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Abstract—intellectual property protection of multimedia content is es- O ]
sential to the successful deployment of Internet content delivery platforms.
There are two general approaches to multimedia copy protection: copy pre-
vention and copy detection. Past experience shows that only copy detection | |
based on mark embedding techniques looks promising. Multimedia finger-
printing means embedding a different buyer-identifying mark in each copy
of the multimedia content being sold. Fingerprinting is subject to collusion
attacks: a coalition of buyers collude and follow some strategy to mix their
copies with the aim of obtaining a mixture from which none of their iden-  compare their copies in order to locate differences between them and
tifying marks can be retrieved, if their strategy is successful, the colluders ) 5 strategy to fabricate a new copy of the content whose mark
can redistribute the mixture with impunity. A construction is presented in .~ . L
this paper to obtain fingerprinting codes for copyright protection which 1S either no longer recoverable or does not allow identification of any
survive any collusion strategy involving up to three buyers (3-security). Itis  Of the colluders. If the collusion strategy is successful, the fabricated
shown that the proposed scheme achieves 3-security with a codeword lengthcontent can be redistributed with impunity.
dramatically shorter than the one required by the general Boneh-Shaw con- In [1] and [2], the concept of fingerprinting secure against buyer col-

struction. Thus the proposed fingerprints require much less embedding ca- lusions is introduced. A general construction is given to obtain finger-
pacity. Due to their own clandestine nature, collusions tend to involve a -AQ g g

small number of buyers, so that there is plenty of use for codes providing Printing codes secure against collusions of ug:touyers ¢-secure
cost-effective protection against collusions of size up to three. codes). ForV possible buyers and given> 0, L = 2clog(2N/e)

andd = 8¢* log(8cL/¢) a code withN codewords of length

| | nearest

Fig. 1. Successful collusion.

Index Terms—Buyer collusion, electronic copyright protection, finger-
printing, Internet and telecom applications and services, service creation 4 ON Scl
platforms and enabling technologies, watermarking. I =2Ldc = 32¢" log <?> log <T) (1)
is constructed which allows one of the colluders to be identified with
I. INTRODUCTION probability1 — ¢ (the fingerprint embedded in each copy sold is a dif-

If multimedia content delivery services are to take off over the iferent codeword of the fingerprinting code). The authors also show that,

ternet, delivery platforms should guarantee intellectual property pf@ ¢ = 2 andV > 3, itis not possible to obtair-secure codes where
tection. There are two general approaches to protecting the copyrigRtiuders are identified with probability 1. ) .
of multimedia content: one & priori and consists of trying to prevent N [4] itis shown that, for- = 2, collusion security can be obtained
illegal copies from being made; the othewiposteriorj i.e. it tries to  USing the error-correcting capacity of dual Hamming codes. In this way,
detect illegal copying once it has taken place. In view of the past e)(Fge-_secure flngerprlntlng cod.es are obtained which are much shorter than
rience in failure of copy prevention systems (the most recent being th§€cure codes obtained via the general construction [1], [2]. There are
DVD copy prevention failure, see [3]), only copy detection seems {0 advantages in using a shorter fingerprinting code: 1) embedding a
have reasonable chances of success. Copy detection is based on ffgRIPrint requires less embedding capacity (in other words, itis more
embedding: the merchant embeds an imperceptible mark into the cBPerceptible); 2) since less bits must be embedded and retrieved, the
tent before selling it [5]. There are two kinds of mark: watermarks arfinPedding and retrieval of fingerprints is more cost-effective.
fingerprints. A watermark is a message that allows ownership of the"We show in this paper that, fer= 3, it is also possible to come up
marked content to be proven, whereas a fingerprint allows buyer ideffith collusion-secure fingerprinting codes much shorter than 3-secure
fication [7]. Thus, fingerprints can be used to trace illegal redistributor®des obtained from the general construction [1], [2]. The basic idea is
once a redistributed copy is found, the buyer who legally purchasedQtcOmpose a new kind of code, which we cahttering codewith a
can be identified, and this legal buyer is necessarily the (first) illegd@ Hamming code. _ _
redistributor. Section Il contains an overview of our proposal. Section Il presents
Collusion attacks are not an issue for watermarking (all mark&@Me results on dual Hamming codes. Section IV presents a set of
copies being identical), but should be considered in the case Iggmas on the probability of successful collusion as a function of

fingerprinting. In a collusion attack, a coalition of dishonest buyef§€ strategy of colluders. The construction and decoding of scattering
codes are introduced in Section V. Section VI explains how to generate

fingerprinting codes secure against collusions of up to three buyers by

Manuscript received August 31, 2002; revised June 3, 2003. This work wg@Mposing a scattering code with a dual Hamming code. Section VIl
supported in part by the European Commission under project IST-2001-32@kcludes by presenting some numerical results. Finally, the Appendix
“C?-ORTE%G%NAL" andFEééT?efS%amSh Mr:nllSthy (;leSCCizeorE)Cleoéég% E%%hcontains proofs for all but two lemmas presented in the paper (the two
nology and the European und through Projec - -C03-Q1 . -

“STREAMOBILE.” This paper was recommended by Guest Editors W. Pedrycgzgmtted proofs are nearly trivial).
and A. Vasilakos.
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a'l 1] | TABLE |
P [ —J1 ‘ t EXPECTEDNUMBER OF DIFFERING BITS BETWEEN AWORD a ¢! GENERATED
USING A p-MAJORITY STRATEGY AND ANY OF THE COLLUDERS CODEWORDS
a’ ()= | THE CODE IS A DH(6)
p 1-p
&l ] | | p |0]02]04]06]08]1

E(d) | 32| 28.8|25.6|224|19.2 |16

Fig. 2. Thep-majority collusion strategy.

