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Abstract ity to do so by the owner of the resource or by some chain

of delegations. Our goal in this paper is to study the power
We use a state-transition approach to analyze and com-of delegation, in comparison with other mechanisms such
pare the core access control mechanisms that are charac-as transfer of capabilities in capability-based modelsl an
teristic of a variety of trust management, access contstfli  prove precise relationships between trust management and
and capability-based systems. The framework, which char-other mechanisms. To this end, we present precise mod-
acterizes the set of rights a subject has over an object af-els of the abstract features of the access control portion of
ter any sequence of actions, is based on abstract systentrust management, access control list, and capability sys-
states, state transitions, and logical deduction of accesstems, and prove the existence and nonexistence of simula-
control judgments. We present abstract models represent-tion relations between these systems.
ing the access control portion of trust management, access Lampson’s access matrix [17], refined by Harrison,
control lists, and two versions of capabilities, provingiva  Rryzzo, and Ullman [14], has been used widely as the ba-
ous correspondence and simulation relations between thesg;is for comparing earlier access control mechanisms. While
models. The main results include an equivalence betweenne access matrix is a useful model, it is not sufficiently ex-
access control lists (ACLS) an.d capabilities viewed as rows pressive to account for properties of delegation in trustma
of the Lampson access matrix and the (proper) subsump-agement, or the way that capabilities (when represented as
tion of a form of ACLs by an “unforgeable reference” form unforgeable “tickets”) can be passed from one user to an-
of capabilities. The access control mechanism at the heartyiher. We therefore propose a new model of access control,
of distributed trust management systems is formally shownpssed on abstract system states, state transitions, aid log
to provide a tractable compromise between unrestricted ca- 3| deduction of access control judgments. The main idea is
pability passing from the capability models and easy revo- gimply to identify a set of abstract system states, each con-
cation provided by access control lists. The underlyingsim t5ining the kind of information that would be maintained in
ulations show how trust management compares with moregn access control system. The important property of each
established access control mechanisms, independentof feagtate is the set of access requests that will be allowedsn thi
tures such as local name spaces and certificate authoriza-state, and the access requests that will be allowed after sub
tion hierarchies. sequent actions such as the transfer of a capability. The set
of allowed access requests may be recorded directly in the
state, as in access control lists, or derived from propedie
1. Introduction the state by some form of logical inference. In this frame-
work, we compare access control mechanisms by compar-

Many approaches to discretionary access control haveind the resulting “abstract state machines,” using tradai
been proposed, studied, and implemented over theforms of simulation relations from programming language
years [12, 22, 2]. Trust management is an emerging ap-and concurrency theory.
proach based on cryptographic keys, signed credentials, an  For each pair of access control mechanisms, we con-
policies [5, 6, 7]. As an access control mechanism, apartsider the ways that the actions of one mechanism can be
from cryptographic issues, a characteristic of trust manag simulated by actions of another. An interesting subtlety is
ment isdelegation a principal can delegate access to a re- whether the mapping between actions is one-to-one or one-
source, provided that the principal has been granted tle abi to-many. While a one-to-many correspondence, in which

*Supported in part by DARPA grant N66001-00-C-8015. one action in one model is equivalent in effect to a sequence

TSupported in part by DARPA grant N66001-00-1-8921. of actions in another, may seem a suitable equivalence be-




tween models, there is the potential for the latter mecimanis control mechanisms has the following parts:
to be subject to attacks that cannot be carried out agaiast th

first model. Since this can be prevented by enforcing atom- ¢ A world state which is the part of the system configu-

icity of the implementing sequence of actions in the second  ration that is relevant to the access control mechanism,

model, the distinction between one-to-one and one-to-many

simulations may provide useful guidance in practice. « A set of possiblactions each of which defines a tran-
The main simulation results are summarized as a set of sition mapping from world states to world states. Ex-

four diagrams, each ShOWing the existence or ImpOSSIblllty amp'es of actions inc|ude, create a resource, allow ac-

of one-to-one and one-to-many simulations between access  cess, revoke access, and so on,
control models. In brief, the main results are that access

control lists are equivalent to capabilities, when capabil e An access judgmenvhich states when one object can
ties are regarded as rows of an access control matrix. How- access another. This may be specified in the form of
ever, when properties of the “unforgeable ticket” implemen logical inference, equivalent to some implementable
tation of capabilities are taken into account, capabditian algorithm. Given a world staté/ S, the judgment that
weakly (one-to-many) simulate access control lists, btit no subjects can access the objeewith right r is written

conversely. Trust management systems, modeled here with- g 5 5 (o, r).
out keys or name spaces, can vary the delegation depth to

strongly (one-to-one) simulate the other mechanisms, pro-
viding a tractable compromise between unrestricted capa-
bility passing from the capability model and easy revoaatio
provided by access control lists. In this general caset trus
management systems can provide feasible revocation, an
we mgy_ldenufy frust credentials with history-dependent ciations, and access judgments will specify the accesaés th
capabilities. More generally, our _study sugg_ests t_hatt tru?_are allowed in a given state.

management subsumes both earlier mechanisms in specific . e .

ways. These theorems depend on the exact nature of what Over_t|me, differing versions of eaCh access control
is considered observable, and highlight some subtle differ mechanism have been proposed and implemented. For ex-

. o . : ample, AFS [15] uses a fine grained form of access control
ences in capability systems that might be easily overlooked . : : . o
. ) . . lists, whereas classical Unix operating system permission
The rest of this paper is organized as follows. Section 2

defines our model. Sections 3 through 5 formalize trust bits can be seen as a restricted, coarse grained form of ac-

; cess control lists. Both systems add groups and define eval-
management, access control lists, and two models of ca- .. . )

I, . uation orders (see Example C.1 in Appendix C). Proposed
pabilities. Section 6 presents a sequence of results cap-

turing the relationships between these models, with an in_capabnlty-pas_e_d systems [18] vary In a_number of ways.
o : . The most significant for our study is the difference between
terpretation in Section 6.5. We make some concluding re-

. . . N systems that allow unrestricted passing of capabilities an
marks in Section 7, and point out directions for further re- . )
systems that impose control through reference monitors and

search. So_me addmona! technical points and examples are Sirection. Trust Management systems [6, 8, 5] are quite
presented in the appendices. . .

recent, and have several variations. In order to give pre-
cise comparisons of some value, we have attempted to iden-
2. The State-Transition M odel tify representative properties of each class of access con-

trol mechanism. In particular, we analyze and compare the

An access control mechanism decides, given a config-well-understood centralized control and ease of revonatio

uration of the system, whether a subject is allowed a cer-within access control lists with the unrestricted passihg o
tain right on an object. For example, given a set of per- capability systems, with newer trust management systems,
missions at a web site, a web access control system muswhich allow for bounded delegation.
decide whether a specific employee of an organization can This work follows in the tradition of Kain and
read a web page hosted within the corporate intranet. WhileLandwehr [16], although it provides a more precise and
authentication is required, we will not consider this pdrt o broader setting in which to reason about different access
the access control mechanism. Therefore, an access corzontrol mechanisms. Sandhu and Ganta have conducted re-
trol mechanism comprises a set of system states, subjectdated studies [23, 25, 24, 11] in the context of access matrix
rights, objects, and an access algorithm. Along with a set of models and their variants; our focus has been on studying
system states, an access control mechanism also providesawider range of different access control mechanisms in the
set of operations that change the system from one state t@same formal framework, and the development of general
another. With these concepts in mind, our model of accessspecification and comparison techniques.

