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Hierarchical representations of surfaces have many advantages for digital geometry processing ap-
plications. Normal meshes are particularly attractive since their level to level displacements are
in the local normal direction only. Consequently they only require scalar coefficients to specify. In
this paper we propose a novel method to approximate a given mesh with a normal mesh. Instead of
building an associated parameterization on the fly we assume a globally smooth parameterization
at the beginning and cast the problem as one of perturbing this parameterization. Controlling the
magnitude of this perturbation gives us explicit control over the range between fully constrained
(only scalar coefficients) and unconstrained (3-vector coefficients) approximations. With the un-
constrained problem giving the lowest approximation error we can thus characterize the error cost
of normal meshes as a function of the number of non-normal offsets—we find a significant gain for
little (error) cost. Because the normal mesh construction creates a geometry driven approximation
we can replace the difficult geometric distance minimization problem with a much simpler least
squares problem. This variational approach reduces magnitude and structure (aliasing) of the er-
ror further. Our method separates the parameterization construction into an initial setup followed
only by subsequent perturbations, giving us an algorithm which is far simpler to implement, more
robust, and significantly faster.

Categories and Subject Descriptors: G.N&inerical Analysis]: Approximation —Approximation of surfaces
and contoursG.1.2 Numerical Analysis]: Approximation —Wavelets and fractajd.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modelin@urve, surface, solid, and object representations

General Terms: Surface approximation.

Additional Key Words and Phrases: (semi-)regular meshes, subdivision, normal meshes, hierarchy,
resampling.

1. INTRODUCTION

One of the fundamental questions of surface representation concerns the relation between
approximation quality and size of the representation. Even though a full theoretical char-
acterization is not yet available, the practical importance of efficient representations for
digital geometry processing is so great that a broad variety of algorithms have been put
forward. Of particular interest in the context of display, editing and compression appli-
cations arenultiresolutionrepresentations based on irreguleioppe 199%and (semi-)
regular mesheZprin et al. 1997Gu et al. 2002 The latter have many connections with
classical functional representations such as wavethider and Sweldens 19pénd
Laplacian pyramidsBurt and Adelson 1983which can be leveraged for digital geometry
processing applicationsghider and Sweldens 20D1
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Fig. 1. The approximation errors ofterpolatingnormal curves (top) are typically larger than for their variational
counterparts (bottom). Note how the latter are low pass approximations until there are enough vertices to resolve
the radial frequency avoiding aliasing artifacts (top). All coefficients (light blue) are scalar.

Of the (semi-)regular surface representatinognal meshegGuskov et al. 2008—and
their non-hierarchical relativeslisplaced subdivision surfac¢kee et al. 200p—are of
particular interest. Normal meshes are a hierarchical representation in which almost all
coefficients are scalar rather than 3-vector valued. That is, leigefiven as an offset
from the coarser levedl — 1, with each offset being along the local normal direction on
the surface. This immediate reduction in size by a factor of three can be explaited,
in compression application&hodakovsky and Guskov 20p2avu et al. 200Band the
representation of displacement maped et al. 200D Unfortunately only few theoretical
results, which could guide the construction of normal meshes, are known so far. For exam-
ple, in [Daubechies et al. 2004 was shown that normal curve parameterizations possess
(essentially) the same smoothness as the underlying coarse to fine predictor. The bivariate
functionalsetting was studied inJansen et al. 20Q%or purposes of compression.

One expects that the best results in terms of minimizing approximation error can be
achieved without any constraints on the hierarchical displacement vectors. What is the
penalty in terms of error if one insists on normal displacements only? What is the trade-
off between allowing some non-normal coefficients and associated reduction in error? In
this paper we explore these questions and will provide an algorithm that provides explicit
control over this tradeoff.

To gain the advantages of normal mesh representations arbitrary input geometry must
be remeshed so that almost all offsets are in the normal direction only. Guskov and co-
workers R00( formulated this as a resampling problem using a recursive triangle quadri-
section procedure based on smooth interpolating subdiviZion et al. 199& All ver-
tices produced by this process are samples of the original surface. Since no low pass
filtering is performed this leads to aliasing artifacts (see FiddreConstraining all ver-
tices to lie on the original mesh also increases the approximation error vis-a-vis methods
which allow a more unconstrained placement of vertices. In the method of Geslebv
the parameterization needed for resampling was computed on the fly, a process which is
rather expensive and numerically very delicate, in particular for large meshes.

