
1

Modelling the Effects of Input
Correlation in Iterative Software

 A. Bondavalli1, S. Chiaradonna2, F. Di Giandomenico2, S. La Torre3

1 CNUCE-CNR, Italy 2 IEI-CNR, Italy 3 University of Salerno, Italy

Address for correspondence and proofs:

Felicita Di Giandomenico, IEI-CNR, Via S. Maria 46, 56126 Pisa, Italy.

Abstract

This paper deals with the dependability evaluation of software programs of iterative

nature. In this work we define a model that is able to account for both dependen-

cies between input values of successive iterations and the effects of sequences of

consecutive software failures on the reliability of the controlled system. Differently

from previously proposed models, some effort is devoted to address the problem

of how to get accurate estimates for the basic parameters. A model is thus proposed

that, requiring the designers or users to provide information usually obtainable by

experimental techniques, e.g. testing, is more useful and more generally applica-

ble. Then a thorough analysis is performed to highlight the effects of the different

parameters on the dependability attributes. This analysis allows to appreciate which

effects (and their extent) have variations of both correlation between successive in-

puts and different structural characteristics of the software at hand. Moreover the

robustness of the model against imprecise assessments of the starting parameters is

also shown.

2

1 Introduction

This paper deals with the dependability modelling and evaluation of software programs of it-

erative nature, typically software which controls the activity of some (physical) system. Most

control software has the following basic structure: the software performs a repetitive cycle of

sampling sensors and control input, using several control laws to compute the proper response

to the different actuators and then sending appropriate commands to the actuators. The focus is

here in modelling the behaviour of such software and analysing it over a specific time interval,

which constitutes a system mission.

The effective utility of a model depends on many factors, that may also relate to its intended

use. These include the realism, i.e. the plausibility of the assumptions made, but also very im-

portant are the ability to account for the relevant basic details, the robustness against inaccurate

values assigned to some parameters and the possibility or easiness to obtain proper estimation

of the parameters. A set of plausible values for the model parameters is normally derived from

testing or from previous experience with similar software. Usually, models kept simple by nu-

merous assumptions, have a limited realism although they may use parameters with a more in-

tuitive meaning and in some cases easier to determine than those required by more realistic

models.

The dependability of programs of iterative nature (as well as that of other software structures) is

usually analysed using models that assume independence between the outcomes of successive

executions of a program 1, 2, 3, 4. This assumption, which is often false for many applications,

strongly limits the realism of these models although it makes the associated mathematics sim-

pler 4. In fact, it allows to use constant probabilities of failure and success at each iteration for

the entire mission duration, with the additional advantage that such probabilities are easily es-

timable, e.g. through testing. However, experiments and theoretical justifications show the ex-

istence of contiguous failure regions in the program input space and that, for many applica-

tions, such as real-time control systems where iterations have usually short cycle duration, the

inputs often follow a trajectory of close points in the input space. For these reasons the inputs

which originate failures of the software are very rarely isolated events but more likely grouped

3

in clusters 5, 6, 7. For all the classes of applications to which these considerations apply, analy-

ses of software dependability performed assuming independence between successive iterations

seem to lead to results excessively diverging from the real behaviour of the analysed system.

Another important characteristic of these applications that should be captured by a realistic

model (and usually is not) is the effect of clustering of failures of the software on the system

mission. The effects of software failures on the (physical) system are usually considered one

by one: a software failure either determines the failure of the system mission (commonly indi-

cated as catastrophic failure) or brings the system in a temporary undesirable, but still recover-

able, condition (benign failure). However, many systems, although able to tolerate isolated or

short bursts of benign failures, may not be able to survive to the lack of feed-back control for

too long. Hence, the occurrence of long sequences of even benign failures often cause actual

damage on the system (from stopping a continuous production process to letting an airplane

drift out of its safe flight envelope).

In this paper we offer two contributions to the modelling of both dependencies between input

values of successive iterations and the possibility that repeated, non fatal, failures may together

cause mission failure. The first concerns the problem of providing accurate estimates for the

basic parameters of the model. Instead of restricting to the definition of a model with the only

purpose of understanding the underlying mechanisms ruling the behaviour of a system in

which successive inputs are correlated (as was done in 8), we also consider the usability of the

model itself. We thus develop a new modelling framework using as basic knowledge informa-

tion that appears to be relatively easy and cheap to determine by experimental techniques if

compared with the difficulty to assess the system dependability indicators of interest. In this

way, an interesting compromise is reached between a fairly realistic model for obtaining pre-

dictions of dependability attributes of a system and difficulty (and costs) in obtaining the basic

knowledge necessary to resolve the model. The second contribution is an extensive analysis of

the developed model. The evaluation performed here allows to appreciate the kind and the ex-

tent of the effects of the various parameters on the reliability of iterative software. We analysed

the sensitivity of the model to three types of parameters representing:

i) the correlation between successive inputs,

4

ii) the different structural characteristics of the software at hand, and

iii) our starting parameters in order to check the robustness of the model against inaccurate
initial assessments.

The rest of the paper is organised as follows. Section 2 contains a brief recall of the literature

and a discussion on the problem of how values for model parameters may be obtained. In Sec-

tion 3, the assumptions and the dependability measures we are interested in are first described,

and then a general model for iterative software is developed together with our proposed ap-

proach for obtaining accurate estimations of the parameters. Evaluations for specific classes of

iterative software are presented in Section 4. They show the effects of varying the parameters

expressing the correlation between successive inputs and the robustness of the model against

imprecise assessments of the starting parameters. Our evaluations include also the case of inde-

pendence among successive inputs when relevant for comparison purposes. Finally, Section 5

summarises our conclusions.

2 Background

The problem of modelling and evaluating the effects of correlation between the outcomes of

successive iterations has been addressed in the literature 8, 9, 10. Csenski 9 models the be-

haviour of a recovery block structure, first defined in 11 and subject of many papers after-

wards, composed of a primary version, an alternate version and a perfect acceptance test. Fail-

ures of the primary module are distinguished in :

i) point failure: when the input sequence enters a failure region,

ii) serial failure: a number of consecutive failures occurring after a point failure, i.e., after

that the input trajectory enters a failure region.