In the remainder of the paper, we will work with models
of trust management, access control list, and capabilgy sy
tems consisting of these three parts. As suggested above,
he world states will include subjects, rights, objectsy an
ssociations between them, actions will modify these asso-



3. Modeling Trust Management (M) object. Access to a right on an object in a trust manage-
ment setting is either directly allowed by thie, ) pair in

Trust Management [7] is a relatively recent proposal for question, or is propagated by someone who holds that right,

access control, in which an access request is accompaniednd we model these two cases by the maasmdD respec-

by a set of credentials which together (by transitive cleur tively. In this sense, access propagation in these sysems i

constitute a proof as to why the access should be allowed.a hybrid between the object-controlled access contral list

Resources may grant access, as well as the ability to fur-and the subject-controlled capability.

ther delegate that access a restricted number of times. We A((o,7)) specifies the set of objects which can access

illustrate this by means of an example. right ~ on object, and the depth to which they can delegate

that right. Thus if(os,n) € A((o,r)), thenos can access

right » on objecto, and can delegate that access right to

A classic example in the trust management literature given@nother objecd, which can then delegate it to a maximum
in favor of delegating authority and reducing burden on a €fféctive depth ofz — 1. The delegation action would be
central omniscient directory of users is the DoD firewall ac- Modeled agoq, n —1) € D(os, 7, 0). In general if an object
cess scenario [10]. Instead of enforcing strict control by ©s delegates its access right ¢n r) to a delegatee object
a central database of users (access control list), the sam& With depthd, then the set of such delegations is captured
end is sought by a small root access control list (contain- byD(?sv 0,7). . _ -
ing say the president, ministry officials, and chiefs offjtaf 2. Actions: An action spe(_:mes a transition from one world
and carefully defined policies implemented by delegation. Stat€ to another. For a given world statewe denote the
For example, privat¢ oe may be able to access fifeoo reijlt of an actiom that takes the vector of argumerffsby
inside the firewall because the secretary of defense allowedx(v ; w). We assume that the world statés components
a general to allow a captain to allgwe to access the file.  before the action are given iy, R, A, andD, and after-
Lets denote the objects corresponding to the secretarywards, byO’, R', A" andD’. For each of the actions below,
of defense, the general, the captain, gme by K, K, we informally state what the action is supposed to accom-
K., andK; respectively (these could be their private keys, plish, define it by an equation, and then check to see if the
for example.) Then we can model the access control policy equation matches our original intuition. The following ac-
described above by the pseudo-credentials tions are defined, together with the world state components
that are modified (see table 1 in Appendix B for a summary

EXAMPLE 3.1 The DoD Firewall Proxy

Allow(f oo,read) > (K,,7) of all actions):
Delegaték,,foo.read) > (Ky,5) « Create(object): Objecb. creates a new object 0.
DelegatéK,,f oo,read) > (K., 2)
DelegatéK,,f oo,read) > (Kj;,0) Creatéo.,0;w) = (0OU{o},R,A',D"), where
Clearly, we may construct a  proof of Allor) = { (0¢,1) r=r, v ER
Allow Accesg$K;,f oo,read) by a transitive closure ’ 0 r#£T,
of the above credentials. Note that revocation of any of D' = Di(s,r,0) = B|s € O,r € R]

these credentials would cause the access to fail. We willThe new object is added to the set of objects, and the
formally compare this with capability revocation later in  creatoro, to the rootacl for(o, r.). Sinceo, createdo, it
the paper. O is given the rightr. of editing o's rootacl, and the ability

Current trust management systems [6, 8, 5] include othertg delegate that right to anyone it wishes to. No one else
features like support for local name spaces and certificateno|ds any rights te at this point.

authorization hierarchies. While these additions areulsef o Add (to rootacl): Allow objeci, right » on objecto, with
and it is important to understand them formally [1, 13, 19], gelegation powers upto depih

they are orthogonal to the basic access control mechanism

at the heart of trust management. Thus our model for trust Add(o, 7, 05,d;w) = (O, R, A, D), where
management comprises of the following: A = Al(o,1) = A((o,r)) U {(05,d)}]

1. World State (IW.S): The world state contains a sét

of objects, a sef? of rights and two maps! (bounded The only state transformation caused by #eid action is

. the addition of the paifos, d) to the rootacl ofA. Since
RoOtACL) andD (bounded Delegate): this newly obtained right has not yet been delegated, the
A : OxR—-=POxN) map D and other state components remain the same.
D : OxRx0O—=POxN) e Removéfrom rootacl): Remove objeet’s access to right
r 0N objecto.

We do not specify a separate set of subjects; each object can
act as a subject as well, requesting access rights on another Removéo, r, 05, d;w) = (O, R, A', D), where



A" = Al(o,r) = A((o,7)) — {(0s,d)}] We now model access control lists and two versions of
capabilities within our framework, so that we may make

Again, the only change directly caused by fRemoveac- :
g y g y y comparisons between these models.

tion is the removal ofo,, d) from the rootacl ofo, ), as re-
flected in the updated map. Note thatD has not changed
after the action, even though accesses previously dettgate4. M odeling Access Control Lists (M., )
througho, will now fail.

e Delegate(access right): C_)bjeczts delegate_s its right to Access control lists are a very commonly deployed
accesgo, r) to delegatee objee;, and allows itto delegate  mechanism for restricting access, useful when the “users”
it further to depthd. of the resource are known in advance. First introduced

for controlling file system access in the operating system
Multics [21] and in the Cambridge Titan Multi-Access Sys-
D' = D[(0s,7,0) —= D((0,,7,0)) U {(04,d)}] tem [4], access is moderated by checking for membership
in the access control list (acl) associated with each object
Simply put, an entityS (subject) can access an entity
(object) if S appears ir0’s acl. While implementations of
this mechanism may include other features like groups and
priorities, they are orthogonal to the core access contel d
cision. Thus our model for access control lists comprises of

Delegatéo,, 0,7, 04,d; w) = (O, R, A, D"), where

The only state component directly modified by ihelegate
action, is the mag, which is updated to reflect the added
delegation in the obvious way. All other components remain
the same.

e Revoke(delegated access right): Objegt revokes its
previously delegated right to accegsr) with delegation

depthd from objecto the following:
d: 1. World State (W S): The World State contains a s@tof
Revokéo,, 0,7, 04, d; w) = (O, R, A, D'), where objects, a seR of rights, a setS of subjects(S C 0), and
an acl map4,
D' = D|(0s,r,0) = D((0s,7,0)) — {(04,d)}] A:OxR—P(S)

Again, theRevokeaction changes only the delegation map manping each object/right pair (henceforth referred toras a
in the obvious way. All other components remain the same. (0,) pair) uniquely to a set of subjects which are allowed

e Delete(object): Objecb is deleted from the system. that right on that object. This set of subjects thus forms the

Deletdo: w) = (O — {0}, R, A |11 D lio0 10 access control list (acl) for thab, ) pair.
dorw) = tok (Ot D lo-fon) 2. Actions. An action specifies a transition from one world
The Deleteaction removes all instances of objecfrom state to another. We assume that the world state before the

the system, thereby removing it from the set of obje@ts  action,w, has componen®, R, S, andA, and the corre-

its rootacls from the mag, and all delegated access rights sponding components after the action are giverObyR’,

to it from the mapD. In other words, the map4 andD are S'andA’. The following actions are defined, together with
updated by restricting their domainst© — {o}) x R and the world set components that are modified (see Table 1 in
(O = {o0}) x R x (O — {o}) respectively. Appendix B for a summary of all actions):

3. Access Judgment: We specify the access judgment e Create(object): Object, creates a new objeot

as a logical judgment, given the following four inference

rules. The component maps of the world state can be in-  Creatés.,o;w) = (OU{o},R,SU{s.},A')
terpreted as set-membership predicaté€L(s, o,r, d) is Alfo,r) = Se T =T,
true iff (s,d) € A((o,r)), andDel(s,0,7,75,d) is true iff ’ 0 r#r.