1.1 Contributions

Our goal is the construction of low error approximations of a given surface with a (semi-)
regular mesh while minimizing the number of non-normal coefficients. We control this
trade-off by controlling theerturbation of an initial, globally smooth parameterization
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during the normal mesh construction process. This is in contrast to previous methods
which computed a parameterization on the fly. The perturbation creates an explicit as-
sociation between the original and approximating surface, which is driven lnyethae-

try. Consequently it becomes meaningful to ask for the best approximation imeha
squared distanceense. A simple variational problem, to be solved at each level of the hi-
erarchy, results in an approximation which is least squares opfimall levelssubject to

a constraint on the magnitude of the parameterization perturbation. We achieve an overall
reduction in erroand better control of aliasing—the variational normal meshygprox-
imating not interpolating anymore (see Figuty The trade-off between normality and
least squares optimality can be controlled explicitly and we show in the results section that
the penalty—increase in approximation error—is small compared to the gain—reduction
from 3-vector coefficients to scalars.

As a bonus, the separation of the (upfront) construction of a globally smooth parameter-
ization—for which a variety of methods are available—from the rest of the algorithm,
greatly simplifies the implementation, increases numerical robustness, and leads to signif-
icant speedup in total processing time.

Note: In the following sections we will use the curve case to illustrate all the basic ideas
before giving details of the final algorithm for the mesh case.

2. BACKGROUND

To set the stage we briefly recall the salient features of the constructi@uskpv et al.
200( before describing the reasoning behind the variational approach.

2.1 Interpolating Normal Meshes

In [Guskov et al. 20000it was observed that one can construct curves in the plane and
surfaces in 3D by specifying a hierarchy of mostly scalar offsets for the mesh vertices.
In the construction of normal curves one starts from a polyffiethat interpolates the
reference curveé?. Each segment of° is divided into two smaller segments by inserting
a pointp, using,e.g, the midpoint rule. A detail coefficient is constructed by shooting
a ray fromp in the normal directiom of S atp (see Figure2). The ray intersects the
referenceR one or more times. To avoid flips only intersections parametridadtyveen
the endpoints of the base segment are considered. One of the intersedtignicsked by
some heuristic—the algorithm works for a range of choices—and the scalar normal offset
t is computed using = p + t - n. Sometimes corresponds to a parametric location®n
which is “far” from the parametric midpoint. For example, for reasons of avoiding too high
a distortion one may want to reject locatiang/hich are very close to one of the endpoints
of R. In this case a vectorial offset (“non-normal coefficient”) franto the parametric
midpoint of R is chosen. This decision process is typically controlled by an “aperture”
around the parametric midpoint. This finishes the constructio$t'aind the process can
now be repeated to obtain further refinements (Fi@)re

The algorithm was extended to surfaces by drawing curves onto irregular meslsé®y
et al. 2000. The surface was pierced by rays as described befare.iBut because curves
on manifolds are not necessarily flat the rays would pierce the surface at some distance
from the existing curve network. To keep the initial parameterization consistent with the
parameter values of the newly inserted points, the method recomputed the parameterization
obtained in the previous level and redrew the cuttegsughthe new intersection points.
This effectively meant that after each level of refinement the entire surface parameteriza-
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Fig. 2. Three levels of interpolating normal curves construction.

tion had to be recomputed. Not only is this costly: In general the irregular mesh and the
(semi-)regular curve network overlap arbitrarly. The enforcement of the intersection con-
straints during relaxation also has the potential of cutting triangles at poor aspect ratios.
This made the original method numerically challenging.

To overcome these difficulties we make two observations that will be important for us:

(1) The result of the riae piercing algorithm@uskov et al. 2000Qwhich converges under
mild technical conditionslpaubechies et al. 2004lepends only on the geometries of
R andS®. Any decisions to interfere with this process—treating an intersection as “too
far off the middle”—are based on the ability to measure distances and find midpoints
in the parametric domaifi of R.

