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Hierarchical representations of surfaces have many advantages for digital geometry processing ap-

plications. Normal meshes are particularly attractive since their level to level displacements are
in the local normal direction only. Consequently they only require scalar coefficients to specify. In
this paper we propose a novel method to approximate a given mesh with a normal mesh. Instead of

building an associated parameterization on the fly we assume a globally smooth parameterization
at the beginning and cast the problem as one of perturbing this parameterization. Controlling the
magnitude of this perturbation gives us explicit control over the range between fully constrained

(only scalar coefficients) and unconstrained (3-vector coefficients) approximations. With the un-
constrained problem giving the lowest approximation error we can thus characterize the error cost
of normal meshes as a function of the number of non-normal offsets—we find a significant gain for
little (error) cost. Because the normal mesh construction creates a geometry driven approximation

we can replace the difficult geometric distance minimization problem with a much simpler least
squares problem. This variational approach reduces magnitude and structure (aliasing) of the er-
ror further. Our method separates the parameterization construction into an initial setup followed
only by subsequent perturbations, giving us an algorithm which is far simpler to implement, more

robust, and significantly faster.

Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: Approximation —Approximation of surfaces
and contours; G.1.2 [Numerical Analysis]: Approximation —Wavelets and fractals; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object representations

General Terms: Surface approximation.

Additional Key Words and Phrases: (semi-)regular meshes, subdivision, normal meshes, hierarchy,
resampling.

1. INTRODUCTION

One of the fundamental questions of surface representation concerns the relation between
approximation quality and size of the representation. Even though a full theoretical char-
acterization is not yet available, the practical importance of efficient representations for
digital geometry processing is so great that a broad variety of algorithms have been put
forward. Of particular interest in the context of display, editing and compression appli-
cations aremultiresolutionrepresentations based on irregular [Hoppe 1996] and (semi-)
regular meshes [Zorin et al. 1997; Gu et al. 2002]. The latter have many connections with
classical functional representations such as wavelets [Schr̈oder and Sweldens 1996] and
Laplacian pyramids [Burt and Adelson 1983], which can be leveraged for digital geometry
processing applications [Schr̈oder and Sweldens 2001].

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY, Pages1–??.



2 · Ilja Friedel, Andrei Khodakovsky and Peter Schröder

Fig. 1. The approximation errors ofinterpolatingnormal curves (top) are typically larger than for their variational
counterparts (bottom). Note how the latter are low pass approximations until there are enough vertices to resolve
the radial frequency avoiding aliasing artifacts (top). All coefficients (light blue) are scalar.

Of the (semi-)regular surface representationsnormal meshes[Guskov et al. 2000]—and
their non-hierarchical relatives,displaced subdivision surfaces[Lee et al. 2000]—are of
particular interest. Normal meshes are a hierarchical representation in which almost all
coefficients are scalar rather than 3-vector valued. That is, levell is given as an offset
from the coarser levell − 1, with each offset being along the local normal direction on
the surface. This immediate reduction in size by a factor of three can be exploited,e.g.,
in compression applications [Khodakovsky and Guskov 2002; Lavu et al. 2003] and the
representation of displacement maps [Lee et al. 2000]. Unfortunately only few theoretical
results, which could guide the construction of normal meshes, are known so far. For exam-
ple, in [Daubechies et al. 2004] it was shown that normal curve parameterizations possess
(essentially) the same smoothness as the underlying coarse to fine predictor. The bivariate
functionalsetting was studied in [Jansen et al. 2003] for purposes of compression.

One expects that the best results in terms of minimizing approximation error can be
achieved without any constraints on the hierarchical displacement vectors. What is the
penalty in terms of error if one insists on normal displacements only? What is the trade-
off between allowing some non-normal coefficients and associated reduction in error? In
this paper we explore these questions and will provide an algorithm that provides explicit
control over this tradeoff.

To gain the advantages of normal mesh representations arbitrary input geometry must
be remeshed so that almost all offsets are in the normal direction only. Guskov and co-
workers [2000] formulated this as a resampling problem using a recursive triangle quadri-
section procedure based on smooth interpolating subdivision [Zorin et al. 1996]. All ver-
tices produced by this process are samples of the original surface. Since no low pass
filtering is performed this leads to aliasing artifacts (see Figure1). Constraining all ver-
tices to lie on the original mesh also increases the approximation error vis-a-vis methods
which allow a more unconstrained placement of vertices. In the method of Guskovet al.
the parameterization needed for resampling was computed on the fly, a process which is
rather expensive and numerically very delicate, in particular for large meshes.

