
European Journal of Operational Research 207 (2010) 290–296
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Stochastics and Statistics

IIS branch-and-cut for joint chance-constrained stochastic programs
and application to optimal vaccine allocation

Matthew W. Tanner, Lewis Ntaimo *

Department of Industrial and Systems Engineering, Texas A&M University, 3131 TAMU, College Station, TX 77843, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 July 2008
Accepted 14 April 2010
Available online 20 April 2010

Keywords:
Stochastic programming
Chance constraints
Irreducibly infeasible subsystem (IIS)
Branch-and-bound
Branch-and-cut
0377-2217/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.ejor.2010.04.019

* Corresponding author.
E-mail addresses: mtanner@tamu.edu (M.W. Ta

Ntaimo).
We present a new method for solving stochastic programs with joint chance constraints with random
technology matrices and discretely distributed random data. The problem can be reformulated as a
large-scale mixed 0–1 integer program. We derive a new class of optimality cuts called IIS cuts and apply
them to our problem. The cuts are based on irreducibly infeasible subsystems (IIS) of an LP defined by
requiring that all scenarios be satisfied. We propose a method for improving the upper bound of the prob-
lem when no cut can be found. We derive and implement a branch-and-cut algorithm based on IIS cuts,
and refer to this algorithm as the IIS branch-and-cut algorithm. We report on computational results with
several test instances from optimal vaccine allocation. The computational results are promising as the IIS
branch-and-cut algorithm gives better results than a state-of-the-art commercial solver on one class of
problems.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In stochastic programming, instead of assuming that all param-
eter values are deterministically known, a subset of the parameters
of a mathematical program are given probability distributions. This
paper concerns stochastic programs with joint chance constraints,
which can be formulated as follows:

SP : Min c>x ð1aÞ
s:t: Ax 6 b ð1bÞ

P Tð ~xÞx 6 rð ~xÞf gP a ð1cÞ
x P 0: ð1dÞ

In formulation (1), x 2 Rn1 is the decision variable vector, c 2 Rn1

is the cost parameter vector, A 2 Rn�m1 is the deterministic con-
straint matrix, and b 2 Rm1 is the deterministic right-hand side vec-
tor. In this formulation, uncertainty appears as the multi-
dimensional random variables ~x, that gives rise to the random
technology matrix Tð ~xÞ 2 Rn�m2 and the random right-hand side
vector rð ~xÞ 2 Rm2 . Individual outcomes (scenarios) of the random
variable are represented as realizations x 2X of the sample space.
The aim of such a formulation is to find a minimum cost strategy
while allowing a subset of the constraints to be violated an accept-
able amount of time.

Chance constraints are best suited to optimization problems in
which satisfying a certain set of constraints is desirable but may
ll rights reserved.

nner), ntaimo@tamu.edu (L.
not be done almost surely. For example, it may be too expensive
to satisfy the constraints almost surely. Thus chance constraints
are used to find optimal solutions such that an acceptable level
of reliability is achieved. Applications include telecommunications
with companies needing to guarantee a given quality-of-service to
their customers [13], air-quality management with the require-
ment that pollution not exceed prescribed limits too often [2],
and also inventory control problems where the upper and lower
bounds on stock have to be violated with low probability [15].

In general, stochastic programs with joint chance constraints
are hard to solve. The main reason for this is that given a general
distribution of the parameter values, the feasible space of the prob-
lem is nonconvex [7]. Also, in the case where the random parame-
ters have continuous distributions, evaluating the feasibility of a
single candidate solution can require an extremely hard integra-
tion [27]. Most research into solution methods for SP (1) has fo-
cused either on identifying probability distributions for the
parameters with the property that the feasible space is convex,
or on methods for solving the problem when the parameters have
discrete distributions.

In the case when all the randomness appears in the right-hand
side of the formulation, results on distributions that allow the
chance constraints to be formulated as convex programs are given
in [7,25]. In the case of discrete probability distributions, most
solution methods use integer programming (IP) or other discrete
programming techniques. When only the right-hand side is
random, solution methods based on a nonconvex reformulation
using p-efficient points are given in [13,12,29]. IP formulations
and solution approaches for the discretely distributed case are

http://dx.doi.org/10.1016/j.ejor.2010.04.019
mailto:mtanner@tamu.edu
mailto:ntaimo@tamu.edu
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

M.W. Tanner, L. Ntaimo / European Journal of Operational Research 207 (2010) 290–296 291
addressed in [9,19]. Another branch of research has been methods
based on sampling approximations [18,21,22]. These methods use
the sample average approximation method [30] to obtain an
approximation by replacing the actual probability distribution by
an empirical distribution corresponding to a random sample. A dif-
ferent sampling approach, proposed by [8], is to obtain the approx-
imation of a chance-constrained optimization problem by
sampling a finite number of its constraints.

When the technology matrix T(x) is stochastic, problem SP is
significantly harder to solve than for the case in which all the
uncertainty appears in the right-hand side. With the matrix T(x)
allowed to be continuously distributed, Prekopa [26] presents a
few parameter distributions which make the problem convex. In
the case where the parameters are joint-normally distributed, An
and Eheart [2] present a method for finding upper and lower
bounds on the optimal objective function of the problem using
the extreme cases of correlation between the random variables.
However, there are applications for which these types of distribu-
tion assumptions are too stringent. Consequently, there has been a
lot of interest in formulations with discretely distributed random
parameters, which are often created by sampling.

