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Blind Equalization of Nonlinear Channels From
Second-Order Statistics

Roberto Lopez-Valcar¢dMember, IEEEand Soura Dasgupt&ellow, IEEE

Abstract—This paper addresses the blind equalization problem Further many physiological systems are also nonlinear [13]. In
for single-input multiple-output nonlinear channels, based on the  this paper, we consider nonlinear SIMO channels modeled as
second-order statistics (SOS) of the received signal. We consider
the class of “linear in the parameters” channels, which can be U
seen as multiple-input systems in which the additional inputs y(n) = Z Z hijsi(n —j) + z(n) (1)
are nonlinear functions of the signal of interest. These models
include (but are not limited to) polynomial approximations of
nonlinear systems. Although any SOS-based method can only A ; ; ;
identify the channel to within a mixing matrix (at best), sufficient wheresy (n) = a(n) is the scalar Statlonary channel input, the
conditions are given to ensure that the ambiguity is at a level that termss;(n) = ¢i(a(n), a(n __1)7 o) fori=2,..., qare
still allows for the computation of linear FIR equalizers from the ~ Scalar nonlinear causal functions @f-), h;; arep x 1 coef-
received signal SOS, should such equalizers exist. These conditiondicient vectors, and:(n) and y(n) arep x 1 signal vectors

involve only statistical characteristics of the input signal and the representing an additive disturbance and the observed channel
channel nonlinearities and can therefore be checked priori. output, respectively; the number of subchannejs iEhe noise

Based on these conditions, blind algorithms are developed for the . . .
computation of the linear equalizers. Simulation results show that z(-) and the signak(-) are assumed to be independent. This

these algorithms compare favorably with previous deterministic modelaccommodates, for example, polynomial approximations

=1 5=0

methods. of nonlinear channels (Volterra models), although the “basis
Index Terms—Blind equalization, nonlinear channels, second- functions” s (-) need. not be monomials 'r! principle. l_t IS gs-
order statistics. sumed that the functions (-, -, ...) generating the nonlineari-

ties are known. This multichannel configuration can be obtained
at the receiving end by using a sensor array, by fractional sam-
pling the channel output [18], or by injecting cyclic redundancy
LIND methods are of interest in digital communicationsit the channel input [16].
as they permit channel identification/equalization at the In this paper, we ask the following question. What informa-
receiver without training signals. The topic of blind equalizaion can be obtained about the channel from the SOS of its
tion of single-input multiple-output (SIMO) linear channels iroutput? In the linear channel case, it is well known that under
particular has received considerable attention (see [17] and ti@gtain coprimeness conditions, the channel coefficients can be
references therein), motivated by the facts that these chanresilimated from SOS up to a multiplicative constant [17]. We
can be perfectly equalized if the subchannels are coprime awidl show that this is not true in general for the nonlinear model
the equalizer is long enough and that channel estimation/equal)- but that nevertheless, zero-forcing (ZF) linear equalizers for
ization can be performed from the second-order statistics (SAlp class of channels can still be designed using only the SOS
of the received signal. (SOS-based methods are often preferoég(-), provided certain conditions are satisfied. The fact that
to higher order statistics approaches since they usually requirear finite impulse response (FIR) systems can perform ZF
shorter data records). equalization of nonlinear SIMO channels under certain condi-
By contrast, there is relatively little work in the area of blindions was first pointed out in [6], where a blind, deterministic
equalization of nonlinear channels. (Some exceptions are [8pproach for equalizer design was also presented. Although this
[15], and [19]). This problem, however, is of considerable praglgorithm is elegant and relatively simple, it has several draw-
tical interest since many communication systems, such as digicks. First, it assumes that an associated channel matrix is
ital satellite and radio links [2], high-density magnetic [3], [7]full rank and square, claiming that squareness can always be
and optical [1] storage channels exhibit significant nonlinearitgchieved, if necessary, by decreasing the number of channels
and increasing the equalizer length. However, a longer equalizer
would increase the computational complexity; further, if some
channels are to be dropped, it is not possible to ersymgori
that the surviving channels satisfy the corresponding full-rank
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that this restriction on the linear kernel length is not necessaryThe paper is organized as follows. Section Il introduces the
for SOS methods to apply. matrix-vector formulation of the setup and the problem state-
Third, when a kernel other than the linear one has the largestnt and shows that SOS methods do not suffice to estimate
memory, then the techniques of [6] only resolve this largeite channel to within a scaling constant. The structure of the
kernel. In our case, we show that under the right conditions, eveixing matrix inherent to any blind SOS approach is discussed
the linear kernel is resolvable, despite the violation of this par Section Ill. Section IV presents a test that can be used to de-
ticular length condition. termine whether a given channel is equalizable from SOS. Suf-
Fourth, the algorithm from [6] only provides equalizers wittiicient conditions on the source statistics that ensure a positive
zero and maximal delays, whereas in general, the greatestaeswer from this test constitute our main results and are given in
duction in mean squared error is obtained for some intermedi&ection V. Algorithms and simulation results are given in Sec-
delay. The algorithms presented here can be used to comgiges VI and VI, respectively.
equalizers for all possible delay values.
Fifth, deterministic methods do not require nor exploit knowl- II. PROBLEM FORMULATION

edge of the statistics of(-). SOS-based methods exploiting The channel input—output relation can be expressed in matrix-

such information when gvallaple can be ex.pected to Ieaq 0 I ctor form as follows. By collecting: successive observations
proved performance. Simulation results given here verify tqlﬁ the vector

fact for the class of channels (1).
Recently, an SOS-based approach appeared in [15], inspiredy (n) 2 [y(n)T yn-DT - yn—m+1DT ]T

by the method of [20] for linear channels. However, this method

requires that every nonlinear subchannel be linearizable by @#e can write

FIR Volterra system of known order and memory, which is, in

general, not possible, especially if each subchannel is modeled

as an FIR Volterra system itself (a common practice). where Z(n) and S(n) are the noise vector and the signal re-
In principle, (1) could be seen as a linear multiple-input Mulyressor, respectively, given by

tiple-output (MIMO) system by viewing the signalg(-), 2 <

i < g as additional inputs. Although SOS-based techniques Z(n) 2 [20)T 2(n—1)T -+ zln—m+ 1)T]T

exist for equalization within such a framework [17], they usu-

ally assume that the different inputs are independent (whiendS(n) 2 [ST(n) ST(n)]T with

is no longer true in our setting) and only resolve the inputs .. = A

to within a mixing matrix. In the current context, as thg-) ~ ~1 (n) Zla(n) a(n—1) - aln-—li-m+1] @)

are functions ofia(-), this would mean that only a linear mix- T(n) é[SQ(TL)

ture ofa(n), sa(n), ..., s,(n) could be obtained. The results ">

of this work show that under right conditions, the structure of sq(n) v sg(n—lg—m+1)] (4)

the mixing matrix permits obtaining linear ZF equalizers. Thesghich represent the linear and nonlinear partsSof.). The

conditions are on the statistical properties of the symhéls channel matrix¥ is given by

and the remaining basis functioss-). Therefore, they can be A

checkeda priori in order to determine whether a given channel FE[A F o Fy]

structure can be equalized from SOS. with every.F; block Toeplitz:
Two popular SOS-based methods for blind equalization