1.1 Contributions

Our goal is the construction of low error approximations of a given surface with a (semi-)
regular mesh while minimizing the number of non-normal coefficients. We control this
trade-off by controlling theperturbation of an initial, globally smooth parameterization

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Variational Normal Meshes · 3

during the normal mesh construction process. This is in contrast to previous methods
which computed a parameterization on the fly. The perturbation creates an explicit as-
sociation between the original and approximating surface, which is driven by thegeome-
try. Consequently it becomes meaningful to ask for the best approximation in themean
squared distancesense. A simple variational problem, to be solved at each level of the hi-
erarchy, results in an approximation which is least squares optimalfor all levelssubject to
a constraint on the magnitude of the parameterization perturbation. We achieve an overall
reduction in errorand better control of aliasing—the variational normal mesh isapprox-
imating not interpolating anymore (see Figure1). The trade-off between normality and
least squares optimality can be controlled explicitly and we show in the results section that
the penalty—increase in approximation error—is small compared to the gain—reduction
from 3-vector coefficients to scalars.

As a bonus, the separation of the (upfront) construction of a globally smooth parameter-
ization—for which a variety of methods are available—from the rest of the algorithm,
greatlysimplifies the implementation, increases numerical robustness, and leads to signif-
icant speedup in total processing time.

Note: In the following sections we will use the curve case to illustrate all the basic ideas
before giving details of the final algorithm for the mesh case.

2. BACKGROUND

To set the stage we briefly recall the salient features of the construction of [Guskov et al.
2000] before describing the reasoning behind the variational approach.

2.1 Interpolating Normal Meshes

In [Guskov et al. 2000] it was observed that one can construct curves in the plane and
surfaces in 3D by specifying a hierarchy of mostly scalar offsets for the mesh vertices.
In the construction of normal curves one starts from a polylineS0 that interpolates the
reference curveR. Each segment ofS0 is divided into two smaller segments by inserting
a pointp, using,e.g., the midpoint rule. A detail coefficient is constructed by shooting
a ray fromp in the normal directionn of S at p (see Figure2). The ray intersects the
referenceR one or more times. To avoid flips only intersections parametricallybetween
the endpoints of the base segment are considered. One of the intersectionsr is picked by
some heuristic—the algorithm works for a range of choices—and the scalar normal offset
t is computed usingr = p + t · n. Sometimesr corresponds to a parametric location onR
which is “far” from the parametric midpoint. For example, for reasons of avoiding too high
a distortion one may want to reject locationsr which are very close to one of the endpoints
of R. In this case a vectorial offset (“non-normal coefficient”) fromp to the parametric
midpoint of R is chosen. This decision process is typically controlled by an “aperture”
around the parametric midpoint. This finishes the construction ofS1 and the process can
now be repeated to obtain further refinements (Figure2).

The algorithm was extended to surfaces by drawing curves onto irregular meshes [Guskov
et al. 2000]. The surface was pierced by rays as described before in2d. But because curves
on manifolds are not necessarily flat the rays would pierce the surface at some distance
from the existing curve network. To keep the initial parameterization consistent with the
parameter values of the newly inserted points, the method recomputed the parameterization
obtained in the previous level and redrew the curvesthroughthe new intersection points.
This effectively meant that after each level of refinement the entire surface parameteriza-
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Fig. 2. Three levels of interpolating normal curves construction.

tion had to be recomputed. Not only is this costly: In general the irregular mesh and the
(semi-)regular curve network overlap arbitrarly. The enforcement of the intersection con-
straints during relaxation also has the potential of cutting triangles at poor aspect ratios.
This made the original method numerically challenging.

To overcome these difficulties we make two observations that will be important for us:

(1) The result of the näıve piercing algorithm [Guskov et al. 2000], which converges under
mild technical conditions [Daubechies et al. 2004], depends only on the geometries of
R andS0. Any decisions to interfere with this process—treating an intersection as “too
far off the middle”—are based on the ability to measure distances and find midpoints
in the parametric domainΩ of R.

