
A State-Transition Model of Trust Management and Access Control

Ajay Chander�
Computer Science Department

Stanford University
ajayc@cs.stanford.edu

Drew Deany
Xerox PARC

ddean@parc.xerox.com

John C. Mitchell�
Computer Science Department

Stanford University
mitchell@cs.stanford.edu

Abstract

We use a state-transition approach to analyze and com-
pare the core access control mechanisms that are charac-
teristic of a variety of trust management, access control list,
and capability-based systems. The framework, which char-
acterizes the set of rights a subject has over an object af-
ter any sequence of actions, is based on abstract system
states, state transitions, and logical deduction of access
control judgments. We present abstract models represent-
ing the access control portion of trust management, access
control lists, and two versions of capabilities, proving vari-
ous correspondence and simulation relations between these
models. The main results include an equivalence between
access control lists (ACLs) and capabilities viewed as rows
of the Lampson access matrix and the (proper) subsump-
tion of a form of ACLs by an “unforgeable reference” form
of capabilities. The access control mechanism at the heart
of distributed trust management systems is formally shown
to provide a tractable compromise between unrestricted ca-
pability passing from the capability models and easy revo-
cation provided by access control lists. The underlying sim-
ulations show how trust management compares with more
established access control mechanisms, independent of fea-
tures such as local name spaces and certificate authoriza-
tion hierarchies.

1. Introduction

Many approaches to discretionary access control have
been proposed, studied, and implemented over the
years [12, 22, 2]. Trust management is an emerging ap-
proach based on cryptographic keys, signed credentials, and
policies [5, 6, 7]. As an access control mechanism, apart
from cryptographic issues, a characteristic of trust manage-
ment isdelegation: a principal can delegate access to a re-
source, provided that the principal has been granted the abil-�Supported in part by DARPA grant N66001-00-C-8015.ySupported in part by DARPA grant N66001-00-1-8921.

ity to do so by the owner of the resource or by some chain
of delegations. Our goal in this paper is to study the power
of delegation, in comparison with other mechanisms such
as transfer of capabilities in capability-based models, and
prove precise relationships between trust management and
other mechanisms. To this end, we present precise mod-
els of the abstract features of the access control portion of
trust management, access control list, and capability sys-
tems, and prove the existence and nonexistence of simula-
tion relations between these systems.

Lampson’s access matrix [17], refined by Harrison,
Ruzzo, and Ullman [14], has been used widely as the ba-
sis for comparing earlier access control mechanisms. While
the access matrix is a useful model, it is not sufficiently ex-
pressive to account for properties of delegation in trust man-
agement, or the way that capabilities (when represented as
unforgeable “tickets”) can be passed from one user to an-
other. We therefore propose a new model of access control,
based on abstract system states, state transitions, and logi-
cal deduction of access control judgments. The main idea is
simply to identify a set of abstract system states, each con-
taining the kind of information that would be maintained in
an access control system. The important property of each
state is the set of access requests that will be allowed in this
state, and the access requests that will be allowed after sub-
sequent actions such as the transfer of a capability. The set
of allowed access requests may be recorded directly in the
state, as in access control lists, or derived from properties of
the state by some form of logical inference. In this frame-
work, we compare access control mechanisms by compar-
ing the resulting “abstract state machines,” using traditional
forms of simulation relations from programming language
and concurrency theory.

For each pair of access control mechanisms, we con-
sider the ways that the actions of one mechanism can be
simulated by actions of another. An interesting subtlety is
whether the mapping between actions is one-to-one or one-
to-many. While a one-to-many correspondence, in which
one action in one model is equivalent in effect to a sequence
of actions in another, may seem a suitable equivalence be-

tween models, there is the potential for the latter mechanism
to be subject to attacks that cannot be carried out against the
first model. Since this can be prevented by enforcing atom-
icity of the implementing sequence of actions in the second
model, the distinction between one-to-one and one-to-many
simulations may provide useful guidance in practice.

The main simulation results are summarized as a set of
four diagrams, each showing the existence or impossibility
of one-to-one and one-to-many simulations between access
control models. In brief, the main results are that access
control lists are equivalent to capabilities, when capabili-
ties are regarded as rows of an access control matrix. How-
ever, when properties of the “unforgeable ticket” implemen-
tation of capabilities are taken into account, capabilities can
weakly (one-to-many) simulate access control lists, but not
conversely. Trust management systems, modeled here with-
out keys or name spaces, can vary the delegation depth to
strongly (one-to-one) simulate the other mechanisms, pro-
viding a tractable compromise between unrestricted capa-
bility passing from the capability model and easy revocation
provided by access control lists. In this general case, trust
management systems can provide feasible revocation, and
we may identify trust credentials with history-dependent
capabilities. More generally, our study suggests that trust
management subsumes both earlier mechanisms in specific
ways. These theorems depend on the exact nature of what
is considered observable, and highlight some subtle differ-
ences in capability systems that might be easily overlooked.

The rest of this paper is organized as follows. Section 2
defines our model. Sections 3 through 5 formalize trust
management, access control lists, and two models of ca-
pabilities. Section 6 presents a sequence of results cap-
turing the relationships between these models, with an in-
terpretation in Section 6.5. We make some concluding re-
marks in Section 7, and point out directions for further re-
search. Some additional technical points and examples are
presented in the appendices.

2. The State-Transition Model

An access control mechanism decides, given a config-
uration of the system, whether a subject is allowed a cer-
tain right on an object. For example, given a set of per-
missions at a web site, a web access control system must
decide whether a specific employee of an organization can
read a web page hosted within the corporate intranet. While
authentication is required, we will not consider this part of
the access control mechanism. Therefore, an access con-
trol mechanism comprises a set of system states, subjects,
rights, objects, and an access algorithm. Along with a set of
system states, an access control mechanism also provides a
set of operations that change the system from one state to
another. With these concepts in mind, our model of access

control mechanisms has the following parts:� A world state, which is the part of the system configu-
ration that is relevant to the access control mechanism,� A set of possibleactions, each of which defines a tran-
sition mapping from world states to world states. Ex-
amples of actions include, create a resource, allow ac-
cess, revoke access, and so on,� An access judgment, which states when one object can
access another. This may be specified in the form of
logical inference, equivalent to some implementable
algorithm. Given a world stateWS, the judgment that
subjects can access the objecto with right r is writtenWS ` s! (o; r).

In the remainder of the paper, we will work with models
of trust management, access control list, and capability sys-
tems consisting of these three parts. As suggested above,
the world states will include subjects, rights, objects, and
associations between them, actions will modify these asso-
ciations, and access judgments will specify the accesses that
are allowed in a given state.

Over time, differing versions of each access control
mechanism have been proposed and implemented. For ex-
ample, AFS [15] uses a fine grained form of access control
lists, whereas classical Unix operating system permission
bits can be seen as a restricted, coarse grained form of ac-
cess control lists. Both systems add groups and define eval-
uation orders (see Example C.1 in Appendix C). Proposed
capability-based systems [18] vary in a number of ways.
The most significant for our study is the difference between
systems that allow unrestricted passing of capabilities and
systems that impose control through reference monitors and
indirection. Trust Management systems [6, 8, 5] are quite
recent, and have several variations. In order to give pre-
cise comparisons of some value, we have attempted to iden-
tify representative properties of each class of access con-
trol mechanism. In particular, we analyze and compare the
well-understood centralized control and ease of revocation
within access control lists with the unrestricted passing of
capability systems, with newer trust management systems,
which allow for bounded delegation.