The number of serial failures subsequent to any point failure is a random variable. From these

modelling assumptions, a simple Markov chain with discrete time is developed allowing an

analytical evaluation of the reliability (MTTF) of the recovery blocks. Tomek and co-authors 10

analyse the different forms of correlation of the recovery blocks structure, including correlation

5

among the different alternates and among alternates and the acceptance test on the same inputs.

While the previous two papers limit their modelling to the correlation between inputs, our work

8 considers also the possibility that repeated, non fatal software failures may together cause the

failure of the system mission.

However, the motivation in 8 was to understand the underlying mechanisms ruling a model in

which correlation between successive inputs is considered, rather than the definition of models

really usable. The starting parameters for that model are, in fact, the state transition probabilities

of the software system in its operational profile, whose estimation through experimental tech-

niques, e.g. testing or fault injection, is undoubtedly very difficult to obtain if possible at all,

and most of the times useless since the effort required may be comparable to estimate the de-

pendability figures of interest. These remarks motivate our interest in developing an alternative

process to obtain the same final evaluations as in 8, but relying on information which can be

derived by experimental methods in a simpler and cheaper way.

Experimental techniques have been proposed recently as an alternative approach to model-based

evaluation for assessing the dependability of critical systems. Traditional usage of testing and

fault injection has been aimed at improving the dependability of a system: testing allows to

identify residual faults to be corrected, while fault injection reveals faults which are not prop-

erly tolerated by the system. Recently, both techniques have been also proposed as means for

evaluating system dependability: testing by revealing residual faults 12, 13 and fault injection to

evaluate coverage and latency with respect to an assumed set of faults which can affect the sys-

tem and its components 14, 15. However, using these techniques for evaluation purposes turns

out to be significantly difficult and expensive. First, one has to collect enough experimental re-

sults so that accurate statistical inference about the dependability figures of interest can be

drawn. Second, the effectiveness of these methods involves issues such as choosing the most

appropriate inference procedure or deriving a realistic approximation of the user operational

profile. The knowledge of the characteristics of the system and the program to experiment upon

is, in fact, crucial. In the extreme case, once all the details about the operational environment

are known, one could derive directly, by using experimental techniques, estimates of the final

6

quantities of interest. But, also in this ideal extreme case, the high costs involved make the

derivation of the final estimates using experimental techniques prohibitive.

An hybrid approach, where experimentation and analytical models are combined, seems to be

very effective, as addressed in 16, where the interactions between analytical dependability

modelling and experimental evaluation are discussed. Following this approach, at first experi-

mental evaluation (e.g., testing) is applied to derive basic information about the software under

analysis (thus making the implied costs affordable), which is then used as starting parameters

of an analytical model whose solution gives the dependability figures desired. This approach is

common sense for systems designed according to some well understood and proved-to-be-cor-

rect structure, where, instead of considering the system as a black-box, its internal structure is

taken into account as well. For example, a wide variety of models exist in the literature, such as

14, 17, to derive the dependability figures of fault tolerant structures starting from the figures of

their components. In such cases, testing (or fault injection) can be used to obtain an estimate of

the probability of failure/success of the individual components of the software system.

3 The Model

3 .1 Assumptions and Dependability Measures

Software (seen as a black box) of an iterative nature is assumed, as typically used in control

systems. The system is controlled by a static periodic scheduling policy such that each iteration

is started cyclically after a time interval of constant width τ and is aborted by a watch-dog timer

should it last more than the time threshold τ. Thus, a mission, of a given duration T, may be

considered as composed of a constant number n = T/τ of iterations.

At each iteration, the program accepts an input and produces an output. The outcomes of an

individual iteration may be: i) success, i.e., the delivery of a correct result, ii) a benign failure

of the program, i.e., an output that is not correct but does not, by itself, cause the entire mis-

sion of the controlled system to fail, or iii) a catastrophic failure, i.e., an output that causes the

immediate failure of the entire mission. From the software viewpoint solely, and without refer-

7

ring to any specific application, we assume here that all detected failures (default safe values of

the control outputs from the computer) do not prevent the mission to continue and are in this

sense benign, whereas undetected failures are conservatively assumed to have a "catastrophic"

effect on the controlled system. Obviously, if knowledge of the consequences of software fail-

ures on the system was available for a specific system, the proper splitting of software failures

into benign and catastrophic could be precisely made.

Failure regions, consisting of contiguous points, are subsets of the program input space for

which the output produced violates the specifications. In 7, besides showing that for some pro-

grams failure regions are made of contiguous points and providing some theoretical justifica-

tions for this conjecture, it is also shown that the shapes can be often angular, elongated and

rectangular.

The successive inputs form a "trajectory": any input value is assumed to be close (but not nec-

essarily contiguous) to the previous one. We have a so called random or deterministic walk

trajectory with a small step length. The step length, i.e., the distance between two successive

input points, is considered small if the difference of the values of the two points on each di-

mension of the input space is small compared to the size of the input space in that dimension. If

the step length becomes comparable to the size -in each dimension- of the input space (e.g.,

50%) then, as shown in 6, we obtain uniform distribution of the inputs and therefore indepen-

dence. In such a context many different trajectories may be considered. Examples are: 1) the

next input is obtained from the previous one by modifying the values on each dimension by a

random small quantity, 2) (subcase of 1) a "forward-biased" trajectory: passing from one input

to the next the direction may only change slightly, 3) (subcase of 2) a trajectory of points on a

straight line, at a random, small distance from each other.