(rs,d) € D(s,o0,r). Subjects can access th@, r) pair iff ) i , )
it can produce a proof af ccess(s, o, r, ), for somed, from The new objecb is added to the set of objecfs. Since

o was created by., we assume thaf. has the right-. to
edito’s acl; consequently.. is added to the set of subjects
S. A is updated to include an empty acl for each right
associated witl, except the-, right.

e Allow (access): Allow subject right » on objecto.

the predicate equivalent of the world state and the follgwin
four inference rules:

(RootACL) ACL(A, B,r,d) D Access(A, B,r,d)
(Delegatioh Access(A, B,r,d) ADel(A, B,r,C,d — 1)

D Access(C, B,r,d — 1)
(Ord1) Access(A, B,d+ 1) D Access(A4, B, d)
(Ord2 Del(A, B,r,C,d+ 1) D Del(A, B,r,¢,d)

Allow (s, 0,7;w) = (O, R,S U {s}, A"), where

A=A A((o,7)) U
The first two rules capture the rootacl and delegation chain (0,7} = Al(o,m)) U{s}]
mechanisms of obtaining access, and the last two capturélhe actionAllow addss to the set of subjects, and up-
the intuitive order relationship between delegation depth  dates the acl mag at (o, r) to includes, effectively adding



it to the (o,r) acl. The set¥) and R are left unchanged.
e Revokdaccess): Revoke subjegs right r on objecto.

Revokds, o, r;w) = (O, R, S © {s},A"), where

def S A7 ({sh] > 2
So{s} ¥ S —{s} otherwise
A = Ao, o Alo,) - (5]

The acl mapd is updated ato, ) by removings from that
acl. The set of subjectS is modified to accurately capture
the current set of objects which can access at leasf@né¢
pair. We useA~! to denote the natural extension of the
usual inverse of mag to subsets of rangd).

e Delete(object): Delete objeat from the system.

Deletdo; w) = (0 — {O}, R,S— {O}, A ‘(Of{o},R,Sf{o}))

The deletion ob removes it from both the object and sub-
ject sets, while keeping unchanged. (The set of rights

capabilities are also specified to meet the above definition
of subject.

Note that this definition of objects and subjects is in
no way coupled with the modeling of other aspects of the
access control mechanism—what is considered a subject
can be defined independently by a system. Another choice
could have been to stipulate that a subject is a subject irre-
spective of whether or not it currently has access t(van)
pair. In this case, we would identify the sgtwith the set
of activesubjects.

The distinction between the set of objects and the set of
active subjects serves a technical purpose. Specifically, i
provides us with a way to quantify the effects of actions in
the models, especially revocation, by means of a counting
argument based on the cardinality of the set of subjects. We
use this to demonstrate the infeasibility of simulationen-c
tain cases. While the same argument could be carried out if
a different definition of the set of subjects were used, the
definition we adopt simplifies the argument.

is assumed to contain all rights that may ever be associated

with objects, and therefore it is retained even when no ob-
jects remain for a given right.) Clearly, everything in the
system is unchanged, except thatlisappears. Thus, the
map A is updated by restricting its domain and co-domain
to (O — {o}) x RandS — {o} respectivelyA((o,r)) is no
longer defined for any € R, ando doesn’t appear in any
acl.

3. Access Judgment: SinceA((o,7)) is the access control
list associated with the object/right p&ir, r), s can access
that rightiff it belongs to the€o, r)-acl. Formally,

def

WSEs—(o,r) = s € A(o,r)).

As an example application, we model UNIX file access
control in Example C.1 (Appendix C).

4.1. A noteon subjects

In the model above, we have maintained a distinction
between the sets of objects and (active) subjects. Formally
we consider a subject to be an object which holds a certain
right. In the case of access control lists, a subject is an ob-
ject which appears on the acl of at least one object. The
effect of the actions on the set of subjects should therefore
be checked with respect to this definition of a subject. For
example, theAllow action gives a right to an object, which

5. Modeling Capabilities

Capability based systems [18] provide a form of access
control where the ability to access a resource is synonymous
with the possession of an unforgeabidket (or capability)
to it. This idea can be realized in various ways. An oper-
ating system could manage all capabilities associated with
a process, maintaining them in a separate store to prevent a
user from forging them. Alternatively, systems such as the
Communities.com E project [3] have proposed identifying
capabilities with Java language pointers, relying on tivaJa
type system to prevent users from forging capabilities.

Another view of capabilities is often used to describe a
purported equivalence with access control lists. This view
is based on the access matrix proposed by Lampson [17]
and studied further by Harrison et al. [14]. The access ma-
trix A is a two-dimensional matrix with object/right pairs as
columns, subjects as rows, and the entry in(thé)th cell
Al determining whether the subject in ravinas access to
the (o, r) pair in columnj.

(o,1);

AY

is then added to the list of subjects as it now has an acces§ he list of subjects in the column correspondingdor) is

right. For the same reason, wheiRavokeaction removes
a subject from the access control list of @nr) pair, the

called its access control list, and the list (@f r) pairs in
a row corresponding to a subject is its capability list. Al-

set of subjects must be updated to possibly remove that obthough the capability as rows view integrates nicely with
ject if it doesn’t appear on any other acl. This is formally ACLs, the ticket model more accurately reflects the spirit of
captured by the> operator. The actions for the models for most capability-based proposals.



We will distinguish capabilities as tickets from the to the set of subjects. At this point, no other objects hold
Lampson-matrix capabilities, giving a model of the former this capability foro, and no other capabilities far exist,
in Section 5.1 and the latter in Section 5.2. While differ- which is reflected in the updated wallet and ticket mEp's
entimplementations of capability systems allow varying de and7" respectively.
grees of control over capability passing, we consider ore ex o Gererate (capability): The objeef, generates a new ca-
treme in one model and the opposite in the other. It is also pability ¢ for the object/right paifo, ).
possible to define other capability models in our framework,

although for simplicity we do not do so in this paper. Genoy,c,0,m;w) = (O,R,S,CU{c},T' W')
T' = T[(o,r) = T((o,r)) U{c}]
5.1. Capabilities as unforgeable bit strings (Mc,_,) W' = Wiog = W(oz) U{c}]

wherec = G((o,7)). Sinceo, was able to generate a
capability for(o, r), it must have already had th¢. capa-
bility, and is therefore already a subject. We assume that
the ability to callG to generate a new ticket comes with
the ability to cache the result, and hencis added tw,’s
wallet. Here onwards, this new capability maybe passed to

i other objects.
I/%/j g:];(_éf(o) e Pass(capability): Subjects passes the capability €

W (s) for the object/right paifo, r) to receiving subject;.