Y(n) =FS(n)+ Z(n) 2

soln—1lo—m+1) | -+ |

of linear channels are i) the method of [18] and ii) subspace hio -+ hay

methods [14]. The latter do not exploit the explicit knowledge f; 2 pm X (m+1;).

of input statistics and consequently exhibit inferior performance

relative to methods that do exploit such knowledge [11]. Thus, hio -+ ha,

here, we pursue extensions of [18] to the nonlinear chanrﬁlhas sizgm x (qm+3"°_, 1;). For convenience, lek; E—
case. = '

. . . A

transpose, conjugate transpose, and pseudoinverse, respecti‘(yg\éﬁh is the size ob2(n). 'I_'hus,_S_(n) has S_'Zejl + da.
Here ince the channel nonlinearities may induce nonzero mean

Ji. k x k shift matrix with ones in the first subdiagonalsi(') Ferms evenify(-) is zero mean,_we willcpnsidercovariar!ce
and zeros elsewhere matrices rather than autocorrelation matrices. The covariance
Xk x k exchange matrix with ones in the antidiagona?equenCe of the process.) can be written as
and zeros elsewhere C, (k) 2 corY (n), Y(n — k)] = FC()FHE + C.(k) (5)
e, vector of all zeros, except for a 1 in tia¢h position.

We use the direct sum notatioh& B for block diagonal ma-
trices:

where C,(k), C.(k) are the source and noise covariance se-
quences given by

Cy(k) 2 coMS(n), S(n — k)]

aonz [40]
0 B

C.(k) 2 coMZ(n), Z(n — k)]. 6)
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The following standard assumptions are adopted throughout ta & = 0, (12) glvesi’-"j’-"H FFH, SinceF has full column

paper: rank, this impliesF = F P for some unitaryP. Thus, the corre-
A1) The channel matri¥ is tall and has full column rank. Sponding (unnormalized) compatible channel matrix must sat-
A2) z(-) is zero-mean white with covariane€I,,. isfy
A3) The covariance matrig’;(0) is positive definite. - . _
AssumptionAl is a “coprimeness” requirement on the sub- F=FQ7 =F(QrQ™) (13)

channels. It ensures the existence of veggomich thay ! F =
ef. Thus, in the noiseless case, for< § < di, one has

H _ - . t . .
g5 Y(n) = a(n — 6 + 1) so that thesgrm x 1 Vectors pro- gpsere that althougk is unitary, in generalP is not. Let us
vide ZF linear equalizers with associated defay 1.

Ay introduce now the concept of admissibility.
UnderA2, one hasU. (k) = o_Jp,. Then, because i1, Definition 1 (Admissibility): A (d; + d»)-square matrig’ is

5 .
o can be estlmated as the smallest eigenvalu&,00) so that  ¢,ij to beadmissibleif
the effect of noise can be removed fra(k). Henceforth, we

which shows that any compatible channel matrix is related to
the true channel via a mixing matrix of the forh= QPQL.

A O
will assume thaC,, (k) = FC,(k)FH. T= [ } . A, dy x d; diagonal invertible  (14)
AssumptionA3 constitutes a “persistent excitation” condi- x X
tion ona(-). It allows one to write with “ x” indicating irrelevant values. Note that# is admis-
. . . e .
C.(0) = QQH with Q invertible. ) sible and invertible, so i#"~*, and that any function of an ad-

missible matrix is admissible. .
The problem under consideration can be posed as follows. ~ Observe that ifF = FP is compatible withP = QPQ—!
Blind Equalizability Problem: Let F be a matrix of the same admissible, then (9) is satisfied. Thus, resolution of the channel

size asF such that matrix to within this ambiguity suffices for equalization pur-

. - . _ poses.

FC()F" =FC,(k)F",  k=0,1,...k (8  Ourgoalis to determine conditions under which the mixing
We say thatF is compatiblewith the SOS ofY(-) (up to lag matrix P is ensured to be_ admissible. To a_d_dress this_ issue, we
%). Determine conditions under which a ZF equaligefor any must explore the constraints that the conditions (12) impose on

compatibleF is also a ZF equalizer faF the unitary matrixP. SubstitutingF = F'P into (12) and using

the fact thatF" has full rank, these constraints can be written as
Hr __ H H _ H o _ —
G F=a = e F=ce, PCL(k)=C,(k)P, 1<k<Fk (15)

forsomel < 6 < dy andc# 0. (9)
, P must commute with the normalized source covariance

This was solved in [18] for the particular case of Imeamamcesc (1), ..., C,(k).
channels with white inputs, for which if is compatible up
to |agk =1, thenf = 619.7: so that (9) holds. This is not IV. SIMPLIFIED EQUALlZAB|L|TY TEST

necessarily true in our case. For example, suppose that the
different termss;(-) are uncorrelated: c@v(n), s;(m)] = Determining the general form of all unitary matricEsthat

i # j (e.g., a linear-quadratic channel with iid input). Thensatlsfy (15) requires solving linear sets of equations with
C,(k) is block diagonal for allk so that any matrix of the quadratic constraints. Fortunately, this problem can be replaced
form F = [ F, el F, - ejeq]_—q] is compatible up to by one of_solvmgk linear sets Qf equations Wnimea_r con-

any lag. Thusjn general, 7 cannot be identified to within a stralnts. First, recall that any unitary matidikcan be written as

single scaling constanHowever, this may not be necessary i ", whereW"is a Hermitian matrix with eigenvalues in
order for (9) to hold, i.e., a higher level of indeterminacy in th 2”) [9] Second, we have the following result from [10].

channel parameters could still allow equalization. We explore‘;lj,heorern L:Let W be(d: + d»)-square Hermitian anf =
this issue in the next section. e Then,P andC, (k) commute if and only ii"” andC'; (k)

commute.
Therefore, the problem of determining the set of unitary ma-
trices that commute witl’, (k) is equivalent to finding the set of
Let @ be a square root @f(0) as in (7). Define th@ormal-  Hermitian matrices that commute wi€h, (k). Hence, the blind
izedchannel and source covariance matrices, respectively, agqualizability problem can be broken into these three steps.