(2) If the interpolating normal curve refinement converges for inputsS0 andR, then a
reparameterizationp∞ is naturally defined byS∞(t) = R(p∞(t)) for all t ∈ Ω.
This p∞ can be approximated on each level by a piecewise linearpl such that for all
verticessi of Sl we have interpolationSl(ti) = si = R(ui). Becausesi is attached
to R at parameter valueui we can constructpl(ti) = ui. Now Sl(t) ≈ R(pl(t))—
implying that the difference between the two functions is a good approximation of their
geometric distance.

The latter observation is the starting point for our variational approach.

2.2 The Variational Approach

Given a parameterized curve or surfaceR and an approximationSl−1 on levell − 1 we
are interested in finding the coefficients of a refined approximationSl such that distance
decreases:d(R,Sl) < d(R,Sl−1). Ideally this distance should be measured using the
symmetric Hausdorff metric [Cignoni et al. 1998]. Unfortunately this is costly, leading to
the common use of theL2 norm of the distance function

‖dR‖ :=
( ∫

Ω

(dR(ω))2 dω
) 1

2

as a way to evaluate the approximation error. HeredR(ω) is defined onS and gives the
distance to the nearest point onR.

Since a parameterization of the surface gives a functional description of the surface, an
even simpler norm involves parameterizations of either surface

‖R− S‖ :=
( ∫

Ω

(R(ω)− S(ω))2 dω
) 1

2
. (1)

This expression, unlike theL2 norm of the distance function depends on the parameter-
ization chosen forR andS. To make it geometrically meaningful, one needs to ensure
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that similar parameter values describe similar regions ofR andS. This can be achieved
by carefully selecting a suitable reparameterizationp : Ω → Ω for one of the surfaces.
The main insight of our work is that this type of reparameterization is precisely what the
“piercing” procedure in the normal mesh construction produces. Using‖R ◦ p − S‖ as a
distance measure one can then hope for a behavior that resembles theL2 norm measure of
the distance function. A consequence of using‖R ◦ p− S‖ is that one can easily solve the
variational problem

arg min ‖R ◦ p− (Sl−1 +
∑

i

cl
iφ

l
i)‖2 (2)

to obtain detail vectorscl
i describingSl relative toSl−1. Theφl

i are the basis functions of
Sl—piecewise linear hats in the case of meshes. The critical advantage of Eq. (2) is that
it defines a positive semidefinite quadratic form. Finding optimal detail vectorscl

i ∈ R3

(or R2 for curves) requires only the solution of a linear system. Note that we have not yet
restricted thecl

i to be scalar.
Repeating this process at each level of refinement results in a hierarchy of coefficients

cl
i giving the bestL2 approximationat each level. For surfaces these coefficients can be

arranged in a Laplacian pyramid [Burt and Adelson 1983]. Letting N be the number of
coefficients in the finest levelL, the total number of pyramid coefficients is(1 + 1

4 + 1
16 +

. . . )N ≤ 4/3N , a modest overhead for the flexibility afforded. Anorthogonalwavelet
hierarchy could reduce this toN coefficients; to our knowledge no such construction is
available for general surfaces.

3. VARIATIONAL NORMAL CURVES

To turn the above ideas into a practical algorithm we need to make some specific choices:

—scalardetail coefficients are allowed forodd (new) andeven(old) vertices anywhere in
the hierarchy

—vectorialdetails are only allowed for odd vertices and will be used sparingly

—no flags, except whether an odd coefficient is scalar or vectorial, are created.

(The last choice is motivated largely by limiting the side information needed to inverse
transform the hierarchical surface representation.) In the standard interpolatory construc-
tion normal directions are used only once when moving a newly created (odd) vertex to its
position on the reference curveR. In the variational algorithm we need to keep directions
fixed, but allow vertices to slide along theirnormal line. A normal line corresponding to a
vertexsi of S is defined by its position and normal vectorat insertion time. Vertices are
free to slide along their normal lines, but are never allowed to leave them. We must allow
such motion to ensure that the vertexsi can converge forl → ∞ to the intersection point
of its normal line withR. Directions of normal lines though are held fixed once they have
been created.

The variational refinement algorithm for curves consists of the following steps:

(1) refine meshSl−1 by predicting odd points;

(2) find intersections of predicted normal lines withR;

(3) accept an intersection or select a vectorial offset;

(4) update the parameter perturbationpl from pl−1
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Fig. 3. Construction of approximating normal curves: correspondence of parameter values (left) and position of
verices after minimization (right).