(2) If the interpolating normal curve refinement converges for ingitsand R, then a
reparameterizatiop™ is naturally defined by5>(t) = R(p*>(t)) for all t € Q.
This p> can be approximated on each level by a piecewise lipesuch that for all
verticess; of S' we have interpolatios’ (¢;) = s; = R(u;). Becausss; is attached
to R at parameter value; we can construch!(¢;) = u;. Now S'(t) ~ R(p!(t))—
implying that the difference between the two functions is a good approximation of their
geometric distance

The latter observation is the starting point for our variational approach.

2.2 The Variational Approach

Given a parameterized curve or surfa@eand an approximatios’—* on levell — 1 we

are interested in finding the coefficients of a refined approximasfosuch that distance
decreasesd(R, S') < d(R,S'"!). Ideally this distance should be measured using the
symmetric Hausdorff metricdfignoni et al. 199B Unfortunately this is costly, leading to
the common use of the, norm of the distance function

il = ( [ (dne)? o)’

as a way to evaluate the approximation error. H&géw) is defined onS and gives the
distance to the nearest point &

Since a parameterization of the surface gives a functional description of the surface, an
even simpler norm involves parameterizations of either surface

R=51 = ( [ (B - s a). @

This expression, unlike thé, norm of the distance function depends on the parameter-
ization chosen fok andS. To make it geometrically meaningful, one needs to ensure
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that similar parameter values describe similar region® @nd S. This can be achieved

by carefully selecting a suitable reparameterizagion{) — (2 for one of the surfaces.
The main insight of our work is that this type of reparameterization is precisely what the
“piercing” procedure in the normal mesh construction produces. Usihgp — S|| as a
distance measure one can then hope for a behavior that resemhblgsrtben measure of

the distance function. A consequence of ugjiite p — S|| is that one can easily solve the
variational problem

argmin [Rop— (S + > cigh)|? 2)

to obtain detail vectore. describingS! relative toS'~*. The¢! are the basis functions of
Sl—piecewise linear hats in the case of meshes. The critical advantage &) Ethat

it defines a positive semidefinite quadratic form. Finding optimal detail veefossR?

(or R? for curves) requires only the solution of a linear system. Note that we have not yet
restricted the:l to be scalar.

Repeating this process at each level of refinement results in a hierarchy of coefficients
cl giving the bestL, approximationat each level For surfaces these coefficients can be
arranged in a Laplacian pyrami8yirt and Adelson 1983 Letting N be the number of
coefficients in the finest levdl, the total number of pyramid coefficients(is+ i + % +
...)N < 4/3N, a modest overhead for the flexibility afforded. Arthogonalwavelet
hierarchy could reduce this &y coefficients; to our knowledge no such construction is
available for general surfaces.

3. VARIATIONAL NORMAL CURVES
To turn the above ideas into a practical algorithm we need to make some specific choices:

—scalardetail coefficients are allowed fadd (new) andeven(old) vertices anywhere in
the hierarchy

—vectorialdetails are only allowed for odd vertices and will be used sparingly
—no flags, except whether an odd coefficient is scalar or vectorial, are created.

(The last choice is motivated largely by limiting the side information needed to inverse
transform the hierarchical surface representation.) In the standard interpolatory construc-
tion normal directions are used only once when moving a newly created (odd) vertex to its
position on the reference curve In the variational algorithm we need to keep directions
fixed, but allow vertices to slide along th&iormal line A normal line corresponding to a
vertexs; of S is defined by its position and normal vecttrinsertion time Vertices are
free to slide along their normal lines, but are never allowed to leave them. We must allow
such motion to ensure that the vertgxcan converge fol — oo to the intersection point
of its normal line withR. Directions of normal lines though are held fixed once they have
been created.

The variational refinement algorithm for curves consists of the following steps:

(1) refine mesks!~! by predicting odd points;

(2) find intersections of predicted normal lines with
(3) accept an intersection or select a vectorial offset;
(4) update the parameter perturbatjdrfrom p'—*
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Fig. 3. Construction of approximating normal curves: correspondence of parameter values (left) and position of
verices after minimization (right).

(5) define (tangentially displaced) normal lines for vectorial offsets;

(6) minimize the variational functional restricted to normal lines to obtain coefficients
describings'.

The first three steps are essentially the same as in the interpolating curve construction.
Here we focus on the remaining steps.