Our model for this view of capabilities comprises of the
following:
1. World State (W S): The world state comprises of a set
O of objects, a seR of rights, a sefS of subjecty S C 0),
a setC of capabilities, and the ticket and wallet mapand
wW:

T (o,r) is the set of capabilities (or tickets) which can be

used to access righton objecto. For a subjeck, W (s) Pasgs,c.r;w) = (O,R,SU{r},C,T,W')
denotes its capability-list [9]s can access thé, r) pairs
for which it has a capability in this list. W (ry) = { {c} re &S

A capability is intended to function as an unforgeable ° Wi(rs)U{ct rs €8

ticket to access a certain right on a certain object, and to This action affects only the capability list (the mg) of

that end it must be hard to fashion one giver(q;r) pair. . the subject receiving the capability,, which now contains
Here, we assume the existence of a capab|I|ty-generat|ng{he passed capability

functionG. Since we may have more than one capability
per object/right pair, a good capability generating fuoiati
G must be collision resistant in addition to being one-way.

e Removdgcapability): The capability: corresponding to
the object/right paifo, r) is removed from the system.

Thus,C C G(O x R). Note thatT" may be identified with Removéc,o,r;w) = (O,R,S',C — {c},T", W'
G on the intersection of their domains. T = T[(o,r) = T((o,r)) — {c}]
2. Actions. An action specifies a transition rule between W' = Wse W(s) — {c}Hses
two world sets. O, R, S, C, T, and W are the world state S = S—{s|W(s) ={c}}

w'’s components before the action, and the primed versions

are their counterparts afterwards. As before, we state whatThe capabilityc is flushed out of the system, removing it
an action is supposed to do, define it in terms of a statefrom each of: the set of capabiliti€s, the tickets set asso-
transformation, and provide a justification that the two are ciated with the(o, r) pair, and each subject’s capability list.

equivalent. This operation may reduce some subjects’ capability list to
e Create(object): Object, creates a new objeot null, at which point they no longer should be considered
, A subjects. (See Section 4.1.)
Creatgs.,o;w) = (O U{{O;ra R,S", CUcy,, T W) « Delete(object): The object is deleted from the system.
S = SU{s.
, _ Coe T =Tge Deletdo;w) = (O —{o},R,S —{o},C",T",W')
T'(o,1) { 0 T # Tee rekR ' = C—-T((o,1))
W’(SC) _ { {C_Zc} Sc €S T: =T ‘(O*{O},C’)
Wi(se) U{cg.l sc €S W= Wl {o.01
The creating object is giverf,., the capability to generate  The deleted object is flushed from the world state, effec-
any capability associated with the new objedt.e., to call tively resulting in retaining subsets of the component sets
G(o,r) for anyr € R), which can then be passed to other (O, .S,C) and mapgT, W) which make no reference to it.
subjects. This parallels our justification for givisg the Note that we don’t allow &evokeaction for capabilities.

edit-acl rightr, in the acl model. Consequently,isadded  The nature of capability based systems makes it infeasible



in general to implement revocation unless Bassaction is e Grant (capability): Subjects is granted a capability to
somehow monitored; this is formalized in Lemma 6.5. access right on objecto.
3. Access Judgment: A subjects can access righton o iff

it possesses at least one of the tickets (capabiliiesptr t  Crants, o.riw) = (O, R, SU{s}, C[s = C(s)U{(0,7)}])

object/right pair. Formally, The addition of(o, r) to the capability list associated with
def s, corresponds to setting the bit in the r)-column of the
WSkEs—=(or) = [W(s)NnT(o,r) # 0. s-row of the Lampson matrix to 1.

o e Revokecapability): The capability to access the right
As an example application, we model capabilities in 5, object is revoked from subject.

Amoeba [20] in Example C.2 (Appendix C).

Revokés,o,r;w) = (O,R,S',C")
5.2. Lampson matrix capabilities (M¢,__) g = { g, {s} gggg ; 2077";
s o,r
C'" = Cls— C(s) = {(o,r)}Hses

For purposes of comparison, we define a model for ca-

pabilities based on the rows of the Lampson access matrix-the removal of(o, r) from s's capability list corresponds
Our analysis will show that this view isotthe same as ca- setting the bit in theo, r)-column of thes-row in the

pabilities as unforgeable bit strings. We model this view of Lampson matrix to 0S is modified to capture’s new sta-

capabilities as follows: . tus, depending on whether the action leaves it with a null

1. World State (W.S): The world state comprises of a set capapility list.

O of objects, a sek of rights, a setS of subjectqS C 0), 3. Access Judgment: A subjects is allowed access to the

and a mag (o,r) pairiff (o,r) belongs in the capability list of. For-
C:S— P(O xR). mally,

The mapC associates a subjestwith its capability list.
However, in contrast with capabilities viewed as unforge-
able bit strings, an element occurring in a capability list Note that the above access is allowed exactly when the bit
here is not a first class capability. More preciselyyifr) € in the (o, r)-column of thes-row of the equivalent Lampson
C(s), then(s, o, ) is the capability, and ndp, r). protection matrix is set to 1.

2. Actions: As usual, an action is a transition rule between
two world states; the following actions are defined (see ta-
ble 2, Appendix B for a summary)O, R, S, andC are

the world stataw’s components before the action, and the
primed versions are their counterparts afterwards.

e Create(object): Objects.. creates a new objeot

WSt s— (0,r) % ((0,7) € C(5))

6. Comparing Modelsvia Simulation Relations

Each of the access control models has been presented
as a labeled transition system. For those not familiar with
the concept, Appendix A explains the general concept of a

Creatés.,o;w) = (OU{o},R,SU{s.},C") labeled transition system with state€s setAct of actions,
> 0; for =)}> ¢ ’S ¢S and transition relatiory”. In each of our models is the
C'(s;) = { O(,s: )EU {(0,r)} SC cs set of possible world states, the gett is the set of actions

defined for that model, an@ is the transition relation im-

Herer, is the right to change capabilities for the entire Plied by the action definitions. This provides us with a nat-
object, which is given to the creating objegt effectively ural way to compare these mechanisms, namely, simulation
making it a subject. In other words, can cause Grantor ~ and bisimulation relations (Appendix A) between the vari-
Revokeof any capability of the forn{s, o, r) for arbitrary ous semantics.

s € Sandr € R. In order to compare any pair of access control mecha-

« Delete(object): Object is deleted from the system. nisms, we will try to simulate each action in one mechanism
by either a single action or a sequence of actions in another.
Deleteo; w) = (O — {0}, R, S = {0},C' |(s—{o}.0—{o})) More precisely, given access control modsls, S, and
St, we presenmodel functorswhich are maps between
Flushingo from the system effectively results in retaining the world sets of 4, S, andS, denoted by¥’'S 4, WS¢
subsets of the world state component €2t$ and mapC andW S respectively. Iff4_,¢ is one such functor, then
which make no reference to it. Restricting the domai@of our intention is thatf4_,« (WS 4) be able to simulate the
to S — {o} corresponds to removal of therow from the changes tdV' S 4, within the other model. This potentially
Lampson matrix, whereas restriction of the co-domain to yields two model functors for every pair of mechanisms,
(O—{o0}) x R corresponds to removal of b, r)-columns. one in each direction.