I, MIXING MATRIX

F=FQ, C.(k) = QL0 (k)Q 1, (10) 1) S_elect a square roQ} of C(0). . L
2) Find all Hermitian matrice®” commuting withC'; (k) =
F has full column rank in view oAl andA3. Using (10), the QC,(HQHforl <k < k.
matricesC, (k) become 3) Check whether for these matricds QW Q! is admis-
_ - I sible. If so, the channel can be equalized using SOS, as
Cy(k) = FC(R) T, with C(0) = Loy 4a,-  (11) QWQ~! admissible impliee’™ Q~1 = QPQ! ad-
Similarly, if F is compatible up to lag, let F = FQ so thatF missible.

The utility of Theorem 1 is revealed in that steps 2) and 3)
o R B B are much easier to solve for Hermitian matrices than for unitary
FO,)F! =FC,(k)F",  0<k<k  (12) matrices.

satisfies
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We proceed now to determine sufficient conditions on theo that the covariance matric€$(0), C(1) can be written as
source statistics and the channel nonlinearities in order to ensure

success of the SOS-based equalizability sgstiori. C,(0) = {AH Am} , Cs(1) = {BH Bm}
Ag A22 BQl B22
V. MAIN RESULTS with

It is useful to consider block lower triangular square roots
@ [with block partition corresponding to linear and nonlinear
parts ofS(n), as in (14)], for the following reason. Suppose that way 2 coV[Sz(n), a(n — dy)] (19)
any HermitianW solving step 2) of our test is block diagonal.

Then,P = /% is block diagonal; therefore, if) was block and the shift structure of; (n) yields the following relations:
lower triangular, then soiB = QPQ~*. HavingP block lower

112

1 = coMS;(n — 1), a(n)] fori e {1, 2}

— H
triangular [i.e., as in (14) but with not necessarily diagonal] Bu =Jo, An + erwr; (20)
is the first step toward admissibility. Its significance is that a =Ap g + Xdlwfleg (21)
linear ZF equalizeys for the compatible matri (¢ F = elf, .
1 < & < d;), although not a ZF equalizer for the true channel Bia = .Jy4, Aia + erwyy (22)
F, still removes all the nonlinear intersymbol interference (1SI) Boy = ALJ, + wzleﬁf. (23)

if P is block lower triangular sincgl’ F = ¢ P~*. Once this
has been achieved, additional conditions for the removal of thRfine 4, = Ay — AH AP A, [the Schur complement of
residual linear ISI can be sought. C,(0) with respect tod; '], which is positive definite. The fol-

lowing choice of@ will prove particularly useful:
A. Preliminary Result

1/2
The following result ensures the block diagonal property of = A 0 (24)
any Hermitiani¥ commuting withC,(1). The proof is given in AL ATHZ AL
Appendix A. ] 2 12 ) )
Theorem 2: Assume that there exists a matrx such that With 4,17, Ag'” square roots ofi,;, Ao, respectively. Using
C,(0) = QQ and (24), C.(1) = Q'C,(1)Q ¥ becomes (25), shown at the

bottom of the page, whetBy = By, — AL AT B AT AL,

(16) C. Block TriangularC,(1)

By using (20)—(23), the off-diagonal terms of the middle ma-
with C;; having sized; x d;, i,5 € {1, 2}. Suppose that ei- triX in (25) can be rewritten as
ther i) C11, Co2 do not share any eigenvalues; or @iy; = -1 H -1 H

’ . Bio— B A7 Al = — Aj5A 26

0, andCi1, Cas do not share any elementary Jordan block in = ndi A =er(w 1245 wn) (26)
their Jordan decompositions, i.e., Jordan blocks belonging to the3y; — AL AT Bi1 = (wo1 — AJBAT Xg,wiy) el . (27)
same eigenvalues have different sizes. Then, any Herniftian
commuting withC,, (1) must be of the form in (17) withv;;, Introduce the vectors

di x di: o® Aftwy, AR AR X4 wl (28)

A

Ch1 Co

W = W11 & Was. (17)  which comprise the coefficients of the optimum forward pre-
diction error filter (FPEF) and optimum backward prediction
error filter (BPEF), respectively, of orddf associated with the

B. Useful Square Rodd processi(-) [12]. These prediction errors are given by
With the result from Theorem 2 in mind, we will focus on H
) = — S -1
block triangular square rootg and look for conditions under f(n) =a(n) —a"5i(n - 1)
which (16) is satisfied. To this end, let us define thex d; b(n) =a(n —dy) — BHS (n). (29)
matrices _
One can readily check that
A
Aij = COV[SZ‘(TL), Sj(n)] COV[SQ(TL — 1), f(ﬂ)] leg—A{{QOé = W12—A{{2A1_11w11
Bi; 2 cov[Si(n), S;(n—1)]. i, je{l,2}  (18) coV[S2(n), b(n)] =wa1 — AL B = wa — AL AT Xy, wiy.
B By — Bi1 AT Ars

C,(1) = (A7 @ A7) AP e A" (25)

By — ALAT'B), Bo— ALAT!'B1y — Bo1 AT Ao
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Substituting these into (26) and (27), one obtains The problem of isolating conditions under which this ma-
trix and.Jy, +e;aff do not have common eigenvalues re-
Biy — B11 AT} Ajg =e1coV[Sa(n — 1), f(n)]? (30) mains open.
_ 3) Theorem 3 covers the important case of iid symhbol$
H 1 _ H
Bay — A Ay Buy =cov[Sz(n), b(n)]eg, - (31) (by havingy; = --- = ~4, = 0) for whicha = 8 = 0,

) _ i i i f(n) = a(n), b(n) = a(n — dy), and Ay = o021,,.
Thus, for@ as in (24),C,(1) is block lower triangular iff More will be said about the iid input case in Theorem 4
cov[Sa(n — 1), f(n)] = 0; in that case, we have (32), shown at and Section V-E.

the bottom of the page, whege2 cov[Sz(n), b(n)]. We can -

now state the following result, proved in Appendix B. D. Block DiagonalC'(1)

Theorem 3: Suppose that the symbol sequent¢g isanau- ¢ is clear from (30) and (31) that for our choice of
toregressive (AR) process of order not exceedingvith inde- Q, C,(1) is block diagonal iff coySz(n — 1), f(n)] = 0 and

pendent, identically distributed (iid) innovations, i.e., itis gen; _ cov[Sz(n), b(n)] = 0, in which case, the resulting value is
erated by means of stable all-pole filtering of an iid process

as follows: C,(1) = [A1—11/2 (Ja, + ClaH) Aiﬂ @ [AEI/QBOAJH/Z] .
dy _ o (35)
a(n) = w(n) — Z vea(n — k). (33) T_he theorems below prow_de exar_n_ples in which (_35) holds. The
et first one makes the following additional assumptions:

A4) The transmitted symbol sequene€.) is iid with

Assume thaA1-A3 hold, that Ella(n)|?] = o2.
AB) cov[Sa2(n), a(n —di)] = 0.

