general, the greatest re-
duction in mean squared error is obtained for some intermediate
delay. The algorithms presented here can be used to compute
equalizers for all possible delay values.

Fifth, deterministic methods do not require nor exploit knowl-
edge of the statistics of . SOS-based methods exploiting
such information when available can be expected to lead to im-
proved performance. Simulation results given here verify this
fact for the class of channels (1).

Recently, an SOS-based approach appeared in [15], inspired
by the method of [20] for linear channels. However, this method
requires that every nonlinear subchannel be linearizable by an
FIR Volterra system of known order and memory, which is, in
general, not possible, especially if each subchannel is modeled
as an FIR Volterra system itself (a common practice).

In principle, (1) could be seen as a linear multiple-input mul-
tiple-output (MIMO) system by viewing the signals ,

as additional inputs. Although SOS-based techniques
exist for equalization within such a framework [17], they usu-
ally assume that the different inputs are independent (which
is no longer true in our setting) and only resolve the inputs
to within a mixing matrix. In the current context, as the
are functions of , this would mean that only a linear mix-
ture of could be obtained. The results
of this work show that under right conditions, the structure of
the mixing matrix permits obtaining linear ZF equalizers. These
conditions are on the statistical properties of the symbols
and the remaining basis functions . Therefore, they can be
checkeda priori in order to determine whether a given channel
structure can be equalized from SOS.

Two popular SOS-based methods for blind equalization
of linear channels are i) the method of [18] and ii) subspace
methods [14]. The latter do not exploit the explicit knowledge
of input statistics and consequently exhibit inferior performance
relative to methods that do exploit such knowledge [11]. Thus,
here, we pursue extensions of [18] to the nonlinear channel
case.

In our notation, and denote conjugate,
transpose, conjugate transpose, and pseudoinverse, respectively.
Here

shift matrix with ones in the first subdiagonal
and zeros elsewhere

exchange matrix with ones in the antidiagonal
and zeros elsewhere
vector of all zeros, except for a 1 in theth position.

We use the direct sum notation for block diagonal ma-
trices:

The paper is organized as follows. Section II introduces the
matrix-vector formulation of the setup and the problem state-
ment and shows that SOS methods do not suffice to estimate
the channel to within a scaling constant. The structure of the
mixing matrix inherent to any blind SOS approach is discussed
in Section III. Section IV presents a test that can be used to de-
termine whether a given channel is equalizable from SOS. Suf-
ficient conditions on the source statistics that ensure a positive
answer from this test constitute our main results and are given in
Section V. Algorithms and simulation results are given in Sec-
tions VI and VII, respectively.

II. PROBLEM FORMULATION

The channel input–output relation can be expressed in matrix-
vector form as follows. By collecting successive observations
in the vector

one can write

(2)

where and are the noise vector and the signal re-
gressor, respectively, given by

and with

(3)

(4)

which represent the linear and nonlinear parts of . The
channel matrix is given by

with every block Toeplitz:

...
...

has size . For convenience, let

, which is the size of , and ,
which is the size of . Thus, has size .

Since the channel nonlinearities may induce nonzero mean
terms even if is zero mean, we will consider covariance

matrices rather than autocorrelation matrices. The covariance
sequence of the process can be written as

cov (5)

where are the source and noise covariance se-
quences given by

cov

cov (6)
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The following standard assumptions are adopted throughout the
paper:

A1) The channel matrix is tall and has full column rank.
A2) is zero-mean white with covariance .
A3) The covariance matrix is positive definite.
AssumptionA1 is a “coprimeness” requirement on the sub-

channels. It ensures the existence of vectorssuch that
. Thus, in the noiseless case, for , one has

so that these vectors pro-
vide ZF linear equalizers with associated delay .

UnderA2, one has . Then, because ofA1,
can be estimated as the smallest eigenvalue of so that

the effect of noise can be removed from . Henceforth, we
will assume that .

AssumptionA3 constitutes a “persistent excitation” condi-
tion on . It allows one to write

with invertible. (7)

The problem under consideration can be posed as follows.
Blind Equalizability Problem:Let be a matrix of the same

size as such that

(8)

We say that is compatiblewith the SOS of (up to lag
). Determine conditions under which a ZF equalizerfor any

compatible is also a ZF equalizer for

for some and (9)

This was solved in [18] for the particular case of linear
channels with white inputs, for which if is compatible up
to lag , then so that (9) holds. This is not
necessarily true in our case. For example, suppose that the
different terms are uncorrelated: cov ,

(e.g., a linear-quadratic channel with iid input). Then,
is block diagonal for all so that any matrix of the

form is compatible up to
any lag. Thus,in general, cannot be identified to within a
single scaling constant. However, this may not be necessary in
order for (9) to hold, i.e., a higher level of indeterminacy in the
channel parameters could still allow equalization. We explore
this issue in the next section.

