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Abstract—Intellectual property protection of multimedia content is es-
sential to the successful deployment of Internet content delivery platforms.
There are two general approaches to multimedia copy protection: copy pre-
vention and copy detection. Past experience shows that only copy detection
based on mark embedding techniques looks promising. Multimedia finger-
printing means embedding a different buyer-identifying mark in each copy
of the multimedia content being sold. Fingerprinting is subject to collusion
attacks: a coalition of buyers collude and follow some strategy to mix their
copies with the aim of obtaining a mixture from which none of their iden-
tifying marks can be retrieved; if their strategy is successful, the colluders
can redistribute the mixture with impunity. A construction is presented in
this paper to obtain fingerprinting codes for copyright protection which
survive any collusion strategy involving up to three buyers (3-security). It is
shown that the proposed scheme achieves 3-security with a codeword length
dramatically shorter than the one required by the general Boneh-Shaw con-
struction. Thus the proposed fingerprints require much less embedding ca-
pacity. Due to their own clandestine nature, collusions tend to involve a
small number of buyers, so that there is plenty of use for codes providing
cost-effective protection against collusions of size up to three.

Index Terms—Buyer collusion, electronic copyright protection, finger-
printing, Internet and telecom applications and services, service creation
platforms and enabling technologies, watermarking.

I. INTRODUCTION

If multimedia content delivery services are to take off over the In-
ternet, delivery platforms should guarantee intellectual property pro-
tection. There are two general approaches to protecting the copyright
of multimedia content: one isa priori and consists of trying to prevent
illegal copies from being made; the other isa posteriori, i.e. it tries to
detect illegal copying once it has taken place. In view of the past expe-
rience in failure of copy prevention systems (the most recent being the
DVD copy prevention failure, see [3]), only copy detection seems to
have reasonable chances of success. Copy detection is based on mark
embedding: the merchant embeds an imperceptible mark into the con-
tent before selling it [5]. There are two kinds of mark: watermarks and
fingerprints. A watermark is a message that allows ownership of the
marked content to be proven, whereas a fingerprint allows buyer identi-
fication [7]. Thus, fingerprints can be used to trace illegal redistributors:
once a redistributed copy is found, the buyer who legally purchased it
can be identified, and this legal buyer is necessarily the (first) illegal
redistributor.

Collusion attacks are not an issue for watermarking (all marked
copies being identical), but should be considered in the case of
fingerprinting. In a collusion attack, a coalition of dishonest buyers
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Fig. 1. Successful collusion.

compare their copies in order to locate differences between them and
follow a strategy to fabricate a new copy of the content whose mark
is either no longer recoverable or does not allow identification of any
of the colluders. If the collusion strategy is successful, the fabricated
content can be redistributed with impunity.

In [1] and [2], the concept of fingerprinting secure against buyer col-
lusions is introduced. A general construction is given to obtain finger-
printing codes secure against collusions of up toc buyers (c-secure
codes). ForN possible buyers and given� > 0, L = 2c log(2N=�)
andd = 8c2 log(8cL=�) a code withN codewords of length

l = 2Ldc = 32c4 log
2N

�
log

8cL

�
(1)

is constructed which allows one of the colluders to be identified with
probability1� � (the fingerprint embedded in each copy sold is a dif-
ferent codeword of the fingerprinting code). The authors also show that,
for c � 2 andN � 3, it is not possible to obtainc-secure codes where
colluders are identified with probability 1.

In [4] it is shown that, forc = 2, collusion security can be obtained
using the error-correcting capacity of dual Hamming codes. In this way,
2-secure fingerprinting codes are obtained which are much shorter than
2-secure codes obtained via the general construction [1], [2]. There are
two advantages in using a shorter fingerprinting code: 1) embedding a
fingerprint requires less embedding capacity (in other words, it is more
imperceptible); 2) since less bits must be embedded and retrieved, the
embedding and retrieval of fingerprints is more cost-effective.

We show in this paper that, forc = 3, it is also possible to come up
with collusion-secure fingerprinting codes much shorter than 3-secure
codes obtained from the general construction [1], [2]. The basic idea is
to compose a new kind of code, which we callscattering code, with a
dual Hamming code.

Section II contains an overview of our proposal. Section III presents
some results on dual Hamming codes. Section IV presents a set of
lemmas on the probability of successful collusion as a function of
the strategy of colluders. The construction and decoding of scattering
codes are introduced in Section V. Section VI explains how to generate
fingerprinting codes secure against collusions of up to three buyers by
composing a scattering code with a dual Hamming code. Section VII
concludes by presenting some numerical results. Finally, the Appendix
contains proofs for all but two lemmas presented in the paper (the two
omitted proofs are nearly trivial).

II. OVERVIEW

Binary dual Hamming codes can be used to build fingerprints resis-
tant against collusions of up to three buyers in the way proposed in this

1094-6977/03$17.00 © 2003 IEEE
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Fig. 2. Thep-majority collusion strategy.

paper. A different codeword of such a code is assigned to each buyer
as fingerprint; to recover the fingerprint, minimum distance decoding
is used. Thus, colluders succeed if they manage to mix their copies to
obtain a copy containing an embedded word such that the closest code-
word to that word is a codeword assigned as a fingerprint to a buyer
different from the colluders.