(5) define (tangentially displaced) normal lines for vectorial offsets;

(6) minimize the variational functional restricted to normal lines to obtain coefficients
describingSl.

The first three steps are essentially the same as in the interpolating curve construction.
Here we focus on the remaining steps.

—The perturbationpl is constructed by keepingpl(t2i) := pl−1(ti) for even vertices (see
Figure3 for the various parameter locations and values). LetR(u2i+1) be the intersec-
tion of the normal line with the reference surface and setpl(t2i+1) := u2i+1 (blue dot
onR). For a non-normal coefficient, inserted at the parametric midpoint ofR, we would
use a parameter value of(u2i + u2i+2)/2 (red dot onR). This is all we need to define
the piecewise linear reparameterization on the new level. Note that once a parameter
valueu is associated witht through the perturbationp it will never change.

—Having defined the new parameterization, Eq. (2) is well defined at levell and we may
minimize it to determine thecl

i. In Figure3 the coefficientscl
i move vertices along the

normal lines, but in general do not interpolateR.

—Non-normal offsets should be allowed to participate in the minimization scheme. For
this purpose we assign such coefficients a (translated) normal line anchored atR(u2i+1),
parallel to the originally predicted normal directionn2i+1 of S. Instead of recording the
vectorial offset toR(u2i+1) plus the scalar coefficientc2i+1 resulting from the mini-
mization, we only record the final positionsR(u2i+1) + c2i+1 · n2i+1 of these vertices
and use these as the origin of the associated normal lines.

Computing the minimum of a quadratic form requires the solution of a linear systemb =
K ·c of normal equations:bi = 〈R,φl

i〉 defines the load vector andKij = 〈φl
i, φ

l
j〉 the mass

matrix. If no area weighting is used the entries ofK can be computed offline. In practice
though it is more appropriate to take the actual triangle sizes into account. Computation of
the entries ofb requires online numerical quadrature because of their dependence onR. In
any case, the setup of the linear system is straightforward.

Even though the approximation is not interpolating we are using the fact that thebasis
functionsare interpolating. Consider two neighboring basis functionsφi, φj and suppose
that φi is nonzero at the normal line ofφj . Changing the coefficient ofci could then
“push” cj off its normal line unless the two normal lines happen to be parallel. Because
interpolating basis functions, such as piecewise linear hats, are zero at the normal lines of
all other vertices we do not need to worry about this effect.
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Fig. 4. Flattening of a region around remesh triangleT defined by a base patch and its three neighbors.

4. VARIATIONAL NORMAL MESHES

As noted before we do not compute a parameterization of the mesh on the fly but rather
rely on a pre-existing parameterization. It could be produced with any of the algorithms
now available for the construction of low distortion, globally smooth parameterizations.
Our only desirable is that the parameterization belocally close to an isometry to simplify
finding reasonable “midpoints” between two vertices in the non-normal case.

The parameterization could be given on the original unstructured mesh or in the form of
a (semi-)regular remesh. We prefer (semi-)regular parameterizations,e.g., those produced
by MAPS [Lee et al. 1998], GI [Gu et al. 2002], or GSP [Khodakovsky et al. 2003] for
practical reasons. The operations needed (finding midpoints and computing distances in
the parameter domain) are well supported by (semi-)regular meshes:

—Evaluating a surfaceR for a given base patch ofS at some barycentric coordinate is
easily realized through a logarithmic time hierarchy traversal.

—The inverse operation,e.g., turning a ray intersection at some fine level into a coordinate
value with respect to the base domain, is similarly easy to implement and efficient to
run.

This allows the computation of parametric distanceswithin a base patch. Using a (semi-
) regular parameterization also reduces the complexity of flatteningR locally, which is
needed if distances are to be computedacrossbase patch boundaries.

In terms of the above assumption on the input our algorithm starts with a hierarchy of
meshesR0, R1, . . . , RL = R. With S0 := R0 as the base domain the parameterization
perturbation starts with the identity,p0 := id . Note that if vertex insertion were always
performed at parametric midpoints ofR, all offsets would (in general) be vectorial and for
all i, pi := id .

Let T be some triangle of the normal remeshSl−1. This triangle (green in Figure4)
and its neighbors (white) are in most cases completely contained inside a base domain
triangle (blue boundaries). In this case one can compute midpoints and distances within
the parametric domain as described. (For a remesh triangle that is not completely contained
within a single base domain patch see below.)