) ) ) Example 1: The following are three codewords ofaH (5) code. In
paper. A different codeword of such a code is assigned to each bujgs taple abovepv123 stands foinv(a', a?, a?), min123 stands for
as fingerprint; to recover the fingerprint, minimum distance decodir}ginor(al; a2, a*), min213 stands for ming?; ', ¢*) andmin312
is used. Thus, colluders succeed if they manage to mix their copies;tgnds for rhinc(rag; a',a®). The codeword Iéngth 2" _ 1 = 31.

obtain a copy containing an embedded word such that the closest cqglgwl linv(al,a2,2%)] = 2°2 — 1 = 7, |minoa';a? a®)|
word to that word is a codeword assigned as a fingerprint to a bu¥§r|minor(a,2; at,a®)| = |minor(a®; a®, a?)| = 2°7% = 8. ’
different from the colluders. Lemma 2: Let a', a*, a® be three codewords of B H (n) code,

We model collusion attacks as so-callgdrhajority” strategies. In then it holds that:
such a strategy, three colluders wishing to mix their copies choose,

" . - RS TR m) th i I DH(n
for the positions where their codewords differ, the majority bit with ) there exists one and only one COdeV\-I)Gm € (m\

h . . . {a',a?,a®} such thate? = af = a? = a?, Vi €
probabity . We proue in s paper ha, i the colluders olow a1 " ) Eunhermores: — ol v € minons .,
p-majority strategy witrp close 1o one, the probabl Ity or iaen Ifylng a,; — a?, Vi € minor(a,z; (11, a3) and a,; — CL?,

the three of them can be made arbitrarily close to one with the sole use

. : 3,1 2
of codewords of a binary dual Hamming code as fingerprints. Vi € minor(a;a,a”).

2) remaining codewords satisfy that «° € DH(n)\

The problem is that is a parameter chosen by the colluders, so they (ab,a%, . aY, diyout w2 usy(a?,ab) = d,,, T
are likely to use the best choice for them, whictpis= 0 (in fact a (! ’ai)’ T d’ ‘ (2 ’”1 3 )(aj ’al) _ (1””f’”"r(”3*"1’"’_))
smallp is enough for them to stay undetected with great probability). (aj’ ("1 ) _Qn;ﬁ?”;;;](gr;i ""(){ y)’d’enote_s Hé”n’]’;]‘f]'l“r(]“g ’éis’;”z;)nce

oat) = , P,

To remedy this, we propose to construct fingerprints by composing a
special new kind of codes, called scattering codes and described in this
paper, with dual binary Hamming codes. With such a composition, the
merchant can make sure that, regardless g thmjority strategy used
by colluders to mix their composed codewords, the result of decodi
the mixed composed codeword will be a word generated;i{y gma-
jority strategy, where the probabilipf) is controlled by the merchant invl23 | minl23 | min213 | min312
and can be made arbitrarily close to one. Thus, the probability that the 0000000 | 11111111 | 00000000 | 11111111

T
a

- o L a® | 0000000 | 00000000 | 11111111 | 11111111

Lhree colluders can be identified can be made arbitrarily close to one % 10000000 | 00000000 | 00000000 | 60300000
y our construction. 2

* | 0000000 | 11111111 | 11111111 | 00000000

between codewords andy restricted to bit positions i&. The
same distances hold with respectfoanda®.

Example 2: The table following shows the unique codewardcor-
F]%sponding to three particular codewordsa?, «® of a D H (5) code:

Ill. DUAL BINARY HAMMING CODES
. . . In the previous tableinv123, min123, min213 and min312 have
_The dual Coqe Sf a binary Hamming che (d;enoted?cfj(n)) 'S& * the same meanings as in the table of Example 1. It can be seen that
binary code with2" codewords of lengtkv = 2" — 1 such thatthe . _ 1+ _ 2 7 3 Vi inv(a. a2 a’). Al z
distance between any two codeword21s™'. A few definitions and R A 13\(a ana). Sy T
. : Vi € mino{a;a*,a’), ai = aj, Vi € minoa’;a ,a’) and
useful properties related to such codes are presented next. 2 : ’

Definition 1 Leta' 42 a® be th g 45 of ALH q af = a?,Vi € minora®;al, 0?).
_ Detinition 1: Leta’,a”,a” bet ree codeworas o (n) code, Example 3:The table following displays three code-
i.e.,a’ = ajah---a’y.Defineinv(a’, a®, a”) to be the set of invariant

itions b I th p ds. that is. those bi i rds a',a*,a® of a DH(5) code and another codeword
positions between all three codewords, that is, those bit ositions N ™ 1 5\ {4 42,4, a*}. The meaning ofuv123, min123,

which all three codewords have the same bit value. Formally speakil%]11213 andmin31? is as above.

inv(a',a® a*) = {i,l <i<N,a =d = a?}.