Given problem SP with decision variables that are pure inte-
ger, Tayur et al. [32] solve the problem using an algebraic geom-
etry approach and Aringhieri [3] applies a tabu search for finding
feasible solutions. For problems with random T(x) and possibly
continuous decision variables, a deterministic equivalent prob-
lem can be formulated as a ‘big-M’ mixed 0–1 integer program
[20]. An advantage to such a formulation is that it may be solved
directly by a commercial mixed-integer programming (MIP)
solver. However, it often results in extremely weak linear pro-
gramming (LP) relaxations that hinder finding the optimal solu-
tion. To strengthen the LP relaxation, Ruszczyński [28] derives
cutting planes based on precedence constraint knapsack polyhe-
dra and gives a specialized branch-and-cut algorithm for the
problem.

This paper focuses on theoretical results that can be used for
general solution techniques for SP. The main significance of these
results is that they are valid for joint chance-constrained problems
with discretely distributed random technology matrices and right-
hand side vectors. We introduce a new class of optimality cuts,
called irreducibly infeasible subsystem (IIS) cuts, for strengthening
the LP relaxations of the deterministic equivalent MIP reformula-
tion of SP. We also present a method for improving the upper
bound found by the algorithm for the case when no IIS cut can
be identified. We then derive a branch-and-cut method based on
the IIS cuts, termed ‘IIS branch-and-cut’ algorithm’, and discuss
its implementation. Finally, we apply the IIS branch-and-cut algo-
rithm to randomly generated large-scale instances arising in opti-
mal vaccine allocation for epidemic prevention.

The rest of the paper is organized as follows: In the next section
we give some background on the problem and present the MIP
reformulation of the problem that can be solved directly. In Section
3 we derive IIS cuts and an upper bound improvement strategy for
the IIS branch-and-cut algorithm. We present and discuss an
implementation of the IIS branch-and-cut algorithm in Section 4
and give computational results in Section 5. Finally, we finish with
a summary and point further research topics in Section 6.
2. Preliminaries

We make the following assumptions on SP throughout the rest
of the paper:

(A1) The random variable ~x is discretely distributed with
jXj <1.
(A2) Bounds 0 6 x 6 U on x are included in the constraint set
Ax 6 b.

(A3) The polyhedron P1 ¼ fx 2 Rn1 jAx 6 bg– ; and is compact.

Assumption (A1) makes the problem tractable while assump-
tion (A2) is needed solely to make the implementation of the cut
generation LP more clear and does not restrict the application of
the results of this paper. Assumption (A3) is mainly needed to keep
the problem from being trivially infeasible.

Under assumption (A1), a deterministic equivalent to problem
SP can be formulated as a big-M mixed 0–1 IP as follows [20]:

Min c>x ð2aÞ
s:t: Ax 6 b ð2bÞ

TðxÞx�Mezx 6 rðxÞ 8x 2 X ð2cÞX
x2X

pxzx 6 1� a ð2dÞ

zx 2 f0;1g 8x 2 X; ð2eÞ

where M 2 R is an appropriate large number, zx is a binary decision
variable, px is the probability of a scenario x 2X, and e is an appro-
priately sized vector of ones. We note that problem (2a) is a mixed
0–1 IP with a binary variable for each scenario and a knapsack con-
straint (2d) to guarantee that the chance constraint (1c) is satisfied.
Each binary variable takes the value of 0 if the corresponding con-
straints are satisfied, and 1 otherwise. Assumption (A3) guarantees
the existence of an M large enough for formulation (2). Also, instead
of having just one M in (2c), one can choose an appropriate Mx for
each x to tighten the formulation.

Based on our computational experience we have seen that often
relatively few scenarios are important in the final solution. The rest
of the scenarios are either redundant or cannot be satisfied in any
nearly optimal solution. Our approach aims at identifying subsets
of scenarios that are particularly important for finding optimal
solutions to the problem. Using these subsets of scenarios, we
are then able to derive cutting planes that can be used to strength-
en the LP relaxation of formulation (2). The cutting planes are
based on irreducibly (minimally) infeasible subsystems (IISs). An
IIS is defined as follows:

Definition 2.1. An IIS is a set of constraints S of a mathematical
programming problem such that S is infeasible but every proper
subsystem of S is feasible.

The traditional use of IISs is in the analysis of infeasible LPs to
determine the optimal strategy for changing problem parameters
to make the system feasible. Several methods for identifying these
sets using LP methods have been developed [10,14,17]. In this pa-
per, we use the following basic theorem from Gleeson and Ryan
[14] to identify IISs:

Theorem 2.2. Let D 2 Rm�n be a rational matrix and let d 2 Rm be a
rational vector. Then the indices of the minimally infeasible subsys-
tems of the system Dv 6 d are exactly the supports of the vertices of
the polyhedron P ¼ fw 2 RmjD>w ¼ 0; d>w 6 �1;w P 0g.
Proof. See Gleeson and Ryan [14] h

Note that the support of a vector is the set of indices of its non-
zero components. Theorem 2.2 gives a polyhedron with the prop-
erty that every extreme point of the polyhedron corresponds
with an IIS of the system Dv 6 d. This means we can use LP to iden-
tify IISs.