The simulation theorems, and theorems stating thefor all pair of statesiW Sy, and WS, in the two mod-
nonexistence of simulations, not only allow us to compare els, which correspond to the same real world state. In other
the expressive powers of these systems, but pinpoint imple-words, M; and M, are equivalent when subjegtcan ac-
mentation requirements that must be met if security pdicie cess thgo,r) pair in a state of model/; iff it can access
expressed in one access control vernacular are to be accut in the corresponding state of modéis.
rately met within a system which uses a different access
control mechanism. The existence of only a weak simula- 6.1. Comparing access control lists and Lampson
tion between two models imposes atomicity constraints on matrix capabilities
the implementation, ensuring that the visible states of the
implementation are the corresponding weakly similar state  Consider a real world system objectigavhich is mod-
in the model. The infeasibility of simulating specific ac- eled asS, using access control listd4,.), and asS¢ us-
tions relies on counting arguments; we show that for theseing the capabilities as rows view,. ). For any given
actions, any simulating sequence of actions must depend onteal world state of5, there will be world set$¥ S 4 in the
the size of the world state, thus violating the requirements first model, andi?’ S¢_ . in the second model, capturing
for weak simulation (see Appendix A.) the information of interest abouft. In both cases, certain
actions modify the world set, and hence the current world
set can be considered to be the effect of a sequence of ac-
tions, starting from an initial world state. In other wortise
real world systentS started with an initial staté;, which
was modeled agV’' S’ and WS¢, (say) in the two sys-
tems. We assume that from an access control point of view,
WS = WSt . Asequence of real world actions took
the system to stai#, and the representation of these actions
in the two systems tookV’ S%, andWS¢,  to WS4 and
DEFINITION 6.2 (Access equivalence) We say that world ~ WS¢, ., respectively. We will construct maps frof,
statesV Sy, andW Sy, in modelsM, and M., for access ~ to Mc,,,,, and fromMc,_, to M,., to formally capture the
control areaccess-equivaleiftiv S, is access-contained  relationship between these two world states. The maps will
in WSy, and vice versa. Access equivalence implies that be defined by induction on the sequence of steps by which
both world states have the same subject sets, and exactlghe world state was arrived at.
the same accesses are allowed in either model.

DEFINITION 6.1 (The Access-Containment relation)

Given two models for access contrdl; and M., and
world statesW Sy, and WSy, we say thatiW S,

is access-containeth WSy, if for any s € Sws,,, ,
the access decision¥/' Sy, bFa, s — (o,r) and
WS, Far, s — (o,r) yield the same result. We denote
this byW S, Cace WS,. (Note that this implies that

Swsa, € Swsa,-)

row

LEMMA 6.1 M, Cg M,

‘row

DEFINITION 6.3 (Strong and Weak model containment)

Given modelsM; and M, if the access containment re- Proof. We define a functofa_,c,.,, : WSa = WS¢, , as
lation between their models is a strong simulation follows (we abbreviatgf 4., by f andiW.S 4 by w 4):
(Appendix A), i.e.,

row

» F(VS%) = Wse,,
WSum, Cace WSam, andW Sy, = WSy, = f(Create(s.,0;wa)) = Create(se,0; f(wa))
WSy, WS, 5 WS, and WS, Cace WSy, f(Delete(o;wa)) = Delete(o; f(wa))
_ _ Ff(Allow(s,r,0;wa)) = Get(s,0,7; f(wa))
then we say that model/; is strongly containedn or f(Revoke(s,r,0;wy4)) = Revoke(s,o,r; f(wa))

strongly simulatedby modell/,. We denote this by/; C,
Ms. If the access containment relation is a many-step sim- We claim thatf is an access containment relation between

ulation (Appendix A), i.e., the world states oM, andMc,_,,, .
W Sat, Cace WSar, andW Sy, 25 WS, = CLAIM 6.1.1 Vwa.wa Cace fwa)
3W5'1\42-W5M2 N2 WSQMQ andWS’Ml Cace WSQMQ, Proof Idea.Consider the last action in the evolution path of

) o w4, and show that the access-containment relation between
then we say that modsl, is weakly containeéh orweakly  the world statesv and f(w.) holds after the action if it
simulatecby modell». We denote this by/; C., Mo. holds prior to it. Showing this for all possible actions of

DEFINITION 6.4 (Model Equivalence) Two access con- M, provides the different cases of this inductive proof.

trol modelsM; and M, are defined to be equivalefit/; = (See Appendix D for theacomlpl_ete proof.) L _
Ms), when For each transitiom 4 -3 w', in M., f(w',) is defined

in terms of exactly one actionc and f(w4). For exam-
WS, bar, s = (o,r) iff WSy, Far, s = (0,7) ple, the(Allow) case of the definition hass = Allow



andac = Get. Hencef is a strong simulation, and hence
Macl gs Mcmw- <

Note that the equivalent capability system should hand
out fresh capabilities for eachllow action authorized by
the object inM.,.;, as specified in théAllow) case above.
Failing that, it would be hard to model acls with a capability

) o implementation because of the infeasibility of determgnin
Proof. The mapf created above is a bijection, and we can \yhich subjects a revoked capability corresponds to. o
proveVwe.we Cace f~*(we) in anidentical manner. The

result follows. (See Appendix D for a definition ¢f 1.) o

LEMMA 6.2 M., Cs Mau

LEMMA 6.4 M., Zs Maa

THEOREM 6.1 M,

Crow

> Muq In other wordsda € Acty,  such that

Pr.oof. Follows directly from the definitior_1 for access con- . C,.. f(we) andwe 5 wl, but Ad'.f(we) S f(wh)
tainment, and the above two lemmas which show that world

states of one model are access contained in the correspondvhere f is the correspondence functor betwel,,, and
ing world states of the other. Thus, as mechanisms for ac-M...

cess control, capabilities viewed as rows of the Lampson Proof. Consider the following world staiec in Mc,_,.

protection matrix and access control lists are equivaient,
strongly bisimilar. [ ]

6.2. Comparing access control listsand capabilities
asreferences

The fact that th&@emovection inM,.; has no real coun-
terpartinM¢__. leads to the following results.

ref

LEMMA 6.3 M, C,, M¢

ref

Proof. We define a correspondence functs_,c,_,

WSs — WS¢, as follows (we abbreviat¢s_,c,., by
fandWsS 4 by wy):

FWsh) — wst,,
f(Creatés.,o;wa)) = Creatés.,o; f(wa))
f(Deletdo;wa)) = Deletdo; f(wa))
f(Allow(s,r,0;wa)) = Pas$og,c,s;

Ger(Og: C,0,T; f(wA)))
f(Revokés,r,0;wa)) = Removécs,o,r; f(wa))
where ¢, is the capability thats has to the(o,r) pair
(cs = W(s)NnT((o,r))). We claim thatf is an access
containment relation between the world stated/£f,, and
Mc

ref "

CLAIM 6.3.1 Ywa.wa Cace flwa)

Proof Sketch.Again, we consider the last transition in the
evolution path ofw 4, and show that for all possible ac-
tions, the access-containment relation holds betwegn
and f(w,) after the action if it holds before. Hence, by
induction, we are done.