invl123 minl23 min213 min312
Definition 2: Leta', a?, «® be three codewords of RH (n) code. “; 0000000 | 11111111 | 00000000 | 11111111
Define minor(a'; a*, a*) to be the set of bit positions in which' a ggggggg gggggggg (1);(1);(1)(1)(1)(1) ;;;3;3;;
. o 3 L. a
hgsay?lue different from the valuesdn anda® (for such positions, " | 0001111 | 00001111 | 00001111 | 00001111
a; = a;). Formally expressed
. 1, 2 3 . C e N gl 2 ) 3 : :
minor(a’;a®,a”) = {i,1 <i < Nya; #ai,a; #ai}. It can be seen thati?v(al’a2’a3)((lr yal)= d‘miraor(al;az,ai)((l ,at)=
5 d . 2, a',a' )= doiner a',a )= 2"7" = 4. The
Lemma 1:Let a',a® a*® be three codewords of & H(n) Moot e (@0 ) mm-‘”(“‘g""“l-jﬁ)g( @)
. , same distances hold betweenanda”, a”.
code and let| - | denote the bitlength operator. Then it holds
that |inv(a',a?,a®)] = 272 — 1, |[minora*;a?,a®)| = 272,

|min0r(a2; (1,1, 03)| — gn-—2 and|min0r(a,3; (1,1, (1,2>| _ 27172. IV. 3-COLLUSIONS OVER DH(/L)

A. Detectable Positions

invi23 | minl23 | min213 | min3l2 Let us assume that three dishonest buyérs?, ¢* compare their
a’ | 0000000 | 11111111 | 00000000 | 11111111 copies of the same multimedia content. According to the marking as-
a: 0000000 | 00000000 | 11111111 | 11111111 sumption [1], they can only modify the embedded marks in thizse
a” | 0000000 | 00000000 ] 00000000 | 00000000 tectablepositions,i.e., those where not all three marks take the same
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bit value. In those positions, the colluders can set the corresponding TABLE I

bit to “0,” “1,” or “unreadable.” In this way, we conclude that, if three EXPECTEDNUMBER OF DIFFERING BITS BETWEEN AWORED al“’“ GENERATED
ierent buyers e assgned codewoidsa”, anda’ of a DI (n)  Ugiwe "IHAICHTY STUTESt o e NeAesTIE(L ] it e
code, the result of their collusion will be a wotd®"® where no bit

has been modified in th2"~2 — 1 positions ininv(a',a?, a*). On p [0] 02 [ 040608 1

the other hand, colluders will be able to detect and identify positions in E(dy) [ 32 ] 26.5 | 22.7 | 19.5 | 16.9 | 16
minor(a'; a®, o*) as the bit positions of those content fragments which Elds) | 32 [ 3112 | 2846 | 2527 | 21.54 | 16

are identical between the copiesdfandc® and different from the

copy ofc'. In a similar way, minofa®; a', «*) and minofa®; ', a”) TABLE Il

can be identified as well. EXPECTEDNUMBER OF DIFFERING BITS BETWEEN A WORD a“°"! GENERATED

USING A p-MAJORITY STRATEGY (p > 0.6) AND THE NEAREST CODEWORD
NOT IN THE COLLUSION. THE CODE IS A DH (6)

B. Decoding by Minimum Distance

As said above, colluders can generate a new object whose embedded p |06]08 1
codeword may have been altered in detectable positions. In this way, E(ds) [ 245|256 | 32
it is possible that the word retrieved from a collusion-generated object

does not correspond to ayH () codeword. In these situations, the As can be seen in Table I, the expected number of differing bits be-

recovered word will be error-corrected by minimum distance. . ,
y s tweenthe word""" generated by a collusion and any of the colluders

Thus, in (_)rder for a collusion to Ee fuccessful, colludérs: ¢ codewords{al, 2. a* ¢ DH(6)] decreases as the valugets closer
(whose assigned codewords arfe a?, «*) must generate, by mixing coll 1 9 'y
{R 1 @°°" gets closer ta", a“, a”).

fragments of their copies, a word such that the closest codeword in femma 4: Let a*! be a word generated using-amajority collu-

; il 1203, ; ;
DH{(n) code is notinfa ,a”,a"} (see Fig. 1). In this way, another ;. strategy between three codewotdisa®, a®> € DH(n). It holds
buyer will be accused in lieu of the colluders. Note that we are assumi e coll ir e

p . - tdy = min;=123d(a"", a') = Ko with

colluders do not generate “unreadable” positions when colluding over
D H (n) codewords. It will be shown later that our construction actually 3 /g _ 3—i
prevents unreadable positions from being fed by colluders to the dual  p, = p(K> = k) = > < ) pi(k)' [Z pl(kl):| .
Hamming decoder. =1 \!

k! >k

S Lemma 5: Let «**"' be a word generated usingramajority collu-
C. Objective of Colluders sion strategy between three codewoddsa®, «® € DH(n). It holds
As decoding is done by minimum distance, the objective of colludefigat d; = max;—, » 3 d(a*°"', ¢') = K3 with
is to come up with an object whose embedded word is as distant as
possible from their assigned codewords. 3 <3) (k)i [
) pilk
1

Intuitively, it can be realized that all colluders must contribute the 3 = P(K3 = k) = >
=1

3—1
Z p1 (kl):| .
same number of bits from their corresponding codewords. Otherwise, k! <k
the collusion-generated word would be closer to the codewords of thasge Taple 11, for a numerical exampledf andds.
colluders having contributed more bits.

Definition 3: A p-majority collusion strategy is one in which col- g - pistance From a Collusion-Generated Word to Codewords Not
luders choose with probability the majority bit value in positions i the Collusion
minor(a’; a’, a*) (that is, the bit values in’ or a*) (See Fig. 2).