We model collusion attacks as so-called “p-majority” strategies. In
such a strategy, three colluders wishing to mix their copies choose,
for the positions where their codewords differ, the majority bit with
probability p. We prove in this paper that, if the colluders follow a
p-majority strategy withp close to one, the probability of identifying
the three of them can be made arbitrarily close to one with the sole use
of codewords of a binary dual Hamming code as fingerprints.

The problem is thatp is a parameter chosen by the colluders, so they
are likely to use the best choice for them, which isp = 0 (in fact a
smallp is enough for them to stay undetected with great probability).
To remedy this, we propose to construct fingerprints by composing a
special new kind of codes, called scattering codes and described in this
paper, with dual binary Hamming codes. With such a composition, the
merchant can make sure that, regardless of thep-majority strategy used
by colluders to mix their composed codewords, the result of decoding
the mixed composed codeword will be a word generated by ap(v)-ma-
jority strategy, where the probabilityp(v) is controlled by the merchant
and can be made arbitrarily close to one. Thus, the probability that the
three colluders can be identified can be made arbitrarily close to one
by our construction.

III. D UAL BINARY HAMMING CODES

The dual code of a binary Hamming code (denoted byDH(n)) is a
binary code with2n codewords of lengthN = 2n � 1 such that the
distance between any two codewords is2n�1. A few definitions and
useful properties related to such codes are presented next.

Definition 1: Let a1; a2; a3 be three codewords of aDH(n) code,
i.e.,ai = ai1a

i
2 � � � a

i
N . Defineinv(a1; a2; a3) to be the set of invariant

positions between all three codewords, that is, those bit positions in
which all three codewords have the same bit value. Formally speaking

inv(a1; a2; a3) = i; 1 � i � N; a
1
i = a

2
i = a

3
i :

Definition 2: Let a1; a2; a3 be three codewords of aDH(n) code.
Defineminor(a1; a2; a3) to be the set of bit positions in whicha1

has a value different from the values ina2 anda3 (for such positions,
a2i = a3i ). Formally expressed

minor(a1; a2; a3) = i; 1 � i � N; a
1
i 6= a

2
i ; a

1
i 6= a

3
i :

Lemma 1: Let a1; a2; a3 be three codewords of aDH(n)
code and letj � j denote the bitlength operator. Then it holds
that jinv(a1; a2; a3)j = 2n�2 � 1, jminor(a1; a2; a3)j = 2n�2,
jminor(a2; a1; a3)j = 2n�2 andjminor(a3; a1; a2)j = 2n�2.

TABLE I
EXPECTEDNUMBER OFDIFFERINGBITS BETWEEN A WORDa GENERATED

USING A p-MAJORITY STRATEGY AND ANY OF THE COLLUDERS’ CODEWORDS.
THE CODE IS ADH(6)

Example 1: The following are three codewords of aDH(5) code. In
the table above,inv123 stands forinv(a1; a2; a3), min123 stands for
minor(a1; a2; a3), min213 stands for minor(a2; a1; a3) andmin312
stands for minor(a3; a1; a2). The codeword length is25 � 1 = 31.
Now, jinv(a1; a2; a3)j = 25�2 � 1 = 7, jminor(a1; a2; a3)j
= jminor(a2; a1; a3)j = jminor(a3; a1; a2)j = 25�2 = 8.

Lemma 2: Let a1; a2; a3 be three codewords of aDH(n) code,
then it holds that:

1) there exists one and only one codewordaz 2 DH(n)n
fa1; a2; a3g such thatazi = a1i = a2i = a2i , 8 i 2
inv(a1; a2; a3). Furthermore,azi = a1i ,8 i 2 minor(a1; a2; a3),
azi = a2i , 8 i 2 minor(a2; a1; a3) and azi = a3i ,
8 i 2 minor(a3; a1; a2).

2) remaining codewords satisfy that8 aj 2 DH(n)n
fa1; a2; a3; azg, dinv(a ;a ;a )(a

j ; a1) = dminor(a ;a ;a )

(aj ; a1) = dminor(a ;a ;a )(a
j ; a1) = dminor(a ;a ;a )

(aj ; a1) = 2n�3, wheredP (x; y) denotes Hamming distance
between codewordsx andy restricted to bit positions inP . The
same distances hold with respect toa2 anda3.

Example 2: The table following shows the unique codewordaz cor-
responding to three particular codewordsa1; a2; a3 of aDH(5) code:

In the previous table,inv123, min123, min213 andmin312 have
the same meanings as in the table of Example 1. It can be seen that
azi = a1i = a2i = a3i , 8 i 2 inv(a1; a2; a3). Also, azi = a1i ,
8 i 2 minor(a1; a2; a3), azi = a2i , 8 i 2 minor(a2; a1; a3) and
azi = a3i , 8 i 2 minor(a3; a1; a2).