Since theAllow action of M, requires twolM¢,_, ac-
tions to simulate itM,. Zs Mc,... This can also be in-
ferred by considering the actions neededig _, to simu-
late the first subject that is given a (non edit-acl) rightro a
objectin M.

we =
({0705:51752:53}7{r7rg6}7{05751:52753}:{czc:cthcb}a
(0,79c) = ). 05 = {cfe,carcn}
(0.,1) = {ca e} st~ e} )
. ’ 52 = {ca}
s3 — {e}

One may imagine that this state was the result of the supe-
ruseros generating capabilities, and ¢, to objecto and
handing them out to subjects andss respectively. Subse-
guently, subjectk; passed ticket, to subjects,. Clearly,

the statav 4 of M,.; which corresponds te is given by

wA = ({07 0Os, 51, 52, 53}7 {Ta TE}: {057 51,52, 53}7
(O:Te) = 0s

(0,r) = {s1,80,83} |,

Removing capability:, from w¢ (by theRemove(c,, o, 1)
action) results in a state;, whose corresponding state in
Ma,a, w'y (say), cannot be reached fromy by any sin-
gle action ofM,.. Thusw', is reached by the actions
Revoke(s, r, 0) andRevoke(sa, r, 0) in any order. o

LEMMA 6.5 M. ., Zw Maa

Proof. We consider the “cost” associated with carrying out
an action in either model, and show that in order to reach a
corresponding state i/, after aRemovection inM¢._,,
requires a number of actions proportional to the size of the
set of objects. Consider the following statelify_,:

wo =
({O,OS,S],...,Sn},{r,rgc},{OS,S],...,Sn},{C;C,C},
0 05 {c_‘;c,c}
©roe) =G | ] s (] )

(0,1) = {c}



Here the capabilityc to (o,r) pair is held by sub-
jects s1,...,s,, which hold no other capabilites. A
Removéc, o,r|wo) action reduces$, , to {0}, a reduc-
tion in size by©(|S]|). Since each of the actions i,

changes the set of subjects by at most one, the above action

need9(|S|) actions inM,., to simulate it. Thus any simu-
lating sequence necessarily dependswen and fails to be
a witness for a weak simulation. Henc¥,.,_, ., Mac1. ©

6.3. Access control listsand Trust M anagement

It is not possible to simulate the delegation feature of
trust management in a way that allows for controlled revo-
cation, leading to an asymmetric relationship betw&gp,
andM;,,. The following results express this formally.

LEMMA 6.6 M, Cs Mim

Proof We define a correspondence functgp_,r
WS4 — WSt as follows (we abbreviatg, .1 by f and
WS a bywA):

F(WS}) = WS
f(Create(s.,0;wa)) = Create((s¢,0; f(wa))
= Delete((o0; f(wa))

Add (0, 5,0: £ (14)
Remove(o,r, s,0; f(wa))

f(Allow(s,0,r;w4))
f(Revoke(s,0,r;w4))

(
(

fEDelete(o; wa))
(

In other words, by setting the delegation depth tthereby

further delegated it ta,. The statav, in M, which cor-
responds tavr is given by:

wA = ({07 Os, 51, 52}7 {Tfi: T}: {057 51, 82}7
(O:Te) = 0
(O,T) = {05781752} )

The action Remove, r, o5, 2; wr) in My, cannot be sim-
ulated by any single action oM,., but requires both
Revoke(s, 0,r) andRevoke(sz,0,7). Intuitively, the re-
moval of an object from a rootacl (or the revocation of a del-
egation) renders several previously allowed accesses void
and identifying these denied accesses can @&, |)
actions in the worst case. The next results states this for-
mally. o

LEMMA 6.8 My, Z.w M.

acl

Proof. As we did in Lemma 6.5, we consider the cost as-
sociated with actions in the two models, and show that the
Remove action of\/;,, can require upt®(|Syy,.,|) actions

in M, to reach an access equivalent state. This may be
seen by generalizing the world state in the last lemma to
contain a delegation chain of depth As a result, any can-
didate sequence of actions for simulating the Remove action
depends on the corresponding staté4g.;, and thus we are
done. o

rendering any delegation actions ineffective, we can embed6.4. Comparing Trust M anagement and capabilities

M, into M;,,. We claim thatf is an access containment
relation between the world states f,,; and M.

CLAIM 6.6.1 Ywa.wa Cace flwa)

Proof Idea. The proof strategy is identical to that of

Claim 6.1.1, and considers the last action in the evolution

path ofw 4.

For each transitionv 4 -3 w'y In Maa, f(w'y) is de-
fined in terms of exactly one actienr € M;,, andf(wa).
Hencef is a strong simulation, ant/,.; C5 Miy,. o

acl

LEMMA 6.7 My €5 M,

Proof. Consider the following world stater in M.

(0,m¢) = (0s5,1)
wr = ({0,05,51,82},{re, T}, (o,7) = (05,2) 7
(0g,7,0) +— {(s1,1)}
(s1,m,0) = {(s2,0)} )

asreferences

Delegation in a trust management style of access con-
trol provides for bounds on propagation of access rights, a
property which doesn’t hold true for capabilities. In addi-
tion, it is possible to meaningfully revoke access anywhere
in a delegation chain for trust management, in contrast to
its infeasibility for capabilities. We formalize this irition
below.

LEMMA 6.9 M., Cs Mim

Proof. We define a functofc, 7 : WSc¢,, = WSt as
follows (we abbreviatgc, . by f andW S, by we):

Crur)

f(
f(Create(s., 0;we))
f(Gen(og, ¢, 0,7;w¢))
f(

Pass(s, ¢ rs,wp))

WSk

Create(s¢, 0; f(we))

Add(o, 7, 04, 00; f(we))

Delegate(s, o, r, s, 00;

flwe))

Remove(o, 7, s., 00;
flwe))

s flwe))

f(Remove(c, 0, r; we))

f(Delete(o; we)) Delete(o

One may imagine that this state was the result of a supe-We claim thatf is an access containment relation between

rusero, delegating its right on objecto to subjects;, who

the world states oM, and My, .



CLAIM 6.9.1 Ywe.we Cace f(we)

Proof Idea. As before, we consider the last action in the
evolution path ofvc, and show that the access-containment
relation between the world stateg; and f (w) holds after
the action if it holds prior to it. Showing this for all postb
actions ofM¢_, provides the different cases of this induc-
tive proof.

Since each action if/_, is simulated by exactly one
action of My, M., Cs Mim. o

LEMMA 6.10 My, € M.

ref

Proof. Consider the following world stater of My,.

) (o,re) = {(os, 1)}
({0,0s,51,...,sn},{r,re}s [ .
(0s,7,0) — (s1,n—1)
(s1,7,0) — (s2,n —2)
)
(s$p_1,7,0) +  (8,,0)

The following world statev of M., is access equivalent
to the above.

wo =
({07 055815+, Sn}: {T7 Te}) {087 S15+- 45 Sn}) {c;m (3}7
os = {cp..c}
(0,7ge) + o s1 = {c}
(0,r) ’ :
sn = {c}

In order to simulate the actidRevoke(os, 0,7, s,,—1, 1|wr)
within M¢,__,, the capabilityc must be removed from,,,
ands,, only. This require®(|Swm,,,|) Passactions to prop-
agate the new capability to the subjegfs. . ., s, 1, mak-
ing any candidate simulating sequence dependent®n
Hence My, € M. o

ref *

6.5. Interpretation of results

The results of Sections 6.1-6.4 place on a formal footing

simulate access control lists, but not conversely. Trust-ma
agement, modeled here without keys or name spaces, can
strongly (one-to-one) simulate the other mechanisms, pro-
viding a tractable compromise between unrestricted capa-
bility passing from the capability model and easy revoca-
tion provided by access control lists. This comparison is
summarized in Figure 1.