In recent years, IISs have been used to generate valid inequali-
ties for the maximum feasible subsystem problem [1,24]. In IP, IISs
have been used to derive combinatorial Benders (CB) cuts for a
class of MIP problems [11]. CB cuts are used to solve MIPs with

292 M.W. Tanner, L. Ntaimo / European Journal of Operational Research 207 (2010) 290–296
integer and continuous variables that are linked solely by ‘big-M’
constraints. They decompose the problem as in Benders decompo-
sition [6] with the master problem having pure integer decision
variables and the subproblem having pure continuous decision
variables. For the MIP formulation of chance-constrained pro-
grams, Benders decomposition is not a good solution method be-
cause the master program finds integer feasible solutions
without regard to the objective function that is defined by the con-
tinuous decision variables. Since every feasible point of the master
problem has objective value zero, cutting off an individual point of
the master program is often not useful. The IIS cuts are similar to
the combinatorial Benders cuts of Codato and Fischetti [11], but
they are specifically derived for a problem with the objective func-
tion depending on the continuous decision variables rather than on
the integer decision variables.

3. IIS cuts

Let us begin by defining some further notation we will use
throughout the rest of the paper. At an arbitrary node of a branch-
and-bound (BAB) search tree, let L# X and U# X denote the sets
of all scenarios such that zx is set to 0 and zx is set to 1, respectively.
Also, let u � � denote the current incumbent objective value minus
a sufficiently small value. We refer to a scenario x being forced into
the problem at a node of the BAB tree if the binary decision variable
zx is set to 0. This is the case when constraints (2c) for x are satis-
fied. Similarly, we refer to a scenario x being forced out of the prob-
lem if the binary decision variable zx is set to 1. This is the case
when constraints (2c) for are x not satisfied. Since the set U can
be chosen such that PfX n UgP a, the LP formulation using this
polyhedron as a constraint set defines an upper bound on the opti-
mal value of the original problem and can be given as follows:

Min c>x ð3aÞ
s:t: Ax 6 b ð3bÞ

TðxÞx 6 rðxÞ 8x 2 X n U ð3cÞ
c>x 6 u� �: ð3dÞ

We will generate IIS cuts from IISs of the polyhedron defined by
having every scenario in X n U to be satisfied, restricted by an opti-
mality cut generated from an upper bound problem (3). The advan-
tage to formulation (3) is that it can be set up at nodes in the BAB
tree that yield different sets U. This means that we can generate
optimality cuts early in the BAB tree when they are most effective
rather than deep in the tree. To determine IISs that can be used to
derive IIS cuts, we propose the following fundamental result:

Theorem 3.1. IISs of (3) are in one-to-one correspondence with the
supports of the vertices of the polyhedron

P ¼
(

y1 2 Rm1 ; y2ðxÞ 2 Rm2 8x 2 X n U; y3 2 Rjy>1 A

þ
X

x2XnU
y2ðxÞ

>TðxÞ þ y>3 c ¼ 0y>1 b

þ
X

x2XnU
y2ðxÞ

>rðxÞ þ y>3 u 6 �1y1; y2; y3 P 0:

)
ð4Þ
Proof. Similar to the proof of Theorem 2.2 in Gleeson and Ryan
[14]. h

We omit the proof of Theorem 3.1 since this theorem is a direct
application of Theorem 2.2 to (3) to give us a polyhedron with the
property that every extreme point of the polyhedron corresponds
with an IIS of (3). The theorem is proved by elementary polyhedral
results involving the scaled set of extreme points of the dual con-
straints of problem (3), that is P, and a version of the well-known
Farkas Theorem of the alternative. As with Theorem 2.2, we can
simply use LP to identify IISs. We will work with the LP relaxation
of problem (2) at each node of the BAB tree and extreme points of
(3) to generate IISs. Essentially, IISs are used to identify sets of sce-
narios D such that not all of the scenarios in D can be satisfied in
the optimal solution to problem (2). The following result shows
how such sets D can be determined as well as the separation prob-
lem that we have to solve.

Theorem 3.2. Given an IIS S of formulation (3), let the subset of
scenarios D ¼ fx 2 XjTðxÞx 6 rðxÞ \ S – ;g. Then the set D– ;
defines the IIS cutX
x2D

zx P 1: ð5Þ

The IIS cut is valid in the sense that it does not cut off all optimal solu-
tions to problem (2).

Given a non-integer solution ð�x; f�zxgx2XÞ to the LP relaxation of
problem (2), the separation problem for the IIS cut is to find an IIS S
of problem (2) and generating a subset D# X as in (5) such thatP

x2D�zx < 1. The separation problem is NP-hard [1] and therefore,
heuristics have to be used to find valid inequalities quickly. Pfetsch
[24] suggests finding IISs by solving an LP constrained by P with
the objective function coefficients given by a non-integer solution
to the LP relaxation of (2) at a given node in the BAB tree.

To find an IIS cut, we propose solving the following LP:

Min
X

x2XnU

�zxy2ðxÞ

s:t: P:
ð6Þ

Observe that only the values �zx of the binary variables zx are used
in (6). The reason for this is that the cardinality jDj only depends on
the constraints defined by the zx variables in (3) and therefore, the
x variables should not affect the objective function of LP (6). Also,
the IIS cuts tend to be stronger when jDj is small. However, using
the objective function given in (6), an IIS cut that separates the cur-
rent non-integer solution may not be found. Nevertheless, the gen-
erated IIS cuts are valid for the entire BAB tree and may cut off some
non-integer solution at some later node in the BAB tree.