Example 3: The table following displays three code-
words a1; a2; a3 of a DH(5) code and another codeword
ai 2 DH(5)nfa1; a2; a3; azg. The meaning ofinv123, min123,
min213 andmin312 is as above.

It can be seen thatdinv(a ;a ;a )(a
i; a1)= dminor(a ;a ;a )(a

i; a1)=

dminor(a ;a ;a )(a
i; a1)= dminor(a ;a ;a )(a

i; a1)= 2n�3 = 4. The
same distances hold betweenai anda2; a3.

IV. 3-COLLUSIONS OVER DH(n)

A. Detectable Positions

Let us assume that three dishonest buyersc1, c2, c3 compare their
copies of the same multimedia content. According to the marking as-
sumption [1], they can only modify the embedded marks in thosede-
tectablepositions,i.e., those where not all three marks take the same
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bit value. In those positions, the colluders can set the corresponding
bit to “0,” “1,” or “unreadable.” In this way, we conclude that, if three
different buyers are assigned codewordsa1, a2, anda3 of aDH(n)
code, the result of their collusion will be a wordacoll where no bit
has been modified in the2n�2 � 1 positions ininv(a1; a2; a3). On
the other hand, colluders will be able to detect and identify positions in
minor(a1; a2; a3) as the bit positions of those content fragments which
are identical between the copies ofc2 andc3 and different from the
copy ofc1. In a similar way, minor(a2; a1; a3) and minor(a3; a1; a2)
can be identified as well.

B. Decoding by Minimum Distance

As said above, colluders can generate a new object whose embedded
codeword may have been altered in detectable positions. In this way,
it is possible that the word retrieved from a collusion-generated object
does not correspond to anyDH(n) codeword. In these situations, the
recovered word will be error-corrected by minimum distance.

Thus, in order for a collusion to be successful, colludersc1, c2, c3

(whose assigned codewords area1; a2; a3) must generate, by mixing
fragments of their copies, a word such that the closest codeword in the
DH(n) code is not infa1; a2; a3g (see Fig. 1). In this way, another
buyer will be accused in lieu of the colluders. Note that we are assuming
colluders do not generate “unreadable” positions when colluding over
DH(n) codewords. It will be shown later that our construction actually
prevents unreadable positions from being fed by colluders to the dual
Hamming decoder.

C. Objective of Colluders

As decoding is done by minimum distance, the objective of colluders
is to come up with an object whose embedded word is as distant as
possible from their assigned codewords.

Intuitively, it can be realized that all colluders must contribute the
same number of bits from their corresponding codewords. Otherwise,
the collusion-generated word would be closer to the codewords of those
colluders having contributed more bits.

Definition 3: A p-majority collusion strategy is one in which col-
luders choose with probabilityp the majority bit value in positions
minor(ai; aj ; ak) (that is, the bit values inaj or ak) (See Fig. 2).

It can be seen that a word generated using ap-majority strategy on
a1; a2; a3 2 DH(n) is expected to be at the same distance froma1,
a2 anda3.

D. Distance From a Collusion-Generated Word to
Colluders’ Codewords

Lemma 3: Let acoll be a word that has been generated
using a p-majority collusion strategy between three codewords
a1; a2; a3 2 DH(n). It holds thatd1 = d(acoll; ai) = K1, 8 i = 1,
2, 3 with

p1(k) =p(K1 = k) =

=

min(k;2 )

t=max(0;k�2 )

b(t; 2n�2; p)b(k� t; 2n�1; 1� p)

where b(x1; x2; x3) is the binomial probability function (x2 is the
number of trials,x3 the success probability per trial andx1 is the
number of successful trials).

Remarks: The total number of differing bits is the addition of two
binomial random variables. We use this fact to compute its expected
value as

E(d1) = p � 2n�2 + (1� p)2n�1 = 2n�1 � p � 2n�2:

TABLE II
EXPECTEDNUMBER OF DIFFERINGBITS BETWEEN A WORDa GENERATED

USING A p-MAJORITY STRATEGY AND THE NEAREST[E(d )] AND THE

FARTHEST [E(d )] COLLUDER CODEWORD. THE CODE IS ADH(6)

TABLE III
EXPECTEDNUMBER OF DIFFERINGBITS BETWEEN A WORDa GENERATED

USING A p-MAJORITY STRATEGY (p > 0:6̂) AND THE NEARESTCODEWORD

NOT IN THE COLLUSION. THE CODE IS ADH(6)

As can be seen in Table I, the expected number of differing bits be-
tween the wordacoll generated by a collusion and any of the colluders’
codewords[a1; a2; a3 2 DH(6)] decreases as the valuep gets closer
to 1 (acoll gets closer toa1; a2; a3).