It can be seen that a word generated usipgraajority strategy on
a',a®,a® € DH(n) is expected to be at the same distance frdm

a? anda?.

Lemma 6: Leta°" be a word generated usinganajority strategy
between three codewords, o, «®> € DH(n) and leta” be the only
codeword inDH (n)\{a',a?,a®*} with af = a} = a? = a?,Vi €
inv(a', a®, a*) (the existence and uniqueness:ofare guaranteed by

_ z colly _ 17 H
D. Distance From a Collusion-Generated Word to Lemma 2). Thends = d(a”,a™") = Ka with

Colluders’ Codewords pa(k) = p(Ks=k) =b(k;3-2" "2 p).
Lemma 3:Let ¢ be a word that has been generated o . ~
using a p-majority collusion strategy between three codewordsrﬁle_markg The expected number of differing bits betweenand
L'l,lﬂa,‘z'/a,3 € DH(H) It holds thatdl — d(aco!l’ai) — Ifl, VZ — 1’ a®is
2, 3 with B
pi(k) =p(K1 =k) =
min(k,2™~2)
= Z b(t;Qn_z,p)b(k—t;?rl_l,l—p)

t=max(0,k—2n—1)

Lemma 7:Let a*° be a word generated using a-ma-
jority strategy between three codewords,a®.a® € DH(n)
and let «* be the only codeword inDH(n)\{a',d? a*}
with «f = af = o = d?,Vi € inv(a',d?, d*). Then,
for any codeworda € DH(n)\{a',a? a* a*} it holds that

whereb(x1; x2, x3) IS the binomial probability functionaf. is the )
(1 22, 23) P Y e ds = d(a,a®'") = 273 4 5 with

number of trials,zs the success probability per trial and is the

number of successful trials). i
Remarks: The total number of differing bits is the addition of two ps (k) =p(Ks = k)

binomial random variables. We use this fact to compute its expected min(k,3."7%)

value as = Z

t=max(0,k—3-n—1)

Ed)=p-2""4+(1-p)2"'=2""" —p. 2772 b(t;3-2"7%, 1 — p)b(k — t;3-2"7" . p).
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p=0.6
03 . : . . 1 _
"non colluding (d6)" ——
"colluding (d2)" -------
0.25 | ]
0.2 | |
0.15 - |
0.1 |
0.05 |+ |
0 -
-0.05 . ) . ‘ . .
0 10 20 30 20 = - el
@
p=0.8
0.35 . . | , I _
"non colluding (d6)” ———
"colluding (d2)" -------
03 I /\ -
'l \
/'
0.25 - ’ \ |
02t / [\ |
0.15 - i \I‘ ’ | |
01} oA } \ |
i \
0.05 |- /l j \ |
0 . \\ |
-0.05 L L . . . '
0 10 20 30 40 - - =)
(b)

Fig. 3. Distribution ofd> andds for (a)p = 0.6 and (b)p = 0.8. The code is & H(6).

Remarks: The expected number of differing bits betweerand F. Identifying Colluders’ Codewords
acoll iS
s s s - Lemma 9: Leta"" be a word generated usinganajority strategy
E(ds)=2""7"+3-2""1-p)+3-2"7"p=2""". (p > 0.6) between three codewords, a?, a®> € DH(n). The proba-
For the sake of simplicity, let us assume in what follows thatis  bility thatthe codeword i) H (n) nearestta“*" isnotin {a" ., a*, a” }
distributed likeds. Since forp > 0.6 the number of differing bits IS expressed by

expected fords is greater than the number of differing bits expected

fords (E(dy) > E(ds) & p-3-2""2>2""1o p>0.6),sucha 2t 1
distributional assumption will cause actual security to be even slightly e= Y plds=k)p(ds < k).
higher than computed in what follows. k=0

Lemma 8: Leta°°" be aword generated usinganajority strategy . o
(p > 0.6) between three codewords, a2, a* € DH (n). Itholdsthat € IS the probability that decoding™" yields as a result a codeword

de = minig{l,z,g}{d(aw“w a')} = 2" 73 4 K, with different from any of the coII_uders’ codewo_rds, that is, the probability
of an honest buyer being unjustly accused instead of the colluders. The
pe(k) =p(Ke = k) formula above fok is straightforward from the definitions ek and
23 ron _a _ 23— ds, S0 its proof is omitted in the Appendix.
=> < ; > ps(k)' {Z ]75(15’)} : Remarks: It can be observed from Table IV that,asncreases and
=1 k> k p approaches 1, the probabilityof accusing an innocent buyer can be
See Table IIl for a numerical example &f. made arbitrarily close to 0.