Since every extreme point of P defines an IIS, it is possible to
generate rounds of cuts using LP. A tempting method to try is to
use the extreme points visited by the simplex method as it solves
the cut generating LP. Unfortunately, this has been shown to be
computationally ineffective [24]. A more effective method is to
solve the cut generating LP and then change the objective function
coefficients to target specific scenarios. Then the LP can be warm-
started with the current solution information. When generating IIS
cuts, LP (6) can be infeasible. This happens when P = ;, implying
that every scenario in X n U can be satisfied with the current upper
bound u. In this case we would like to either improve u, or deter-
mine that no such improvement is possible and fathom the current
node. The following result shows how to improve u by dropping
more scenarios from X n U:

Proposition 3.3. Let P be as defined in (4). If P = ; and the original
problem SP is bounded, then formulation (3) has an optimal solution,
denoted �x. By setting �zx ¼ 0 if x 2 X n U and setting �zx ¼ 1
otherwise, then ð�x; f�zxgx2XÞ defines an integer feasible solution to
(2) with c>x 6 u. Furthermore, a possibly improved integer feasible
solution can be found by dropping a set of scenarios F # X from
problem (3) for any set F such that PðX n ðU [FÞÞP a.
Proof. Since P = ;, it implies there are no IISs for formulation (3)
and hence it is feasible. Since it cannot be unbounded as it is a

M.W. Tanner, L. Ntaimo / European Journal of Operational Research 207 (2010) 290–296 293
restriction of problem SP, it has an optimal solution �x. The solution
ð�x; f�zxgx2XÞ satisfies {Ax 6 b, T(x)x �Mezx 6 r(x) "x 2 X,x P 0}.
Since PðUÞ 6 1� a or else the node would have been fathomed by
infeasibility, constraint (2d) must also be satisfied, and thus
ð�x; f�zxgx2XÞ is an integer feasible point. Also, c>�x 6 u, otherwise
constraint (3c) would have been violated. Finally, dropping the
set of scenarios F from formulation (3) provides a relaxation
whose optimal solution will be no worse. h

To improve u it is necessary to carefully choose the set F . If all
constraints (3c) for a given x are redundant, then dropping the
constraints will not improve the optimal objective value. The only
scenarios whose removal will affect the objective value are those in
which at least one constraint is binding. So one way to identify the
set F is to first rank the scenarios x 2 X n U in nondecreasing order
based on the number of nonzero slack values, and then starting
with the lowest ranked scenario, add the scenarios to F as long
as PðX n ðU [FÞÞP a. A relatively more time consuming method
is to remove the lowest ranked scenario from the problem, re-solve
the problem, and repeat until no more scenarios can be removed.
One can also use a heuristic such as local or tabu search to better
identify sets of scenarios to remove. Note that an IIS cut can always
be found when an improved upper bound u is used in (6). If all the
scenarios in X n U have all their constraints (3c) redundant, then no
upper bound improvement is possible and the node can be
fathomed.

4. A branch-and-cut algorithm

We are now in a position to illustrate the use of the IIS ideas
developed in the previous section within a branch-and-cut frame-
work. We show how the IIS cuts and the upper bound improve-
ment fit into an exact method for solving problem (2). Let k
denote the node index and K denote the total number of nodes
in the BAB search tree. The set of all zx that are set to 0 or 1 at node
k are given by Lk and Uk, respectively. The set of open nodes in the
search tree is given by N , while an individual node is given by
nk :¼ ðLk;UkÞ. Finally, we continue to denote by u the current best
upper bound on the optimal solution. Then a basic IIS branch-and-
cut algorithm can be stated as follows:

4.1. IIS branch-and-cut algorithm

Step 0. Initialize: Set L1 ¼ ;; U1 ¼ ;; n1 ¼ ðL1;U1Þ; N ¼ fn1g;
K ¼ 1, and u =1.

Step 1. Node Choice: Pick some node nk 2 N according to some
search rule.

Step 2. Solve LP: Solve the LP relaxation of problem (2) including
the constraints of type zx = 0 and zx = 1 for the x’s that
have been set in BAB. This will either find an optimal solu-
tion ð�x; f�zxgx2XÞ or that the problem is infeasible.

Step 3. Fathoming rules: If the node relaxation is infeasible or
c>�xk P u fathom the node and return to step 1. Otherwise,
if constraint (2d) is satisfied, set u ¼ c>�xk, fathom the node
and return to Step 1. Otherwise, continue to Step 4.

Step 4. Cut Generation: Solve problem (6) to get extreme points
of (4) that give IIS sets S. Generate and add the IIS cuts
(5) implied by these sets and go to Step 2. If (6) is infeasi-
ble, improve the upper bound u (if possible) and go to Step
5.

Step 5. Branching: Pick a non-integer �zk
x. Create two new nodes

nKþ1 ¼ ðLk [zx;UkÞ and nKþ2 ¼ ðLk;Uk [zxÞ. Add these
nodes to N , set K = K + 2, and return to Step 1.

The finite convergence of the IIS branch-and-cut algorithm is
guaranteed by the branching on the binary variables of formulation
(2). By Theorem 3.2, not all alternative optimal solutions are elim-
inated by the IIS cuts. Hence, the algorithm is assured of converg-
ing to an optimal solution. Note that the IIS cuts and upper bound
improvement strategy cannot guarantee an optimal solution with-
out branching, however as computational results show, they are
able to significantly reduce the size of the search tree necessary
to find an optimal solution and prove optimality.