T 2 cov <[ S1(n) } [ Su(n) D >0 Observe that under assumptioti$—A5 and taking@ as in

a(n =L —m)]" La(n -1l —m) (24) with AY? = 5,1, , the matrixC,(1) = Q1C,(1)Q—H

. is block diagonal as in (36), with dz x ds:
and that the matrice&;, +c1o/” and Ay ' (By — vell A Aro) g (36) 2% %

do not have any common eigenvalues. Thél(1) is block C.(1)=Jg, ®C. (36)
lower triangular, and any matrix compatible with the SOS of the

channel output up to the Idg= 1 is related to the true channel Theorem 4:Under assumption&1-AS, if the Jordan de-
matrix via an admissible matrix. composition ofC'in (36) has no Jordan block of size associ-

The following remarks are in order. ated with the zero eigenvalue, then any matrix compatible with

1) The AR condition on the symbola(-) is sufficient the channel output SOS up to lag 1 is related to the true channel

" ; oo trix by an admissible matrix.
for having C,(1) block lower triangular, but it is by ma e — . _
no means necessary. If even, for non-AR symbols Proof: SinceC,(1) is as in (36), by Theorem 2, any Her-

cov[Sa(n — 1), f(n)] = 0 holds, one can use Theoremm't'an W commuting withC';(1) is as in (17). As the charac-

2 in order to reduce the blind equalizability problem t(geristic polynomial o/, is justA™, which is minimum phase,
an eigenvalue check on the matricdg + e1a and the result follows in a manner similar to the last part of the proof

-1 H A—1 of Theorem 3. ]
2) ?ﬁe(ﬁgtﬁxvjill?g A—mz);.e”A’lA ) has a linear pre- A sufficient, although not necessary, condition #5 to
diction interp(rJetati?)n Le%‘l (73 b:the orediction error hold is thatA4 hold and that the linear kernel have the largest
) 5 o .
obtaiqed by approximatingz(n) by a linear function of :?3?2;’ ,L.AQ f )I(g Tlp)k;r\gr(]jiﬁr;gfwg ;g;onme?aﬁzﬁz :n;v hen
Si(n): a(-) is iid real, symmetrically distributed around zero. Then,
5 C = Jmt1, ®---® Jmy1,, and blind equalizability is obtained,
$2(n) = Sx(n) = ISy (n). as long ;di # [, for i+7é 1.

Theorem 5: Suppose assumptioAd—-A3 hold, the symbols
a(-) are Gaussian, and the memory of the nonlinear part of the
channel does not exceed that of the linear part, fgln) =
#(S1(n)), whereg(-) is a memoryless mapping. In addition,
assume that the Jordan decompositions of the matiges
. H o1 eral andAngo do not have any common elementary Jordan
Ag" (Bo — veg, Ay Ara) block and thaff', which is defined in (34), is positive definite.

= coV[Sa(n), Sa(n)]"tcovSa(n), Sa(n —1)].  Then, any matrix compatible with the SOS of the channel output

The value ofl” that minimizes tracgcoV[Ss(n), Sa(n)]}
isT' = AT ' A1», for which one has cd¥s(n), Sa(n)] =
Ao, and if cofSz(n — 1), f(n)] = 0 holds, then
cov[Sz(n), Sa(n —1)] = By — vel{ A" Ay,. Therefore,

_ ALY (Jg, + eralt) A 0

. (32)
Ayt Puef A" AgHE (By—vell AT Av) 43
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up to the lagk = 1 is related to the true channel matrix via amp to lagk = d; — 1 are also ZF equalizers for the true channel.
admissible matrix. That is, (9) holds withd = 1 andé = d;.

Proof: By the orthogonality principle, cd$;(n — Proof: In view of the equalizability test of Section IV, we
1), f(n)] = 0 and coySi(n), b(n)] = 0 so that will look at the structure of any HermitiaW” commuting with
(Si(n — 1), f(n)) are uncorrelated random variables(,(d; — 1). The iid assumption and stationarity yield
and so are(Si(n), b(n)). Since a(-) is Gaussian, so are
S1(:), f(-), and b(-). Therefore, the random variables cov[Si(n), S =ojca el (38)
(#(S1(n—1)), f(n)) and(4(S1(n)), b(n)) are independent so

(n), S1( )]
that coSs(n — 1), f(n)] = cov[Sa(n), b(n)] = 0, .., = 0. codSi(n), Sp(n—di+ Dl =cuer’diz  (39)
Thus, withQ as in (24),C,(1) is block diagonal as in (35) coviSa2(n), Si(n—d1 +1)] =0 (40)
with (2, 2) block A5 */?ByAL/?, which is similar toA;' B,. cov[Sa(n), Saln — dy +1)] =0 41)
2 ) P2 — 1 =

Since the Jordan forms of;, + coaf? andAngo do not share
any elementary Jordan blocks, by Theorem 2, any Hermitian i . 5 A 5
W commuting withC, (1) is block diagonal. Admissibility of with Ay» defined in (18), and; = E[|a(n)[*]. Therefore
—1 .
?C’JWQ follows, as in the last part of the proof of Theo.rem - 1) — o2eq el ey el A
. s\W1 — —
Remarks: 0 0

1) Gaussianity of the symbotg(-) is sufficient for having

’ A akeQ as in (24) withA'/> = 5,1, . Noting thateZ A, =
C;(1) block diagonal, but it is not necessary. In general B _ . - 1 i
as long as coa(n — 1), f(n)] =cov[Sa(n), b(n)] = 0 oVia(n — di + 1), S2(n)] = 0 due to the iid and memory as

. : N A
is satisfied, Theorem 2 allows one to reduce the bl spmptions, it follows from (42) that’,(d: —1) = Q™C;(d

—H
equalizability problem to a check on the Jordan structurée (" has only one nonzero element
of Ju, + exa’ and A5 By. This is the case if, for ex- Culd — 1) = (caye”) @ Oy xas (43)
ample, the symbols and the nonlinear terms are uncorre-
lated, i.e., if coYa(n), si(n — k)] = O for all k and for  Now, letW = [W;;]; ;j—1.o be a Hermitian matrix commuting
i=2,...,q with C(d; — 1), with eachW;; d; x d;. From (43), we must
2) If the conditions of Theorem 5 are satisfied, the colghen have
of the symbolsz(-) does not affect blind equalizability.
It is conceivable, however, that for Gaussian symbols, & ¢y, ef = ey el Wiy, eq el Wia =0, Wiey el =0.
particular choice of the symbol autocorrelation could re-
sult in the two diagonal blocks @, (1) sharing a Jordan These imply that witl$ a scalar
block.
3) An example of a communications system in which the Wi =60& Wi &0, wih=[o Wi o] (44)
symbols are approximately Gaussian is the orthogonal __ _
frequency division multiplexing (OFDM) scheme [4], inWhereW 11 is (d1 — 2) x (d1 — 2) Hermitian, and¥ 12 is (d: —
which the original symbol stream is divided in blocks tha?) * dz. Then, one can check that
undergo an inverse discrete Fourier transform (IDFT) op-

(42)

eration prior to transmission. If the original symbols wer@W @ '

zero-mean i.i.d., then the IDFT output is asymptotically Wi — 1 WiaAg Y2 AR 0, WiaAgt?