As can be seen in Fig. 3, when> 0.6, d» tends to take smaller  The following result follows from the definitions @ andds, so its
values thanls. This means that, with high probability, the codeworgroof is omitted in the Appendix as well.
in DH(n) nearest to the collusion-generated word is a colluder Lemma 10: Let «°°"" be a word generated using ;jamajority
codeword. strategy f > 0.6) between three codewords. a?,a® € DH(n).
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TABLE IV TABLE V
PROBABILITY € OF SUCCESS OF A3-COLLUSION IN DH(7) AND PROBABILITY OF NOT IDENTIFYING ALL THREE COLLUDERS IN DH (7)
DH(8) FOR SEVERAL VALUES OF p AND D H(8) FOR SEVERAL VALUES OF p
P P
0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0
DH(7) | 0.14-10°% | 0.14-107% [ 0.77-107% | 0.0 DH(7)| 0.5-10! | 0.1-1072[0.25-10~7 [ 0.0
DH(8) [ 0.10-1077 [ 0.15- 107 [ 0.70- 102 | 0.0 DH(8) [ 0.26-10~% [ 0.6-1077 [ 0.2-10"¢ | 0.0

TABLE VI

The probability that the three codewords i (n) nearest ta:*"
CODEWORDS OF ASCATTERING CODE SC'(2, 3)

are{a',a®, a’} is expressed by

271 Encodes | Zone-A Zone-B Zone-C

p(ds = K)p(ds > k). 11 |11 00 00|00 00 00

;p M ) gE 11 {00 11 00|00 00 00

- ) 11 |00 00 11|00 00 00

Remarks: It can be observed from Table V thataincreases ang 00 |00 00 001l 00 00
approaches 1, the probability of not identifying all three colluders can 0’ 00 |00 00 00|00 11 00
be made arbitrarily close to 0. 00 00 00 00]00 00 1t

The problem is that the parametgrdefining the collusion strategy
is chosen by the colluders, which Implies they can jake( to make  Note: Itis easy to see that an odd value fanakes Rule 7 unreach-
sure they are not identifiedh Section V, a new kind of codes namedgpje, thus causing a "0" or "1" to be always returned.
scattering codes are presented. These codes are used in Section VIt@mma 11: Let 5°°" be a word generated by usingpamajority

prevent colluders from avoiding identification in this way. strategy between three codewotdsh?, b> € SC(d,t) encoding the
same bit value'. Then,b*°"" decodes as with probability 1.
V. SCATTERING CODES Lemma 12:Let »*'" be a word generated using ;amajority

strategy between three codewordst®,v®> € SC(d,t), with two
_ ) _ of them ¢! andb?) encoding a value and the othefb*) a valuev.
A scattering codéC(d,t) with parametergd, t) can be defined Then, the probability that*' decodes as is given by
as a binary code consisting 2f codewords of lengtfi2¢ + 1)d con- 1 )
structed as follows. p(v) = (1 - ;> Pais (0) + Jpeon(v)
1) Construction starts with generation®€'(1,¢). ‘

a) i-th codeword forl < i < t is constructed by setting the Wherepa:s(v) is the probability of decoding aswhend' 3 * and
first and the(i + 1)-th bits of the codeword to “1.” The can be computed asiis(v) = 1 — pais(v) (we assumel to have an
remaining bits are set to “0.” odd value) and

b) i-th codeword for + 1 < i < 2t is constructed by setting pair(T) =(1 - p)dpzd
the (7 4+ 1)-th bit of the codeword to “1.” The remaining ' Ld—1/2]
bits are §et to “O. S +2 -pd(l —pd) Z b(k; d,p)

2) CodeSC/(d,t) is generated by replicatingtimes every column =0
of SC(1,t). Define ablockto be a group of replicated columns. ld—1/2]
3) By convention, the first codewords of5C(d, t) are defined to +p* Z b(k;d,p)
encode a “1” and the lastodewords are defined to encode a "0". k=1
The first block of the code is called “Zone-A,” the nexblocks andp..; (v) is the probability of decoding aswhenb' = b2 and can
are called “Zone-B” and the lastlocks are called “Zone-C.”  po om
puted as
Using a Scattering Code, a“1” is encoded by randomly choosing one

A. Construction

2d
of the firstt codewords and a “0” is encoded by randomly choosing one Peoi(v) =p
of the lastt codewords (Table VI shows the codewords F@(2, 3) 4 d
code). +(1=p") Y b(kid,p)
k=|d+2/2]
B. Decoding 4 d—1
. . . . . b(k;d,p).
A scattering code is decoded by using the first applicable rule among +p kﬂ;m (k;d,p)

the following ordered list.

1) If all bits in “Zone-A” are “1” and all bits in “Zone-C” are “0,”
decode as “1.”

2) If all bits in “Zone-A” are “0” and all bits in “Zone-B” are “0,”
decode as “0.”

3) Ifintwo blocks of “Zone-B” there is at least one bit in each witha, Construction

value “1,” decode as “1.” o - . .
4) If in two blocks of “Zone-C” there is at least one bit in each with , For NV = 2" buyers, each buyef is assigned a different codeword

value “1 " decode as “0.” a" € DH(rn). Rather than directly embeddimj in the content to be
! ) sold, the merchant generates a codewdrdhy composing a scattering

5) If there are more *1" bits than “0" bits in *Zone-A,” decode aSCOdESC((Li’) with «*. Such a composition is performed by replacing

See Fig. 4 for a plot of(v) as a function of for different scattering
codes.

VI. 3-SECURE CODES

L o e R each bit ofa" with a codeword inSC'(d, t) that encodes the value of
®) ,',gtf‘ere are more "0” bits than 1" bits in *Zone-A,” decode asy, .+ pi ofa i in this way, the codeword’ will have bitlength

7) Decode as “Unreadable” I=(N-=1)(2t+ 1)d. 2
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Fig. 4. For different values of and¢, the graphic depicts the probability of decoding the majority value as a function of the-majority strategy applied.