5. Computational results

We now present some computational results showing the effec-
tiveness of the IIS branch-and-cut algorithm in solving formulation
(2). We ran our tests on instances from an application developed in
Tanner et al. [32] involving the optimal allocation of vaccines un-
der parameter uncertainty. We created five random replications
of each problem size to guard against pathological cases and better
evaluate the robustness of the computational results. The instances
were created by sampling uniformly from the probability distribu-
tions given in the Appendix. The constant M used in inequalities
(2c) was chosen for each instance through experimentation to be
the smallest value to ensure feasibility without causing computa-
tional instability.

We implemented the IIS branch-and-cut algorithm in C++ using
the CPLEX 9.1 callable library on a Dell Optiplex GX620 with a
3.00 GHz dual processor and 4.0 GB of RAM. The solution of any
LPs in the algorithm was done using the CPLEX 9.1 LP solver. For
these computational results, all solution times are given in seconds
and a time limit of 7200 seconds (2 hours) of CPU time was im-
posed. Throughout our computational results, we compare three
sets of tests. The first is computations using the CPLEX MIP solver
under default settings directly on the MIP formulation (2) to pro-
vide a benchmark. The second is computations with the IIS
branch-and-cut algorithm without adding the IIS cuts. This imple-
mentation is pure BAB using a depth-first search strategy and was
done to provide a benchmark to assess the effectiveness of the IIS
cuts. Finally, the third computations were performed with the IIS
branch-and-cut algorithm with the IIS cuts added at each node of
the BAB tree.

5.1. Optimal vaccine allocation

Optimally allocating scarce vaccines is important in order to
prevent the occurrence of disease epidemics [4,16,23]. A common
method for deciding on an optimal allocation strategy is to solve
a mathematical program minimizing the cost of the vaccinations
subject to the requirement that the post-vaccination reproductive
number R*

6 1 [5]. The post-vaccination reproductive number is
defined as the average number of new cases of a disease caused
by a single infected individual after the population has been vacci-
nated. Constraining this value to be below one causes a disease to
tend to die out.

Chance constraints are a natural framework for including
parameter uncertainty in finding optimal vaccine allocations. If
an epidemic occurs, it is a disaster and so the penalties are binary.
On the other hand, it is impossible to stop all epidemics from
occurring. Sometimes a strain will arise that will spread through
the population no matter how many vaccines are given out. Chance
constraints gives a method for determining the optimal strategy
that will prevent the vast majority of epidemics from starting.
We created a test set of random instances extending the determin-
istic LP devised by Becker and Starczak [5] to find optimal vaccina-
tion policies for a population divided into a community of
households. The background on this application is available in Tan-
ner et al. [31]. We have provided details of the formulation of the
chance-constrained problem and the probability distributions as-

294 M.W. Tanner, L. Ntaimo / European Journal of Operational Research 207 (2010) 290–296
sumed for the random parameters of the original disease model in
Appendix A for the interested reader.

Table 1 gives the problem sizes for the set of optimal vaccina-
tion test instances. The first column gives the name of the test in-
stance with the number of the test instance corresponding to the
number of scenarios. The second column gives the number of rows
of the problem. The third column gives the number of continuous
variables in the problem. Finally, the last column gives the number
of binary variables of the problem. For these test problems the
number of rows in matrices A and T(x) are m1 = 31 and m2 = 1,
respectively. These instances are clearly difficult to solve because
the MIP formulations are very large and are extremely dense.

Table 2 gives the results of the computational tests on the vac-
cination allocation test instances. The first column of Table 2 gives
the name of the test instance. The next four columns give the
CPLEX results: the second column gives the best solution found
by CPLEX; the third column gives the optimality gap returned by
CPLEX; the fourth column gives the number of nodes searched in
the BAB tree; and the fifth column gives the time to prove optimal-
ity. The next two columns give the results of our implementation
of BAB without any added cuts or upper bound improvement.
Table 1
Problem sizes for vaccination test instances.

Instance Rows Cont. vars. Bin. vars.

vac100 131 302 100
vac250 281 302 250
vac500 531 302 500
vac750 781 302 750
vac1000 1031 302 1000
vac2000 2031 302 2000

Table 2
Computational results on vaccination problems.

Instances CPLEX results B&

Objval Gap (%) Nodes Time Ob

vac100a 65.28 0 18 0.61 65
vac100b 62.39 0 30 0.77 62
vac100c 65.15 0 11 0.67 65
vac100d 69.81 0 13 0.56 69
vac100e 65.99 0 8 0.56 65

vac250a 63.69 0 59 4.41 63
vac250b 62.34 0 549 7.16 62
vac250c 65.52 0 486 5.64 65
vac250d 62.92 0 211 4.59 62
vac250e 66.59 0 208 4.11 66

vac500a 64.53 0 4074 30.82 64
vac500b 65.49 0 3249 30.82 65
vac500c 66.41 0 520 30.82 66
vac500d 66.63 0 805 30.82 66
vac500e 65.16 0 784 30.82 65

vac750a 65.17 0 2833 75.39 65
vac750b 66.10 0 3690 87.99 66
vac750c 64.85 0 1912 54.36 64
vac750d 65.27 0 7135 143.61 65
vac750e 64.77 0 8432 163.74 64

vac1000a 65.11 0 22,505 469.16 65
vac1000b 65.02 0 74,615 1527.72 65
vac1000c 64.57 0 32,481 642.87 64
vac1000d 65.50 0 25,604 678.98 65
vac1000e 64.31 0 23,140 570.12 64

vac2000a 65.05 10.89 >71,181 >7200 65
vac2000b 65.50 2.10 >85,385 >7200 65
vac2000c 66.07 10.27 >71,001 >7200 65
vac2000d 64.95 3.18 >92,311 >7200 65
vac2000e 65.06 5.24 >109,881 >7200 66
The first of these columns gives the best solution value found,
while the second of these columns gives the number of nodes
searched in the BAB tree. For either CPLEX or the BAB implementa-
tion, if the table shows that the number of nodes searched is great-
er than some number, it means that the algorithm was unable to
prove optimality within the 2-hours time limit. The final four col-
umns give the results of the IIS branch-and-cut algorithm on these
test instances. The first of these columns gives the best objective
value found, the second column gives the number of nodes
searched, the third column gives the number of cuts added to the
formulation, and the fourth column gives the solution time in
seconds.