Lemma 4: Let acoll be a word generated using ap-majority collu-
sion strategy between three codewordsa1; a2; a3 2 DH(n). It holds
thatd2 = mini=1;2;3 d(a

coll; ai) = K2 with

p2 = p(K2 = k) =

3

i=1

3

i
p1(k)

i

k >k

p1(k
0)

3�i

:

Lemma 5: Let acoll be a word generated using ap-majority collu-
sion strategy between three codewordsa1; a2; a3 2 DH(n). It holds
thatd3 = maxi=1;2;3 d(a

coll; ai) = K3 with

p3 = p(K3 = k) =

3

i=1

3

i
p1(k)

i

k <k

p1(k
0)

3�i

:

See Table II, for a numerical example ofd2 andd3:

E. Distance From a Collusion-Generated Word to Codewords Not
in the Collusion

Lemma 6: Letacoll be a word generated using ap-majority strategy
between three codewordsa1; a2; a3 2 DH(n) and letaz be the only
codeword inDH(n)nfa1; a2; a3g with azi = a1i = a2i = a3i , 8 i 2
inv(a1; a2; a3) (the existence and uniqueness ofaz are guaranteed by
Lemma 2 ). Then,d4 = d(az; acoll) = K4 with

p4(k) = p(K4 = k) = b(k; 3 � 2n�2
; p):

Remarks: The expected number of differing bits betweenaz and
acoll is

E(d4) = p � 3 � 2n�2

Lemma 7: Let acoll be a word generated using ap-ma-
jority strategy between three codewordsa1; a2; a3 2 DH(n)
and let az be the only codeword inDH(n)nfa1; a2; a3g
with azi = a1i = a2i = a3i ; 8i 2 inv(a1; a2; a3). Then,
for any codeworda 2 DH(n)nfa1; a2; a3; azg it holds that
d5 = d(a; acoll) = 2n�3 +K5 with

p5(k) =p(K5 = k)

=

min(k;3� )

t=max(0;k�3� )

b(t; 3 � 2n�3
; 1� p)b(k� t; 3 � 2n�3

; p):
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(a)

(b)

Fig. 3. Distribution ofd andd for (a)p = 0:6̂ and (b)p = 0:8. The code is aDH(6).

Remarks: The expected number of differing bits betweena and
acoll is

E(d5) = 2n�3 + 3 � 2n�3(1� p) + 3 � 2n�3p = 2n�1:

For the sake of simplicity, let us assume in what follows thatd4 is
distributed liked5. Since forp > 0:6̂ the number of differing bits
expected ford4 is greater than the number of differing bits expected
for d5 (E(d4) > E(d5), p � 3 � 2n�2 > 2n�1 , p > 0:6̂), such a
distributional assumption will cause actual security to be even slightly
higher than computed in what follows.

Lemma 8: Letacoll be a word generated using ap-majority strategy
(p > 0:6̂) between three codewordsa1; a2; a3 2 DH(n). It holds that
d6 = mini=2f1;2;3gfd(a

coll; ai)g = 2n�3 +K6, with

p6(k) =p(K6 = k)

=

2 �3

i=1

2n � 3

i
p5(k)

i

k >k

p5(k
0)

2 �3�i

:

See Table III for a numerical example ofd6:
As can be seen in Fig. 3, whenp > 0:6̂, d2 tends to take smaller

values thand6. This means that, with high probability, the codeword
in DH(n) nearest to the collusion-generated word is a colluder
codeword.

F. Identifying Colluders’ Codewords

Lemma 9: Letacoll be a word generated using ap-majority strategy
(p > 0:6̂) between three codewordsa1; a2; a3 2 DH(n). The proba-
bility that the codeword inDH(n)nearest toacoll isnotin fa1; a2; a3g
is expressed by

� =

2 �1

k=0

p(d2 = k)p(d6 � k):

� is the probability that decodingacoll yields as a result a codeword
different from any of the colluders’ codewords, that is, the probability
of an honest buyer being unjustly accused instead of the colluders. The
formula above for� is straightforward from the definitions ofd2 and
d6, so its proof is omitted in the Appendix.

Remarks: It can be observed from Table IV that, asn increases and
p approaches 1, the probability� of accusing an innocent buyer can be
made arbitrarily close to 0.

The following result follows from the definitions ofd3 andd6, so its
proof is omitted in the Appendix as well.

Lemma 10: Let acoll be a word generated using ap-majority
strategy (p > 0:6̂) between three codewordsa1; a2; a3 2 DH(n).
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TABLE IV
PROBABILITY � OF SUCCESS OF A3-COLLUSION IN DH(7) AND

DH(8) FOR SEVERAL VALUES OFp

The probability that the three codewords inDH(n) nearest toacoll

arefa1; a2; a3g is expressed by

2 �1

k=0

p(d3 = k)p(d6 > k):

Remarks: It can be observed from Table V that asn increases andp
approaches 1, the probability of not identifying all three colluders can
be made arbitrarily close to 0.

The problem is that the parameterp defining the collusion strategy
is chosen by the colluders, which Implies they can takep = 0 to make
sure they are not identified!In Section V, a new kind of codes named
scattering codes are presented. These codes are used in Section VI to
prevent colluders from avoiding identification in this way.