This work follows in the tradition of Kain and
Landwehr [16], although it provides a more precise and
broader setting in which to reason about different access
control mechanisms. Sandhu and Ganta have conducted re-
lated studies [23, 25, 24, 11] in the context of access matrix
models and their variants; our focus has been on studying
a wider range of different access control mechanisms in the
same formal framework, and the development of general
specification and comparison techniques.

3. Modeling Trust Management (Mtm)
Trust Management [7] is a relatively recent proposal for

access control, in which an access request is accompanied
by a set of credentials which together (by transitive closure)
constitute a proof as to why the access should be allowed.
Resources may grant access, as well as the ability to fur-
ther delegate that access a restricted number of times. We
illustrate this by means of an example.

EXAMPLE 3.1 The DoD Firewall Proxy

A classic example in the trust management literature given
in favor of delegating authority and reducing burden on a
central omniscient directory of users is the DoD firewall ac-
cess scenario [10]. Instead of enforcing strict control by
a central database of users (access control list), the same
end is sought by a small root access control list (contain-
ing say the president, ministry officials, and chiefs of staff)
and carefully defined policies implemented by delegation.
For example, privatejoe may be able to access filefoo
inside the firewall because the secretary of defense allowed
a general to allow a captain to allowjoe to access the file.

Lets denote the objects corresponding to the secretary
of defense, the general, the captain, andjoe by Ks, Kg ,K, andKj respectively (these could be their private keys,
for example.) Then we can model the access control policy
described above by the pseudo-credentials

Allow(foo;read) 3 (Ks; 7)
Delegate(Ks;foo;read) 3 (Kg; 5)
Delegate(Kg ;foo;read) 3 (K; 2)
Delegate(K;foo;read) 3 (Kj ; 0):

Clearly, we may construct a proof of
Allow Access(Kj ;foo;read) by a transitive closure
of the above credentials. Note that revocation of any of
these credentials would cause the access to fail. We will
formally compare this with capability revocation later in
the paper. �

Current trust management systems [6, 8, 5] include other
features like support for local name spaces and certificate
authorization hierarchies. While these additions are useful,
and it is important to understand them formally [1, 13, 19],
they are orthogonal to the basic access control mechanism
at the heart of trust management. Thus our model for trust
management comprises of the following:
1. World State (WS): The world state contains a setO
of objects, a setR of rights and two mapsA (bounded
RootACL) andD (bounded Delegate):A : O �R! P(O �N)D : O �R�O ! P(O �N)
We do not specify a separate set of subjects; each object can
act as a subject as well, requesting access rights on another

object. Access to a right on an object in a trust manage-
ment setting is either directly allowed by the(o; r) pair in
question, or is propagated by someone who holds that right,
and we model these two cases by the mapsA andD respec-
tively. In this sense, access propagation in these systems is
a hybrid between the object-controlled access control list,
and the subject-controlled capability.A((o; r)) specifies the set of objects which can access
right r on objecto, and the depth to which they can delegate
that right. Thus if(os; n) 2 A((o; r)), thenos can access
right r on objecto, and can delegate that access right to
another objectod which can then delegate it to a maximum
effective depth ofn � 1. The delegation action would be
modeled as(od; n�1) 2 D(os; r; o). In general if an objectos delegates its access right on(o; r) to a delegatee objectod with depthd, then the set of such delegations is captured
byD(os; o; r).
2. Actions: An action specifies a transition from one world
state to another. For a given world statew, we denote the
result of an action� that takes the vector of arguments

!v by�(!v ;w). We assume that the world statew’s components
before the action are given byO, R, A, andD, and after-
wards, byO0, R0,A0 andD0. For each of the actions below,
we informally state what the action is supposed to accom-
plish, define it by an equation, and then check to see if the
equation matches our original intuition. The following ac-
tions are defined, together with the world state components
that are modified (see table 1 in Appendix B for a summary
of all actions):� Create(object): Objecto creates a new object o.

Create(o; o;w) = (O [fog; R;A0; D0); whereA0(o; r) = � (o; 1) r = re; r 6= re r 2 RD0 = D[(s; r; o) 7! ;js 2 O; r 2 R℄
The new objecto is added to the set of objectsO, and the
creatoro to the rootacl for(o; re). Sinceo createdo, it
is given the rightre of editing o’s rootacl, and the ability
to delegate that right to anyone it wishes to. No one else
holds any rights too at this point.� Add(to rootacl): Allow objectos right r on objecto, with
delegation powers upto depthd.

Add(o; r; os; d;w) = (O;R;A0; D); whereA0 = A[(o; r) 7! A((o; r)) [f(os; d)g℄
The only state transformation caused by theAdd action is
the addition of the pair(os; d) to the rootacl ofA. Since
this newly obtained right has not yet been delegated, the
mapD and other state components remain the same.�Remove(from rootacl): Remove objectos’s access to rightr on objecto.

Remove(o; r; os; d;w) = (O;R;A0; D); where

A0 = A[(o; r) 7! A((o; r)) � f(os; d)g℄
Again, the only change directly caused by theRemoveac-
tion is the removal of(os; d) from the rootacl of(o; r), as re-
flected in the updated mapA. Note thatD has not changed
after the action, even though accesses previously delegated
throughos will now fail.� Delegate(access right): Objectos delegates its right to
access(o; r) to delegatee objectod, and allows it to delegate
it further to depthd.

Delegate(os; o; r; od; d;w) = (O;R;A;D0); whereD0 = D[(os; r; o) 7! D((os; r; o)) [f(od; d)g℄
The only state component directly modified by theDelegate
action, is the mapD, which is updated to reflect the added
delegation in the obvious way. All other components remain
the same.� Revoke(delegated access right): Objectos revokes its
previously delegated right to access(o; r) with delegation
depthd from objectod.

Revoke(os; o; r; od; d;w) = (O;R;A;D0); whereD0 = D[(os; r; o) 7! D((os; r; o))� f(od; d)g℄
Again, theRevokeaction changes only the delegation map
in the obvious way. All other components remain the same.� Delete(object): Objecto is deleted from the system.

Delete(o;w) = (O � fog; R;A j(O�fog); D j(O�fog))
The Deleteaction removes all instances of objecto from
the system, thereby removing it from the set of objectsO,
its rootacls from the mapA, and all delegated access rights
to it from the mapD. In other words, the mapsA andD are
updated by restricting their domains to(O � fog)�R and(O � fog)�R� (O � fog) respectively.
3. Access Judgment: We specify the access judgment
as a logical judgment, given the following four inference
rules. The component maps of the world state can be in-
terpreted as set-membership predicates;ACL(s; o; r; d) is
true iff (s; d) 2 A((o; r)), andDel(s; o; r; rs; d) is true iff(rs; d) 2 D(s; o; r). Subjects can access the(o; r) pair iff
it can produce a proof ofAess(s; o; r; d), for somed, from
the predicate equivalent of the world state and the following
four inference rules:(RootACL) ACL(A;B; r; d) � Aess(A;B; r; d)(Delegation) Aess(A;B; r; d) ^ Del(A;B; r; C; d � 1)� Aess(C;B; r; d� 1)(Ord1) Aess(A;B; d+ 1) � Aess(A;B; d)(Ord2) Del(A;B; r; C; d+ 1) � Del(A;B; r; ; d)
The first two rules capture the rootacl and delegation chain
mechanisms of obtaining access, and the last two capture
the intuitive order relationship between delegation depths.

We now model access control lists and two versions of
capabilities within our framework, so that we may make
comparisons between these models.