(i.e., as the block size tends to infinity) white Gaussian = Oa (45)
[5]. Constellation shaping is another technique that pro- x x

duces a Gaussian-like symbol sequence [21].
. ussian-i y a [21] Therefore, in view of (44), the first and} th rows of QW Q!

E. Result for iid Symbols are justet’ anddel] , respectively. Thus, the first anfith rows

N o —QwWQ™! —j6 H —j6 H
For iid a(-), we present an equalizability result that bypassé’ée 7T areem Ve’ ande™ ey . Now, recall from (13)

. . . ~ Awo—1
the need for a check on the eigenstructure of the covariarfb@t any that is compatible must satisf§ = Fe /99

matrices at the price of imposing more stringent conditions diius, foré = 1 andé = d, (9) holds. N L
the relative memory lengths of the channel. In this section, we have presented conditions on the symbol

Theorem 6: Under Assumptions\1-A3, suppose that the statistics and channel nonlinearities that suffice for blind equal-
symbolsa(-) are iid and that the memory of the linear part o:\fzability. I_n _particular, under the _specified c_onditions_on th_e
the channel isstrictly greaterthan that of the nonlinear part,'npUt statistics, every channel estimate that is compatible with

ie. the SOS must share all its equalizers with the “true” channel.

Thus, the intrinsic ambiguity in the channel estimation proce-

S2(n) = ¢la(n), ..., aln —di + 2)) dure poses no practical difficulty as any equalizer obtained on
with ¢(-, ..., -) a memoryless mapping (37) the basis of the channel estimate necessarily equalizes the true

channel. Nonetheless, we have yet to describe how the equal-
Then, the ZF equalizers of delays 0 ahid- 1 obtained for any izers can be found from the channel output SOS. We consider
channel matrix compatible with the SOS of the received signilis issue in the next section.
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VI. ALGORITHM DEVELOPMENT Fork = di — 1, one has/§* ™" = eq,ell, whereas/¥ = 0
k > d;. Suppose for the moment th&aC*4—V,H has

The previous sections demonstrated that blind equalizers égh
P d n found. ThenR4—! — Vo004tV = Viey HVH =

be found from the channel output SOS under a variety of SQEE’ H d then b X q
tings. In this section, we provide algorithms for determinin§t.¢:1.1- Hence (v1,1, v1,4,) could then be estimated, up to a

/'6 . . . .
these equalizers for the important iid input cases covered ynstant of the form’®, as the smgul:’;\r pair associated with the
Theorems 4 and 6. largest singular value @t¥1 =1 — V,C4 =1V, Thus, we must

determinel,C*—1V,H . Observe tha€ can be written as
A. Setting of Theorem 4

- _ C=T(Y®Y ®Z)I* (53)
Suppose the conditions of Theorem 4 hold. As in [18], we
start with a singular value decomposition (SVD)@(0) where
s2 o1 rUH Y direct sum of shift matrices; with ¢ < dy;
C(0) = [Uh Un] { } { i } (46) Y direct sum of matriced; with i > dy;
0 o] Us Z  square nonsingular.
Partitioning
where ¥? = diagoi, ..., 03 4 ), and U, hasd; + dy )
columns. Recall that witl#’, which is the normalized channel T=[T1 T\ T»],
matrix defined in (10), one ha€,(0) = FFH®. Since F \H H H
has full column rank, it follows tﬁf’;d; = [/;XV for some TH= [(Tf) (Tl#) (TQ#) }
unitary (d, + d2) x (di + d2) matrix V. Let us partitionV as
V =[V1 Vu], where eaclV; hasd; columns;i = 1, 2. 11, Ty, andT having the same number of columnsasy” and
Observe that the first; rows of the pseudoinversE* = Z, respectively, one can express
QF# provide the ZF equalizers of delays O through— 1. .
Using the facts thal’ = U/; XV and thafl,, 0]Q = o4[l4, 0], VOV =T +T +A (54)

it can be checked that the ZF equalizers are
where

I, 0]F* =0, V21U 47 NP :
[{a, O] oaVi 1 (47) 2 VO vTrvE,  T2WwnyT#vE
Therefore, for equalization purposes, it suffices to estiriate

the remaining columns df are of no interest to us. Now, it can

be checked that Moreover, one hak,C*V,/ = I"*4+T'*+A*. SinceY isa direct
A w_ipH I — " sum of shift matrices of size smaller thdn I'' ~! = 0 so that
REXTULCMUET =VO(HVT. (48)  the matrix of interest reducesto % Y =rdh g A
Denote 7, as ther-fold direct sum ofJ,, e.g., /3, = .J; &
Js @ .J,. Lettings; > so > --- > s, > di, One can write

A2 WNLZTHVE. (55)

Our goal is to estimat&; from R using the structure of’, (1)
shown in (36). Note thaf” in (36) is known to us and that (36)

and (48) imply Y =Tos @ T, (56)

RV =WJa,, RV, = Vljﬂ- (49) for somer;, s;, u. Likewise, partitionZ} = [711 -+~ T1.],
with 77, having the same number of columns3s;, . Note that
the matriced’; = VoT1iTy,s, THVH satisfyl* = S Ik
vk, and

These “Jordan chains” show tHatcan be estimated from either
its first or its last column. If we partitior; columnwise as
Vi=[vix -+ v1,4] (49)reads as

Lf =Vo10: 0%, TE V!
Rupg =0, Rogy=uve; i=dy...3.2 (s0) 2k dih

H H . 0, ifk>s—1
R V1,1 IO, R Vi =V145-1 J= 2, 3, ey dl. (51) .
o . . = | a # TR
Thus, it suffices to obtain an estimate of ; or v 4,. In VaTh, @@s; et! 17; Vi, i k= -1
the original algorithm of [18] for linear channels, one had j=1
C,(1) = Jy,, i.e., the blockC in (36) was absent. This allowed (57)

for (v11, v1 4, ) t0 be taken as a “singular pair” associated with _ - ) —
the smallest singular value of the matfix This would work in /e propose the following “peeling” algorithm for estimating

our case, provided that in (36) is nonsingular. However, welt - Lu andA“ L,
would like to allow for singulaiC' as well since this is usually
the case in practice. For ¢=1to w do:
To do so, we extract the information abddtin R through ~ Step 1: Find ~ A*~L = Vol Z5 LT V.
several of its powers. Note that Step 2: Find T = VoTy; Ty, TH VL.