III. M IXING MATRIX

Let be a square root of as in (7). Define thenormal-
izedchannel and source covariance matrices, respectively, as

(10)

has full column rank in view ofA1 andA3. Using (10), the
matrices become

with (11)

Similarly, if is compatible up to lag, let so that
satisfies

(12)

For , (12) gives . Since has full column
rank, this implies for some unitary . Thus, the corre-
sponding (unnormalized) compatible channel matrix must sat-
isfy

(13)

which shows that any compatible channel matrix is related to
the true channel via a mixing matrix of the form .
Observe that although is unitary, in general, is not. Let us
introduce now the concept of admissibility.

Definition 1 (Admissibility): A -square matrix is
said to beadmissibleif

diagonal invertible (14)

with “ ” indicating irrelevant values. Note that if is admis-
sible and invertible, so is , and that any function of an ad-
missible matrix is admissible.

Observe that if is compatible with
admissible, then (9) is satisfied. Thus, resolution of the channel
matrix to within this ambiguity suffices for equalization pur-
poses.

Our goal is to determine conditions under which the mixing
matrix is ensured to be admissible. To address this issue, we
must explore the constraints that the conditions (12) impose on
the unitary matrix . Substituting into (12) and using
the fact that has full rank, these constraints can be written as

(15)

i.e., must commute with the normalized source covariance
matrices .

IV. SIMPLIFIED EQUALIZABILITY TEST

Determining the general form of all unitary matricesthat
satisfy (15) requires solving linear sets of equations with
quadratic constraints. Fortunately, this problem can be replaced
by one of solving linear sets of equations withlinear con-
straints. First, recall that any unitary matrixcan be written as

, where is a Hermitian matrix with eigenvalues in
[9]. Second, we have the following result from [10].

Theorem 1: Let be -square Hermitian and
. Then, and commute if and only if and

commute.
Therefore, the problem of determining the set of unitary ma-

trices that commute with is equivalent to finding the set of
Hermitian matrices that commute with . Hence, the blind
equalizability problem can be broken into these three steps.

1) Select a square root of .
2) Find all Hermitian matrices commuting with

for .
3) Check whether for these matrices is admis-

sible. If so, the channel can be equalized using SOS, as
admissible implies ad-

missible.
The utility of Theorem 1 is revealed in that steps 2) and 3)

are much easier to solve for Hermitian matrices than for unitary
matrices.
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We proceed now to determine sufficient conditions on the
source statistics and the channel nonlinearities in order to ensure
success of the SOS-based equalizability testa priori.

V. MAIN RESULTS

It is useful to consider block lower triangular square roots
[with block partition corresponding to linear and nonlinear

parts of , as in (14)], for the following reason. Suppose that
any Hermitian solving step 2) of our test is block diagonal.
Then, is block diagonal; therefore, if was block
lower triangular, then so is . Having block lower
triangular [i.e., as in (14) but with not necessarily diagonal]
is the first step toward admissibility. Its significance is that a
linear ZF equalizer for the compatible matrix ( ,

), although not a ZF equalizer for the true channel
, still removes all the nonlinear intersymbol interference (ISI)

if is block lower triangular since . Once this
has been achieved, additional conditions for the removal of the
residual linear ISI can be sought.

A. Preliminary Result

The following result ensures the block diagonal property of
any Hermitian commuting with . The proof is given in
Appendix A.

Theorem 2: Assume that there exists a matrix such that
and

(16)

with having size , . Suppose that ei-
ther i) do not share any eigenvalues; or ii)
, and do not share any elementary Jordan block in

their Jordan decompositions, i.e., Jordan blocks belonging to the
same eigenvalues have different sizes. Then, any Hermitian
commuting with must be of the form in (17) with

:

(17)

B. Useful Square Root

With the result from Theorem 2 in mind, we will focus on
block triangular square roots and look for conditions under
which (16) is satisfied. To this end, let us define the
matrices

cov

cov (18)

so that the covariance matrices can be written as

with

cov for

cov (19)

and the shift structure of yields the following relations:

(20)

(21)

(22)

(23)

Define [the Schur complement of
with respect to ], which is positive definite. The fol-

lowing choice of will prove particularly useful:

(24)

with , square roots of , , respectively. Using
(24), becomes (25), shown at the
bottom of the page, where .