4. Modeling Access Control Lists (Mal)
Access control lists are a very commonly deployed

mechanism for restricting access, useful when the “users”
of the resource are known in advance. First introduced
for controlling file system access in the operating system
Multics [21] and in the Cambridge Titan Multi-Access Sys-
tem [4], access is moderated by checking for membership
in the access control list (acl) associated with each object.
Simply put, an entityS (subject) can access an entityO
(object) ifS appears inO’s acl. While implementations of
this mechanism may include other features like groups and
priorities, they are orthogonal to the core access control de-
cision. Thus our model for access control lists comprises of
the following:
1. World State (WS): The World State contains a setO of
objects, a setR of rights, a setS of subjects(S � O), and
an acl mapA, A : O �R! P(S)
mapping each object/right pair (henceforth referred to as an(o; r) pair) uniquely to a set of subjects which are allowed
that right on that object. This set of subjects thus forms the
access control list (acl) for that(o; r) pair.
2. Actions: An action specifies a transition from one world
state to another. We assume that the world state before the
action,w, has componentsO, R, S, andA, and the corre-
sponding components after the action are given byO0, R0,S0 andA0. The following actions are defined, together with
the world set components that are modified (see Table 1 in
Appendix B for a summary of all actions):� Create(object): Objects creates a new objecto.

Create(s; o;w) = (O [fog; R; S [fsg; A0)A0(o; r) = � s r = re; r 6= re
The new objecto is added to the set of objectsO. Sinceo was created bys, we assume thats has the rightre to
edit o’s acl; consequentlys is added to the set of subjectsS. A is updated to include an empty acl for each rightr
associated witho, except there right.� Allow (access): Allow subjects right r on objecto.

Allow(s; o; r;w) = (O;R; S [fsg; A0); whereA0 = A[(o; r) 7! A((o; r)) [fsg℄
The actionAllow addss to the set of subjectsS, and up-
dates the acl mapA at (o; r) to includes, effectively adding

it to the (o; r) acl. The setsO andR are left unchanged.� Revoke(access): Revoke subjects’s right r on objecto.
Revoke(s; o; r;w) = (O;R; S 	 fsg; A0); whereS 	 fsg def= � S jA�1(fsg)j � 2S � fsg otherwiseA0 = A[(o; r) 7! A((o; r)) � fsg℄

The acl mapA is updated at(o; r) by removings from that
acl. The set of subjectsS is modified to accurately capture
the current set of objects which can access at least one(o; r)
pair. We useA�1 to denote the natural extension of the
usual inverse of mapA to subsets of range(A).� Delete(object): Delete objecto from the system.

Delete(o;w) = (O�fog; R; S�fog; A j(O�fog;R;S�fog))
The deletion ofo removes it from both the object and sub-
ject sets, while keepingR unchanged. (The set of rightsR
is assumed to contain all rights that may ever be associated
with objects, and therefore it is retained even when no ob-
jects remain for a given right.) Clearly, everything in the
system is unchanged, except thato disappears. Thus, the
mapA is updated by restricting its domain and co-domain
to (O�fog)�R andS �fog respectively.A((o; r)) is no
longer defined for anyr 2 R, ando doesn’t appear in any
acl.
3. Access Judgment: SinceA((o; r)) is the access control
list associated with the object/right pair(o; r), s can access
that rightiff it belongs to the(o; r)-acl. Formally,WS ` s! (o; r) def= s 2 A((o; r)):

As an example application, we model UNIX file access
control in Example C.1 (Appendix C).

4.1. A note on subjects

In the model above, we have maintained a distinction
between the sets of objects and (active) subjects. Formally,
we consider a subject to be an object which holds a certain
right. In the case of access control lists, a subject is an ob-
ject which appears on the acl of at least one object. The
effect of the actions on the set of subjects should therefore
be checked with respect to this definition of a subject. For
example, theAllow action gives a right to an object, which
is then added to the list of subjects as it now has an access
right. For the same reason, when aRevokeaction removes
a subject from the access control list of an(o; r) pair, the
set of subjects must be updated to possibly remove that ob-
ject if it doesn’t appear on any other acl. This is formally
captured by the	 operator. The actions for the models for

capabilities are also specified to meet the above definition
of subject.

Note that this definition of objects and subjects is in
no way coupled with the modeling of other aspects of the
access control mechanism—what is considered a subject
can be defined independently by a system. Another choice
could have been to stipulate that a subject is a subject irre-
spective of whether or not it currently has access to an(o; r)
pair. In this case, we would identify the setS with the set
of activesubjects.

The distinction between the set of objects and the set of
active subjects serves a technical purpose. Specifically, it
provides us with a way to quantify the effects of actions in
the models, especially revocation, by means of a counting
argument based on the cardinality of the set of subjects. We
use this to demonstrate the infeasibility of simulation in cer-
tain cases. While the same argument could be carried out if
a different definition of the set of subjects were used, the
definition we adopt simplifies the argument.

5. Modeling Capabilities

Capability based systems [18] provide a form of access
control where the ability to access a resource is synonymous
with the possession of an unforgeableticket (or capability)
to it. This idea can be realized in various ways. An oper-
ating system could manage all capabilities associated with
a process, maintaining them in a separate store to prevent a
user from forging them. Alternatively, systems such as the
Communities.com E project [3] have proposed identifying
capabilities with Java language pointers, relying on the Java
type system to prevent users from forging capabilities.

Another view of capabilities is often used to describe a
purported equivalence with access control lists. This view
is based on the access matrix proposed by Lampson [17]
and studied further by Harrison et al. [14]. The access ma-
trix A is a two-dimensional matrix with object/right pairs as
columns, subjects as rows, and the entry in the(i; j)th cellAij determining whether the subject in rowi has access to
the(o; r) pair in columnj. (o; r)isj Aij

. . .

The list of subjects in the column corresponding to(o; r) is
called its access control list, and the list of(o; r) pairs in
a row corresponding to a subject is its capability list. Al-
though the capability as rows view integrates nicely with
ACLs, the ticket model more accurately reflects the spirit of
most capability-based proposals.

We will distinguish capabilities as tickets from the
Lampson-matrix capabilities, giving a model of the former
in Section 5.1 and the latter in Section 5.2. While differ-
ent implementations of capability systems allow varying de-
grees of control over capability passing, we consider one ex-
treme in one model and the opposite in the other. It is also
possible to define other capability models in our framework,
although for simplicity we do not do so in this paper.

5.1. Capabilities as unforgeable bit strings (MCref)
Our model for this view of capabilities comprises of the

following:
1. World State (WS): The world state comprises of a setO of objects, a setR of rights, a setS of subjects(S � O),
a setC of capabilities, and the ticket and wallet mapsT andW : T : O �R! P(C)W : S ! P(C):T (o; r) is the set of capabilities (or tickets) which can be
used to access rightr on objecto. For a subjects, W (s)
denotes its capability-list [9];s can access the(o; r) pairs
for which it has a capability in this list.

A capability is intended to function as an unforgeable
ticket to access a certain right on a certain object, and to
that end it must be hard to fashion one given an(o; r) pair.
Here, we assume the existence of a capability-generating
functionG. Since we may have more than one capability
per object/right pair, a good capability generating functionG must be collision resistant in addition to being one-way.
Thus,C � G(O � R). Note thatT may be identified withG on the intersection of their domains.
2. Actions: An action specifies a transition rule between
two world sets.O;R; S; C; T; andW are the world statew’s components before the action, and the primed versions
are their counterparts afterwards. As before, we state what
an action is supposed to do, define it in terms of a state
transformation, and provide a justification that the two are
equivalent.� Create(object): Objects creates a new objecto.
Create(s; o;w) = (O [fog; R; S0; C [og; T 0;W 0)S0 = S [fsgT 0(o; r) = � og r = rg; r 6= rg r 2 RW 0(s) = � fogg s 62 SW (s) [fogg s 2 S

The creating object is givenog, the capability to generate
any capability associated with the new objecto (i.e., to callG(o; r) for anyr 2 R), which can then be passed to other
subjects. This parallels our justification for givings the
edit-acl rightre in the acl model. Consequently,s is added

to the set of subjects. At this point, no other objects hold
this capability foro, and no other capabilities foro exist,
which is reflected in the updated wallet and ticket mapsW 0
andT 0 respectively.� Generate (capability): The objectog generates a new ca-
pability for the object/right pair(o; r).