V. SCATTERING CODES

A. Construction

A scattering codeSC(d; t) with parameters(d; t) can be defined
as a binary code consisting of2t codewords of length(2t+ 1)d con-
structed as follows.

1) Construction starts with generation ofSC(1; t).

a) i-th codeword for1 � i � t is constructed by setting the
first and the(i + 1)-th bits of the codeword to “1.” The
remaining bits are set to “0.”

b) i-th codeword fort+1 � i � 2t is constructed by setting
the (i + 1)-th bit of the codeword to “1.” The remaining
bits are set to “0.”

2) CodeSC(d; t) is generated by replicatingd times every column
ofSC(1; t). Define ablockto be a group ofd replicated columns.

3) By convention, the firstt codewords ofSC(d; t) are defined to
encode a “1” and the lastt codewords are defined to encode a "0".
The first block of the code is called “Zone-A,” the nextt blocks
are called “Zone-B” and the lastt blocks are called “Zone-C.”

Using a Scattering Code, a “1” is encoded by randomly choosing one
of the firstt codewords and a “0” is encoded by randomly choosing one
of the lastt codewords (Table VI shows the codewords of aSC(2;3)
code).

B. Decoding

A scattering code is decoded by using the first applicable rule among
the following ordered list.

1) If all bits in “Zone-A” are “1” and all bits in “Zone-C” are “0,”
decode as “1.”

2) If all bits in “Zone-A” are “0” and all bits in “Zone-B” are “0,”
decode as “0.”

3) If in two blocks of “Zone-B” there is at least one bit in each with
value “1,” decode as “1.”

4) If in two blocks of “Zone-C” there is at least one bit in each with
value “1,” decode as “0.”

5) If there are more “1” bits than “0” bits in “Zone-A,” decode as
“1.”

6) If there are more “0” bits than “1” bits in “Zone-A,” decode as
“0.”

7) Decode as “Unreadable”

TABLE V
PROBABILITY OF NOT IDENTIFYING ALL THREE COLLUDERS INDH(7)

AND DH(8) FOR SEVERAL VALUES OFp

TABLE VI
CODEWORDS OF ASCATTERING CODESC(2; 3)

Note: It is easy to see that an odd value fordmakes Rule 7 unreach-
able, thus causing a "0" or "1" to be always returned.

Lemma 11: Let bcoll be a word generated by using ap-majority
strategy between three codewordsb1; b2; b3 2 SC(d; t) encoding the
same bit valuev. Then,bcoll decodes asv with probability 1.

Lemma 12: Let bcoll be a word generated using ap-majority
strategy between three codewordsb1; b2; b3 2 SC(d; t), with two
of them (b1 andb2) encoding a valuev and the other(b3) a valuev.
Then, the probability thatbcoll decodes asv is given by

p(v) = 1�
1

t
pdif (v) +

1

t
pcoi(v)

wherepdif(v) is the probability of decoding asv whenb1 6= b2 and
can be computed aspdif (v) = 1 � pdif(v) (we assumed to have an
odd value) and

pdif(v) =(1� p)dp2d

+ 2 � pd(1� p
d)

bd�1=2c

k=0

b(k; d; p)

+ p
2d

bd�1=2c

k=1

b(k;d; p)

andpcoi(v) is the probability of decoding asv whenb1 = b2 and can
be computed as

pcoi(v) =p
2d

+(1� p
d)

d

k=bd+2=2c

b(k;d; p)

+pd
d�1

k=bd+2=2c

b(k;d; p):

See Fig. 4 for a plot ofp(v) as a function ofp for different scattering
codes.

VI. 3-SECURECODES

A. Construction

ForN = 2n buyers, each buyerci is assigned a different codeword
ai 2 DH(n). Rather than directly embeddingai in the content to be
sold, the merchant generates a codewordAi by composing a scattering
codeSC(d; t) with ai. Such a composition is performed by replacing
each bit ofai with a codeword inSC(d; t) that encodes the value of
that bit ofai. In this way, the codewordAi will have bitlength

l = (N � 1)(2t+ 1)d: (2)
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Fig. 4. For different values ofd andt, the graphic depicts the probability of decoding the majority valuep(v) as a function of thep-majority strategy applied.

The merchant then permutes the bits inAi using a pseudo-random per-
mutation seeded by a secret key known only to the merchant. The same
permutation is applied to all codewords.Ai. Fig. 5 graphically depicts
the construction described in this section. Finally, the merchant embeds
the permuted version ofAi in the content being sold.

B. Three-Collusions

Let us suppose three dishonest buyersc1; c2; c3 are assigned three
codewordsA1; A2; A3 which have been built by: 1) composing a scat-
tering code with three different codewordsa1; a2; a3 2 DH(n); 2)
permuting the bits of the composed codewords.

By comparison of their copies, the colluding dishonest
buyers can identify minor(A1;A2; A3), minor(A2;A1; A3) and
minor(A3;A1; A2). But as the bits ofAi have been secretly permuted,
the colluders cannot find out which bit ofAi corresponds to which
bit of ai. Thus, the colluders cannot identify minor(a1; a2; a3),
minor(a2; a1; a3) nor minor(a3; a1; a2). Therefore, the only way for
colluders to generate aAcoll is a to follow ap-majority strategy.