The merchant then permutes the bitstihusing a pseudo-random per- Bl | DHm p(v)-majority p(v)-> 1
mutation seeded by a secret key known only to the merchant. The se
permutation is applied to all codeword$’. Fig. 5 graphically depicts sciay
the construction described in this section. Finally, the merchant emb 1 | p-majority
the permuted version of* in the content being sold.
1 permutation i
B. Three-Collusions
. X I p-majority

Let us suppose three dishonest buy€rs:?, ¢* are assigned three
codewordsd', 4%, 4* which have been built by: 1) composing a SCalrig 5 Construction of three-secure codes.
tering code with three different codewords, o*, «® € DH(n); 2)
permuting the bits of the composed codewords. TABLE VI

By comparison of their copies, the colluding dishonest possisLECoLLUSION OF THREE CODEWORDS OF ASC'(2, 3) CODE WITH
buyers can identify mingr’; A%, 4%), minor A%; A', A*) and b' % b? BOTH ENCODING A “1” AND b* ENCODING A “0"

minor(A*; A", A%). But as the bits ofi’ have been secretly permuted,

the colluders cannot find out which bit of’ corresponds to which | ZoveA | ZoneB Zone-C

. ’ s RS 0 B[ 11 |11 00 00|00 00 00
bit of «*. Thus, the colluders cannot identify mlmoi;a ,a’), b2 1 00 11 00|00 00 00
minor(a®;a', a*) nor minoKa®;a', a*). Therefore, the only way for ®l 00 loo 00 00l11 00 00

colluders to generate 4" is a to follow ap-majority strategy.
According to Lemma 9, all bits at positiongv(a', a?, a*) remain TABLE VI
e H coll
unm_Odlfle”d after decodlr_]g each of thé — 1 components., ofd t(_)_ PossIBLE COLLUSION OF THREE CODEWORDS OF ASC'(2, 3) CoDE WITH
obtaina“”"". Also, according to Lemma 10, all decoded bits at positions bl — b2 ENCODING A “1” AND b ENCODING A “0”
minor(a‘; a’, a*) for (i, j, k) € {(1.2,3),(2,1,3),(3,1,2)} keepthe
majority valuev (the one ofz’ anda”) with probability p(v).
. . . L bt 11 11 00 00|00 00 00
What is achieved with the above composition is that, regardless of 9
> e 0 b 11 |11 00 00|00 00 00
the p-majority strategy used by colluders to generafé”, the word b 00 00 00 00|11 00 00
a“" resulting from decodingt™" is a word generated by;dv)-ma-
jority strategy collusion between', a*, ®, where the valug(v) is
controlled by the merchant by choosing appropriate values for param: ) O;g‘:'c-gmz(e A THEMATORITY BIT & I A
: p(v v
etersd andt (see Table VI, Table_ vill, Table IXand Fig. 5). ltcanbe o\ g6 oF Three BUYERS, FOR SEVERAL PARAMETER CHOICES(d, t)
seen from Table IV that Controlling(v) is necessary to the keep low

Zone-A Zone-B Zone-C

the probabilitye of successful collusion. I has some bits with value d [ t [ minp(v)
‘Unreadable’, those bits are randomly set to “0” or “1.” 3] 4 0.68
5|5 0.8
7109 0.89
VII. NUMERICAL RESULTS AND CONCLUSIONS 311100 099

Once parametersandt have been fixed, the number of buyers can
be increased by increasing Ford = 5 andt = 5, Table X shows TABLE X
the size of the code (number of buyers), the codeword length of our CODEWORD LENGTH COMPARISON BETWEEN OUR PROPOSAL AND
proposal, the probability of a successful collusioand the codeword =~ BONEHSHAW'S FORSEVERAL NUMBERS OFUSERS ANDSECURITY LEVELS
length of Boneh-Shaw’s proposal for the samande.

It can be seen that Boneh-Shaw's construction results in much longer
codewords than our proposal. Furtherjamcreases, their codeword
length increases faster than ours.

buyers € Our length | B-S length
128 | 0.14-10°5 6985 2,788,320
256 | 0.15-10713 14025 8,393,220
512 | 0.19-10"% 28105 28, 340,928

© o33
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TABLE XI a* = a' ©a® @ «®, whered denotes the component-wise modulo 2
CODEWORD LENGTH COMPARISON BETWEEN OUR PROPOSAL AND addition.

- ' = 1010 3 . . .
BONEH-SHAW'S ASSUMING ¢ 0 We prove thati} = a; = af = a?,Vi € inv(a*,a?,a®). Thisis

buyers | Our length | Boneh-Shaw’s length true because, i} = «? =« = 1, thena! $a? @4’ =1, and if
512 28,105 5,148, 000 al = a2 = =0, thena! @ a2 @ a® = 0.

1,024 ) 56,265 5,266,992 Then, we prover; = a/, Vi € minor(a';a®,a”). This is true

32,768 | 1,802, 185 5,883, 888 because; = a} @ af ® «? and, asi} = o, thena; = a.

65,536 | 3,604,425 6,006, 780 Using the same procedure, we can prave = a?, Vi €

131,072 | 7,208,905 6,129,816 minor(a®; a', a®) anda} = o}, Vi € minona®;a*, a?).

Next, we prove the second part of the Lemma. lét €
) DH(n)\{a',d? a®, a"}.