Gen(og ; ; o; r;w) = (O;R; S; C [fg; T 0;W 0)T 0 = T [(o; r) 7! T ((o; r)) [fg℄W 0 = W [og 7!W (og) [fg℄
where = G((o; r)). Sinceog was able to generate a
capability for(o; r), it must have already had theog capa-
bility, and is therefore already a subject. We assume that
the ability to callG to generate a new ticket comes with
the ability to cache the result, and hence is added toog ’s
wallet. Here onwards, this new capability maybe passed to
other objects.� Pass(capability): Subjects passes the capability 2W (s) for the object/right pair(o; r) to receiving subjectrs.

Pass(s; ; rs;w) = (O;R; S [frsg; C; T;W 0)W 0(rs) = � fg rs 62 SW (rs) [fg rs 2 S
This action affects only the capability list (the mapW) of

the subject receiving the capability,rs, which now contains
the passed capability.� Remove(capability): The capability corresponding to
the object/right pair(o; r) is removed from the system.

Remove(; o; r;w) = (O;R; S0; C � fg; T 0;W 0)T 0 = T [(o; r) 7! T ((o; r)) � fg℄W 0 = W [s 7!W (s)� fg℄s2S0S0 = S � fsjW (s) = fgg
The capability is flushed out of the system, removing it
from each of: the set of capabilitiesC, the tickets set asso-
ciated with the(o; r) pair, and each subject’s capability list.
This operation may reduce some subjects’ capability list to
null, at which point they no longer should be considered
subjects. (See Section 4.1.)� Delete(object): The objecto is deleted from the system.

Delete(o;w) = (O � fog; R; S � fog; C 0; T 0;W 0)C 0 = C � T ((o; r))T 0 = T j(O�fog;C0)W 0 = W j(S�fog;C0)
The deleted objecto is flushed from the world state, effec-
tively resulting in retaining subsets of the component sets(O;S;C) and maps(T;W) which make no reference to it.

Note that we don’t allow aRevokeaction for capabilities.
The nature of capability based systems makes it infeasible

in general to implement revocation unless thePassaction is
somehow monitored; this is formalized in Lemma 6.5.
3. Access Judgment: A subjects can access rightr ono iff
it possesses at least one of the tickets (capabilities) for that
object/right pair. Formally,WS ` s! (o; r) def= [W (s) \ T (o; r) 6= ;℄:

As an example application, we model capabilities in
Amoeba [20] in Example C.2 (Appendix C).

5.2. Lampson matrix capabilities (MCrow)
For purposes of comparison, we define a model for ca-

pabilities based on the rows of the Lampson access matrix.
Our analysis will show that this view isnot the same as ca-
pabilities as unforgeable bit strings. We model this view of
capabilities as follows:
1. World State (WS): The world state comprises of a setO of objects, a setR of rights, a setS of subjects(S � O),
and a mapC C : S ! P(O �R):
The mapC associates a subjects with its capability list.
However, in contrast with capabilities viewed as unforge-
able bit strings, an element occurring in a capability list
here is not a first class capability. More precisely, if(o; r) 2C(s), then(s; o; r) is the capability, and not(o; r).
2. Actions: As usual, an action is a transition rule between
two world states; the following actions are defined (see ta-
ble 2, Appendix B for a summary).O;R; S; andC are
the world statew’s components before the action, and the
primed versions are their counterparts afterwards.� Create(object): Objects creates a new objecto.

Create(s; o;w) = (O [fog; R; S [fsg; C 0)C 0(s) = � f(o; re)g s 62 SC(s) [f(o; re)g s 2 S
Here re is the right to change capabilities for the entire

object, which is given to the creating objects, effectively
making it a subject. In other words,s can cause aGrantor
Revokeof any capability of the form(s; o; r) for arbitrarys 2 S andr 2 R.� Delete(object): Objecto is deleted from the system.

Delete(o;w) = (O � fog; R; S � fog; C j(S�fog;O�fog))
Flushingo from the system effectively results in retaining
subsets of the world state component setsO;S and mapC
which make no reference to it. Restricting the domain ofC
to S � fog corresponds to removal of theo-row from the
Lampson matrix, whereas restriction of the co-domain to(O�fog)�R corresponds to removal of all(o; r)-columns.

� Grant (capability): Subjects is granted a capability to
access rightr on objecto.
Grant(s; o; r;w) = (O;R; S[fsg; C[s 7! C(s)[f(o; r)g℄)
The addition of(o; r) to the capability list associated withs, corresponds to setting the bit in the(o; r)-column of thes-row of the Lampson matrix to 1.� Revoke(capability): The capability to access the rightr
on objecto is revoked from subjects.

Revoke(s; o; r;w) = (O;R; S0; C 0)S0 = � S � fsg C(s) = (o; r)S C(s) 6= (o; r)C 0 = C[s 7! C(s)� f(o; r)g℄s2S0
The removal of(o; r) from s’s capability list corresponds
to setting the bit in the(o; r)-column of thes-row in the
Lampson matrix to 0.S is modified to captures’s new sta-
tus, depending on whether the action leaves it with a null
capability list.
3. Access Judgment: A subjects is allowed access to the(o; r) pair iff (o; r) belongs in the capability list ofs. For-
mally, WS ` s! (o; r) def= ((o; r) 2 C(s))
Note that the above access is allowed exactly when the bit
in the(o; r)-column of thes-row of the equivalent Lampson
protection matrix is set to 1.

6. Comparing Models via Simulation Relations

Each of the access control models has been presented
as a labeled transition system. For those not familiar with
the concept, Appendix A explains the general concept of a
labeled transition system with statesQ, setAct of actions,
and transition relationT . In each of our models,Q is the
set of possible world states, the setAct is the set of actions
defined for that model, andT is the transition relation im-
plied by the action definitions. This provides us with a nat-
ural way to compare these mechanisms, namely, simulation
and bisimulation relations (Appendix A) between the vari-
ous semantics.

In order to compare any pair of access control mecha-
nisms, we will try to simulate each action in one mechanism
by either a single action or a sequence of actions in another.
More precisely, given access control modelsSA; SC ; andST , we presentmodel functors, which are maps between
the world sets ofSA; SC ; andST , denoted byWSA;WSC
andWST respectively. IffA!C is one such functor, then
our intention is thatfA!C(WSA) be able to simulate the
changes toWSA, within the other model. This potentially
yields two model functors for every pair of mechanisms,
one in each direction.

The simulation theorems, and theorems stating the
nonexistence of simulations, not only allow us to compare
the expressive powers of these systems, but pinpoint imple-
mentation requirements that must be met if security policies
expressed in one access control vernacular are to be accu-
rately met within a system which uses a different access
control mechanism. The existence of only a weak simula-
tion between two models imposes atomicity constraints on
the implementation, ensuring that the visible states of the
implementation are the corresponding weakly similar states
in the model. The infeasibility of simulating specific ac-
tions relies on counting arguments; we show that for these
actions, any simulating sequence of actions must depend on
the size of the world state, thus violating the requirements
for weak simulation (see Appendix A.)