C. Block Triangular

By using (20)–(23), the off-diagonal terms of the middle ma-
trix in (25) can be rewritten as

(26)

(27)

Introduce the vectors

(28)

which comprise the coefficients of the optimum forward pre-
diction error filter (FPEF) and optimum backward prediction
error filter (BPEF), respectively, of order associated with the
process [12]. These prediction errors are given by

(29)

One can readily check that

cov

cov

(25)
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Substituting these into (26) and (27), one obtains

cov (30)

cov (31)

Thus, for as in (24), is block lower triangular iff
cov ; in that case, we have (32), shown at
the bottom of the page, where cov . We can
now state the following result, proved in Appendix B.

Theorem 3: Suppose that the symbol sequence is an au-
toregressive (AR) process of order not exceedingwith inde-
pendent, identically distributed (iid) innovations, i.e., it is gen-
erated by means of stable all-pole filtering of an iid process
as follows:

(33)

Assume thatA1–A3 hold, that

cov

(34)
and that the matrices and
do not have any common eigenvalues. Then, is block
lower triangular, and any matrix compatible with the SOS of the
channel output up to the lag is related to the true channel
matrix via an admissible matrix.

The following remarks are in order.

1) The AR condition on the symbols is sufficient
for having block lower triangular, but it is by
no means necessary. If even, for non-AR symbols,
cov holds, one can use Theorem
2 in order to reduce the blind equalizability problem to
an eigenvalue check on the matrices and

.
2) The matrix has a linear pre-

diction interpretation. Let be the prediction error
obtained by approximating by a linear function of

:

The value of that minimizes tracecov
is , for which one has cov

, and if cov holds, then
cov . Therefore,

cov cov

The problem of isolating conditions under which this ma-
trix and do not have common eigenvalues re-
mains open.

3) Theorem 3 covers the important case of iid symbols
(by having ) for which ,

, , and .
More will be said about the iid input case in Theorem 4
and Section V-E.

D. Block Diagonal

It is clear from (30) and (31) that for our choice of
is block diagonal iff cov and

cov , in which case, the resulting value is

(35)
The theorems below provide examples in which (35) holds. The
first one makes the following additional assumptions:

A4) The transmitted symbol sequence is iid with
.

A5) cov .
Observe that under assumptionsA1–A5 and taking as in

(24) with , the matrix
is block diagonal as in (36), with :

(36)

Theorem 4: Under assumptionsA1–A5, if the Jordan de-
composition of in (36) has no Jordan block of size associ-
ated with the zero eigenvalue, then any matrix compatible with
the channel output SOS up to lag 1 is related to the true channel
matrix by an admissible matrix.

Proof: Since is as in (36), by Theorem 2, any Her-
mitian commuting with is as in (17). As the charac-
teristic polynomial of is just , which is minimum phase,
the result follows in a manner similar to the last part of the proof
of Theorem 3.

A sufficient, although not necessary, condition forA5 to
hold is thatA4 hold and that the linear kernel have the largest
memory. An example where this is not necessary is when

for in (1) are degree-two monomials in , and
is iid real, symmetrically distributed around zero. Then,

, and blind equalizability is obtained,
as long as for .

Theorem 5: Suppose assumptionsA1–A3 hold, the symbols
are Gaussian, and the memory of the nonlinear part of the

channel does not exceed that of the linear part, i.e.,
, where is a memoryless mapping. In addition,

assume that the Jordan decompositions of the matrices
and do not have any common elementary Jordan

block and that , which is defined in (34), is positive definite.
Then, any matrix compatible with the SOS of the channel output

(32)
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up to the lag is related to the true channel matrix via an
admissible matrix.