In our proposal, oncé andt have been fixed, the valuedecreases ¢ + the number of positions imv(a, a?, a®) wherea{ = al
exponentially as: increases, which yields security levels higher thafnen the number of positions imv(a’, a2, as) wherea{ # alis
needed. Thus, a better comparison is to use a fixaad assume that, on—2 _ | _ (see Lemma1).
for our security requirements,e’ < ¢ one has’ ~ 0. We take a value Cally the number of positions iminor(a'; a2, a*) wherea? = a!.
e = 107" and use it as security level for Boneh-Shaw's constructiofnen the number of positions inéinor (a’; a?.a®) wherea? ’;é at is
Results are presented in Table XI. =2y, - !

For a fixede = 107'°, we can observe that our proposal yields g - the number of positions iminor(a®; a*, a®) wherea’ = a’.
shorter codeword lengths up to= 16 (number of buyers is 65536). Then the number of positions ininor (a?; (,”1, a®) wherea{ ;é al is
For values of» > 16 Boneh-Shaw's proposal offers a shorter code;n—2 _ '
word length. The explanation is that our codeword length increases ag 51+ the number of positions iminor(a®; a', a?) Whereﬂgj =al.
O(N), while Boneh-Shaw's increases @glog V') with a large con-  Tnen the number of positions ininor (a*; (,"1, a?) wherea? # alis
stant factor; this large constant factor prevents Boneh-Shaw's schegnez _ ;- '

from comparing favorably unlesy is very large.

2

From the expressions at the bottom of the page we build the fol-
lowing equation system:

APPENDIX tdy4odt=2""1_1
PROOF of LEMMAS oyt rtt=1

Proof: (Lemma 1): Let a',a”,a® be three codewords of a —r4+y—z+t=1
DH(n) code. Definel = inv(a',a?) andT the positions not irY. —r4y+z—t=1.
Sinced(a’,a’)ix; = 2"~', then|I| = 2" 7' — 1. By solving it, we getr = 2"~% — 1 andy = » =t = 2"~". Finally,

Letz = |inv(a',a?, a®)| (obviously,inv(a',a* a®) C I)andlet e conclude

y be the total number of positionisc T wherea? = a} (these are J _ ) =9 _ ] _ gy — 93
the positions that form minéu'; a2, a®)). Asd(a?, a*) = 2" !, then invata2,0%) (07, 0) = =

r+y= 2”’71 - 1. dminor(algaz,aS)(aj?a’l) :27172 —y= 27173
There are™ ' — 1 — z positionsi € I wherea? # a} (these are H=2"? =

the positions that form miné®; a*, a®)) andy positionsi € T where

a? # a}. Asd(a®,a') = 2" ' we havetha” ' —1—a+y =2""1

J an—3
dn1inor(a2;a1 ,ad) ((l s a 2

7 1\ _an—2 _ on—3
dmiuor(ag;al,az)(a s d ) =2 —t=2 .

By solving ) In an analogous way, we can prove that the distances betwesrd
a?,a® are2"~? as well. [
r4+y=2""1-1 Proof: (Lemma 3) : Without loss of generality, take= 1. We

{271*1 —l-a4y=2""1 have that, for bit positions ifnv(a', a%, a®), there is no difference

betweena' and " since bits in those positions are undetectable.
we getz = 2"7? — 1 andy = 2"2. Finally, we conclude that Also, each ofth@"~? bits in minoKa'; a*, «*) differs betweemn' and

[inv(al,a?,a%)| = x = 2272 — 1, |minor(a®; o2, ¢®)| = y = 2772,  «*°" with probability p; therefore, the probability of there beinglif-
[minor(a®;a',a®)| = 277" —y = 2772 |minora®;a',a?)| = fering bits in those positions is given by a binomial probability function
2" - =2"72 B b(;2"72,p). Also, each of the - 2"~ bits in minoa®; ', «*) and

Proof: (Lemma 2): First of all, we prove the existence and propminor(«®; a*, «?) differs between' anda°°" with probability(1—p);
erties ofa®. As a DH(n) code is a linear code, any linear combi-therefore, the probability of there beikg- ¢ differing bits in those po-
nation of codewords results in another codeword. Then, we compsitons is given by a binomial probability functidgk —¢; 2", 1—p).

Asd(ad,a') = d,, a1 02,43)(a7, 0 ) d ol a2 03y (070N )Fd o020t 03y (@7, @) Hd o008 a1 2y (a7, @) = 2771, then
71—+ Q2" =y + (2" = 2)
+2" P -ty =2"""
Asd(a?,a%) = d;p (a1 02,48)(@7, @) Fd ol ;a2 23) (@7, 87 ) Fdiinora2ial 28) (@7, 7))+ dninon(as ol a2y (a7, a®) = 2771, then
Q" —l—a)+y+24+@2" 7 —t)=2"""
Asd(al,a®) = d, no(al J,Q_ng)(u,j, a3)+dmi“m_(a1 :nzyag)(u,j, a3)+dminm_(n2;a1 ,33)(@, ‘13)+dminor(a3,al ,32)(@, a®) =2"~1, then
Q" 2 —1l—2)+y+ Q" 2 - Ft=2"""1,
Asd(a?,a”) = dy(at a2 03)(87, ) Fiminor(alia2,a3) (@7 @7 ) Fdiinor(a? a1 ,a3)(@7 87 ) Fdiinoras a1 a2)(@’, a%) = 2771, then