DEFINITION 6.1 (The Access-Containment relation)
Given two models for access controlM1 and M2, and
world statesWSM1 and WSM2 , we say thatWSM1
is access-containedin WSM2 if for any s 2 SWSM1 ,
the access decisionsWSM1 `M1 s ! (o; r) andWSM2 `M2 s ! (o; r) yield the same result. We denote
this byWSM1 �a WSM2 . (Note that this implies thatSWSM1 � SWSM2 .)

DEFINITION 6.2 (Access equivalence) We say that world
statesWSM1 andWSM2 in modelsM1 andM2 for access
control areaccess-equivalentif WSM1 is access-contained
in WSM2 and vice versa. Access equivalence implies that
both world states have the same subject sets, and exactly
the same accesses are allowed in either model.

DEFINITION 6.3 (Strong and Weak model containment)
Given modelsM1 andM2, if the access containment re-
lation between their models is a strong simulation
(Appendix A), i.e.,WSM1 �a WSM2 andWSM1 aM1! WS0M1)9WS0M2 :WSM2 aM2! WS0M2 andWS0M1 �a WS0M2 ;
then we say that modelM1 is strongly containedin or
strongly simulatedby modelM2. We denote this byM1 �sM2. If the access containment relation is a many-step sim-
ulation (Appendix A), i.e.,WSM1 �a WSM2 andWSM1 aM1! WS0M1)9WS0M2 :WSM2 !aM2! WS0M2 andWS0M1 �a WS0M2 ;
then we say that modelM1 isweakly containedin or weakly
simulatedby modelM2. We denote this byM1 �w M2.
DEFINITION 6.4 (Model Equivalence) Two access con-
trol modelsM1 andM2 are defined to be equivalent(M1 �=M2), whenWSM1 `M1 s! (o; r) i� WSM2 `M2 s! (o; r)

for all pair of statesWSM1 andWSM2 in the two mod-
els, which correspond to the same real world state. In other
words,M1 andM2 are equivalent when subjects can ac-
cess the(o; r) pair in a state of modelM1 iff it can access
it in the corresponding state of modelM2.
6.1. Comparing access control lists and Lampson

matrix capabilities

Consider a real world system objectiveS which is mod-
eled asSA using access control lists (Mal), and asSC us-
ing the capabilities as rows view (MCref). For any given
real world state ofS, there will be world setsWSA in the
first model, andWSCrow in the second model, capturing
the information of interest aboutS. In both cases, certain
actions modify the world set, and hence the current world
set can be considered to be the effect of a sequence of ac-
tions, starting from an initial world state. In other words,the
real world systemS started with an initial stateSi, which
was modeled asWSiA andWSiCrow (say) in the two sys-
tems. We assume that from an access control point of view,WSiA �= WSiCrow . A sequence of real world actions took
the system to stateS, and the representation of these actions
in the two systems tookWSiA andWSiCrow to WSA andWSCrow respectively. We will construct maps fromMal
toMCrow , and fromMCrow toMal, to formally capture the
relationship between these two world states. The maps will
be defined by induction on the sequence of steps by which
the world state was arrived at.

LEMMA 6.1 Mal �s Mrow
Proof. We define a functorfA!Crow :WSA !WSCrow as
follows (we abbreviatefA!Crow by f andWSA bywA):f(WSiA) = WSiCrowf(Create(s; o;wA)) = Create(s; o; f(wA))f(Delete(o;wA)) = Delete(o; f(wA))f(Allow(s; r; o;wA)) = Get(s; o; r; f(wA))f(Revoke(s; r; o;wA)) = Revoke(s; o; r; f(wA))
We claim thatf is an access containment relation between
the world states ofMal andMCrow .

CLAIM 6.1.1 8wA:wA �a f(wA)
Proof Idea.Consider the last action in the evolution path ofwA, and show that the access-containment relation between
the world stateswA andf(wA) holds after the action if it
holds prior to it. Showing this for all possible actions ofMal provides the different cases of this inductive proof.
(See Appendix D for the complete proof.)

For each transitionwA aA! w0A in Mal, f(w0A) is defined
in terms of exactly one actionaC andf(wA). For exam-
ple, the(Allow) case of the definition hasaA = Allow

andaC = Get. Hencef is a strong simulation, and henceMal �s Mrow . �
LEMMA 6.2 Mrow �s Mal
Proof. The mapf created above is a bijection, and we can
prove8wC :wC �a f�1(wC) in an identical manner. The
result follows. (See Appendix D for a definition off�1.) �
THEOREM 6.1 Mrow �=Mal
Proof. Follows directly from the definition for access con-
tainment, and the above two lemmas which show that world
states of one model are access contained in the correspond-
ing world states of the other. Thus, as mechanisms for ac-
cess control, capabilities viewed as rows of the Lampson
protection matrix and access control lists are equivalent,i.e.,
strongly bisimilar. �
6.2. Comparing access control lists and capabilities

as references

The fact that theRemoveaction inMal has no real coun-
terpart inMCref leads to the following results.

LEMMA 6.3 Mal �w MCref
Proof. We define a correspondence functorfA!Cref :WSA ! WSCref as follows (we abbreviatefA!Cref byf andWSA bywA):f(WSiA) = WSiCreff(Create(s; o;wA)) = Create(s; o; f(wA))f(Delete(o;wA)) = Delete(o; f(wA))f(Allow(s; r; o;wA)) = Pass(og; ; s;

Gen(og; ; o; r; f(wA)))f(Revoke(s; r; o;wA)) = Remove(s; o; r; f(wA))
where s is the capability thats has to the(o; r) pair(s = W (s) \ T ((o; r))). We claim thatf is an access
containment relation between the world states ofMal andMCref .
CLAIM 6.3.1 8wA:wA �a f(wA)
Proof Sketch.Again, we consider the last transition in the
evolution path ofwA, and show that for all possible ac-
tions, the access-containment relation holds betweenwA
andf(wA) after the action if it holds before. Hence, by
induction, we are done.

Since theAllow action ofMal requires twoMCref ac-
tions to simulate it,Mal 6�s MCref . This can also be in-
ferred by considering the actions needed inMCref to simu-
late the first subject that is given a (non edit-acl) right to an
object inMal.

Note that the equivalent capability system should hand
out fresh capabilities for eachAllow action authorized by
the object inMal, as specified in the(Allow) case above.
Failing that, it would be hard to model acls with a capability
implementation because of the infeasibility of determining
which subjects a revoked capability corresponds to. �
LEMMA 6.4 Mref 6�s Mal
In other words,9a 2 ActMCref such thatwC �a f(wC) andwC a! w0C but 6 9a0:f(wC) a0! f(w0C):
wheref is the correspondence functor betweenMCref andMal.
Proof. Consider the following world statewC in MCref .wC =(fo; os; s1; s2; s3g; fr; rgg; fos; s1; s2; s3g; fog; a; bg;264 (o; rg) 7! 0g(o; r) 7! fa; bg

...

375 ;2664 os 7! fog; a; bgs1 7! fags2 7! fags3 7! fbg 3775)
One may imagine that this state was the result of the supe-
ruseros generating capabilitiesa and b to objecto and
handing them out to subjectss1 ands3 respectively. Subse-
quently, subjects1 passed ticketa to subjects2. Clearly,
the statewA of Mal which corresponds towC is given bywA = (fo; os; s1; s2; s3g; fr; reg; fos; s1; s2; s3g;264 (o; re) 7! os(o; r) 7! fs1; s2; s3g

...