—The perturbation! is constructed by keeping (t2;) := p'~1(t;) for even vertices (see
Figure3 for the various parameter locations and values). R@ts; 1) be the intersec-
tion of the normal line with the reference surface andp@b; ;1) := us; 11 (blue dot
on R). For a non-normal coefficient, inserted at the parametric midpoift @fe would
use a parameter value @fy; + u2,42)/2 (red dot onR). This is all we need to define
the piecewise linear reparameterization on the new level. Note that once a parameter
valuew is associated with through the perturbation it will never change.

—Having defined the new parameterization, E1).i¢ well defined at level and we may
minimize it to determine the!. In Figure3 the coefficients! move vertices along the
normal lines, but in general do not interpoldte

—Non-normal offsets should be allowed to participate in the minimization scheme. For
this purpose we assign such coefficients a (translated) normal line anch@®egdat; ),
parallel to the originally predicted normal directiop; 1 of S. Instead of recording the
vectorial offset toR(us;+1) plus the scalar coefficient;; resulting from the mini-
mization, we only record the final positiof& ua;11) + ¢2;11 - no;y1 Of these vertices
and use these as the origin of the associated normal lines.

Computing the minimum of a quadratic form requires the solution of a linear system
K -cof normal equationsh; = (R, ¢}) defines the load vector ard;; = (¢!, ¢}) the mass
matrix. If no area weighting is used the entriesiofcan be computed offline. In practice
though it is more appropriate to take the actual triangle sizes into account. Computation of
the entries ob requires online numerical quadrature because of their dependeritelon
any case, the setup of the linear system is straightforward.

Even though the approximation is not interpolating we are using the fact thbatie
functionsare interpolating. Consider two neighboring basis functionsy; and suppose
that ¢; is nonzero at the normal line @f;. Changing the coefficient af; could then
“push” ¢; off its normal line unless the two normal lines happen to be parallel. Because
interpolating basis functions, such as piecewise linear hats, are zero at the normal lines of
all other vertices we do not need to worry about this effect.
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Fig. 4. Flattening of a region around remesh triarifjldefined by a base patch and its three neighbors.

4. VARIATIONAL NORMAL MESHES

As noted before we do not compute a parameterization of the mesh on the fly but rather
rely on a pre-existing parameterization. It could be produced with any of the algorithms
now available for the construction of low distortion, globally smooth parameterizations.
Our only desirable is that the parameterizatioddmally close to an isometry to simplify
finding reasonable “midpoints” between two vertices in the non-normal case.

The parameterization could be given on the original unstructured mesh or in the form of
a (semi-)regular remesh. We prefer (semi-)regular parameterizatignghose produced
by MAPS [Lee et al. 1998 GI [Gu et al. 200P, or GSP Khodakovsky et al. 20¢¥or
practical reasons. The operations needed (finding midpoints and computing distances in
the parameter domain) are well supported by (semi-)regular meshes:

—Evaluating a surfac&® for a given base patch &f at some barycentric coordinate is
easily realized through a logarithmic time hierarchy traversal.

—The inverse operatio®, g, turning a ray intersection at some fine level into a coordinate
value with respect to the base domain, is similarly easy to implement and efficient to
run.

This allows the computation of parametric distanegthin a base patch. Using a (semi-
) regular parameterization also reduces the complexity of flatteRithgcally, which is
needed if distances are to be compuetbssbase patch boundaries.

In terms of the above assumption on the input our algorithm starts with a hierarchy of
meshesk’, R',...,RY = R. With S := R as the base domain the parameterization
perturbation starts with the identity? := id. Note that if vertex insertion were always
performed at parametric midpoints Bf all offsets would (in general) be vectorial and for
all i, p* := 4d.

Let T' be some triangle of the normal remeSh !. This triangle (green in Figurd)
and its neighbors (white) are in most cases completely contained inside a base domain
triangle (blue boundaries). In this case one can compute midpoints and distances within
the parametric domain as described. (For a remesh triangle that is not completely contained
within a single base domain patch see below.)