Proof: By the orthogonality principle, cov
and cov so that

are uncorrelated random variables,
and so are . Since is Gaussian, so are

, , and . Therefore, the random variables
and are independent so

that cov cov , i.e., .
Thus, with as in (24), is block diagonal as in (35)
with (2, 2) block , which is similar to .
Since the Jordan forms of and do not share
any elementary Jordan blocks, by Theorem 2, any Hermitian

commuting with is block diagonal. Admissibility of
follows, as in the last part of the proof of Theorem

3.
Remarks:

1) Gaussianity of the symbols is sufficient for having
block diagonal, but it is not necessary. In general,

as long as cov cov
is satisfied, Theorem 2 allows one to reduce the blind
equalizability problem to a check on the Jordan structures
of and . This is the case if, for ex-
ample, the symbols and the nonlinear terms are uncorre-
lated, i.e., if cov for all and for

.
2) If the conditions of Theorem 5 are satisfied, the color

of the symbols does not affect blind equalizability.
It is conceivable, however, that for Gaussian symbols, a
particular choice of the symbol autocorrelation could re-
sult in the two diagonal blocks of sharing a Jordan
block.

3) An example of a communications system in which the
symbols are approximately Gaussian is the orthogonal
frequency division multiplexing (OFDM) scheme [4], in
which the original symbol stream is divided in blocks that
undergo an inverse discrete Fourier transform (IDFT) op-
eration prior to transmission. If the original symbols were
zero-mean i.i.d., then the IDFT output is asymptotically
(i.e., as the block size tends to infinity) white Gaussian
[5]. Constellation shaping is another technique that pro-
duces a Gaussian-like symbol sequence [21].

E. Result for iid Symbols

For iid , we present an equalizability result that bypasses
the need for a check on the eigenstructure of the covariance
matrices at the price of imposing more stringent conditions on
the relative memory lengths of the channel.

Theorem 6: Under AssumptionsA1–A3, suppose that the
symbols are iid and that the memory of the linear part of
the channel isstrictly greater than that of the nonlinear part,
i.e.,

with a memoryless mapping (37)

Then, the ZF equalizers of delays 0 and obtained for any
channel matrix compatible with the SOS of the received signal

up to lag are also ZF equalizers for the true channel.
That is, (9) holds with and .

Proof: In view of the equalizability test of Section IV, we
will look at the structure of any Hermitian commuting with

. The iid assumption and stationarity yield

cov (38)

cov (39)

cov (40)

cov (41)

with defined in (18), and . Therefore

(42)

Take as in (24) with . Noting that
cov due to the iid and memory as-
sumptions, it follows from (42) that

has only one nonzero element

(43)

Now, let be a Hermitian matrix commuting
with , with each . From (43), we must
then have

These imply that with a scalar

(44)

where is Hermitian, and is
. Then, one can check that

(45)

Therefore, in view of (44), the first and th rows of
are just and , respectively. Thus, the first andth rows
of are and . Now, recall from (13)
that any that is compatible must satisfy .
Thus, for and , (9) holds.

In this section, we have presented conditions on the symbol
statistics and channel nonlinearities that suffice for blind equal-
izability. In particular, under the specified conditions on the
input statistics, every channel estimate that is compatible with
the SOS must share all its equalizers with the “true” channel.
Thus, the intrinsic ambiguity in the channel estimation proce-
dure poses no practical difficulty as any equalizer obtained on
the basis of the channel estimate necessarily equalizes the true
channel. Nonetheless, we have yet to describe how the equal-
izers can be found from the channel output SOS. We consider
this issue in the next section.
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VI. A LGORITHM DEVELOPMENT

The previous sections demonstrated that blind equalizers can
be found from the channel output SOS under a variety of set-
tings. In this section, we provide algorithms for determining
these equalizers for the important iid input cases covered by
Theorems 4 and 6.

A. Setting of Theorem 4

Suppose the conditions of Theorem 4 hold. As in [18], we
start with a singular value decomposition (SVD) of

(46)

where diag , and has
columns. Recall that with , which is the normalized channel
matrix defined in (10), one has . Since
has full column rank, it follows that for some
unitary matrix . Let us partition as

, where each has columns .
Observe that the first rows of the pseudoinverse

provide the ZF equalizers of delays 0 through .
Using the facts that and that ,
it can be checked that the ZF equalizers are

(47)

Therefore, for equalization purposes, it suffices to estimate;
the remaining columns of are of no interest to us. Now, it can
be checked that

(48)

Our goal is to estimate from using the structure of
shown in (36). Note that in (36) is known to us and that (36)
and (48) imply

(49)

These “Jordan chains” show thatcan be estimated from either
its first or its last column. If we partition columnwise as

, (49) reads as

(50)

(51)

Thus, it suffices to obtain an estimate of or . In
the original algorithm of [18] for linear channels, one had

, i.e., the block in (36) was absent. This allowed
for to be taken as a “singular pair” associated with
the smallest singular value of the matrix. This would work in
our case, provided that in (36) is nonsingular. However, we
would like to allow for singular as well since this is usually
the case in practice.