end for;
RF = v Jk vH + v,oF v (52) Step 3: Find AY“l = V120 tTFVHE.
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At the end, one obtaind,CH—1VH = Zlel“fl_l + and note from (63) and (64) the following Jordan chain relations
A% —1 We now show how these steps can be accomplishedfor eachj = 1, ..., 7
With B 2 H ithi i
Steps 1 and 3_.W|th R =WV Jy, Vi¥, in theith iteration of Riou=d; 1, (BN 1= =2, ..., s
Step 1, the matrix (67)

i—1

RER->T;=R+0+Y I;+Aa (58
j=1 Jj=t
is available R = R) Similarly, at Step 3R,+1 = R—1' =
R +['+ A is available. One has
kzs = R = (Whzrdvy ) = Ak (59)

Let p(\)
mial of thet x ¢ matrix Z. As Z is nonsingularp, # 0. By the
Cayley—Hamilton theorenp(Z) = 0 so thatZ* 1 p(Z) = 0,
ie.,

1
Zsi—l — _p_ (Zsi—l—t—l + plzsi—l—t—Q L ptilzsi)
t
which in view of (59) implies
. 1 . . .
A57_1 —_ _p_ (Asz'l't_l + p1A57+t_2 L pt—lASZ)
t
1 e 5t s:
_p_ (Rf’+t 1 +lei7+t 2 IS ptflRiz)
t
(60)

Similarly, at Step 3, one computes

AT =—pt (RO 4+ p RAS 2 4+ p RO,

Step 2: Observe thaR; = = I's'7! +
at theith iteration,I'> ! = R~ — Asf—l is available. For
notational convenience, lét £ V,T3,;, ¥H 2 T#V2 so that
r; =®J,. ¥ Note thatt’¢ = [, i.e., \I/H o# . Let

R 2V (I, &T) (Jdl Vi oyH @z )(Idl eT ) VH
vH (T#{@H)

+ (V)Y (TFV)) + ()2 (2V)) . (6D)

A%~ Therefore,

=WV + (V1)

There exists a known permutation mattxsuch thatR’ =
QR#; thus, R' is available. In addition

Ve =0, (TQ#VQH) & =0, (TﬁVQH) =1

(TE?VQ”) d=0 forj#i. (62)
Therefore, from (61) and (62)
R'o=07" . (63)
Similarly, one finds that
(RHYHT =07, ... (64)
For convenience, let = r; ands = s;. Partition
O =[P, ®,]
=[¢u1 $1s | 0 | dn ¢rs]  (69)
U=[U; --- 0,]
[?/)11 Yis | oo | Pm Yrs]  (66)

= A4+ p XL 4. -4 p, be the characteristic polyno-

In view of (67), the matrix’; = ®.7,..,, ¥ can be written as

P_Z<1>prH

j=1

= 42 bis | [Vi g
J=1
7 s—1

= (BT ¢, (RT)
j=1 k=1
s—1 r

= > @YY gpfl | (RDF
k=1 j=1
s—1
= > (R MR (68)
k=1

since from (57), it holds thdt:—*

= >"i_1 #jstj1- This shows
how to find['; from I'; ! andR!.

B. Setting of Theorem 6

Suppose the conditions of Theorem 6 hold, and therefore ac-
cording to Theorem 6 the equalizers of delays 0 @&né 1 can
be obtained from SOS. The algorithm below actually provides
equalizers for the intermediate delays as well.

We start by performing an SVD of,(0) as in (46). The
matrix 1 is then constructed as in (48), which still satisfies
R = VO,(1)VH. In addition, the matrixz is also constructed
as per

RExWHC,(d - DU E (69)

Again our goal is to estimate the columnslgf One can check
that R satisfies nowR = V C,(d; — 1)V, which in view of
(43) glvesR = Ul,dlvl,l' Hence the vectors, 1, vy 4, can be
obtained fromR up to a constar#’¢. The remaining columns

of Vi are recovered via the Jordan chains (50), (51) or some
combination of them. The ZF equalizers are then obtained via
(47).

VII. SIMULATION RESULTS

We present the results obtained by the proposed algorithm
with four numerical examples. For illustration purposes, when
computing the error rates, the phase ambigeifyinherent to
the method has been removed. Averages were computed based
on 100 independent runs. For simplicity, and to allow square
channel matrices for comparison with the algorithm from [6],
we have not performed denoising of the covariance matrices.

Example 1:First, we consider the real nonlinear channel
from [6, ex. 1], whose expression is

n) = Z hija(n —j) + Z hajsa(n — j) + z(n)
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Fig. 1. Performance of the new algorithm for the nonlinear channel in Example 1, equalizenoedet. (a) SER versus SNR, 500 symbols. (b) SER versus

sample size, equalization delay= 5.

SER

Our method, §=0

Our method, 8=4
Giannakis & Serpedin, 5=4
T

Giannakis & Serpedin, =0 |

10

15

20

25

30

SNR, dB

Fig. 2. Nonlinear channel in Example 1. Five hundred symbols, equalizer order3.

wheres(n) 2 a(n)a(n — 1). The inputa(-) is iid BPSK with for SNR= 10, 15, and 20 dB for the equalizer with associated
variances? = 1, and the number of subchannelspis= 3. delayé = 5 is also shown.
The noisez(-) is zero-mean white Gaussian with variande We have compared the performance of our proposed algo-
The normalized covariance matrix for this channelig1) = rithm with that of Giannakis and Serpedin [6] using an equalizer
Ja, ® Ju,, With &y = m + 2, dy = m + 1. First, we tested of orderm = 3 to obtain a square channel matfx A draw-
the performance of the equalizers of order= 4 using 500 back of the algorithm from [6] is that it only provides equal-
symbols for covariance estimation for different values of th&ers with minimal and maximal delays—in this case 0 and
signal-to-noise ratio (SNR), which is defined as 6 = 4—whereas, as seen in Fig. 1, in general, the best perfor-
mance is attained for some intermediate delay. Fig. 2 shows the
SER as a function of the SNR using 500 symbols. Itis seen that
the performance of the two algorithms is very close&ct 0.
For & = 4, however, the new algorithm clearly outperforms the
method from [6].
Example 2: The second channel that we consider is the com-
Fig. 1 shows the symbol error rate (SER) versus SNR for tipex channel from [6, ex. 3]:
different equalization delays. It is seen that the delay 0 3 1
yields the poorest performance. The best results are obtained y(n) = Z hyja(n — j) + Z hajsa(n — j§) + 2(n)
for 6 = 4. The SER as a function of the number of symbols j=0 j=0

i
o2 |Ihjl?
=0

SNR= 10log,, 5
O—Z
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o (b)

SER
SER

o 15 20 25 30 35 o] 200 400 600 800 1000
SNR, dB no. of samples

Fig. 3. Performance of the new algorithm for the nonlinear channel in Example 2, equalizerordet. (a) SER versus SNR, 500 symbols. (b) SER versus
sample size, equalization delay= 6.