The difference between strong (one-to-one) and weak
(one-to-many) simulations is essentially atomicity ohga
actions. In a strong simulation, one action is simulated by
one visible action whereas in a weak simulation, one ac-
tion may be simulated by more than one visible action. If
multiple visible actions are used to achieve the same end as
achieved by a single visible action in another model, then
an adversary interacting with the system may be able to in-
terleave some of its own actions. While we have not investi-
gated any potential attacks, we believe that when only weak
simulation is possible (as proved in several cases), some
form of forced atomicity is required to achieve equivalence
In common terms, if the functionality of access controHlist
is desired within a capability-based system, for example,
then some locking mechanism must be added to the capa-
bility system in order to accomplish some actions. This may
be feasible if the system is centralized or implemented on a
sequential processor, or infeasible in a distributedragtti

The key actions that distinguish these three mechanisms
are revocation and delegation. Each mechanism operates
in the context of a system configuration which determines
the feasibility of these actions. The model for access con-
trol lists provides centralized control, thereby making re
vocation trivial, and delegation illegal. Capability syists
modeled as unforgeable references present the other ex-
treme, where delegation is trivial, and revocation is infea
sible. The trust management model is able to simulate both
these systems by setting the delegation depth to one of two
extremes:0 or co. In the general case, trust management
systems provide a feasible revocation mechanism, since an
access request is tagged with all the nodes along the dele-
gation chain. Our specification of the access judgment in
this model (Section 3) assumes that the delegation Map
is available globally, so that the effect of local revocatio
are reflected in this global data structure. In practices thi
points towards the need to ensure “freshness” of creden-

our expectations about these access control mechanismgials, by means such as leases for example. A resource may

The models we consider have actions for creating new ob-

jects, granting access to an object, delegating or tramsfer

also check for recent revocations, with all the nodes along
a delegation chain specified in an access request. To sim-

access, and revoking access to an object. Considering all ofilate this behavior in a capability system, one would have

these actions, access control lists are equivalent to dapab

to tag eachPassaction with the identity of the sender, or

ities, when capabilities are regarded as rows of an acces®therwise enforce that an access request to a resource came

control matrix. This is intuitively reasonable, as acls are
just the columns of the matrix. However, when properties of
the “unforgeable ticket” implementation of capabilitieg a

back to it through the sanféasschain that gave the subject
the capability. We may thus view a delegation credential
in a trust management system to be the creation of a new

taken into account, capabilities can weakly (one-to-many) history-dependent capabilitgreated by the delegator, and
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Comparing access control mechanisms
Figure(1): All actions
Figure(2): Without capability passing/revocation
Figure(3): Without delegation
Figure(4): Without revocation or delegation

usableonly by the delegatee. The access judgment for trust cess control lists and capability systems. Intuitivelys ik
management may now be viewed as the judgment for sim-because trust management allows subjects to delegate right
ple capability systems, with an additional forward tempora to objects in a revocable manner.
consistency check to see if current beliefs of nodes in the
chain match the ones existing at the time the capability was
issued.

Three additional figures show how the relationships
change if we focus on specific subsets of actions. Ignor-
ing revocation, the access control list and capabilities-a

The framework and comparison techniques used are gen-
eral enough to analyze a variety of other access control
mechanisms; we hope that they will be useful in evalu-
ating new mechanisms, especially hybrids drawing on the
strengths of pre-existing schemes. The analysis of these

. e ) mechanisms with only some active actions allows us to iso-
rows models can strongly simulate capabilities-as-tiket |40 and better understand the contribution of a certain fea

with other relationships unchanged. Without delegation, e {5 the overall strengths and weaknesses of a scheme.
trust management becomes equivalent to access conts;ollistA distinction between one-to-one and one-to-many sim-

and capabilities-as-rows, and weakly simulable by, but not -+1s petween these mechanisms point to (and, hope-

equivalent to, capabilities-as-tickets, with other nelat ¢,y help avoid) possible pitfalls and security loopheia
ships unchanged. Finally, if revocation and delegation are oy fitting a particular security policy not originally raet
ignored, then all models become equivalentas simple mechy,, o particular security mechanism.

anisms for granting and checking access to objects. ) )
In particular, we have used our model to define and clar-

. ify the equivalence between access control lists and capa-
7. Conclusions and Further Work bilities, showing how capabilities viewed as rows of the

Lampson access matrix, and the more honest capabilities-

Using a framework based on abstract system states, statas-tickets view, differ in their relation to each other and t
transitions, and logical deduction of access control judg- access control lists. Our specification of trust management
ments, we compare four approaches to access control: acsystems shows, in a formal manner, how the depth of dele-
cess control lists, two forms of capability mechanisms, and gation can be varied to capture both the behavior of access

trust management. A general conclusion is that, in a formal control lists and capabilities. In the general case, trumt-m
sense, trust management combines the strong points of acagement systems can provide feasible revocation, and we



may identify trust credentials with history-dependentaap
bilities.

There are a number of promising directions for further
investigation. One particular area of interest is to inoerp
rate naming into the comparison. Proposed trust manage- [0
ment systems include hierarchical and local namespaces.
The functional behavior of these features could be evalu-
ated, in comparison with other mechanisms, using the gen-
eral approach suggested in this paper. In a forthcoming pa-
per, we model the naming aspects of distributed trust man-
agement systems in a manner that composes well with our
analysis of the core access control mechanism here. An-y17)
other issue is the reliance on an external authentication
mechanism. Access control lists, for example, list sulsject
that are allowed access and therefore rely on some authenti{12]
cation mechanism to determine the identity of a subject re-
guesting access. Trust management and capability-ast-tick
systems use alternate mechanisms which do not rely on thel13]
same form of external authentication mechanism. Perhaps
incorporating these issues will provide further insightbin
the relative strengths and possible shortcomings of emerg—[14]
ing trust management systems.
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changes to the world state components are specifiedh a

A. Simulation and Bisimulation relations a table entry denotes restriction of the corresponding com-
ponent in the obvious way.

A Labeled Transition System (LTS) over a set of actions
Actis a pair(Q, T') consisting of C. Examples

1. Aset of state®, and ExXAMPLE C.1 (AccessControl Lists) Unix File Access

2. Aternary relatior7 C (Q x Actx Q) called the tran- Classical Unix operating systems use a restricted, coarse
sition relation. grained form of access control lists to regulate access to
various system resources. For example, each Unix file is
Elements(p, a,p') of the transition relation are also de- associated with anwnerand agroup. (The group associ-
noted byp > p'. ated with the file may be different from the group the owner
of the file belongs to.) Everyone else belongs in a category
DEFINITION A.1 Strong (one-step) simulation and bisim- calledother. Access to a certain right associated with the

ulation file (read (r), wr?te (w), or execute(x)) is moder_ated via an
access control list expressed as a vector. A “-” in the vector
Let (Q,7) be an LTS over a set of actionet (o € Ach), indicates no access, whereas “r", “w”, or “x” implies access

to the corresponding right. For example, usee can read

and letS be a binary relation ove®. ThenS is called a . ; .
y oo and write the filéf oo below, but not execute it.

strong simulation ovefQ, 7)) if, whenevempSy,

- TwW rw joe mil foo
~ ~ =~
if p > p', then there existg’ € Q such that joe’s  mail for
q Ha q’ andp’Sq'. rights  group’s  everyone
rights else
We say thaty strongly simulateg if there exists a strong Thus, a Unix file is associated with a vector of nine bits
simulationS such thapSq. (forread, write, and execute rights) for its owner, grougd a

A binary relationS over Q is said to be a strong bisim-  for everyone else.
ulation over the LTS Q, 7)) if both S and its converse are

t imulations. Wi thaand tronalv bisi f 2 b7y, bG biby, b bbby
strong simulations. We say hat ndq are strongly bisim- N AN ,
ilar or strongly equivalentp ~ ¢, if there exists a strong owner  group e

bisimulationS such thapSq.

else

DEFINITION A.2 Weak (many-step) simulation and bisim- Hereo denotes the owner of the filg ¢ is the group asso-

ulation ciated with the file, and stands for everyone else. Without
loss of generality from the point of view of this modeling,

Let(Q, 7) be an LTS overa set of actioAst (o € Act ae we consider the read right on Unix files.