To do so, we extract the information about in through
several of its powers. Note that

(52)

For , one has , whereas
for . Suppose for the moment that has
been found. Then,

. Hence, could then be estimated, up to a
constant of the form , as the singular pair associated with the
largest singular value of . Thus, we must
determine . Observe that can be written as

(53)

where
direct sum of shift matrices with ;
direct sum of matrices with ;
square nonsingular.

Partitioning

, , and having the same number of columns as, and
, respectively, one can express

(54)

where

(55)

Moreover, one has . Since is a direct
sum of shift matrices of size smaller than, so that
the matrix of interest reduces to .

Denote as the -fold direct sum of , e.g.,
. Letting , one can write

(56)

for some , , . Likewise, partition ,
with having the same number of columns as . Note that

the matrices satisfy
, and

if

if .

(57)

We propose the following “peeling” algorithm for estimating
and .

For to do:
Step 1: Find .
Step 2: Find .

end for;
Step 3: Find .
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At the end, one obtains
. We now show how these steps can be accomplished.

Steps 1 and 3:With , in the th iteration of
Step 1, the matrix

(58)

is available ( ). Similarly, at Step 3,
is available. One has

(59)

Let be the characteristic polyno-
mial of the matrix . As is nonsingular, . By the
Cayley–Hamilton theorem, so that ,
i.e.,

which in view of (59) implies

(60)

Similarly, at Step 3, one computes

Step 2: Observe that . Therefore,
at the th iteration, is available. For

notational convenience, let , so that
. Note that , i.e., . Let

(61)

There exists a known permutation matrixsuch that
; thus, is available. In addition

for (62)

Therefore, from (61) and (62)

(63)

Similarly, one finds that

(64)

For convenience, let and . Partition

(65)

(66)

and note from (63) and (64) the following Jordan chain relations
for each :

(67)
In view of (67), the matrix can be written as

(68)

since from (57), it holds that . This shows
how to find from and .

B. Setting of Theorem 6

Suppose the conditions of Theorem 6 hold, and therefore ac-
cording to Theorem 6 the equalizers of delays 0 and can
be obtained from SOS. The algorithm below actually provides
equalizers for the intermediate delays as well.

We start by performing an SVD of as in (46). The
matrix is then constructed as in (48), which still satisfies

. In addition, the matrix is also constructed
as per

(69)

Again our goal is to estimate the columns of. One can check
that satisfies now , which in view of
(43) gives . Hence the vectors can be
obtained from up to a constant . The remaining columns
of are recovered via the Jordan chains (50), (51) or some
combination of them. The ZF equalizers are then obtained via
(47).

VII. SIMULATION RESULTS

We present the results obtained by the proposed algorithm
with four numerical examples. For illustration purposes, when
computing the error rates, the phase ambiguityinherent to
the method has been removed. Averages were computed based
on 100 independent runs. For simplicity, and to allow square
channel matrices for comparison with the algorithm from [6],
we have not performed denoising of the covariance matrices.

Example 1: First, we consider the real nonlinear channel
from [6, ex. 1], whose expression is
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Fig. 1. Performance of the new algorithm for the nonlinear channel in Example 1, equalizer orderm = 4. (a) SER versus SNR, 500 symbols. (b) SER versus
sample size, equalization delay� = 5.

Fig. 2. Nonlinear channel in Example 1. Five hundred symbols, equalizer orderm = 3.

where . The input is iid BPSK with
variance , and the number of subchannels is .
The noise is zero-mean white Gaussian with variance.
The normalized covariance matrix for this channel is

, with , . First, we tested
the performance of the equalizers of order using 500
symbols for covariance estimation for different values of the
signal-to-noise ratio (SNR), which is defined as

SNR

Fig. 1 shows the symbol error rate (SER) versus SNR for the
different equalization delays. It is seen that the delay
yields the poorest performance. The best results are obtained
for . The SER as a function of the number of symbols

for SNR 10, 15, and 20 dB for the equalizer with associated
delay is also shown.