The hypotheses we make in modelling sequences of correlated failures are:

1) sequences of benign failures equal or longer than a threshold nc, nc >0, cause the failure of

the entire mission, thus having the same effect as a catastrophic failure. A single success

before the nc-th consecutive failure will bring the system into a stable state, i.e. the memory

8

of the previous failure sequence is immediately lost. Of course, the assumption that any se-

quence of up to nc-1 failures will be tolerated, and all longer sequences will be catastrophic,

is still a simplification of reality, yet more realistic than assuming that a controlled system

can tolerate any arbitrary series of benign failures. The purpose of assuming that a single

success before the nc-th consecutive failure causes the loss of the memory of the previous

failures is to keep the developed model easy to understand. In any case there are no particu-

lar difficulties to extend the model to represent the need of a given number of successes to

loose memory of the previous failures;

2) the trajectory of the input sequence is "forward-biased": passing from one input to the next

the direction may vary with a small angle. Actually, many applications (e.g., radar systems

or navigation systems) control systems possessing physical inertia. In these cases, the suc-

cessive values of many physical quantities provided by sensors and used as inputs by the

control software show "forward-biased" trajectories;

3) the failure regions are convex and separated by each other: to pass from one to another the

input trajectories must cross at least one point for which the program executes successfully.

This separation of failure regions reflects the users view: they perceive a set of contiguous

failure points as one single region. A designer or analyst would have a different perspec-

tive: they would characterise a failure region as the set of inputs for which the same fault of

the software is activated. In this case, failure regions need not to be made of contiguous

points, regions may overlap and may not surrounded by points for which the program exe-

cutes successfully. Assuming convex failure regions determines that our forward biased

trajectories, once they have left a failure region, are unlikely to re-enter soon the same fail-

ure region just left. We can thus consider in our models the probability of entering a failure

region as a constant. This is actually the main rationale for choosing convex regions: since

there is no evidence for choosing particular shapes on a general basis, our choice is driven

by the necessity to simplify the modelling. It is however clear that our model represents an

approximation of the real system behaviour when concave failure regions are considered,

since in this case the probability of entering a failure region varies depending on the trajec-

9

tory being close to the border of a concave failure region. Moreover the assumption of con-

vex failure regions is also conservative in the sense that, for a given size of a failure region,

trajectories become more likely to stay longer in the region.

Among the various attributes of dependability, we restrict here on the probability of surviving a

mission (which in our particular case of static periodic scheduling corresponds to the reliability

after a certain number of executions). Other dependability attributes, like performability and

safety, are not so interesting in our scenario. In our context a mission is composed of a con-

stant number of iterations and only two different accomplishment levels, besides mission fail-

ure, are defined, thus the performability measure 18 purely reflects the reliability. To verify

this, in 19 the expression of the performability was derived, based on a simple reward function,

and its numerical evaluation performed. As expected, the results indicated the same trends for

the reliability and the performability, thus showing the uselessness of performing a performa-

bility analysis. On the other side, an effective estimation of the safety of computer controlled

systems would require a wide knowledge of the system itself and not just of its software. It is

very difficult to determine which software failures have catastrophic consequences on the entire

system. Moreover this analysis must be performed on the specific application considered and

cannot be done on a general basis.

3 .2 Derivation of Estimates for the Basic Parameters

Now we describe the procedure to follow for providing estimates for the basic parameters of

the model for the software under analysis that will be presented in the next subsection.

We assume that a realistic distribution of inputs can be generated by synthesising the population

of trajectories expected for our system in its operational profile. Individual inputs are then used

to test the program in a testing regime that is an approximation of the operational environment

of the system under analysis. In detail, differently from the operational environment, here: i)

the effects of sequences of benign failures are not taken into account (no mission failures are

due to sequences of benign failures); and ii) missions are not of a fixed duration but they are

terminated only by the occurrence of a pointwise catastrophic failure (after a catastrophic failure

10

the program is reset to the initial state). A sufficiently long test activity on individual inputs,

where many missions are linked together, allows to determine quite easily the probabilities ps,

pb and pc of success, benign failure and pointwise catastrophic failure respectively, which can

be interpreted as "steady state probabilities" relative to the input distribution. Aiming at the de-

termination of steady state probabilities does not require accounting for the specific paths lead-

ing to the selected state. The estimation of probabilities on the specific paths is instead the in-

formation that must be collected to solve models requiring values for the state transition prob-

abilities. Therefore, having to collect less information and using individual inputs rather than

trajectories, makes testing for determining steady state probabilities much cheaper than for de-

termining state transition probabilities.

The steady state probabilities of the system in this testing regime, together with parameters ex-

pressing the correlation and structural properties, are used to find an accurate estimate of the

state transition probabilities of the software (which are the same both for the testing regime and

the operational environment). Clearly, the quality of the measured probabilities heavily depends

on how properly the inputs used for testing represent trajectories encountered by the program

during its operational lifetime. It must be also noticed that here we assume that the steady state

probabilities ps, pb and pc have been determined by testing although they could be provided

following alternative approaches. Actually, from the point of view of our modelling effort, only

the fact that this knowledge can be reasonably provided really matters.

The model described by the Markov chain in Figure 1 represents the system in the testing

regime and shows more details than strictly implied by the testing activity. The state represent-

ing the benign failure is split in an infinite number of states Bi, where the state Bi is reached

from S when the input trajectory enters a failure region and remains in it for i iterations (if no

catastrophic failures are encountered). The state transition probability from state S to state Bi is

defined as psb ⋅pi , where psb represents the probability to enter a failure region and pi the prob-

ability to encounter a failure region of length i. Then, the steady state probability of benign fail-

ure must be seen as the sum of the probabilities pbi of being in state Bi, that is pb = pbii=1
∞∑ .

Transitions from state C to states S, Bi and C, all with the same probabilities as transitions

11

from S, model the reset of the software system to the initial state after the occurrence of a

catastrophic failure. We account for the assumption that each trajectory, after crossing a failure

region, experiences at least one successful execution: B1 is the state reached after the last failure

in the crossed region and we assign the value 1 to the arc from the state B1 to S. State S repre-

sents a success and when it is reached the system looses memory of previous possible benign

failures. If instead of needing a single success to cancel the effects of the previous failures, Ns

successes would have been required, then the state S would have been substituted by a set of

Ns states Si, connected with arcs to both states Bi and the state C. The only complication to

solve the resulting model would be the mathematics, but no particular problems would arise.

pss

S

•
•

•

B1

1
psbp1

pbc

C

scp

pbc

pbc

pbb

B3

B2

Bi

psbp3

pbb

ppsb 2

ppsb i

pbb

•
•

•

pss

ppsb 2

psbp1

psbp3

ppsb i

•
•

•

•
•

•

scp

Figure 1. The model used to derive the state transition probabilities.