375):
Removing capabilitya fromwC (by theRemove(a; o; r)
action) results in a statew0C whose corresponding state inMal, w0A (say), cannot be reached fromwA by any sin-
gle action ofMal. Thusw0A is reached by the actionsRevoke(s1; r; o) andRevoke(s2; r; o) in any order. �
LEMMA 6.5 Mref 6�w Mal
Proof. We consider the “cost” associated with carrying out
an action in either model, and show that in order to reach a
corresponding state inMal, after aRemoveaction inMCref ,
requires a number of actions proportional to the size of the
set of objects. Consider the following state inMCref :wC =(fo; os; s1; : : : ; sng; fr; rgg; fos; s1; : : : ; sng; fog; g;264 (o; rg) 7! 0g(o; r) 7! fg

...

375 ;26664 os 7! fog; gs1 7! fg
...sn 7! fg 37775)

Here the capability to (o; r) pair is held by sub-
jects s1; : : : ; sn, which hold no other capabilities. A
Remove(; o; rjwC) action reducesSCref to fosg, a reduc-
tion in size by�(jSj). Since each of the actions inMal
changes the set of subjects by at most one, the above action
needs�(jSj) actions inMal to simulate it. Thus any simu-
lating sequence necessarily depends onwC , and fails to be
a witness for a weak simulation. Hence,Mref 6�w Mal: �
6.3. Access control lists and Trust Management

It is not possible to simulate the delegation feature of
trust management in a way that allows for controlled revo-
cation, leading to an asymmetric relationship betweenMal
andMtm. The following results express this formally.

LEMMA 6.6 Mal �s Mtm
Proof. We define a correspondence functorfA!T :WSA ! WST as follows (we abbreviatefA!T by f andWSA bywA):f(WSiA) = WSiTf(Create(s; o;wA)) = Create((s; o; f(wA))f(Delete(o;wA)) = Delete((o; f(wA))f(Allow(s; o; r;wA)) = Add(o; r; s; 0; f(wA))f(Revoke(s; o; r;wA)) = Remove(o; r; s; 0; f(wA))
In other words, by setting the delegation depth to0, thereby
rendering any delegation actions ineffective, we can embedMal into Mtm. We claim thatf is an access containment
relation between the world states ofMal andMtm.

CLAIM 6.6.1 8wA:wA �a f(wA)
Proof Idea. The proof strategy is identical to that of
Claim 6.1.1, and considers the last action in the evolution
path ofwA.

For each transitionwA aA! w0A in Mal, f(w0A) is de-
fined in terms of exactly one actionaT 2 Mtm andf(wA).
Hencef is a strong simulation, andMal �s Mtm. �
LEMMA 6.7 Mtm 6�s Mal
Proof. Consider the following world statewT in Mtm.wT = (fo; os; s1; s2g; fre; rg;264 (o; re) 7! (os; 1)(o; r) 7! (os; 2)

...

375 ;264 (os; r; o) 7! f(s1; 1)g(s1; r; o) 7! f(s2; 0)g
...

375)
One may imagine that this state was the result of a supe-
ruseros delegating its rightr on objecto to subjects1, who

further delegated it tos2. The statewA in Mal which cor-
responds towT is given by:wA = (fo; os; s1; s2g; fre; rg; fos; s1; s2g;264 (o; re) 7! os(o; r) 7! fos; s1; s2g

...

375)
The action Remove(o; r; os; 2;wT) in Mtm cannot be sim-
ulated by any single action ofMal, but requires bothRevoke(s1; o; r) andRevoke(s2; o; r). Intuitively, the re-
moval of an object from a rootacl (or the revocation of a del-
egation) renders several previously allowed accesses void,
and identifying these denied accesses can take�(jSMal j)
actions in the worst case. The next results states this for-
mally. �
LEMMA 6.8 Mtm 6�w Mal
Proof. As we did in Lemma 6.5, we consider the cost as-
sociated with actions in the two models, and show that the
Remove action ofMtm can require upto�(jSMal j) actions
in Mal to reach an access equivalent state. This may be
seen by generalizing the world state in the last lemma to
contain a delegation chain of depthn. As a result, any can-
didate sequence of actions for simulating the Remove action
depends on the corresponding state inMal, and thus we are
done. �
6.4. Comparing Trust Management and capabilities

as references

Delegation in a trust management style of access con-
trol provides for bounds on propagation of access rights, a
property which doesn’t hold true for capabilities. In addi-
tion, it is possible to meaningfully revoke access anywhere
in a delegation chain for trust management, in contrast to
its infeasibility for capabilities. We formalize this intuition
below.

LEMMA 6.9 Mref �s Mtm
Proof. We define a functorfCref!T : WSCref ! WST as
follows (we abbreviatefCref!T by f andWSCref bywC):f(WSiCref) = WSiTf(Create(s; o;wC)) = Create(s; o; f(wC))f(Gen(og ; ; o; r;wC)) = Add(o; r; og ;1; f(wC))f(Pass(s; ; rs;wC)) = Delegate(s; o; r; rs;1;f(wC))f(Remove(; o; r;wC)) = Remove(o; r; s;1;f(wC))f(Delete(o;wC)) = Delete(o; f(wC))
We claim thatf is an access containment relation between
the world states ofMCref andMtm.

CLAIM 6.9.1 8wC :wC �a f(wC)
Proof Idea. As before, we consider the last action in the
evolution path ofwC , and show that the access-containment
relation between the world stateswC andf(wC) holds after
the action if it holds prior to it. Showing this for all possible
actions ofMCref provides the different cases of this induc-
tive proof.

Since each action inMCref is simulated by exactly one
action ofMtm, Mref �s Mtm. �
LEMMA 6.10 Mtm 6�w Mref
Proof. Consider the following world statewT of Mtm.wT =(fo; os; s1; : : : ; sng; fr; reg;" (o; re) 7! f(os; 1)g

...

;26664 (os; r; o) 7! (s1; n� 1)(s1; r; o) 7! (s2; n� 2)
...(sn�1; r; o) 7! (sn; 0) 37775)

The following world statewC of MCref is access equivalent
to the above.wC =(fo; os; s1; : : : ; sng; fr; reg; fos; s1; : : : ; sng; fog; g;� (o; rg) 7! og(o; r) 7! � ;26664 os 7! fog; gs1 7! fg

...sn 7! fg 37775)
In order to simulate the actionRevoke(os; o; r; sn�1; 1jwT)
within MCref , the capability must be removed fromsn,
andsn only. This requires�(jSMtm j) Passactions to prop-
agate the new capability to the subjectss1; : : : ; sn�1, mak-
ing any candidate simulating sequence dependent onwC .
Hence,Mtm 6�w Mref . �
6.5. Interpretation of results

The results of Sections 6.1–6.4 place on a formal footing
our expectations about these access control mechanisms.
The models we consider have actions for creating new ob-
jects, granting access to an object, delegating or transferring
access, and revoking access to an object. Considering all of
these actions, access control lists are equivalent to capabil-
ities, when capabilities are regarded as rows of an access
control matrix. This is intuitively reasonable, as acls are
just the columns of the matrix. However, when properties of
the “unforgeable ticket” implementation of capabilities are
taken into account, capabilities can weakly (one-to-many)

simulate access control lists, but not conversely. Trust man-
agement, modeled here without keys or name spaces, can
strongly (one-to-one) simulate the other mechanisms, pro-
viding a tractable compromise between unrestricted capa-
bility passing from the capability model and easy revoca-
tion provided by access control lists. This comparison is
summarized in Figure 1.