We have compared the performance of our proposed algo-
rithm with that of Giannakis and Serpedin [6] using an equalizer
of order to obtain a square channel matrix. A draw-
back of the algorithm from [6] is that it only provides equal-
izers with minimal and maximal delays—in this case and

—whereas, as seen in Fig. 1, in general, the best perfor-
mance is attained for some intermediate delay. Fig. 2 shows the
SER as a function of the SNR using 500 symbols. It is seen that
the performance of the two algorithms is very close for .
For , however, the new algorithm clearly outperforms the
method from [6].

Example 2: The second channel that we consider is the com-
plex channel from [6, ex. 3]:
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Fig. 3. Performance of the new algorithm for the nonlinear channel in Example 2, equalizer orderm = 4. (a) SER versus SNR, 500 symbols. (b) SER versus
sample size, equalization delay� = 6.

Fig. 4. Nonlinear channel in Example 2. Five hundred symbols, equalizer orderm = 4.

where now, . The iid symbols
are drawn from a QPSK constellation with equal

probabilities so that . The number of subchannels is
. For this channel, one has diag with

, . Fig. 3 shows the performance of the
equalizers with order for different values of the delay,
SNR, and sample size. In this case, performance improves as
the equalization delay is increased.

Fig. 4 compares the performance of the equalizers of order
obtained with our algorithm and with the method from

[6], both using 500 samples. As was the case for the channel
in Example 1, for , both algorithms show similar perfor-
mance, whereas for the maximum delay, the proposed method
presents a clear advantage. Fig. 5 shows typical scatter plots of
the subchannel outputs and the equalized signal, with 500 sam-
ples, , , and SNR dB.

Example 3: The third channel that we consider is given by

where the nonlinear term is . There are
subchannels given by
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Fig. 5. Performance of the new algorithm for the nonlinear channel in Example 2: Scatter plots. Five hundred symbols, equalizer orderm = 4, delay� = 6,
SNR = 30 dB.

Fig. 6. Performance of the new algorithm for the nonlinear channel in Example 3. Equalizer orderm = 2. (a) SER versus SNR, 5000 symbols. (b) SER versus
sample size, SNR= 30 dB.

The input symbols are iid, drawn from a four-PAM constel-
lation with probabilities

, .
For an equalizer order , can be shown to be similar
to with given by

Observe that in this case, the linear and nonlinear kernels have
the same memory length ( ). However, since all the

eigenvalues of are nonzero, the proposed algorithm can still
be used to compute the equalizers. Fig. 6 shows SER versus
SNR and sample size. In this case, the best performance is ob-
tained by the equalizer with zero delay.

Observe how, in order to obtain good performance, the
algorithm requires considerably more symbols and higher
SNR than in the previous examples. A possible explanation
is as follows. The singular values of the matrix are

; since the blocks associated with the
linear and nonlinear kernels have the same size, the algorithm
relies in the separation between the two smallest singular values
of , namely, zero (the “linear” singular value) and 0.1643
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Fig. 7. Performance of the new algorithm for the nonlinear channel in Example 4, equalizer orderm = 3. (a) SER versus SNR, 500 symbols. (b) SER versus
sample size, SNR= 15 dB.

(the “nonlinear” singular value). The closer these two numbers
are, the more sensitive the algorithm becomes to the effects of
noise and finite sample size, as observed in the simulation re-
sults.

Example 4: The last channel that we consider has two non-
linear kernels, both longer than the linear one

with and . The input
symbols are iid, BPSK, and equiprobable, with . The
number of subchannels is . The channel coefficients are
shown in the equation at the bottom of the page. The normalized
covariance matrix for this setting is

. Fig. 7 shows the results obtained for the equalizers of
order .

VIII. C ONCLUSION

Blind equalization of nonlinear single-input multiple-output
channels has been considered. Our approach is based on the
second-order statistics of the received signal. We have shown
that while SOS do not suffice in general for blind channel iden-

tification, under the right conditions, they do enable the de-
termination of an equalizer. A wide range of sufficient condi-
tions on the statistics of the transmitted symbols and the channel
nonlinearities ensuring blind equalizability has been presented.
Specifically, under the right conditions on the input statistics,
SOS-based equalization is possible even if there are kernels with
the same length as the linear one.

A procedure has been given in order to compute the equalizers
for the special but important case of iid symbols. The algorithm
is capable of finding the equalizers for all possible equaliza-
tion delays, performing better than previous deterministic ap-
proaches. This can be justified intuitively since our algorithm
explicitly exploits knowledge of the source statistics.