The IIS branch-and-cut algorithm is able to reduce both the
number of nodes of the BAB tree that have to be searched in order
to find the optimal solution and the time that is required to prove
optimality. The advantages of the IIS methods hold over both
CPLEX and our implementation of BAB. Relatively fewer cuts allow
for the optimal solution to be found for several instances. For
example, notice that for the vac1000 test instances, after 2 hours
the BAB algorithm can only prove optimality for four of the test in-
stances, and these four require an average of about 63,950 nodes in
the BAB tree. CPLEX requires an average of over 35,000 nodes and
about 770 seconds to prove optimality. With IIS branch-and-cut
algorithm, we are able to find an optimal solution by searching
an average of about 360 nodes in an average time of less than
80 seconds. This is a reduction of 99% in the nodes of the BAB tree
and a reduction of 90% in computation time. Even accounting for
the number of cuts which each require solving an LP at a node,
the total number of LPs solved by the IIS algorithm is less than
1000.

It is also interesting to note that the BAB algorithm without IIS
cuts actually identified the optimal solution for each of the five
B No IIS cuts IIS cuts added

jval Nodes Objval Nodes Cuts Time

.28 23 65.28 7 7 0.28

.39 69 62.39 9 9 0.37

.15 19 65.15 5 4 0.36

.81 23 69.81 3 3 0.25

.99 13 65.99 1 1 0.27

.69 371 63.69 29 14 1.25

.34 855 62.34 41 58 2.17

.52 433 65.52 29 46 1.87

.92 667 62.92 31 39 1.75

.59 175 66.59 7 6 0.91

.53 3075 64.53 111 210 12.66

.49 3727 65.49 111 229 13.20

.41 893 66.41 49 107 6.42

.63 1863 66.63 57 121 7.72

.16 931 65.16 47 88 6.92

.17 6207 65.17 211 335 31.69

.10 6353 66.10 175 275 27.04

.85 7967 64.85 115 223 21.68

.27 10,815 65.27 211 330 33.34

.77 20,387 64.77 155 294 27.27

.11 85,687 65.11 207 387 47.69

.02 58,815 65.02 493 766 104.16

.57 83,623 64.57 387 645 72.08

.50 27,691 65.50 299 458 63.07

.31 >110,000 64.31 431 768 97.63

.16 >54,004 64.98 1643 2660 1001.31

.50 >57,729 65.48 1901 2829 1045.24

.55 >55,733 65.50 1895 3122 1109.76

.58 >51,927 64.95 1491 2432 837.00

.05 >45,497 65.06 1737 2660 1119.82

Table 3
Parameters for vaccination problem.

Sets
F Set of family types
T Set of types of people
V Set of vaccine policies
X The set of scenarios

Indices
f Index for a family type in F
v Index for a vaccination policy in V
t Index for a person type in T
ft Index for the number of people of type t in

a family of type f
vt Index for the number of people of type t

vaccinated in v
x Index for a particular scenario in X

Parameters
hf The proportion of households in the

population that are of type f
anv(x) Computed random parameter for impact of

immunization decisions
lF The average size of a household

Parameters to compute aijkl(x)
m(x) The average contact rate of infected people
ut(x) The relative infectivity of people of type t
st(x) The relative susceptibility of people of type

t
b(x) The transmission proportion within a

household
�(x) The vaccine efficacy

Decision variables
xfv The proportion of families of type f

vaccinated under policy v

Table 4
List of family types and frequency.

Household size Children Adults Elderly Frequency

1 0 1 0 0.05
1 0 0 1 0.05
2 0 2 0 0.10
2 0 0 2 0.05
2 1 1 0 0.08
2 0 1 1 0.02
3 1 2 0 0.10
3 0 2 1 0.05
3 0 0 3 0.05
3 1 0 2 0.05
3 0 3 0 0.05
4 2 2 0 0.03
4 3 1 0 0.03
4 0 2 2 0.03
4 0 4 0 0.03
4 0 0 4 0.03
5 3 2 0 0.03
5 2 2 1 0.03
5 0 5 0 0.02
5 0 0 5 0.02
6 4 2 0 0.01
6 0 6 0 0.01
6 0 0 6 0.01
6 3 2 1 0.01
7 2 2 2 0.01
7 5 2 0 0.01
7 0 7 0 0.01
7 0 0 7 0.01
7 4 2 1 0.01
7 3 2 2 0.01

M.W. Tanner, L. Ntaimo / European Journal of Operational Research 207 (2010) 290–296 295
vac1000 test problems. However, without the IIS cuts added, the
linear relaxations of these problems were too weak for the algo-
rithm to prove the optimality of the solutions. This gives empirical
evidence that the IIS cuts offer a significant increase in the strength
of the relaxations of the problem. The advantage of the IIS branch-
and-cut algorithm is even more significant for the larger test in-
stances. For the vac2000 problems, CPLEX is unable to identify
optimal solutions for any of the test instances after 2 hours. The
BAB algorithm by itself does even worse and now searches an aver-
age of over 50,000 nodes but still cannot identify an optimal solu-
tion in 2 hours. The IIS branch-and-cut algorithm finds the optimal
solution in an average time of about half an hour for each of the
five replications. A final observation on the results is that the IIS
branch-and-cut algorithm results seem to have significantly less
variation in computation time than CPLEX. For the vac1000 prob-
lems, the CPLEX computation times vary by over 1000 seconds.
With the IIS cuts, the variation in times for the vac1000 test in-
stances is only 40 seconds, the variation in time for the vac2000
problems is 300 seconds.