The difference between strong (one-to-one) and weak
(one-to-many) simulations is essentially atomicity of trans-
actions. In a strong simulation, one action is simulated by
one visible action whereas in a weak simulation, one ac-
tion may be simulated by more than one visible action. If
multiple visible actions are used to achieve the same end as
achieved by a single visible action in another model, then
an adversary interacting with the system may be able to in-
terleave some of its own actions. While we have not investi-
gated any potential attacks, we believe that when only weak
simulation is possible (as proved in several cases), some
form of forced atomicity is required to achieve equivalence.
In common terms, if the functionality of access control lists
is desired within a capability-based system, for example,
then some locking mechanism must be added to the capa-
bility system in order to accomplish some actions. This may
be feasible if the system is centralized or implemented on a
sequential processor, or infeasible in a distributed setting.

The key actions that distinguish these three mechanisms
are revocation and delegation. Each mechanism operates
in the context of a system configuration which determines
the feasibility of these actions. The model for access con-
trol lists provides centralized control, thereby making re-
vocation trivial, and delegation illegal. Capability systems
modeled as unforgeable references present the other ex-
treme, where delegation is trivial, and revocation is infea-
sible. The trust management model is able to simulate both
these systems by setting the delegation depth to one of two
extremes:0 or 1. In the general case, trust management
systems provide a feasible revocation mechanism, since an
access request is tagged with all the nodes along the dele-
gation chain. Our specification of the access judgment in
this model (Section 3) assumes that the delegation mapD
is available globally, so that the effect of local revocations
are reflected in this global data structure. In practice, this
points towards the need to ensure “freshness” of creden-
tials, by means such as leases for example. A resource may
also check for recent revocations, with all the nodes along
a delegation chain specified in an access request. To sim-
ulate this behavior in a capability system, one would have
to tag eachPassaction with the identity of the sender, or
otherwise enforce that an access request to a resource came
back to it through the samePasschain that gave the subject
the capability. We may thus view a delegation credential
in a trust management system to be the creation of a new
history-dependent capability, created by the delegator, and

Mal MCrow
MtmMCrefw w s wss

sw
(1) Mal MCrow

MtmMCrefw s s wss
sw

(2)
Mal MCrow

MtmMCrefw w s sss
ww

(3) Mal MCrow
MtmMCrefw s s sss

sw
(4)

Comparing access control mechanisms
Figure(1): All actions
Figure(2): Without capability passing/revocation
Figure(3): Without delegation
Figure(4): Without revocation or delegation

usableonlyby the delegatee. The access judgment for trust
management may now be viewed as the judgment for sim-
ple capability systems, with an additional forward temporal
consistency check to see if current beliefs of nodes in the
chain match the ones existing at the time the capability was
issued.

Three additional figures show how the relationships
change if we focus on specific subsets of actions. Ignor-
ing revocation, the access control list and capabilities-as-
rows models can strongly simulate capabilities-as-tickets,
with other relationships unchanged. Without delegation,
trust management becomes equivalent to access control lists
and capabilities-as-rows, and weakly simulable by, but not
equivalent to, capabilities-as-tickets, with other relation-
ships unchanged. Finally, if revocation and delegation are
ignored, then all models become equivalent as simple mech-
anisms for granting and checking access to objects.

7. Conclusions and Further Work

Using a framework based on abstract system states, state
transitions, and logical deduction of access control judg-
ments, we compare four approaches to access control: ac-
cess control lists, two forms of capability mechanisms, and
trust management. A general conclusion is that, in a formal
sense, trust management combines the strong points of ac-

cess control lists and capability systems. Intuitively, this is
because trust management allows subjects to delegate rights
to objects in a revocable manner.

The framework and comparison techniques used are gen-
eral enough to analyze a variety of other access control
mechanisms; we hope that they will be useful in evalu-
ating new mechanisms, especially hybrids drawing on the
strengths of pre-existing schemes. The analysis of these
mechanisms with only some active actions allows us to iso-
late and better understand the contribution of a certain fea-
ture to the overall strengths and weaknesses of a scheme.
A distinction between one-to-one and one-to-many sim-
ulations between these mechanisms point to (and, hope-
fully, help avoid) possible pitfalls and security loopholes in
retrofitting a particular security policy not originally meant
for a particular security mechanism.

In particular, we have used our model to define and clar-
ify the equivalence between access control lists and capa-
bilities, showing how capabilities viewed as rows of the
Lampson access matrix, and the more honest capabilities-
as-tickets view, differ in their relation to each other and to
access control lists. Our specification of trust management
systems shows, in a formal manner, how the depth of dele-
gation can be varied to capture both the behavior of access
control lists and capabilities. In the general case, trust man-
agement systems can provide feasible revocation, and we

may identify trust credentials with history-dependent capa-
bilities.

There are a number of promising directions for further
investigation. One particular area of interest is to incorpo-
rate naming into the comparison. Proposed trust manage-
ment systems include hierarchical and local namespaces.
The functional behavior of these features could be evalu-
ated, in comparison with other mechanisms, using the gen-
eral approach suggested in this paper. In a forthcoming pa-
per, we model the naming aspects of distributed trust man-
agement systems in a manner that composes well with our
analysis of the core access control mechanism here. An-
other issue is the reliance on an external authentication
mechanism. Access control lists, for example, list subjects
that are allowed access and therefore rely on some authenti-
cation mechanism to determine the identity of a subject re-
questing access. Trust management and capability-as-ticket
systems use alternate mechanisms which do not rely on the
same form of external authentication mechanism. Perhaps
incorporating these issues will provide further insight into
the relative strengths and possible shortcomings of emerg-
ing trust management systems.

Acknowledgments

We thank Peter Neumann and the anonymous referees
for helpful comments on this paper.

References

[1] M. Abadi. On SDSI’s linked local name spaces.Journal of
Computer Security, 6:3–21, 1998.

[2] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A
calculus for access control in distributed systems.TOPLAS,
15(4):706–734, Sept. 1993.

[3] D. Barnes, C. Morningstar, D. Bornstein, G. Freeman, and
E. Messick. Original-E.http://www.erights.org.

[4] D. W. Barron, A. G. Fraser, D. F. Hartley, B. Landy, and
R. M. Needham. File handling at Cambridge University.
In AFIPS Conference Proceedings, Volume 30, 1967 Spring
Joint Computer Conference, pages 163–167, Washington,
DC, USA, 1967. Thompson Books.

[5] Blaze, Feigenbaum, and Strauss. Compliance checking in
the PolicyMaker trust management system. InFC: In-
ternational Conference on Financial Cryptography. LNCS,
Springer-Verlag, 1998.

[6] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust management for public-key infrastructures.Lecture
Notes in Computer Science, 1550:59–63, 1999.

[7] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. InProceedings of the IEEE Symposium on
Research in Security and Privacy, Oakland, CA, May 1996.
IEEE Computer Society, Technical Committee on Security
and Privacy, IEEE Computer Society Press.

[8] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and
M. Strauss. REFEREE: Trust management for Web ap-
plications. Computer Networks and ISDN Systems, 29(8–
13):953–964, Sept. 1997.

[9] J. B. Dennis and E. C. Van Horn. Programming semantics
for multiprogrammed computations.Communications of the
ACM, 9(3):143–155, Mar. 1966. Originally presented at the
Proceedings of the ACM Programming Language and Prag-
matics Conference, August 8–12, 1965.

[10] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. SPKI certificate theory. Available athttp:
//www.clark.net/pub/cme/theory.txt.

[11] S. Ganta.Expressive Power of Access Control Models Based
on Propagation of Rights. PhD thesis, George Mason Uni-
versity, 1996.

[12] L. Gong. A secure identity-based capability system. InProc.
1989 IEEE Symposium on Research in Security and Privacy,
IEEE Computer Society Press., pages 56–63, May 1989.