This general model takes into account the correlation between successive inputs through the pa-

rameters pi on the arcs from S to the states Bi, without being tied to any specific distribution

representing the permanence of the input trajectory in failure regions. The following matrix P is

its transition probability matrix.

12

 S B1 B2 ⋅⋅⋅ Bi Bi+1 ⋅⋅⋅ C

 P=

S

B1

B2

⋅⋅⋅
Bi

Bi+1

⋅⋅⋅
C

pss psb⋅p1 psb⋅p2 ⋅⋅⋅ psb⋅pi psb⋅pi+1 ⋅⋅⋅ psc

1 0 0 ⋅⋅⋅ 0 0 ⋅⋅⋅ 0

0 pbb 0 ⋅⋅⋅ 0 0 ⋅⋅⋅ pbc

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ pbc

0 0 0 ⋅⋅⋅ 0 0 ⋅⋅⋅ pbc

0 0 0 ⋅⋅⋅ pbb 0 ⋅⋅⋅ pbc

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
pss psb⋅p1 psb⋅p2 ⋅⋅⋅ psb⋅pi psb⋅pi+1 ⋅⋅⋅ psc

































For all the distributions p, such that the Markov chain is irreducible, aperiodic and with all re-

current non-null states, the vector (ps, pb1,....,pbi,...., pc), representing the steady-state distri-

bution of the probabilities of staying respectively in the states S, B1,......., Bi,......, and C, is

the unique solution to the equation system 3.1:

(ps,pb1
,...,pbi

,...,pc)=(ps,pb1
,...,pbi

,...,pc)⋅P

ps+ pbii∑ +pc =1





î
3.1

Our aim is now to derive the transition probabilities (pss, psc, psb, pbb and pbc), but, unfortu-

nately, the available information, that is the probabilities pb, ps and pc plus the pi's representing

the distribution of the length of staying in failure regions, is not sufficient. Further information

may be obtained by analysing the system; for example such analysis could suggest special rela-

tionships between transition probabilities. Some reasonable examples are the following:

a) a control software for which catastrophic failures occur independently from the trajec-

tory being crossing failure regions, thus the probability of a catastrophic failure is the

same if the last execution produced a benign failure or a success. Setting pbc = psc in

our model allows to represent this case;

b) a control software for which the probability of the next iteration producing a catas-

trophic failure increases if the last iteration produced a benign failure. This is modelled

by setting pbc>psc. This looks like a realistic assumption in many cases: for instance,

one may assume that a benign failure implies that the program has entered a region of its

input space where failure is especially likely, and that a fixed proportion of such failures

13

happens to be immediately catastrophic, or a system suffering from imperfect recovery

such that when the recovery procedure is activated, failures are more likely to occur;

c) the case of a controlled system where most erroneous control signals are immediately

"catastrophic", but the control software is engineered to detect its own internal errors

and then issue a safe output and reset itself to a known state from which the program is

likely to proceed correctly. One may then assume that most benign failures are due to

this mechanism, and likely to be followed by successes: 0<pbc<psc;

d) the extreme of case c) above: the control software issues a safe output but after the reset

takes place pointwise catastrophic failures cannot immediately happen (pbc = 0).

The different situations illustrated can be summarised with the relation p k pbc sc= ⋅ , where k is

a non negative real number. We can thus determine the values of the transition probabilities as a

function of k and of the distribution of pi. In Section 4 we will discuss the effects of these sce-

narios (assigning proper values to k) on the probability of mission failure. Two cases (k =0 and

k >0) have been distinguished for mathematical reasons and the resulting expressions are re-

ported in Table 1. We detail here the derivation of the transition probabilities for the case k=0.

In this case, pbc=0, pbb=1 and the system 3.1 reduces to:

ps =pss⋅ps +pb1
+pss⋅pc

pb1
=psb⋅ps⋅p1 +pb2

+psb⋅pc ⋅p1

...

pbi
=psb⋅ps⋅pi +pbi+1

+psb⋅pc ⋅pi i =2,3,...

...

pc =psc⋅ps +psc⋅pc

ps + pbii∑ +pc =1










î






From the equation for pc, the expression for psc is immediately derivable: psc= pc

1−pb

To obtain the expression for psb we first derive pb1
:

pb = pbii=1
∞∑ = psb ⋅ 1− pb()⋅ pii=1

∞∑ + pbii=2
∞∑ which can be manipulated as:

pbi
− pbii=2

∞∑i=1
∞∑ = psb ⋅ 1− pb()⋅ pii=1

∞∑ from which pb1
= psb ⋅ 1− pb().

14

Then, from the equation for pbi
, we get pbi+1

= pbi
− psb ⋅ 1− pb()⋅pi ; substituting pbi

 with its

expression in terms of pbi−1
 recursively up to pb1

 and using the expression for pb1
 just found:

pbi+1
= psb ⋅ 1− pb() − psb ⋅ 1− pb()⋅p1−...−psb ⋅ 1− pb()⋅pi and then

pbi+1
= psb ⋅ 1− pb()⋅ 1− pjj=1

i∑() that is pbi+1
= psb ⋅ 1− pb()⋅ pjj=i +1

∞∑ .

Using the last expression in pb:

p p p p p pb bi bi sb b jj iii i
= = = ⋅ −() ⋅

=
∞

=
∞

= +
∞

=
∞∑ ∑ ∑∑+1 0 101

1 that is

pb = psb ⋅ 1− pb()⋅ k ⋅pkk=1
∞∑ , from which psb = pb

1− pb()⋅ k ⋅pkk=1
∞∑

.