(271.—2 — 1= l‘) + (271—2 _ y) + P +2‘ — 271.—1.
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In this way, the expression in the Lemma corresponds to the probability
of there being a total of+ (k — t) = k differing bits between' and
coll. ™
Proof: (Lemma 4): The expression in the Lemma corresponds to
the probability of one, two or three codewords|in', a*, a*} being at
distancek from «°°"! and the remaining codewords being at a greater
distance. [ ]
Proof: (Lemma 5): The expression in the Lemma corresponds to
the probability of one, two or three codewords]in', a*, ®} being at
distancek from «=°"' and the remaining codewords being at a shorter
distance. ]
Proof: (Lemma 6): Lemma 2 says that bits of* are iden-
tical to bits of «' in the positions inminor(a’;a’,a®) for
(1,5, k) € {(1,2,3),(2,1,3),(3,1,2)}. Therefore, the probability of
there beingk different bits in thosed - 2”2 positions is given by a
binomial probability functiorb(k; 3 - 2" 2, p). [
Proof: (Lemma 7): According to Lemma 2, and a
have 2"~# differing bits in positions ininv(a',a?, a). In each
minor(at;a’,a®), for (i, 7. k) € {(1,2,3),(2,1,3),(3,1,2)}, a*
has all2"~* bits each of which is different witp and 2"~* bits
each of which is different with probabilityl — p). Therefore, we
have3 - 2"~ bits with probabilityp of being different, and thus the
probability thatt of such bits are different i(¢; 3 - 2" ~*, p). On the
other hand, we hava - 2”2 bits with probabilityl — p of being
different, and thus the probability that— ¢ of such bits are different
isb(k —;3-2"73,1 — p). In this way, the expression in the Lemma
computes the probability of there being- (& — ¢) = k different bits
betweer: andac". (]
Proof: (Lemma 8): The expression in the Lemma computes
the probability that at least one out of tR¢ — 3 codewords in
DH(n)\{a',a? 4} is at distance: of a°", with the remaining
codewords at a longer distance. [ ]
Proof: (Lemma 11):1t can be seen that, i 717, bits in
“Zone-A” and in “Zone-C” stay undetectable and thus decoding will
use Rule 1 and return a value “1.”

If v = 70,” bits in “Zone-A” and in “Zone-B” stay undetectable.

Thus, decoding will use Rule 2 and return a value "0." [ |

Proof: (Lemma 12):In a collusion between three codewords
bt v%, 0% € SC(d,t) with two of them §' andd?) encoding a value
v (without loss of generality, assume = 1 andv 0), we have
b' = b* with probability1/¢ andb' # b* with probability1l — 1/t.

a) In the casé’ # b*, we computepys(v) = 1 — pair(7) (We
supposel to have an odd value), whepg; ;(v) corresponds to
the probability of decoding after a collusion based onpama-
jority strategy.pa; ¢(v) is actually the probability of decoding
using Rules 2 or 6.

Rule 2 will be applied if all bits in “Zone-A" and “Zone-B”
are “0.” Since we are assumingpamajority strategy, all
bits in “Zone-A”" will be “0” with probability b(d;d,1 —

p) = (1 — p)?, because the majority bit in these positions
is “1.” Sincebl # b2, there will be two detectable blocks
in “Zone-B” where the majority bit is “0.” Bits in “Zone-B”
will be all “0” with probability b(2d;2d,p) = »??. So the
probability of applying Rule 2 i$1 — p)?p?.

Since only one out of the three colluding codewords has
value “0,” it is not possible to have more than one block
of “Zone-C” with bit values different from “0.” So Rule 4
cannot be applied.

The next possibility for decoding as “0” is to apply Rule
6. This happens if there are more “0” bits than “1” bits in
“Zone-A" and no other rule between 1 and 5 has been ap-
plied before. In order to render Rule 3 not applicable, we

a

389

need one of the two detectable blocks of “Zone-B” to be all

zeros. Let us assume itis the leftmost one. This happens with
probabilityb(d; d,p) = p?.

Then we need more than half of thebits of “Zone-A”"
with value “0” (or less than one half with value “1"), which
happens with probability L'/ b(k: d. p). We also need
that one of the two detectable blocks of “Zone-B” is all zeros
(which happens with probability”) and the other with at
least one “1” bit (which causes Rule 2 not to be applied
and happens with probability — b(d;d,p) = 1 — p?).

As this can happen twice, one with each of the blocks of
'Zone-B’ forced to have all bits to “0,” the total probability
is2-p*(1— p?) L2 b(k: d, p). The same rule is also
applied if both blocks of “Zone-B” have all bits to “0” (with
probability p??) and the number of “1” bits in “Zone-A" is
greater than O (to make Rule 2 not applicable) and less than
than one half of the block length The total probability is
p?? Z,&i_l]/% b(k;d,p). |
b) In the casé' = b2, the probability of decoding value “1” cor-
responds to the probability of decoding after applying Rule 1 or
Rule 5 (note that Rule 3 is not applicable).
Rule 1 will be applied if all bits in “Zone-A" are “1” and
all bits in “Zone-C” are “0.” In both cases, we need all bits
to take the majority value, which happens with probability
b(2d;2d,p) = p**.
The other possibility is to apply Rule 5 conditioned to not
having applied Rule 1 before. There are two possible sce-
narios.

In the first scenario, we need at least one bit
of “Zone-C” and more than one half of the bits of
“Zone-A" with value “1.” This happens with probability
(1= ") Y5e (yaya) bk d.p).

In the other scenario, we need all bits of “Zone-C” to be
“0” and the number of ones in “Zone-A” to be more than
a half of the zone but less thah(otherwise Rule 1 would
have been applied before). This happens with probability

p" Zz;ld-rz/zj b(k;d.p). ]
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