According to Lemma 9, all bits at positionsinv(a1; a2; a3) remain
unmodified after decoding each of the2n � 1 components ofAcoll to
obtainacoll. Also, according to Lemma 10, all decoded bits at positions
minor(ai; aj ; ak) for (i; j; k) 2 f(1; 2; 3); (2; 1; 3); (3; 1; 2)g keep the
majority valuev (the one ofaj andak) with probabilityp(v).

What is achieved with the above composition is that, regardless of
thep-majority strategy used by colluders to generateAcoll, the word
acoll resulting from decodingAcoll is a word generated by ap(v)-ma-
jority strategy collusion betweena1; a2; a3, where the valuep(v) is
controlled by the merchant by choosing appropriate values for param-
etersd andt (see Table VII, Table VIII, Table IX and Fig. 5). It can be
seen from Table IV that Controllingp(v) is necessary to the keep low
the probability� of successful collusion. IfAi has some bits with value
’Unreadable’, those bits are randomly set to “0” or “1.”

VII. N UMERICAL RESULTS AND CONCLUSIONS

Once parametersd andt have been fixed, the number of buyers can
be increased by increasingn. For d = 5 andt = 5, Table X shows
the size of the code (number of buyers), the codeword length of our
proposal, the probability of a successful collusion� and the codeword
length of Boneh-Shaw’s proposal for the samen and�.

It can be seen that Boneh-Shaw’s construction results in much longer
codewords than our proposal. Further, asn increases, their codeword
length increases faster than ours.

Fig. 5. Construction of three-secure codes.

TABLE VII
POSSIBLECOLLUSION OF THREE CODEWORDS OF ASC(2; 3) CODE WITH

b 6= b BOTH ENCODING A “1” AND b ENCODING A “0”

TABLE VIII
POSSIBLECOLLUSION OF THREE CODEWORDS OF ASC(2; 3) CODE WITH

b = b ENCODING A “1” AND b ENCODING A “0”

TABLE IX
LOWESTPROBABILITY p(v) OF DECODING AS THEMAJORITY BIT v IN A

COLLUSION OFTHREEBUYERS, FORSEVERAL PARAMETER CHOICES(d; t)

TABLE X
CODEWORD LENGTH COMPARISON BETWEEN OURPROPOSAL AND

BONEH-SHAW’S FORSEVERAL NUMBERS OFUSERS ANDSECURITY LEVELS
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TABLE XI
CODEWORD LENGTH COMPARISON BETWEEN OURPROPOSAL AND

BONEH-SHAW’S ASSUMING � = 10

In our proposal, onced andt have been fixed, the value� decreases
exponentially asn increases, which yields security levels higher than
needed. Thus, a better comparison is to use a fixed� and assume that,
for our security requirements,8 �0 < � one has�0 � 0. We take a value
� = 10�10 and use it as security level for Boneh-Shaw’s construction.
Results are presented in Table XI.

For a fixed� = 10�10, we can observe that our proposal yields
shorter codeword lengths up ton = 16 (number of buyers is 65 536).
For values ofn > 16 Boneh-Shaw’s proposal offers a shorter code-
word length. The explanation is that our codeword length increases as
O(N), while Boneh-Shaw’s increases asO(logN) with a large con-
stant factor; this large constant factor prevents Boneh-Shaw’s scheme
from comparing favorably unlessN is very large.

APPENDIX

PROOFof LEMMAS

Proof: (Lemma 1): Let a1; a2; a3 be three codewords of a
DH(n) code. DefineI = inv(a1; a2) andI the positions not inI .
Sinced(ai; aj)i6=j = 2n�1, thenjIj = 2n�1 � 1.

Let x = jinv(a1; a2; a3)j (obviously,inv(a1; a2; a3) � I) and let
y be the total number of positionsi 2 I wherea2i = a3i (these are
the positions that form minor(a1; a2; a3)). Asd(a2; a3) = 2n�1, then
x + y = 2n�1 � 1.

There are2n�1 � 1 � x positionsi 2 I wherea3i 6= a1i (these are
the positions that form minor(a3; a1; a2)) andy positionsi 2 I where
a3i 6= a1i . Asd(a3; a1) = 2n�1 we have that2n�1�1�x+y = 2n�1.

By solving

x + y = 2n�1 � 1

2n�1 � 1� x+ y = 2n�1

we getx = 2n�2 � 1 and y = 2n�2. Finally, we conclude that
jinv(a1; a2; a3)j = x = 2n�2 � 1, jminor(a1; a2; a3)j = y = 2n�2,
jminor(a2; a1; a3)j = 2n�1 � y = 2n�2, jminor(a3; a1; a2)j =
2n�1 � 1� x = 2n�2.