Once we have flattenedR in a neighborhood ofT we can make decisions on the piercing
points. The triangleT and its three neighbors (see Figure5 which shows the parametric
domain) are associated withR via pl−1. The piercing procedure begins by shooting rays
from the midpoints of the edges in the normal direction toSl−1. The normal direction at
the midpoint of an edge is set to bisect the dihedral angle of the two incident triangles.
These rays will generate intersections withR (otherwise the distance to the intersection
is set to∞ and a non-normal offset is created). Given the current parameterization these
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TTT

Fig. 5. Piercing and reparameterization in the parameter domain: One of the new details (blue) pierces the mesh
outside of its apperture (yellow circles). This causes the creation of a non-normal vertex, whose parameter value
(red dot) remains as predicted. The parameter values of normal vertices on the other hand are slightly perturbed.

intersection points correspond to blue dots in Figure5 (left). If these intersections lie within
their respective red diamonds we can guarantee that no folds in the parameterization will
occur. Otherwise we reject the intersection. In fact we limit legal intersections to the
yellow aperture for simplicity: a radius/distance bound is easier to check than containment
in a diamond.

As mentioned before we sometimes need to compute distances across base domains
as shown in Figure4. In this case we attempt to create a larger, flat domain ofR that
includesT and its neighbors. In [Khodakovsky et al. 2003] exactly this problem was solved
(iteratively) by expressing the barycentric coordinates of one base domain triangle with
respect to a selected neighboring base domain triangle. Doing so is somewhat involved,
also because one would need to select a specific sequence of domain crossings.

We avoid the problem of selecting this sequence of crossings by performing only one
step of the process,e.g., by flattening the three neighbors of a base domain triangle only
(Figure4). This is done using thehinge mapof [Lee et al. 1998; Khodakovsky et al. 2003],
which simply extends the barycentric coordinates of a triangle to its three neighbors. In
the very rare case that an even larger flattened domain is needed, the algorithm creates a
non-normal vertex. We have not observed any negative impact of this restriction in our
experiments. (Larger parametric displacements are rare and in any event are better dealt
with through a non-normal coefficient.) Thus the worst case requires flattening a base mesh
triangle patch ofR and its three patch neighbors.

Now associate the new vertices ofSl with the parametric values of the intersections,
as in the curve case, to build the new piecewise linearpl. Because the topology ofpl is
the same as ofSl one does not need to construct a new mesh forpl. Instead we store
the parameter values as attributes of the vertices inSl. Figure5 (right) shows the newSl

with one intersection rejected and replaced with a point onR which corresponds to the
parametric midpoint (red dot) analogous to the curve case.

To solve for thecl
i, i.e., the final location of the vertices ofSl along their normal lines,

we need to set up the least squares system. For hat functions, without taking account of
the surface element onR, the mass matrix has entriesKii = valencei/12 andKij = 1/12
if i andj are connected by an edge. This matrix, for example, was used in [Lounsbery
et al. 1997] for the construction of wavelets over (semi-)regular meshes. Since triangles
are generally not uniform in size we use numerical integration to compute the entries ofK
and take the actual surface area into account. For this we employ the midpoint quadrature
rule with between 30 and 150 samples per triangle ofSl.
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This concludes the description of the algorithm.

5. IMPLEMENTATION AND RESULTS

Most of the components needed for the implementation of a variational normal remesher:
mesh library, ray-surface intersection, and linear solver, were taken off the shelf. The only
custom implementation was the code for flattening of base triangles ofR. For the varia-
tional normal mesh (VNM) code a simple numerical integrator (midpoint) was added. We
did not explore the trade-offs due to numerical integration accuracy and final approxima-
tion error (we use between 30 and 150 integration points per triangle).