Act"), and letS be a binary relation ove@. Thens is Unix specifies that a usercan read filef if it is either

called a many-step simulation ové®,7) if, whenever the owner and the owner has read permission, or it belongs

pSq, to the groupy, and the group has read permission, or if ev-
eryone has read permission on the file, in that order. For-
if p % /. then there existg' € Q such that mally, read access is the value of the expression:
> if s=o then ©b°
q — ¢ andp'Sq'. else
) . . ) if se€g then b
We say thaty simulatesp in many steps if there exists a else be

Tany—step simulatio such thapSq.  Itis assumedthat  hich is equivalent tas = o A )V (s # oA ((s €

« only depends on and is independent gfandq. In other gAbI)V (s € g ADE))).

words, the actiony in the first LTS is always simulated by Any complete model of Unix will include constructs
the sequence of actionsin the second LTS. (users, groups, locks, system bits) over and above those in



O |R| S A
Creatds.,o) | U{o} U{s.} (‘(’(’:;5 - i
Allow (s, 0,r) U{s} | (o,7) — A((o,r)) U{s}
Revokés, o, 1) e{s}t | (o,r) = A((o,1)) — {s}
Delet€o) —{o} —{o} |
Table 1. Access Control Lists
O |R| S C
Creatés.,0) | U{o} | | Ufs) |50 { {CS?QSEEJ}{(O,T&)} - Z g
Grants, o,r) U{s} s C(s)U{(o,r)}
Revokés, o, 1) o{s} s> C(s) —{(o,7)}
Deletdo) —{o} —{o} |

Table 2. Lampson matrix capabilities

O |R S C T w
Creatés.,0) | U{o} Ufsch | U{cg.} (O’;‘Q;; : Sgc S { }{/qu(cq}p) Ui} ji gg
Gen(oy, ¢, 0,r) U{c} (0,7) = T'((o,1)) U{c} 0g — W(ogz) U{c}
Pass$s, ¢, 7s) U{rs} Ts > { %}irs) U{e) :: gg
Removéc, o, r) o{s} (o,7) = T((o,7)) —{c} —{c}
Deletgo) —{o} —fo} | -T((0,7)) | |
Table 3. Capabilities as unforgeable bit strings
O | R A D
Creatéo,,0) u{o} ((()OT;§ : éoc, 1) (s,r,0) = 0
Add(o, r, 05, d) (0,7) = A((o,1)) U {os,d}
Removéo, r, o5, d) (0,7) = A((o,r)) — {0s,d}
Delegatéos, 0,7, 04,d) (0s,7,0) = D((0s,7,0)) U{oa4,d}
Revokéos, 0,1, 04, d) (0s,7,0) = D((04,7,0)) — {04,d}
Deleto) —{o} | |

Table 4. Trust Management




our model for access control. We assume the existence of(subjects) communicate with the object by sending it mes-

the partial maps sages containing the necessary capability, i.e., a bit se-
guence containing the port numbgy, the object namé,,
Owner: O — O, and the set of rights, that the capability corresponds to, and
a random numbe, generated by the server managing the
G(Group : O = P(0), object. For example, to create a fileo, userj oe uses his

and the sefz(C O) (for “everyone else”). The intention is account-login capability to login, directory-write caplitly

that Ownetf) be the object corresponding to the owner of t_o create afile, and_ possesses the capapilities to modsfy thi
file £, andG(f) be the set of objects in the group associated € at the end of this sequence of operations.
with the file /. The file f belongs in the set of objects, and This situation can be modeled in a straightforward man-

the above maps are partial because they make sense only fdfer PY UsingG as the servers one-way function and=
files (actually other Unix entities as well, but certainlytno  P»bobrbe @s the capability. The ticket mapand set of ca-
all of them). pabilitiesC' is stored disjointly at each of the servers, and

Note that the mechanism for Unix file access, like all ac- "€ walletl’ resides in each client's own space. O
cess control list implementations, separates the access co
trol question into D. Sample Proofs

 mapping the subject to the subjects of ACL en-  pyoof (Lemma 6.1.1) We prove this by induction on the
tries (in the case of Unix, determining whether= evolution path ofi 4. If

Owner(f), ors € G(f)), and
ot 1 1 2 2 n—1
o ) P= Wy, 0 ,Wa, 0", Wy, ..., Wy ~,0,WA
e determining the precedence of the ACL entries. In ! !
. . . . 1 n— n—
Unix, there is an if-then-else ordering of tests on the IS & path, andv™" Cacc f(w} ), then we show that
access bits. Thus, i = o andb? = 0, then access w4 Cacc f(wa) for all possible actions. The different
should be denied evenife g andb? = 1. cases to consider (based on the last actioare:

1. (Base) The congruence assumpfitis’y ~ WS,

The first of these two is modeled with access control list , . .
implies the lemma for this case.

maps for each of the three bitd?, A9 and A¢. Clearly,

) . 2. (Create) The only new access that is validvin over
Ao(f,r) = {Owne(f)} A b w?"is s, = (0,7401). Hence we only need to check
A9(f,r) G(f) A B if

Ac(f.r) = E A b

f(wa) = Create(s.,0; f(w ")) Fe,o. ¢ = (0,7¢)
where conjunction is interpreted as the entire set or ngthin
depending on the access control bit. Combining this with or, equivalently, if
e e s consnct e LU Ml SPressOn @ Gt (1) s () € Clo)
But this is true by the definition o€reatgTable 2).
(s=o0As€A(f.r)V Also, since this action does not revoke any previous
(s#on((segnse AI(f,r))V allowed accesses in ti&.,,, model, we are done.

(s g gnseA(f,r)))

row

3. (Delete) The accesses alloweduin are the accesses

While our model for acls is powerful enough to formally allowed inw’ " which do not refer to. Hence we
model the access control mechanism, as demonstrated need to check that exactly the same accesses are denied
above, any real system will need to be compiled into this in f(wa). This follows directly from the definition of
description. For an example of a file system which uses Deletein Table 2, as all capabilities @ are removed
fine grained access control lists, see AFS [15]. O from the system, and everything else is untouched.

4. (Allow) Again, the only new access valid iny over
w ' iss — (o,7). Correspondingly, in the, oy
model,
The distril_)uted operating system_A_moeba [ZQ] uses one- Fwa) = Get(s, 0, 7; f(wf;’l)) Fo.. s — (0,7)
way functions to compute capabilities for objects. Each
object can be assumed to be managed by a server, which  since(o,7) € C(s). As no accesses are revoked, we
makes the port for accessing that object public. Clients are done.

ExXAMPLE C.2 (Capabilities as unforgeable bit strings)
Sparse capabilities in Amoeba



5. (Revoke) The accesses allowed.in are the accesses
of w% ' excepts — (o,7). Hence we need to
show that the accesses ffw,4) are the accesses of
f(w"y ) excepts — (o, 7). But this follows directly
from the definition ofRevokéTable 2). o

Proof. (Lemma 6.2) The following functorfgrlow_)A
WSe... = WSa acts as an access containment relation
between the world states 81~ andM,.

FWSt,) - WS

f Y (Create(s.,0;we)) = Create(s.,0; fHwe))

f Y Grant(s,0,m;we)) = Allow(s,0,7; f~Hwe))

f1(Revoke(s,0,r;we)) = Revoke(s, o,r,f Ywe))
1 (Delete(o; we)) = Delete(o; f 1 (we))

It can be shown by induction that
Vwe.we Cace fﬁl(wo)

in a manner similar to the proof of Lemma 6.1.1. o