—&— Our method, d=0 .

—— Giannakis & Serpedin, d=0

—&— Our method, d=6

—x— Giannakis & Serpedin, d=6
T T

5 10 15 20 25 30 35

Fig. 4. Nonlinear channel in Example 2. Five hundred symbols, equalizer @rder4.

where now,ss(n) 2 a(n)a(n — 1)a*(n — 2). The iid symbols ~ Example 3: The third channel that we consider is given by
a(-) are drawn from a QPSK constellatiga-1 +5} with equal . )
probabilities so that2 = 2. The number of subchannels is _ ' . ' p
p = 3. For this channel, one hag,(1) = diag(Jy, , J4,) with v(n) = ;) haja(n =) + ZO hajsa(n— 1) +#(n)
di = m+ 3, d» = m + 1. Fig. 3 shows the performance of the = 7=
equalizers with ordem = 4 for different values of the delay, . , N 5
SNR, and sample size. In this case, performance improves'diere the nonlinear term ig (n) = a”(n)a”(n — 1). There are
the equalization delay is increased. p = 3 subchannels given by
Fig. 4 compares the performance of the equalizers of order -

m = 4 obtained with our algorithm and with the method from ! 0-5 0-15
[6], both using 500 samples. As was the case for the channel hio= 1021, hu=|-031, hyp=|015
in Example 1, for6 = 0, both algorithms show similar perfor- 10.4 1 0.5
mance, whereas for the maximum delay, the proposed method F_02

presents a clear advantage. Fig. 5 shows typical scatter plots of ’

the subchannel outputs and the equalized signal, with 500 sam- fi21 = | —0.4

ples,m = 4, 6 = 6, and SNR= 30 dB. 0.2
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Fig. 5. Performance of the new algorithm for the nonlinear channel in Example 2: Scatter plots. Five hundred symbols, equalizeotdelelays = 6,
SNR = 30 dB.
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Fig. 6. Performance of the new algorithm for the nonlinear channel in Example 3. Equalizefoeder. (a) SER versus SNR, 5000 symbols. (b) SER versus
sample size, SNR= 30 dB.

The input symbols are iid, drawn from a four-PAM consteleigenvalues of” are nonzero, the proposed algorithm can still
lation {+(1/3), +1} with probabilitesP(a(n) = —1/3) = be used to compute the equalizers. Fig. 6 shows SER versus
P(a(n) =1/3) = 0.1, P(a(n) = —1) = P(a(n) = 1) = 0.4. SNR and sample size. In this case, the best performance is ob-
For an equalizer orden = 2, C,(1) can be shown to be similar tained by the equalizer with zero delay.

to J3 @ C with C given by Observe how, in order to obtain good performance, the

algorithm requires considerably more symbols and higher

0 0 0.1643 SNR than in the previous examples. A possible explanation
C=11 0 -0.3593]. is as follows. The singular values of the matiix (1) are
0 1 0.6216 {1,1,1,1,0.1643,0}; since the blocks associated with the

linear and nonlinear kernels have the same size, the algorithm
Observe that in this case, the linear and nonlinear kernels hagtes in the separation between the two smallest singular values
the same memory lengthy(= I; = 1). However, since all the of C;(1), namely, zero (the “linear” singular value) and 0.1643
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Fig. 7. Performance of the new algorithm for the nonlinear channel in Example 4, equalizernoede3. (a) SER versus SNR, 500 symbols. (b) SER versus
sample size, SNR= 15 dB.

(the “nonlinear” singular value). The closer these two numbetification, under the right conditions, they do enable the de-
are, the more sensitive the algorithm becomes to the effectd@fmination of an equalizer. A wide range of sufficient condi-
noise and finite sample size, as observed in the simulation tiens on the statistics of the transmitted symbols and the channel

sults. nonlinearities ensuring blind equalizability has been presented.
Example 4: The last channel that we consider has two norgpecifically, under the right conditions on the input statistics,
linear kernels, both longer than the linear one SOS-based equalization is possible even if there are kernels with

the same length as the linear one.
! ) 2 ) A procedure has been given in order to compute the equalizers
y(n) = Z hija(n = j) + Z hajsz(n = j) for the special butimportant case of iid symbols. The algorithm
=0 =0 is capable of finding the equalizers for all possible equaliza-
. tion delays, performing better than previous deterministic ap-
+Z hajsa(n — )+ 2(n) proaches. This can be justified intuitively since our algorithm
=0 explicitly exploits knowledge of the source statistics.

] A A ) As with most SOS-based methods, the algorithm for com-
with s3(n) = a(n)a(n—1) andss(n) = a(n)a(n—2). Theinput pyting the equalizers is computationally involved. However, this
symbols are iid, BPSK, and equiprobable, with = 1. The myst be balanced against the need for working with far longer
number of subchannels js= 5. The channel coefficients areqata records required by higher order statistics-based methods.
shown in the equation at the bottom of the page. The normalizedyes for future work is the extension of this algorithm in order
covariance matrix for this setting 6;(1) = Ji11 @ Jm+2 ® 1o cover the broader class of channels for which the conditions
Jm+2. Fig. 7 shows the results obtained for the equalizers gfesented in this work ensure blind equalizability from SOS. Ex-
orderm = 3. tensions that explicitly exploit cyclostationary nature of channel

inputs should also be investigated.

2

VIIl. CONCLUSION
APPENDIX A

Blind equalization of nonlinear single-input multiple-output
q 9 P P P PROOF OFTHEOREM 2

channels has been considered. Our approach is based on the
second-order statistics of the received signal. We have showr.et Cy; = SM S, oy = TNT ! be Jordan decomposi-
that while SOS do not suffice in general for blind channel idettions of Cy1, C2. Assume that these have no common eigen-

1 -05 02 -04 0.3 0.3 0.4 0.6
02 -05 0 -04 -02 -02 -07 0.8
[hio Nhi1 hoo hot hox hso har ha2]= | —0.3 1 —-0.2 0.5 0.4 0.1 —-04 -0.6
-03 0.7 1 -0.5 —-0.2 0.4 0.4 0.3
0.8 0.4 0.1 —-0.5 0.2 —-04 0.1 -0.2
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values. Then, the matrix equati6h,TL — TLCyy = Ca1 has whereD; 2 [DH ... DH | | andD, 2 [D,; - -- D, 1.
a solutionL [9, p. 414] so that Then ’