Once obtained the expressions for psc and psb, pss can be immediately derived:

pss =1− psb − psc =
ps ⋅ i ⋅pii=1

∞∑ − pb

1− pb()⋅ i ⋅pii=1
∞∑

.

k = 0 k > 0

pb b

1
1− pbb

k
=

pc − pb ⋅ 1− pbb()
1− pb() +

+
pb ⋅ 1− pbb()2 ⋅ pbb

i−1 ⋅pii=1
∞∑

1− pb()⋅ 1− pbb ⋅ pbb
i−1 ⋅pii=1

∞∑()
pb c 0 1-pbb

p s b
pb

1− pb()⋅ i ⋅pii=1
∞∑

pb ⋅ 1− pbb()
1− pb()⋅ 1− pbb ⋅ pbb

i−1 ⋅pii=1
∞∑()

p s c
pc

1− pb

1− pbb

k

p s s
ps ⋅ i ⋅pii=1

∞∑ − pb

1− pb()⋅ i ⋅pii=1
∞∑

1

1− pbb ⋅ pbb
i−1 ⋅pii=1

∞∑
− pc

1− pb
+

+
2⋅pb ⋅pbb − pb − pbb()⋅ pbb

i−1 ⋅pii=1
∞∑

1− pb()⋅ 1− pbb ⋅ pbb
i−1 ⋅pii=1

∞∑()
Table 1. Expressions for the transition probabilities in case of k = 0 and k > 0.

15

Note that in the case of k > 0 an implicit expression for pbb is given. So we have to solve nu-

merically the equation for pbb to obtain values for the other transition probabilities. The solution

must refer to specific distributions of probability and is restricted to those distributions such

that it is possible to give a finite expression equivalent to pbb
i−1 ⋅pii=1

∞∑ . For a number of dis-

tributions this expression is known 20 and we will show the numerical results for some of

them.

3 .3 The Proposed Model

The model representing the program in its operational context is shown in Figure 2.

B3

B2

Bnc-1

S

pss

•
•

•

B1

1psbp1

psbp3

pbc

pbb

C

ppsb 2

•
•
•

ppsb nc-1

pbc

pbc

pbb

pbb

p + sc psbpnn

Figure 2. The model for the program in its operational context.

This model accounts for the two different characteristics we neglected in the previous model:

sequences of nc or more benign failures cause the controlled system to fail and missions last at

most n iterations. Furthermore, a mission terminates successfully if no pointwise catastrophic

failure or sequences of at least nc benign failures are experienced, otherwise terminates with

failure as soon as one of these two events is observed. Compared to the model of Figure 1, all

states Bi, for i ≥ nc, disappeared and the term psb ⋅pnn, where pnn = pii=nc

∞∑ , has been

added to the arc from S to C to capture that sequences of benign failures longer than nc -1 now

16

lead to a mission failure. A simplification has been here introduced, since the exact modelling

of sequences of nc or more failures requires a sequence of nc states (including C) instead of

simply adding the probability psb ⋅pnn on the arc from S to C. However, the error introduced

by such simplification is negligible, as better detailed in 21.

The values for the transition probabilities, derived from the model of Figure 1, can be applied

and the model solved very easily. The solutions are expressed in terms of the parameters ps,

pb, pc, k, nc and the distribution of the length of staying in a failure region. The parameter k is

a characteristic of the considered software. With nc-1 we represent the maximum number of

consecutive benign failures that can happen without causing the mission to fail, i.e., the inertia

of the system, thus it determines the resilience of the controlled system. Last the distribution

function describes the length of stays in failure regions; it depends on the trajectories and the

failure regions of the input space.

3 .4 Probability of Surviving a Mission

The general expression for the probability of surviving a mission of a constant number n of it-

erations is the following:

P mission success() = P X i ≠ C | X i−1 ≠ C()
i=1

n

∏ , where:

P X i ≠ C | X i−1 ≠ C() =1− P X i = C | X i−1 ≠ C() =

=1− psc + psb ⋅pnn()⋅P X i−1 = S| X i−1 ≠ C() − pbc ⋅P X i−1 = B2 or... or X i−1 = Bnc −1| X i−1 ≠ C()

It can be observed that the second and third terms in the last expression represent the probabil-

ity of the occurrence of mission failure at the generic iteration. The second term collects the

probability of mission failure after a success, due either to the occurrence of a pointwise catas-

trophic failure or to the entrance in a failure region in which the application remains for more

than nc-1 iterations. The third term is the probability of pointwise catastrophic failure after a

benign failure (that is, while in a failure region).

17

4 Evaluations Results

In this section we analyse the model proposed in Section 3.2 in order to capture the effects de-

termined by variations of the several parameters. We start by analysing the effects on reliability

of different distribution functions of the length of stays in failure regions. Actually we use dis-

tribution functions belonging to different families (with the same values of pnn, the probability

of exceeding nc-1 consecutive failures). For a better understanding, we also separate the contri-

bution to the probability of mission failure due to serial failures and to pointwise catastrophic

failures. Then we investigate on the changes due to the different structural characteristics of the

software considered in the previous section by varying the parameter k. Next, we perform an

analysis of the variations of the reliability as a function of the probability ps obtained by testing,

fixing all the other parameters and considering two different values for the ratio between pb and

pc. In this way the robustness of our model against inaccurate assessment of the starting pa-

rameters can be checked. Last, we show the impact of varying the critical threshold nc

(representing the resilience of the controlled system). These analyses include, whenever appro-

priate, also the case of absence of correlation between successive inputs, to allow comparison

with the independence assumption.

4.1 Distribution Functions, Parameters and their Assigned Values

The distributions we include in our analysis are some common distributions from the literature

and some special limiting distributions, one of which can be shown to provide lower bounds

on the dependability figures while the others are useful to explain some tendency. These distri-

butions are:

- geometric distribution defined as: pi = q(1− q)i−1,i ≥ 1 for q ∈ (0,1) and p1 = 1 ,

pi =0, i ≥2 for q=0;

- modified Poisson distribution defined as: pi = e−αα i−1

i −1()!
,i ≥ 1, α > 0;

- modified negative binomial defined as: pi = i + r − 2
r −1





 qr 1− q()i−1,i ≥ 1, q∈ (0,1) and

r ≥1 (we use r=5) or p1 =1, pi =0, i ≥2 for q=0;

18

and, once a value for pnn has been fixed,

- a distribution d1 defined as: p1 = 1− pnn() , pnc
= pnn and pi =0 for i ≠1 and i ≠ nc;

- a distribution d2 defined as: p1 = 1− pnn

2
, pnc −1 = 1− pnn

2
, pnc

= pnn and pi = 0 for

i ≠ 1, i ≠ nc-1 and i ≠ nc;

- a distribution d3 defined as: pnc −1 = 1− pnn , pnc
= pnn

2
, p2nc

= pnn

2
 and pi = 0 for

i ≠ nc-1, i ≠ nc and i ≠ 2nc.