Proof: (Lemma 2): First of all, we prove the existence and prop-
erties ofaz . As aDH(n) code is a linear code, any linear combi-
nation of codewords results in another codeword. Then, we compute

az = a1 � a2 � a3, where� denotes the component-wise modulo 2
addition.

We prove thatazi = a1i = a2i = a3i , 8 i 2 inv(a1; a2; a3). This is
true because, ifa1i = a2i = a3i = 1, thena1i � a2i � a3i = 1, and if
a1i = a2i = a3i = 0, thena1i � a2i � a3i = 0.

Then, we proveazi = a1i , 8 i 2 minor(a1; a2; a3). This is true
becauseazi = a1i � a2i � a3i and, asa2i = a3i , thenazi = a1i .

Using the same procedure, we can proveazi = a2i , 8 i 2
minor(a2; a1; a3) andazi = a3i , 8 i 2 minor(a3; a1; a2).

Next, we prove the second part of the Lemma. Letaj 2
DH(n)nfa1; a2; a3; azg.

Call x the number of positions ininv(a1; a2; a3) whereaji = a1i .
Then the number of positions ininv(a1; a2; a3) whereaji 6= a1i is
2n�2 � 1 � x (see Lemma 1 ).

Cally the number of positions inminor(a1; a2; a3)whereaji = a1i .
Then the number of positions inminor(a1; a2; a3) whereaji 6= a1i is
2n�2 � y.

Callz the number of positions inminor(a2; a1; a3)whereaji = a1i .
Then the number of positions inminor(a2; a1; a3) whereaji 6= a1i is
2n�2 � z.

Call t the number of positions inminor(a3; a1; a2) whereaji = a1i .
Then the number of positions inminor(a3; a1; a2) whereaji 6= a1i is
2n�2 � t.

From the expressions at the bottom of the page we build the fol-
lowing equation system:

x+ y + z + t = 2n�1 � 1

�x� y + z + t = 1

�x+ y � z + t = 1

�x+ y + z � t = 1:

By solving it, we getx = 2n�3 � 1 andy = z = t = 2n�3. Finally,
we conclude

dinv(a ;a ;a )(a
j
; a

1) =2n�2 � 1� x = 2n�3

dminor(a ;a ;a )(a
j
; a

1) =2n�2 � y = 2n�3

dminor(a ;a ;a )(a
j
; a

1) =2n�2 � z = 2n�3

dminor(a ;a ;a )(a
j
; a

1) =2n�2 � t = 2n�3
:

In an analogous way, we can prove that the distances betweenaj and
a2; a3 are2n�3 as well.

Proof: (Lemma 3) : Without loss of generality, takei = 1. We
have that, for bit positions ininv(a1; a2; a3), there is no difference
betweena1 andacoll since bits in those positions are undetectable.
Also, each of the2n�2 bits in minor(a1; a2; a3) differs betweena1 and
acoll with probabilityp; therefore, the probability of there beingt dif-
fering bits in those positions is given by a binomial probability function
b(t; 2n�2; p). Also, each of the2 � 2n�2 bits in minor(a2; a1; a3) and
minor(a3; a1; a2) differs betweena1 andacoll with probability(1�p);
therefore, the probability of there beingk� t differing bits in those po-
sitions is given by a binomial probability functionb(k�t; 2n�1; 1�p).

As d(a ; a ) = d (a ; a )+d (a ; a )+d (a ; a )+d (a ; a ) = 2 , then

(2n�2 � 1� x) + (2n�2 � y) + (2n�2 � z)

+(2n�2 � t) = 2n�1
:

As d(a ; a ) = d (a ; a )+d (a ; a )+d (a ; a )+d (a ; a ) = 2 , then

(2n�2 � 1� x) + y + z + (2n�2 � t) = 2n�1
:

As d(a ; a ) = d (a ; a )+d (a ; a )+d (a ; a )+d (a ; a ) = 2 , then

(2n�2 � 1� x) + y + (2n�2 � z) + t = 2n�1
:

As d(a ; a ) = d (a ; a )+d (a ; a )+d (a ; a )+d (a ; a ) = 2 , then

(2n�2 � 1� x) + (2n�2 � y) + z + t = 2n�1
:
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In this way, the expression in the Lemma corresponds to the probability
of there being a total oft+ (k� t) = k differing bits betweena1 and
acoll.

Proof: (Lemma 4): The expression in the Lemma corresponds to
the probability of one, two or three codewords infa1; a2; a3g being at
distancek from acoll and the remaining codewords being at a greater
distance.

Proof: (Lemma 5): The expression in the Lemma corresponds to
the probability of one, two or three codewords infa1; a2; a3g being at
distancek from acoll and the remaining codewords being at a shorter
distance.

Proof: (Lemma 6): Lemma 2 says that bits ofaz are iden-
tical to bits of ai in the positions in minor(ai; aj ; ak) for
(i; j; k) 2 f(1; 2; 3); (2; 1; 3); (3; 1; 2)g. Therefore, the probability of
there beingk different bits in those3 � 2n�2 positions is given by a
binomial probability functionb(k; 3 � 2n�2; p).