For both INM and VNM theobservedruntime is linear in the number of triangles. (Note
that while individual point locations areO(log n) their expected cost isO(1) explaining
the observed behavior.) The runtime of the VNM remesher is completely dominated by the
integration code (see the representative data in TableI). The timing differences between
INM and VNM are due to linear equation system setup and solution. The linear solver time
is on the order of a second hence the difference is in essence the cost of integration. The
fact that the INM code is now so fast is partially due to the simpler flattening procedure,
but also to having replaced the on the fly repeated reparameterization [Guskov et al. 2000]
with an upfront parameterization. Even for the VNM though our results compare favorably
with Guskovet al. (accounting for our timings being taken on a2.2 GHz P4). The initial
parameterization was essentially free as we relied on available remeshes [Lee et al. 1998;
Khodakovsky et al. 2003]. Some models are not readily available as remeshes. Here one
has to take the parameterization time into account. Remeshing algorithms have evolved
significantly over the past few years (see for instance [Lee et al. 1998; Khodakovsky et al.
2003; Aksoylu et al.; Schreiner et al.] for timings). The best results so far where obtained
by [Aksoylu et al.] who report solver timings of under40 seconds for a model containing
580k vertices (David head).

We have run experiments with a range of MAPS and GSP input parameterizations. The
remeshing errors of our INM algorithm are about the same as in [Guskov et al. 2000] (see
TableI for our results).

The anti-aliasing properties of variational normal meshes are clearly visible in the “zone”
sphere example of Figure6.

In terms of error, VNM give us a fairly consistent improvements over INM. Typically
INM have up to 60% larger remeshing error (on any level) relative to VNM. Figure7
shows comparisons between different normal mesh types for different models and the GSP
input parameterization. In particular we compare against the vectorial variational mesh
(VVN), where detail vectors are not direction constrained. All errors where computed with
METRO [Cignoni et al. 1998]. For the feline and igea models we compared against the
original, irregular meshesfrom which the GSP where derived; while the dino and zone-
sphere models are compared against a finer, (semi-)regular mesh. The only difference
observed is the GSP remeshing error on the finest level of feline and igea graphs.

We observe, that both interpolating methods (INM, GSP) and also both approximating
methods (VNM and VVN) perform roughly the same. Variational meshes (VNM and
VVM) also preserve volumes equaly well - much better than the interpolating hierarchies
(INM, GSP). This behavior is illustrated by the skull series in Figure8 and the error graphs
in Figure9.

The number of non-normal coefficients we achieved is typically a little less (we are
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data set input normal input base remesh non- percent Time
param method mesh size size normal B-box (sec)

(] levels) (vertices) vertices L2 Error

skull MAPS INM 4(8) 32770 368 0.0392 2.5
MAPS VNM 4(8) 32770 494 0.0282 15.2

fandisk MAPS INM 73(4) 4546 103 0.0573* 0.2
MAPS VNM 73(4) 4546 104 0.0345* 1.5

dino MAPS INM 128(4) 8066 228 0.0893* 0.3
MAPS VNM 128(4) 8066 294 0.0576* 2.5

igea MAPS INM 196(5) 49666 136 0.0148 2.3
MAPS VNM 196(5) 49666 121 0.0096 14.9
GSP INM 40(6) 38914 24 0.0156 2.1
GSP VNM 40(6) 38914 38 0.0099 15.1

feline GSP INM 280(5) 72190 589 0.0156 3.4
GSP VNM 280(5) 72190 845 0.0096 25.3

horse GSP INM 140(5) 35330 256 0.0117 1.6
GSP VNM 140(5) 35330 317 0.0081 11.7

rabbit GSP INM 100(5) 25090 20 0.0107 1.1
GSP VNM 100(5) 25090 24 0.0067 8.6

zone- Loop INM 12(7) 40962 570 0.0611 2.8
sphere Loop VNM 12(7) 40962 146 0.0327 17.2

Table I. Using MAPS parameterizations as input to our algorithm gives us similar remeshing errors as when
using GSP. But typically the number of non-normal vertices is higher for MAPS, reflecting the fact that MAPS
parameterizations are not globally smooth. Variational normal meshes (VNM) typically outperform their inter-
polating (INM) counterparts. Errors where computed using METRO with respect to the original, irregular mesh.
An exception are the fandisk and dino models, which where compared against the finest level MAPS remesh.
Hence the MAPS remeshing errors need to be added to these numbers. (We discovered that the MAPS remeshes
are scaled/rotated versions of the irregular models publicly available.)

using a constant aperture of0.2 for all levels while in [Guskov et al. 2000] the aperture
was relaxed from0.2 on coarse to0.6 on finer levels). The variability in these numbers is
not suprising, because the construction of normal meshes depends on base mesh and the
parameterization chosen for the metric.