The number of iterations in a mission, n, is 106 (a realistic number, e.g., for civil avionics

where the average duration of one iteration could be 20-50 milliseconds and the mission dura-

tion could be around 10 hours). The meaning of the other parameters has already been de-

scribed. Thus Table 2 reports the default values used for each parameter in those evaluations in

which it is assumed as a constant; when variations of a given parameter are used, the variation

range is explicitly indicated.

Parameter values

pb = 5 10-5

pc = 10-11

ps = 1- pb - pc

nc = 10

n = 106

k = 100

pnn =2 10-5

Table 2. Parameter values used in the evaluation.

4.2 Effects of Different Distributions of the Length of Stays in

Failure Regions

In this subsection we evaluate the probability of mission failure obtained from the model as a

function of the variation of the probability of exceeding a sequence of nc-1 consecutive failures,

pnn. We use the six distributions previously described to model the length of stays in failure

19

regions, a variation range from 0 to 5 10-5 for pnn and the values shown in Table 2 for the

other parameters. Figures 3 shows the probability of mission failure.

1E-5

1E-4

1E-3

1E-2

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

poisson
geometric
neg. binomial
d1
d2
d3

P
ro

b
a

b
ili

ty
 o

f
m

is
si

o
n

 f
a

ilu
re

 P
(C n

)

Probability of exceeding nc-1 consecutive failures pnn (x 10-5)

Figure 3. Probability of mission failure as a function of pnn.

First it can be noticed that for all the distributions the probability of mission failure increases for

increasing values of pnn. This is obviously as expected: the higher the probability of encounter-

ing sequences longer than nc-1 of benign failures, the higher is the number of mission failures.

Second, the various distribution functions show different behaviours for the same value of pnn.

This difference seems to depend primarily on their respective mean: the reliability measures

obtained for the various distributions are ranked in the same order as their means. d1 has the

lowest mean and shows the worst behaviour among all the distributions while d2 and d3 show

the best behaviour and have the highest mean.

To improve understanding, we separately analysed the probabilities of the two events contribut-

ing to the probability of mission failure P(Cn), that is the probability of pointwise catastrophic

failure (denoted with ppoint) and the probability of occurrence of a series of more than nc-1 be-

nign failures (denoted with pserial). ppoint depends on psc and pbc, while pserial depends on

psb ⋅pnn. Since the figures obtained for the various distributions were quite similar among

them, we show in Figure 4 the plots of ppoint, pserial and P(Cn) for the geometric and the mod-

ified Poisson distributions, for the same setting of parameters as in Figure 3. To improve read-

ability, only one curve has been shown for ppoint because this quantity is nearly the same for

20

the two considered distributions. Figure 4 shows that i) the value of ppoint is nearly constant

while pserial varies for different distributions, and ii) pserial constitutes the dominant contribu-

tion to P(Cn) (apart for values close to zero of pnn where the influence of ppoint is dominant).

1.0E-6

2.0E-4

4.0E-4

6.0E-4

8.0E-4

1.0E-3

1.2E-3

1.4E-3

1.6E-3

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

ppoint
pserial
P(Cn)
ppoint
pserial
P(Cn)

geometric-Poisson

Poisson

geometric

P
ro

b
a

b
ili

ty
 o

f
m

is
si

o
n

 f
a

ilu
re

 P
(C n

)

Probability of exceeding nc-1 consecutive failures pnn (x 10-5)

Figure 4. ppoint and pserial as function of pnn.

Point i) above allows to explain the role of the mean of the distributions. Distributions with low

mean represent input trajectories crossing failure regions more often but with a shorter perma-

nence than those represented by distributions with higher mean. Thus, the lower the mean of a

distribution, the higher becomes the corresponding probability psb. (For k =0, this result de-

rives directly from Table 1, where psb is inversely proportional to the mean of the length of

stays in a failure region.) Hence, having the same value for pnn, distributions with lower mean,

i.e., higher values for psb, show higher pserial and thus a worse behaviour.

4.3 Different Scenarios

In Section 3 we have introduced the relation pbc = k ⋅psc to solve the equation system 3.1 and

explained how different scenarios can be modelled by assigning different values to the parame-

ter k. The aim of this subsection is to investigate on the consequences of the scenario changes.

We computed the probability of mission failure for different values of k (ranging from 0 to

21

107), with pnn variable from 0 to 5 10-5 and the values in Table 2 for the other parameters. The

distributions considered in this analysis have been the geometric, the modified negative bino-

mial and the modified Poisson. The figures obtained for the various k were so close to each

other that plotting them would have been useless. So, we decided to show in Figure 5, for each

distribution, the plot of the difference on the probability of mission failure between the highest

(where k =0) and the lowest (where k =107) values obtained.

0

1E-9

2E-9

3E-9

4E-9

5E-9

6E-9

7E-9

8E-9

9E-9

1E-8

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

geometric
poisson

neg. binomial

D
iff

e
re

n
ce

 b
e

tw
e

e
n

 P
(C

n
)

fo
r

k=
0

 a
n

d
 k

=
1

0
7

Probability of exceeding nc-1 consecutive failures pnn (x 10-5)

Figure 5. Differences in the probability of mission failure for k = 0 and k = 107.

It can be observed that for all the three distributions the maximum difference is extremely low,

being at most of the order of 10-8 against absolute values of the order of 10-3 (see Figure 3).