As with most SOS-based methods, the algorithm for com-
puting the equalizers is computationally involved. However, this
must be balanced against the need for working with far longer
data records required by higher order statistics-based methods.
Issues for future work is the extension of this algorithm in order
to cover the broader class of channels for which the conditions
presented in this work ensure blind equalizability from SOS. Ex-
tensions that explicitly exploit cyclostationary nature of channel
inputs should also be investigated.

APPENDIX A
PROOF OFTHEOREM 2

Let , be Jordan decomposi-
tions of . Assume that these have no common eigen-
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values. Then, the matrix equation has
a solution [9, p. 414] so that

(70)

constitutes a Jordan decomposition of . Now, let

of size (71)

be a Hermitian matrix commuting with . Then, must
be of the form [9, pp. 417 and 418]

(72)

where the blocks marked “” are of no concern. Note that
, but since have no common eigen-

values, it follows from [9, pp. 417 and 418] that , and
hence, , which proves the first part of the theorem.

Before proving the second part, let us introduce the following
definition.

Definition 2 (Set ): An matrix is said to belong to
the set if it is of the form when , when

, or when , with any square upper triangular
matrix and any square upper triangular matrix with zeros on
the diagonal.

The following fact is readily verified.
Lemma 1: The set is closed under addition and multipli-

cation.
Now, assume and that do not have

common Jordan blocks. Then, (70) with is a Jordan
decomposition of . Let , as in (71), be a Hermitian
matrix commuting with . Then, satisfies (72) with

. Let , , with
, elementary Jordan blocks,

and partition , accordingly,
where each have size . By assumption, if

, then . Therefore, from [9, pp. 417 and 418], it
follows that all , are in .

Observe that and . Then,
is similar to the Hermitian positive

semidefinite matrix . If one shows that is nilpo-
tent, then all the eigenvalues of will be zero, and thus,

. This we proceed to show.
Write , with each .

Then, from Lemma 1, each is in . Without loss of gen-
erality, assume . We prove the nilpotence of by
induction on .

Clearly, when , being square and in is zero di-
agonal upper triangular, all its eigenvalues are zero so thatis
nilpotent. Now, suppose nilpotence holds for . Then,
for , write

where , and .
Then

As is upper triangular, and each ,
is and in , it follows that

is and in . Thus, , and hence,
can also be partitioned into

blocks, , all in . Thus, by the induction hypothesis

Hence, the result.

APPENDIX B
PROOF OFTHEOREM 3

If is generated via (33), then the forward prediction error
is just , which by assumption is iid. Since

is a function of , this means that the random
variables and are independent, and therefore,
cov . Thus, with as in (24), is
lower triangular as in (32). We can apply the result of Theorem
2 to conclude that if the diagonal blocks of , which are
similar to and , do not
share any eigenvalues, then any Hermitiancommuting with

is block diagonal as in (17). Hence, is block
lower triangular with (1, 1) block . It suffices to
show that for some scalar .

Let be the distinct eigenvalues of
with multiplicities ( ). Note
that these are the zeros of the FPEF of order. Since ,
the FPEF is minimum phase [12] i.e., for
. Since is a companion matrix, it has a Jordan

decomposition

such that , i.e., there is only one Jordan
block per distinct eigenvalue [9]. In addition, is a general-
ized Vandermonde matrix given by , where

, and

(73)

(see, e.g., [9, pp. 69 and 70]). Now, since and
commute, one must have

(74)

with each upper triangular Toeplitz [9, pp. 416–418].
Since is Hermitian, it is diagonalizable with real eigen-
values; in view of (74), this must also be true for .
Since these are upper triangular Toeplitz, this in turn gives

, for some real scalars. We will show that all

the are equal. , yielding as
desired.
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Let . Since , one has

which reads as for .
It suffices to show that has at least one nonzero
element for every . In particular, from (73), the (1,1) element
of is given by , where
the bivariate polynomial is defined as

Using the Christoffel–Darboux formula [8], the polynomial
can also be written as

where is a real constant, ,
and . [Specifically, and are
the transfer functions of the FPEF and BPEF of orderfor
the process , and is the variance of the corresponding
prediction errors.]

Since both , are roots of , one has
so that

(75)

Now, all roots of lie strictly inside the unit circle, whereas
both and lie strictly outside the unit circle. Therefore,
in view of (75), cannot be zero.
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