6. Conclusion

In this paper we have derived a class of optimality cuts for
jointly chance-constrained stochastic programs with random tech-
nology matrices. We have defined an upper bound generating for-
mulation of the problem that allows cuts to be generated at every
non-integer point of the linear relaxation of the problem. The cuts
are derived in order to identify sets of scenarios that cannot all be
satisfied in the optimal solution to the problem. We also have gi-
ven a method for improving the upper bound during BAB when
there is a node for which no IIS cut can be found. The paper also
gives computational results on several test instances from optimal
vaccine allocation. The computational results are promising as they
show that the method can be used on its own to solve quite large
instances. Also, the results show that the IIS branch-and-cut algo-
rithm requires many fewer nodes in the search tree and much less
computational effort in order to prove optimality for the vaccina-
tion allocation test instances than does CPLEX or our implementa-
tion of BAB with no cuts added. Possible extensions to this work
include implementing the cuts in a BAB framework including other
cuts that have been derived for general MIPs. It would also be
important to study branching rules and other implementation is-
sues that may make for a more effective algorithm to solve this
class of problems. Another need is deriving stronger formulations
of the joint chance-constrained problem that give stronger convex
relaxations.

Acknowledgments

The authors are grateful to the anonymous referees’ useful com-
ments which greatly helped improve the presentation of this
paper.

Appendix A

We use the deterministic linear program of Becker and Starczak
[5] as the basis for a stochastic formulation for finding optimal vac-
cination strategies. The authors model a community divided up
into households, each of which contains a heterogeneous popula-
tion. We consider the random elements of the model to be the vac-
cine efficacy, the average contact rate of an infective, and the
relative infectivities and susceptibilities. The parameters and de-
tails of the stochastic program are given in Table 3.

Min :
X
f2F

X
v2V

X
t2T

v thf xf v ð7aÞ
s:t:
X
v2V

xfv ¼ 1 8f 2 F ð7bÞ

P
X
f2F

X
v2V

af vðxÞxf v 6 1

 !
P a ð7cÞ

0 6 xfv 6 1 8f 2 F; v 2 V : ð7dÞ

Table 5
List of parameters and distributions.

Parameter name Symbol Distribution

Vaccine efficacy �(x) Truncated normal (0.85,0.32) in
interval [0,1]

Inter-household contact rate m(x) Truncated normal (1,0.5) in interval
[0,1]

Intra-household spread rate b(x) Truncated normal (0.6,0.32) in
interval [0,1]

Relative infectivity, person
type t

lt(x) Low value 0.7, p = 0.5, high value
1.3, p = 0.5

Relative susceptibility,
person type t

lt(x) Low value 0.7, p = 0.5, high value
1.3, p = 0.5

296 M.W. Tanner, L. Ntaimo / European Journal of Operational Research 207 (2010) 290–296
The objective function minimizes the vaccine coverage. The first
constraint (7b) balances all the decision variables for each family
type, ensuring that the proportions assigned sum to one. The sec-
ond, probabilistic constraint (7c) requires that the reproductive
number of the disease be brought below one at least a proportion
of the time. afv(x) is a function of the random variable realization
given by (8).

afv(x) is computed using the random infectivity, susceptibility,
contact rate, and vaccine efficacy parameters of the original model.
The equation to compute afv(x) comes from Becker and Starczak
[5] and is given below. It includes the assumption that between
household contacts occur proportionately to the size of the house-
hold. Tables 4 and 5 give the exact household makeups and prob-
ability distributions that we assumed.

af vðxÞ ¼
mðxÞhf

lF

X
t2T

utðxÞstðxÞ ð1� bðxÞÞðft � v t�ðxÞÞ½

þbðxÞv t�ð1� �Þ�

þb
X
t2T

X
r2T

urðxÞstðxÞðft � v t�ðxÞÞðfr � v r�ðxÞÞ
!
: ð8Þ
References

[1] E. Amaldi, M.E. Pfetsch, L.E. Trotter, On the maximum feasible subsystem
problem, IISs, and IIS-hypergraphs, Mathematical Programming 95 (3) (2003)
533–554.

[2] H. An, J.W. Eheart, A screening technique for joint chance-constrained
programming for air quality management, Operations Research 55 (4) (2007)
792–798.

[3] R. Aringhieri, Solving chance-constrained programs combining tabu search and
simulation, in: C.C. Ribeiro, S.L. Martins (Eds.), Experimental and Efficient
Algorithms, Lecture Notes in Computer Science, vol. 3059, Springer-Verlag,
Heidelberg, 2004, pp. 30–41.

[4] F. Ball, P. Neal, A general model for stochastic sir epidemics with two levels of
mixing, Mathematical Biosciences 180 (2002) 73–102.