Hence, we can conclude that the changes of k do not affect the total probability of mission fail-

ure, that is the reliability is practically insensitive w.r.t. scenario changes.

4.4 Robustness of the Model

Besides the possibility or easiness to obtain proper assessments of the parameters, another im-

portant factor to determine the effective utility of a model is its robustness against inaccurate

values assigned to some parameter. Here we analyse the reliability variations as a function of

the probability ps, fixing all the other parameters and considering two different values for the

ratio between pb and pc. Figures 6 and 7 show respectively the probability of mission failure

for pb = 106 pc and pb = 104 pc, varying 1-ps from 10-6 to 10-4. In the Figures we included

22

also the probability of mission failure in the case of independence between successive inputs.

In this case, we have pnn = pb
nc 1− pb() and a very low probability of incurring in a se-

quence of benign failures equal or longer than nc. Due to the irrelevant contribution to P(Cn)

given by pserial the case of independence can be therefore considered a lower bound for the

probability of mission failure that can be expected given ps, pb and pc.

1.0E-6

2.0E-4

4.0E-4

6.0E-4

8.0E-4

1.0E-3

1.2E-3

1.4E-3

1.6E-3

1.8E-3

2.0E-3

2.2E-3

0.1 1 2 3 4 5 6 7 8 9 10

poisson
geometric
neg. binomial
d1
independence

P
ro

b
a

b
ili

ty
 o

f
m

is
si

o
n

 f
a

ilu
re

 P
(C n

)

Probability of benign or catastrophic failure for iteration 1-ps (x 10-5)

Figure 6. Probability of mission failure as a function of ps, with pb = 106 pc.

1.0E-6

2.0E-3

4.0E-3

6.0E-3

8.0E-3

1.0E-2

1.2E-2

0.1 1 2 3 4 5 6 7 8 9 10

poisson
geometric
neg. binomial
d1
independence

P
ro

b
a

b
ili

ty
 o

f
m

is
si

o
n

 f
a

ilu
re

 P
(C n

)

Probability of benign or catastrophic failure for iteration 1-ps (x 10-5)

Figure 7. Probability of mission failure as a function of ps, with pb = 104 pc.

A few considerations with respect to the sensitivity to ps follow. First it can be noticed that, in

the entire range we considered, the error in estimating P(Cn) because of a wrong value assigned

to ps depends only on how inaccurate the estimate is. There are no critical subsets in the range

23

in which the inaccuracy is particularly dangerous. For the same ratio between pb and pc the

curves show that an error in the estimate of ps (say of 10%) determines an error of the same or-

der of magnitude in the expectation of P(Cn). In Figure 7, one can appreciate that this holds

also for the case of independence. Last, it can be noticed that lowering the ratio between pb and

pc, i.e., passing from pb = 106 pc to pb = 104 pc, the probability of mission failure in-

creases, and the curves show bit higher slopes: P(Cn) is a bit more sensitive to variations of ps.

Furthermore, the curves in Figure 7 are much closer to each other and are ranked in the same

order than those in Figure 6. Actually the absolute distance between any two curves for the

same value of ps is almost the same both in Figure 6 and in Figure 7. To explain this one must

notice that the values for pc change of orders of magnitude and this significantly increases the

probability of pointwise catastrophic failures while those for pb remain approximately the same:

leaving pnn unchanged for each distribution the same contribution to mission failure due to se-

quences of benign failures is obtained.

4.5 Resilience of the Controlled System

Last we show the effect of varying nc. This analysis is interesting for software suitable for sev-

eral physical systems; different values of nc represent the different inertia of the controlled sys-

tems. We perform an evaluation assuming that, changing the environment, the distribution

function of the length of stays in a failure region remains unchanged. Figure 8 shows the prob-

ability of mission failure in a logarithmic scale for the geometric, modified Poisson, modified

negative binomial distributions and for the case of independence between successive inputs.

The used distribution functions are fixed in accordance with the values reported in Table 2. The

range chosen for nc extends from 2 to 16 (for values higher than 16 the probability of mission

failure does not show sensible variations).

24

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

geometric
neg. binomial
poisson
independence
asymptotic value

Critical treshold nc

P
ro

b
a

b
ili

ty
 o

f
m

is
si

o
n

 f
a

ilu
re P

(C
n
)

Figure 8. Probability of mission failure as function of nc for given distributions.

As expected, growing values of nc imply a decrease of the value of pnn and, consequently, of

the probability of mission failure. For all the distribution functions considered, when pnn ap-

proaches zero, the probability of mission failure converge to the same value, which is the prob-

ability of mission failure due to pointwise catastrophic failures. Obviously, the independence

curve converge for a very low value of nc compared to the other distributions (3 against 16, for

our parameters setting).

1E-5

1E-4

2E-4

3E-4

4E-4

5E-4

6E-4

7E-4

8E-4

9E-4

1E-3

2 6 10 14 18 22 26 30

geometric
poisson
neg. binomial
d1
d2
d3

Critical threshold nc

P
ro

b
a

b
ili

ty
 o

f
m

is
si

o
n

 f
a

ilu
re

 P
(C

n
)

Figure 9. Probability of mission failure as a function of nc (with fixed pnn).

25

To complete our analysis on the effects of variations of nc, an alternative evaluation is per-

formed. The value for pnn is fixed (as reported in Table 2) so changes of nc imply changes in

the parameters of the distribution functions. In Figure 9 we show the probability of mission

failure with nc varying from 2 to 30, considering all the distribution functions reported in the

Subsection 4.1. Fixing the value of pnn, the variation of nc only affects the mean of the length

of stays in a failure region. Increasing values of nc imply higher values of the mean of these

distributions. As a consequence, reliability improves, as already discussed in Subsection 4.2.

5 Conclusions

In this paper we offered two contributions to structural models for predicting the dependability

of iterative software that account for both dependencies between input values of successive it-

erations and the possibility that repeated, non fatal, failures may together cause mission failure.