Once we have flattend@in a neighborhood df’ we can make decisions on the piercing
points. The triangld” and its three neighbors (see Figiravhich shows the parametric
domain) are associated wif via p' . The piercing procedure begins by shooting rays
from the midpoints of the edges in the normal directiorsto!. The normal direction at
the midpoint of an edge is set to bisect the dihedral angle of the two incident triangles.
These rays will generate intersections wiRh(otherwise the distance to the intersection
is set toco and a non-normal offset is created). Given the current parameterization these
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Fig. 5. Piercing and reparameterization in the parameter domain: One of the new details (blue) pierces the mesh
outside of its apperture (yellow circles). This causes the creation of a non-normal vertex, whose parameter value
(red dot) remains as predicted. The parameter values of normal vertices on the other hand are slightly perturbed.

intersection points correspond to blue dots in Fidufleft). If these intersections lie within

their respective red diamonds we can guarantee that no folds in the parameterization will
occur. Otherwise we reject the intersection. In fact we limit legal intersections to the
yellow aperture for simplicity: a radius/distance bound is easier to check than containment
in a diamond.

As mentioned before we sometimes need to compute distances across base domains
as shown in Figurd. In this case we attempt to create a larger, flat domai dfat
includesT” and its neighbors. IrKhodakovsky et al. 20Q®xactly this problem was solved
(iteratively) by expressing the barycentric coordinates of one base domain triangle with
respect to a selected neighboring base domain triangle. Doing so is somewhat involved,
also because one would need to select a specific sequence of domain crossings.

We avoid the problem of selecting this sequence of crossings by performing only one
step of the procesg,g, by flattening the three neighbors of a base domain triangle only
(Figured). This is done using thieinge mapof [Lee et al. 1998Khodakovsky et al. 2003
which simply extends the barycentric coordinates of a triangle to its three neighbors. In
the very rare case that an even larger flattened domain is needed, the algorithm creates a
non-normal vertex. We have not observed any negative impact of this restriction in our
experiments. (Larger parametric displacements are rare and in any event are better dealt
with through a non-normal coefficient.) Thus the worst case requires flattening a base mesh
triangle patch of? and its three patch neighbors.

Now associate the new vertices §f with the parametric values of the intersections,
as in the curve case, to build the new piecewise linpgéaBecause the topology of is
the same as o' one does not need to construct a new mestypforinstead we store
the parameter values as attributes of the vertice®! irFigure5 (right) shows the neus’
with one intersection rejected and replaced with a pointfRowhich corresponds to the
parametric midpoint (red dot) analogous to the curve case.

To solve for thec!, i.e,, the final location of the vertices ¢f along their normal lines,
we need to set up the least squares system. For hat functions, without taking account of
the surface element aR, the mass matrix has entrié§, = valence; /12 andkK;; = 1/12
if 4 andj are connected by an edge. This matrix, for example, was usddim§bery
et al. 1997 for the construction of wavelets over (semi-)regular meshes. Since triangles
are generally not uniform in size we use numerical integration to compute the entfies of
and take the actual surface area into account. For this we employ the midpoint quadrature
rule with between 30 and 150 samples per triangl§’of
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This concludes the description of the algorithm.

5. IMPLEMENTATION AND RESULTS

Most of the components needed for the implementation of a variational normal remesher:
mesh library, ray-surface intersection, and linear solver, were taken off the shelf. The only
custom implementation was the code for flattening of base trianglés &or the varia-
tional normal mesh (VNM) code a simple numerical integrator (midpoint) was added. We
did not explore the trade-offs due to numerical integration accuracy and final approxima-
tion error (we use between 30 and 150 integration points per triangle).

For both INM and VNM theobserveduntime is linear in the number of triangles. (Note
that while individual point locations ar@(logn) their expected cost i©(1) explaining
the observed behavior.) The runtime of the VNM remesher is completely dominated by the
integration code (see the representative data in Tabl€he timing differences between
INM and VNM are due to linear equation system setup and solution. The linear solver time
is on the order of a second hence the difference is in essence the cost of integration. The
fact that the INM code is now so fast is partially due to the simpler flattening procedure,
but also to having replaced the on the fly repeated reparameteriz&tiskgv et al. 2000
with an upfront parameterization. Even for the VNM though our results compare favorably
with Guskovet al. (accounting for our timings being taken or22 GHz P4). The initial
parameterization was essentially free as we relied on available remésieest[al. 1998
Khodakovsky et al. 2003 Some models are not readily available as remeshes. Here one
has to take the parameterization time into account. Remeshing algorithms have evolved
significantly over the past few years (see for instahee[et al. 1998Khodakovsky et al.