_ S 0][M 07178t 0 det(A — D) = det(A — D)
0= g5 o) [o w70 o] @ - .
-TLS T| [0 N L 7 -det [(A — Do) — D1(M — D;;)"' Ds]
__ AT D) D) —17
constitutes a Jordan decomposition(af(1). Now, let =" det {AM—[Do + Di(AM = Drr)""D2] }.
As M — D, isr, x r, upper triangular, and eadh,,, 1<
— [Wn Wm} 7 Wi, of sized; x d 71) <7 is v x r; and ind/, it follows that ()11_— D, )7'D,
WH Wy is 7 x r; and inU. Thus, Dy (A — D,,)~*D,, and hence,
Do+ Di(M — D)t D, can also be partitioned intg x rj
be a Hermitian matrix commuting wité, (1). Then,W must blocks,1 <4, j < 7, allini{. Thus, by the induction hypothesis
be of the form [9, pp. 417 and 418] det {)\I _ [ﬁo + DM — DTT)_lﬁQ]} R Y

S 0 x G][s™t 0 Hence, the result. ™
= (72)
—-TLS T| |HZ x L T1
APPENDIX B
where the blocks markedxX” are of no concern. Note that PROOF OFTHEOREM 3

Wiy = SGT, but sinceCyy, Cz; have no common eigen- If a(-) is generated via (33), then the forward prediction error
values, it follows fr_om [9, pp. 417 _and 418] that = 0, and iSjUSt(f)(n) — w(n), which by assumption is iid. Sinc(n —
hence V1, = 0, which proves the first part of the theorem. i 2" ction of{ f(k), k < n}, this means that the random
. If3_e_f(_)re proving the second part, let us introduce the fonow"\iriablessg(n _ 1) and f(n) are independent, and therefore,
efinition. o coV[Sa(n — 1), f(n)] = 0. Thus, with@ as in (24),C,(1) is
thsségti:‘c?tnischﬁﬁgzc;r QFU” 6} :vlh(ranna;;[rz fls[z'd[}?{]b; I\/C\)/Egrfo lower triangular as in (32). We can apply the result of Theorem
T wh - ith U ’ i | 2 to conclude that if the diagonal blocks 6f,(1), which are
n > m, orU whenn = m, wi any square upper triangularg; .o o Ju + era' and A, H(By — veﬂAﬁlAm), do not

matri?< andl/ any square upper triangular matrix with zeros ODphare any eigenvalues, then any Hermifiicommuting with
th?rg(laa?ocl)lrc];l/.in tact is readily verified C,(1) is block diagonal as in (17). Henc@W Q! is block
/ng readily S . lower triangular with (1, 1) blockd™/*Wy; A7, It suffices to
Lemma 1: The set/ is closed under addition and multipli-
show thatiW,; = 61, for some scala#.

cation. - . -
Now, assumeCy, — 0 and thatCyy. Cas do not have .Let )\1,_....?.)\5 be the distinct eigenvalues of;, + e«
with multiplicities m, ..., ms (my + --- + ms = dyi). Note

common J_o_rdan BIOCKS' Then, (70). wih = 0 s a JO“?"'."” that these are the zeros of the FPEF of okflerSinceY > 0,
decomposition ofC;(1). Let W, as in (71), be a Hermitian N . i

. : I e .. the FPEF is minimum phase [12] i.e);| < 1forl < i <
matrix commuting withCs(1). Then, W satisfies (72) with . P . L
L—=0 LetM = M, @ &M, N =N, & & N, with s. SlnceJd_l_Jr era™ IS @ companion matrix, it has a Jordan
M; = eyl +J, Ny = N1, + 7} elementary Jordan blocks,decomposmon
and partitionG = [Gi;]}SI5°, H = [Hy;]1S/57 accordingly, Jo, +eram = KNK' = K(N1 & - & N)K ™!
where eachG;;, H;; have sizer; x s;. By assumption, if
a; = Ay, thenr; # s;. Therefore, from [9, pp. 417 and 418], it
follows that allG;;, H/I are ini{.

such thatV; = MI,,. + JZ ,ie., there is only one Jordan

m;!

block per distinct eigenvalue [9]. In additiok is a general-
Observe thaiV, = SGT-! andWH = THHS-1. Then ized Vandermonde matrix given iy = [K; --- K], where

GHY = $-'W,WIS is similar to the Hermitian positive K =[Kiy - Kim] and
semidefinite matriX¥;, WiL. If one shows tha@H* is nilpo- 1 =t T
tent, then all the eigenvalues bf,, W2 will be zero, and thus, Kin = (k— 1)1 | dek—1 E oz ] N (73)

W12 = 0. This we proceed to show. )

Write D & GH = [D,j]i<i ;<. with eachDy; r; x r;. (588, &0~ [9, pp. 69 and 70). Now, sinddy, and
Then, from Lemma 1, each, is in /. Without loss of gen- 11" K NK™"A;;” commute, one must have
.erallty,. assume; > r;41. We prove the nilpotence dP by Wy, = Al_ll/QK(Yl P @Y;)KflAi{Q (74)
induction ont.

Clearly, whent = 1, Dy; being square and i#¥ is zero di- with eachY; m; xm; upper triangular Toeplitz [9, pp. 416—-418].
agonal upper triangular, all its eigenvalues are zero sal@tiat Since W, is Hermitian, it is diagonalizable with real eigen-
nilpotent. Now, suppose nilpotence holds for 7 — 1. Then, Vvalues; in view of (74), this must also be true fdr, ..., Y.
for ¢t = 7, write Since these are upper triangular Toeplitz, this in turn gites

L 01,1 < i< sfor some real scalag. We will show that all
D— Do Dy the; are equalf, = --- = 6, = 6, yielding W, = 61, as
D, D, desired.
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Let® 2 6,1,,, @ -+ @® 6,1,,.. SinceWy; = WH onehas  [9]
ATPKOK AN = Al g-HepH AT/ [10]
& (KTALK)® =0(KTAK) [11]

which reads a¢6; — 6;) (KA K;) =0for1 <4, j < s.
It suffices to show that{/’ A7 K; has at least one nonzero [12]
element for every, j. In particular, from (73), the (1,1) element [13]
of KH A1 K; is given by K AT K1 = P();, A;), where
the bivariate polynomiaP(z, w) is defined as [14]
A T [15]
Pz, w) = [(z5)" 1 ]

[16]

Using the Christoffel-Darboux formula [8], the polynomial
P(z, w) can also be written as

[18]
a(l/z*)a* (1/w*) — B(1/2)B*(1/w")
(1 = z*w)

Pz, w) =
(19]

wherey is a real constanty(z) = »~% det[zI — (J +e1a'?)],
andfB(z) = »z~“a*(1/2%). [Specifically, «(z) and 3(z) are
the transfer functions of the FPEF and BPEF of ordefor
the processi(-), and~? is the variance of the corresponding [21]
prediction errors.]

Since both);, A; are roots ofa(z), one hasz(1/A})
p*(1/A7) = 0 so that

[20]

a(1/A))a*(1/X)
Y21 = AFA))

P, Aj) = (75)
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