The first concerns the problem of providing accurate estimates for the basic parameters of

models. We extended the previous work by proposing a modelling framework and a procedure

for providing accurate estimates of the basic parameters of the models, thus addressing the

problem of the real usability of analytical models. The models developed use as basic knowl-

edge the steady state probabilities of the software system in a context where two characteristics

of the original environment are relaxed, namely; the possibility for repeated benign failures to

cause a catastrophic failure is not considered and the missions have not a fixed duration, but

after a catastrophic failure the software is reset to the initial state. In this context, steady state

probabilities appear to be relatively easy and cheap to determine if compared with the difficulty

to assess the system dependability indicators of interest. In this way, an interesting compromise

is reached between a fairly realistic model for obtaining predictions of dependability attributes

of a system and difficulty (and costs) in obtaining the basic knowledge necessary to resolve the

model.

The second contribution consists of extensive analyses performed to investigate on the effects

of variations of the various parameters on the reliability of iterative software. We analysed the

sensitivity of the model to the correlation between successive inputs, the different structural

26

characteristics of the system at hand and to our starting parameters in order to check the robust-

ness of the model against inaccurate initial assessments.

Acknowledgements

S. La Torre was supported by a C.N.R. (Consiglio Nazionale delle Ricerche) fellowship.

References
1 Arlat, J., Kanoun, K. and Laprie, J. C., “Dependability Modelling and Evaluation of

Software Fault-Tolerant Systems,” IEEE Transactions on Computers, Vol. C-39, 1990,
pp. 504-512.

2 Tai, A. T., Avizienis, A. and Meyer, J. F., “Evaluation of Fault Tolerant Software: a
Performability Modeling Approach,” C. E. Landwher, B. Randell and L. Simoncini,
Springer-Verlag, 1992, pp. 113-135

3 Tai, A. T., Avizienis, A. and Meyer, J. F., “Performability Enhancement of Fault-Tolerant
Software,” IEEE Transactions on Reliability, Vol. R-42, 1993, pp. 227-237.

4 Chiaradonna, S., Bondavalli, A. and Strigini, L., “On Performability Modeling and
Evaluation of Software Fault Tolerance Structures,” in Proc. EDCC1, Berlin, Germany,
1994, pp. 97-114.

5 Amman, P. E. and Knight, J. C., “Data Diversity: An Approach to Software Fault
Tolerance,” IEEE Transactions on Computers, Vol. C-37, 1988, pp. 418-425.

6 Bishop, P. G. and Pullen, F. D., “PODS Revisited - A Study of Software Failure
Behaviour,” in Proc. 18th International Symposium on Fault-Tolerant Computing (FTCS-
18), Tokyo, Japan, 1988, pp. 1-8.

7 Bishop, P. G., “The Variation of Software Survival Time for Different Operational Input
Profiles (or why you can wait a long time for a big bug to fail),” in Proc. 23th International
Symposium on Fault-Tolerant Computing (FTCS-23), Toulouse, France, 1993, pp. 98-
107.

8 Bondavalli, A., Chiaradonna, S., Di Giandomenico, F. and Strigini, L., “Dependability
Models for Iterative Software Considering Correlation between Successive Inputs,” in
Proc. IEEE Int. Conference on Performance and Dependability, Erlangen, Germany, 1995,
pp. 13-21.

9 Csenski, A., “Recovery Block Reliability Analysis with Failure Clustering,” in Proc. 1st
IFIP Working Conference on Dependable Computing for Critical Applications (DCCA-1),
Santa Barbara, California, 1991, pp.

10 Tomek, L. A., Muppala, J. K. and Trivedi, K. S., “Modeling Correlation in Software
Recovery Blocks,” IEEE Transactions on Software Engineering, Vol. SE-19, 1993, pp.
1071-1085.

11 Randell, B., “System Structure for Software Fault Tolerance,” IEEE Transactions on
Software Engineering, Vol. SE-1, 1975, pp. 220-232.

12 Bertolino, A., “Software Testing for Dependability Assessment,” in Proc. Objective
Quality: Second Symposium on Software Quality Techniques and Acquisition Criteria,
Florence, Italy, 1995, pp. 236-248.

13 Bertolino, A. and Strigini, L., “On the Use of Testability Measures for Dependability
Assessment,” IEEE Transactions on Software Engineering, Vol. SE-22, 1996, pp.

14 Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.-C., Laprie, J.-C., Martins, E. and
Powell, D., “Fault Injection for Dependability Validation - A Methodology and Some

27

Applications,” IEEE Transactions on Software Engineering, Vol. SE-16, 1990, pp. 166-
182.

15 Madeira, H. and Silva, J. G., “Experimental Evaluation of the Fail-Silent Behaviour in
Computers without Error Masking,” in Proc. 24th Interational Symposium on Fault
Tolerant Computing Systems (FTCS-24), Austin, Texas, 1994, pp. 350-359.

16 Arlat, J., Costes, A., Crouzet, Y., Laprie, J.-C. and Powell, D., “Fault Injection and
Dependability Evaluation of Fault-tolerant Systems,” IEEE Transactions on Computers,
Vol. C-42, 1993, pp. 913-923.

17 Lyu, M. R. and He, Y., “Improving the N-Version Programming Process Through the
Evolution of a Design Paradigm,” IEEE Transactions on Reliability, Sp. Issue on Fault
Tolerant Software, Vol. R-42, 1993, pp. 179-189.

18 Meyer, J. F., “On Evaluating the Performability of Degradable Computing Systems,” IEEE
Transactions on Computers, Vol. C-29, 1980, pp. 720-731.

19 La Torre, S., Chiaradonna, S., Di Giandomenico, F. and Bondavalli, A., “The Effects of
Input Correlation on the Dependability of Iterative Software,” IEI-CNR, Pisa, Italy Internal
Report, No. B4-24, May, 1995.

20 Trivedi, K. S., “Probability & Statistics with Reliability, Queuing, and Computer Science
Applications,” Prentice-Hall, London, 1982

21 Bondavalli, A., Chiaradonna, S., Di Giandomenico, F. and Strigini, L., “Modelling
Correlation among Successive Inputs in Software Dependability Analyses,” CNUCE/CNR
Technical Report, C94-20, 1994.