As in the original paper we have used a spatially invariant aperture to remesh from
one level to the next. This works well in regions with simple geometry and “nice” input
parameterization. In those settings no non-normal coefficients are inserted (see the feline
trunk in Figure10). In regions of high curvature non-normal coefficientsare inserted,
preventing mesh degeneration. Interestingly, flat regions sometimes produce non-normal
coefficients due to excessive distortion in the original input parameterization (see the feline
wing attachment and tips). Increasing the aperture locally one can get rid of this problem
and a nice reparameterization results (see Figure11).

The VNM algorithm samples the geometry of the input mesh fairly densely (as part of
the integration routine). Thus one could hope to find a strategy that adopts the aperture
locally based on this information at no extra cost. We did not run experiments to examine
such strategies.

6. CONCLUSION AND FUTURE DIRECTIONS

For many digital geometry processing applications,normal meshesare an attractive (semi-)
regular, hierarchical representation. Hitherto their construction was delicate and compu-
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Fig. 6. A fine sampling of a “zone” sphere with a displacement field of increasing frequency (moving along the
equator) is used to test for aliasing properties (leftmost image, also showing the icosahedral base mesh). On the
right the upper row shows levels1 to 4 of the interpolating normal mesh refinment. The right hemispheres, which
contain high frequencies in the original geometry, exhibit aliasing artifacts in the interpolating construction. The
corresponding variational normal meshes (bottom row) correctly low pass filter frequencies which cannot be
represented at the current resolution.
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Fig. 7. The METRO mean squared distance errors (percent B-box) are plotted for four different models using
the GSP input, normal remeshes which are: interpolating (INM), variational (VNM); and also for unconstrained
variational solutions (VVM). These examples illustrates how close the constrained variational normal meshes are
to the unconstrained variational meshes. Note that for the feline and igea models the errors are measured with
respect to the original irregular triangle mesh, while the dino and the zone sphere meshes are compared against
the finest level (semi-)regular mesh available.
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Fig. 8. Interpolating normal meshes are completely contained inside of convex regions of objects (top row, levels
1 to 5). This causes large errors for the volume of the reconstruction. Variational normal meshes place vertices at
optimized positions (bottom row) and preserve the volumes better.
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Fig. 9. These graphs are typical plots displaying the relative volumes (in percent of the original irregular mesh)
of the4 mesh hierarchies. Variational meshes consistently preserve volumes better than interpolating hierarchies.
Still they are still slightly biased towards underestimating the true volume. The skull base mesh is a tetrahedon,
hence the graphs show much larger volume defect than other meshes with more detailed base meshes. The relative
behavior of interpolating to variational errors nevertheless is very similar.

tationally expensive and the impact of the coefficient normality constraint on the approxi-
mation error was unclear. We find that our novelvariational normal meshapproach yields
very high approximation quality: with only a small number of non-normal coefficients
we achieve error essentially as good as that produced for meshes with the full freedom
of 3-vector displacements everywhere. Variational normal meshes define their coefficients
through a squared distance minimization problem which closely mimics the geometric dis-
tance minimization, but is far simpler to solve. The resulting meshes areapproximating,
which helps us reduce the magnitude of the error and the aliasing artifacts present in inter-
polating constructions. The resulting algorithm is far simpler, more robust and faster than
the original method.

The basis functions in our construction are still interpolating (though not the approx-
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Fig. 10. An interpolating normal mesh (INM) of the feline dataset. Vertices of the base meshS0 are shown in
blue while non-normal displacements (relative aperture size of0.2) are colored red. Most non-normal displace-
ments are due to severe geometric distortion (paws, edge of wing,etc.). However, there also some non-normal
coefficients in geometrically “flat” regions. These are due to parametric distortion (see Fig.11) causing essentially
tangential displacements. The location of non-normal coefficients for VNM are very similar for this geometry.

Fig. 11. A closeup of the neighborhood of a base mesh vertex (blue) of high valence. The distortion in the
input parameterization is clearly visible (left). Because the geometry is simple, a nice remesh is achieved if
we do not interfere with the normal remesh (aperture0.3, right box). A small aperture (0.05) allows for only
a small perturbation of the input mesh (middle) and results in more non-normal coefficients due to tangential
displacement (red dots).

imation itself). Perhaps even better approximations can be built when using,e.g., cubic
B-splines. In that case all coefficients would have to be solved for simultaneously in a
non-linearminimization problem. Another interesting avenue for future work is the con-
struction of normal meshes fine to coarse. These offer the potential for fast transform
methods.
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