[5] N.G. Becker, D.N. Starczak, Optimal vaccination strategies for a community of
households, Mathematical Biosciences 139 (2) (1997) 117–132.

[6] J.F. Benders, Partitioning procedures for solving mixed-variable programming
problems, Numerische Mathematik 4 (1962) 238–252.

[7] J. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer-Verlag,
New York, 1997.
[8] M.C. Campi, S. Garatti, Chance-constrained optimization via randomization:
Feasibility and optimality, Optimization online, 2009. <http://
www.optimization-online.org/DB_FILE/2008/09/2092.pdf>.

[9] M.S. Cheon, S. Ahmed, F. Al-Khayyal, A branch-reduce-cut algorithm for the
global optimization of probabilistically constrained linear programs,
Mathematical Programming 108 (2006) 617–634.

[10] John W. Chinnneck, Finding a useful subset of constraints for analysis in an
infeasible linear program, INFORMS Journal on Computing 9 (1997) 164–174.

[11] G. Codato, M. Fischetti, Combinatorial benders cuts for mixed-integer linear
programming, Operations Research 54 (2006) 756–766.

[12] D. Dentcheva, B. Lai, A. Ruszczyński, Efficient point methods for probabilistic
optimization problems, Mathematical Methods of Operations Research 60
(2004) 331–346.

[13] D. Dentcheva, A. Prekopa, A. Ruszczyński, Concavity and efficient points of
discrete distributions in probabilistic programming, Mathematical
Programming 89 (1) (2000) 55–77.

[14] J. Gleeson, J. Ryan, Identifying minimally infeasible subsystems of inequalities,
ORSA Journal on Computing 2 (1) (1990) 61–63.

[15] R. Henrion, A. Möller, Optimization of a continuous distillation process under
random inflow rate, Computers and Mathematics with Applications 45 (2003)
247–262.

[16] Ira M. Longini Jr., M. Elizabeth Halloran, Azhar Nizam, Yang Yang, Containing
pandemic influenza with antiviral agents, American Journal of Epidemiology
159 (7) (2004) 623–633.

[17] J.N.M. Van Loon, Irreducibly inconsistent systems of linear inequalities,
European Journal of Operational Research 8 (1981) 283–288.

[18] J. Luedtke, S. Ahmed, A sample approximation approach for optimization with
probabilistic constraints, SIAM Journal of Optimization 19 (2) (2008) 674–699.

[19] J. Luedtke, S. Ahmed, G. Nemhauser, An integer programming approach for
linear programs with probabilistic constraints, Mathematical Programming
112 (2010) 247–272.

[20] D. Morgan, J.W. Eheart, A. Valocchi, Aquifer remediation design under
uncertainty using a new chance constrained programming technique, Water
Resources Research 29 (1993) 551–561.

[21] A. Nemirovski, A. Shapiro, Scenario approximations of chance constraints,
published online at Optimization Online, 2004.

[22] S. Pagnoncelli, B. Ahmed, A. Shapiro, The sample average approximation
method for chance constrained programming: Theory and applications,
Journal of Optimization Theory and Applications 142 (2) (2009) 399–416.

[23] Rajan Patel, Ira M. Longini Jr., M. Elizabeth Halloran, Finding optimal
vaccination strategies for pandemic influenza using genetic algorithms,
Journal of Theoretical Biology 234 (2) (2005) 201–212.

[24] Marc E. Pfetsch, Branch-and-cut for the maximum feasible subset problem,
SIAM Journal on Optimization 19 (2008) 21–38.

[25] A. Prékopa, A class of stochastic programming decision problems,
Matematische Operationsforschung und Statistick (1972) 349–354.

[26] A. Prékopa, Programming under probabilistic constraints with a random
technology matrix, Mathematische Operationsforshung und Statistik 5 (1974)
109–116.

[27] A. Prékopa, Probabilistic programming, in: Andrzej Ruszczyński, Alexander
Shapiro (Eds.), Stochastic Programming, Handbooks in Operations Research
and Management Science, Elsevier, Amsterdam, The Netherlands, 2003, pp.
267–345.

[28] A. Ruszczyński, Probabilistic programming with discrete distributions and
precedence constrained knapsack polyhedra, Mathematical Programming 93
(2) (2002) 195–215.

[29] S. Sen, Relaxations for probabilistically constrained programs with discrete
random variables, Operations Research Letters 11 (1992) 81–86.

[30] A. Shapiro, Monte carlo sampling methods, in: A. Ruszczyński, A. Shapiro
(Eds.), Stochastic Programming Handbooks in Operations Research and
Management Science, vol. 10, North-Holland Publishing Company,
Amsterdam, The Netherlands, 2003, pp. 353–425.

[31] M.W. Tanner, L. Sattenspiel, L. Ntaimo, Finding optimal vaccination strategies
under uncertainty using stochastic programming, Mathematical Biosciences
215 (2008) 144–151.

[32] S.R. Tayur, R.R. Thomas, N.R. Natraj, An algebraic geometry algorithm for
scheduling in presence of setups and correlated demands, Mathematical
Programming 69 (1995) 369–401.

http://www.optimization-online.org/DB_FILE/2008/09/2092.pdf
http://www.optimization-online.org/DB_FILE/2008/09/2092.pdf

	IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation
	Introduction
	Preliminaries
	IIS cuts
	A branch-and-cut algorithm
	IIS branch-and-cut algorithm

	Computational results
	Optimal vaccine allocation

	Conclusion
	Acknowledgments
	Appendix A
	References