2003 Aksoylu et al.; Schreiner et all for timings). The best results so far where obtained
by [Aksoylu et al.] who report solver timings of unde) seconds for a model containing
580K vertices (David head).

We have run experiments with a range of MAPS and GSP input parameterizations. The
remeshing errors of our INM algorithm are about the same aSirskov et al. 2000(see
Tablel for our results).

The anti-aliasing properties of variational normal meshes are clearly visible in the “zone”
sphere example of Figu

In terms of error, VNM give us a fairly consistent improvements over INM. Typically
INM have up to 60% larger remeshing error (on any level) relative to VNM. Figure
shows comparisons between different normal mesh types for different models and the GSP
input parameterization. In particular we compare against the vectorial variational mesh
(VVN), where detail vectors are not direction constrained. All errors where computed with
METRO [Cignoni et al. 199B For the feline and igea models we compared against the
original, irregular meshegrom which the GSP where derived; while the dino and zone-
sphere models are compared against a finer, (semi-)regular mesh. The only difference
observed is the GSP remeshing error on the finest level of feline and igea graphs.

We observe, that both interpolating methods (INM, GSP) and also both approximating
methods (VNM and VVN) perform roughly the same. Variational meshes (VNM and
VVM) also preserve volumes equaly well - much better than the interpolating hierarchies
(INM, GSP). This behavior is illustrated by the skull series in Figdiamd the error graphs
in Figure9.

The number of non-normal coefficients we achieved is typically a little less (we are
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dataset input normal  input base remesh non-  percent Time
param  method mesh size size  normal B-box (sec)
(t levels)  (vertices) vertices Lo Error

skull MAPS INM 4(8) 32770 368 0.0392 25
MAPS VNM 4(8) 32770 494  0.0282 15.2
fandisk  MAPS INM 73(4) 4546 103 0.0573* 0.2
MAPS  VNM 73(4) 4546 104 0.0345* 15
dino MAPS  INM 128(4) 8066 228 0.0893* 0.3
MAPS VNM 128(4) 8066 294  0.0576* 25
igea MAPS INM 196(5) 49666 136 0.0148 2.3
MAPS VNM 196(5) 49666 121  0.0096 14.9
GSP INM 40(6) 38914 24 0.0156 2.1
GSP VNM 40(6) 38914 38 0.0099 15.1
feline GSP INM 280(5) 72190 589 0.0156 34
GSP VNM 280(5) 72190 845  0.0096 25.3
horse GSP INM 140(5) 35330 256 0.0117 1.6
GSP VNM 140(5) 35330 317 0.0081 11.7
rabbit GSP INM 100(5) 25090 20 0.0107 1.1
GSP VNM 100(5) 25090 24 0.0067 8.6
zone- Loop INM 12(7) 40962 570 0.0611 2.8
sphere Loop VNM 12(7) 40962 146  0.0327 17.2

Table I. Using MAPS parameterizations as input to our algorithm gives us similar remeshing errors as when
using GSP. But typically the number of non-normal vertices is higher for MAPS, reflecting the fact that MAPS
parameterizations are not globally smooth. Variational normal meshes (VNM) typically outperform their inter-
polating (INM) counterparts. Errors where computed using METRO with respect to the original, irregular mesh.
An exception are the fandisk and dino models, which where compared against the finest level MAPS remesh.
Hence the MAPS remeshing errors need to be added to these numbers. (We discovered that the MAPS remeshes
are scaled/rotated versions of the irregular models publicly available.)

using a constant aperture @f2 for all levels while in [Guskov et al. 2000the aperture

was relaxed fronf).2 on coarse td.6 on finer levels). The variability in these numbers is

not suprising, because the construction of normal meshes depends on base mesh and the
parameterization chosen for the metric.