Proof: (Lemma 7): According to Lemma 2,acoll and a
have 2n�3 differing bits in positions ininv(a1; a2; a3). In each
minor(ai; aj ; ak), for (i; j; k) 2 f(1; 2; 3); (2; 1; 3); (3; 1; 2)g, acoll

has all2n�3 bits each of which is different withp and 2n�3 bits
each of which is different with probability(1 � p). Therefore, we
have3 � 2n�3 bits with probabilityp of being different, and thus the
probability thatt of such bits are different isb(t; 3 � 2n�3; p). On the
other hand, we have3 � 2n�3 bits with probability1 � p of being
different, and thus the probability thatk � t of such bits are different
is b(k � t; 3 � 2n�3; 1� p). In this way, the expression in the Lemma
computes the probability of there beingt+ (k � t) = k different bits
betweena andacoll.

Proof: (Lemma 8): The expression in the Lemma computes
the probability that at least one out of the2n � 3 codewords in
DH(n)nfa1; a2; a3g is at distancek of acoll, with the remaining
codewords at a longer distance.

Proof: (Lemma 11): It can be seen that, ifv = "1", bits in
“Zone-A” and in “Zone-C” stay undetectable and thus decoding will
use Rule 1 and return a value “1.”

If v = "0; " bits in “Zone-A” and in “Zone-B” stay undetectable.
Thus, decoding will use Rule 2 and return a value "0."

Proof: (Lemma 12): In a collusion between three codewords
b1; b2; b3 2 SC(d; t) with two of them (b1 andb2) encoding a value
v (without loss of generality, assumev = 1 andv = 0), we have
b1 = b2 with probability1=t andb1 6= b2 with probability1� 1=t.

a) In the caseb1 6= b2, we computepdif(v) = 1 � pdif(v) (we
supposed to have an odd value), wherepdif(v) corresponds to
the probability of decodingv after a collusion based on ap-ma-
jority strategy.pdif(v) is actually the probability of decoding
using Rules 2 or 6.

— Rule 2 will be applied if all bits in “Zone-A” and “Zone-B”
are “0.” Since we are assuming ap-majority strategy, all
bits in “Zone-A” will be “0” with probability b(d;d; 1 �
p) = (1 � p)d, because the majority bit in these positions
is “1.” Sinceb1 6= b2, there will be two detectable blocks
in “Zone-B” where the majority bit is “0.” Bits in “Zone-B”
will be all “0” with probability b(2d; 2d; p) = p2d. So the
probability of applying Rule 2 is(1� p)dp2d.

— Since only one out of the three colluding codewords has
value “0,” it is not possible to have more than one block
of “Zone-C” with bit values different from “0.” So Rule 4
cannot be applied.

— The next possibility for decoding as “0” is to apply Rule
6. This happens if there are more “0” bits than “1” bits in
“Zone-A” and no other rule between 1 and 5 has been ap-
plied before. In order to render Rule 3 not applicable, we

need one of the two detectable blocks of “Zone-B” to be all
zeros. Let us assume it is the leftmost one. This happens with
probabilityb(d;d; p) = pd.

Then we need more than half of thed bits of “Zone-A”
with value “0” (or less than one half with value “1”), which
happens with probability bd�1=2c

k=0 b(k;d; p). We also need
that one of the two detectable blocks of “Zone-B” is all zeros
(which happens with probabilitypd) and the other with at
least one “1” bit (which causes Rule 2 not to be applied
and happens with probability1 � b(d;d; p) = 1 � pd).
As this can happen twice, one with each of the blocks of
’Zone-B’ forced to have all bits to “0,” the total probability
is 2 � pd(1� pd)

bd�1=2c
k=0 b(k;d; p). The same rule is also

applied if both blocks of “Zone-B” have all bits to “0” (with
probabilityp2d) and the number of “1” bits in “Zone-A” is
greater than 0 (to make Rule 2 not applicable) and less than
than one half of the block lengthd. The total probability is
p2d

bd�1=2c
k=1 b(k;d; p).

b) In the caseb1 = b2, the probability of decoding value “1” cor-
responds to the probability of decoding after applying Rule 1 or
Rule 5 (note that Rule 3 is not applicable).

— Rule 1 will be applied if all bits in “Zone-A” are “1” and
all bits in “Zone-C” are “0.” In both cases, we need all bits
to take the majority value, which happens with probability
b(2d; 2d; p) = p2d.

— The other possibility is to apply Rule 5 conditioned to not
having applied Rule 1 before. There are two possible sce-
narios.

In the first scenario, we need at least one bit
of “Zone-C” and more than one half of the bits of
“Zone-A” with value “1.” This happens with probability
(1� pd) d

k=bd+2=2c b(k;d; p).
In the other scenario, we need all bits of “Zone-C” to be

“0” and the number of ones in “Zone-A” to be more than
a half of the zone but less thand (otherwise Rule 1 would
have been applied before). This happens with probability
pd d�1

k=bd+2=2c b(k;d; p).
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