As in the original paper we have used a spatially invariant aperture to remesh from
one level to the next. This works well in regions with simple geometry and “nice” input
parameterization. In those settings no non-normal coefficients are inserted (see the feline
trunk in Figure10). In regions of high curvature non-normal coefficieate inserted,
preventing mesh degeneration. Interestingly, flat regions sometimes produce non-normal
coefficients due to excessive distortion in the original input parameterization (see the feline
wing attachment and tips). Increasing the aperture locally one can get rid of this problem
and a nice reparameterization results (see Figlye

The VNM algorithm samples the geometry of the input mesh fairly densely (as part of
the integration routine). Thus one could hope to find a strategy that adopts the aperture
locally based on this information at no extra cost. We did not run experiments to examine
such strategies.

6. CONCLUSION AND FUTURE DIRECTIONS

For many digital geometry processing applicatioramal mesheare an attractive (semi-)
regular, hierarchical representation. Hitherto their construction was delicate and compu-
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4

Fig. 6. A fine sampling of a “zone” sphere with a displacement field of increasing frequency (moving along the
equator) is used to test for aliasing properties (leftmost image, also showing the icosahedral base mesh). On the
right the upper row shows levelsto 4 of the interpolating normal mesh refinment. The right hemispheres, which
contain high frequencies in the original geometry, exhibit aliasing artifacts in the interpolating construction. The
corresponding variational normal meshes (bottom row) correctly low pass filter frequencies which cannot be
represented at the current resolution.
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Fig. 7. The METRO mean squared distance errors (percent B-box) are plotted for four different models using
the GSP input, normal remeshes which are: interpolating (INM), variational (VNM); and also for unconstrained
variational solutions (VVM). These examples illustrates how close the constrained variational normal meshes are
to the unconstrained variational meshes. Note that for the feline and igea models the errors are measured with
respect to the original irregular triangle mesh, while the dino and the zone sphere meshes are compared against
the finest level (semi-)regular mesh available.
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Fig. 8. Interpolating normal meshes are completely contained inside of convex regions of objects (top row, levels
1to5). This causes large errors for the volume of the reconstruction. Variational normal meshes place vertices at
optimized positions (bottom row) and preserve the volumes better.
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Fig. 9. These graphs are typical plots displaying the relative volumes (in percent of the original irregular mesh)

of the4 mesh hierarchies. Variational meshes consistently preserve volumes better than interpolating hierarchies.
Still they are still slightly biased towards underestimating the true volume. The skull base mesh is a tetrahedon,
hence the graphs show much larger volume defect than other meshes with more detailed base meshes. The relative
behavior of interpolating to variational errors nevertheless is very similar.

tationally expensive and the impact of the coefficient normality constraint on the approxi-
mation error was unclear. We find that our novatiational normal meskapproach yields
very high approximation quality: with only a small number of non-normal coefficients
we achieve error essentially as good as that produced for meshes with the full freedom
of 3-vector displacements everywhere. Variational normal meshes define their coefficients
through a squared distance minimization problem which closely mimics the geometric dis-
tance minimization, but is far simpler to solve. The resulting mesheamymximating
which helps us reduce the magnitude of the error and the aliasing artifacts present in inter-
polating constructions. The resulting algorithm is far simpler, more robust and faster than
the original method.

The basis functions in our construction are still interpolating (though not the approx-
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Fig. 10. An interpolating normal mesh (INM) of the feline dataset. Vertices of the base $feste shown in
blue while non-normal displacements (relative aperture sizeX)fare colored red. Most non-normal displace-
ments are due to severe geometric distortion (paws, edge of wiicg, However, there also some non-normal
coefficients in geometrically “flat” regions. These are due to parametric distortion (sdd)gusing essentially
tangential displacements. The location of non-normal coefficients for VNM are very similar for this geometry.
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Fig. 11. A closeup of the neighborhood of a base mesh vertex (blue) of high valence. The distortion in the
input parameterization is clearly visible (left). Because the geometry is simple, a nice remesh is achieved if
we do not interfere with the normal remesh (apertiu® right box). A small aperture0(05) allows for only

a small perturbation of the input mesh (middle) and results in more non-normal coefficients due to tangential

displacement (red dots).

imation itself). Perhaps even better approximations can be built when wsmgcubic
B-splines. In that case all coefficients would have to be solved for simultaneously in a
non-linearminimization problem. Another interesting avenue for future work is the con-
struction of normal meshes fine to coarse. These offer the potential for fast transform

methods.
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