[13] J. Halpern and R. van der Meyden. A logic for SDSI’s linked
local name spaces.Proceedings of the 12th IEEE Computer
Security Foundations Workshop, pages 111–122, 1999.

[14] M. Harrison, W. Ruzzo, and J. Ullman. Protection in oper-
ating systems. InCommunications of the ACM, pages 461–
471. ACM, Aug. 1976.

[15] J. H. Howard. An overview of the Andrew file system. In
Proceedings of the USENIX Winter 1988 Technical Confer-
ence, pages 23–26, Berkeley, CA, 1988. USENIX Associa-
tion.

[16] R. Y. Kain and C. E. Landwehr. On access checking in
capability-based systems.IEEE Transactions on Software
Engineering, 13(2):202–207, February 1987.

[17] B. Lampson. Protection. InProceedings of the 5th Annual
Princeton Conference on Information Sciences and Systems,
pages 437–443, Princeton University, 1971.

[18] H. M. Levy. Capability-Based Computer Systems. Digital
Press, 1984.

[19] N. Li. Local names in SPKI/SDSI.Proceedings of the 13th
Computer Security Foundations Workshop, pages 2–15, July
2000.

[20] S. J. Mullender and A. S. Tanenbaum. The design of a
capability-based distributed operating system.The Com-
puter Journal, 29(4):289–299, Aug. 1986.

[21] E. I. Organick. The Multics System: An Examination of Its
Structure. MIT Press, Cambridge, MA, USA, 1972.

[22] R. Sandhu. The typed access matrix model. InProc. of the
11th IEEE Symp. on Security and Privacy., pages 122–136,
1992.

[23] R. Sandhu and S. Ganta. On testing for absence of rights in
access control models. InProc. of the 6th IEEE Computer
Security Foundations Workshop, pages 109–118, Franconia,
NH, 1993.

[24] R. Sandhu and S. Ganta. On the expressive power of the
unary transformation model. In D. Gollmann, editor,Com-
puter Security - ESORICS 94: Third European Symposium
on Research in Computer Security, volume 875 ofLecture
Notes in Computer Science, Brighton, UK, November 1994.
Springer-Verlag.

[25] R. Sandhu and S. Ganta. On the minimality of testing
for rights in transformation models. InProceedings of the
1994 IEEE Symposium on Research in Security and Privacy,
pages 230–241, Oakland, CA, May 1994.

A. Simulation and Bisimulation relations

A Labeled Transition System (LTS) over a set of actions
Act is a pair(Q; T) consisting of

1. A set of statesQ, and

2. A ternary relationT � (Q�Act�Q) called the tran-
sition relation.

Elements(p; �; p0) of the transition relation are also de-
noted byp �! p0.
DEFINITION A.1 Strong (one-step) simulation and bisim-
ulation

Let (Q; T) be an LTS over a set of actionsAct (� 2 Act),
and letS be a binary relation overQ. ThenS is called a
strong simulation over(Q; T) if, wheneverpSq,

if p �! p0; then there existsq0 2 Q such thatq �! q0 andp0Sq0:
We say thatq strongly simulatesp if there exists a strong
simulationS such thatpSq.

A binary relationS overQ is said to be a strong bisim-
ulation over the LTS(Q; T) if both S and its converse are
strong simulations. We say thatp andq are strongly bisim-
ilar or strongly equivalent,p � q, if there exists a strong
bisimulationS such thatpSq.
DEFINITION A.2 Weak (many-step) simulation and bisim-
ulation

Let (Q; T) be an LTS over a set of actionsAct(� 2 Act;!�2
Act?), and letS be a binary relation overQ. ThenS is
called a many-step simulation over(Q; T) if, wheneverpSq,

if p �! p0; then there existsq0 2 Q such thatq !�! q0 andp0Sq0:
We say thatq simulatesp in many steps if there exists a
many-step simulationS such thatpSq. It is assumed that!� only depends on� and is independent ofp andq. In other
words, the action� in the first LTS is always simulated by
the sequence of actions

!� in the second LTS.

B. Models for access control mechanisms

Tables 1 to 4 summarize the models for ACLs, two ver-
sions of capabilities, and trust management. Note that only
changes to the world state components are specified; aj in
a table entry denotes restriction of the corresponding com-
ponent in the obvious way.

C. Examples

EXAMPLE C.1 (Access Control Lists) Unix File Access

Classical Unix operating systems use a restricted, coarse
grained form of access control lists to regulate access to
various system resources. For example, each Unix file is
associated with anownerand agroup. (The group associ-
ated with the file may be different from the group the owner
of the file belongs to.) Everyone else belongs in a category
calledother. Access to a certain right associated with the
file (read (r), write (w), or execute(x)) is moderated via an
access control list expressed as a vector. A “-” in the vector
indicates no access, whereas “r”, “w”, or “x” implies access
to the corresponding right. For example, userjoe can read
and write the filefoo below, but not execute it.

- rw-|{z}
joe’s

rights

rw-|{z}
mail

group’s

rights

---|{z}
for

everyone

else

joe mail foo

Thus, a Unix file is associated with a vector of nine bits
(for read, write, and execute rights) for its owner, group, and
for everyone else.f : borbowbox| {z }

owner

bgrbgwbgx| {z }
group

berbewbex| {z }
everyone

else

Hereo denotes the owner of the filef , g is the group asso-
ciated with the file, ande stands for everyone else. Without
loss of generality from the point of view of this modeling,
we consider the read right on Unix files.

Unix specifies that a users can read filef if it is either
the owner and the owner has read permission, or it belongs
to the groupg, and the group has read permission, or if ev-
eryone has read permission on the file, in that order. For-
mally, read access is the value of the expression:

if s = o then bor
else

if s 2 g then bgr
else ber

which is equivalent to(s = o ^ bor) _ (s 6= o ^ ((s 2g ^ bgr) _ (s 62 g ^ ber))).
Any complete model of Unix will include constructs

(users, groups, locks, system bits) over and above those in

O R S A
Create(s; o) [fog [fsg (o; re) 7! s(o; r) 7! ;
Allow(s; o; r) [fsg (o; r) 7! A((o; r)) [fsg
Revoke(s; o; r) 	fsg (o; r) 7! A((o; r)) � fsg
Delete(o) �fog �fog j

Table 1. Access Control ListsO R S C
Create(s; o) [fog [fsg s 7! � f(o; re)g s 62 SC(s) [f(o; re)g s 2 S
Grant(s; o; r) [fsg s 7! C(s) [f(o; r)g
Revoke(s; o; r) 	fsg s 7! C(s) � f(o; r)g
Delete(o) �fog �fog j

Table 2. Lampson matrix capabilities

O R S C T W
Create(s; o) [fog [fsg [fogg (o; rg) 7! og(o; r) 7! ; s 7! � fogg s 62 SW (s) [fogg s 2 S
Gen(og ; ; o; r) [fg (o; r) 7! T ((o; r)) [fg og 7!W (og) [fg
Pass(s; ; rs) [frsg rs 7! � fg rs 62 SW (rs) [fg rs 2 S
Remove(; o; r) 	fsg (o; r) 7! T ((o; r))� fg �fg
Delete(o) �fog �fog �T ((o; r)) j j

Table 3. Capabilities as unforgeable bit stringsO R A D
Create(o; o) [fog (o; re) 7! (o; 1)(o; r) 7! ; (s; r; o) 7! ;
Add(o; r; os; d) (o; r) 7! A((o; r)) [fos; dg
Remove(o; r; os; d) (o; r) 7! A((o; r)) � fos; dg
Delegate(os; o; r; od; d) (os; r; o) 7! D((os; r; o)) [fod; dg
Revoke(os; o; r; od; d) (os; r; o) 7! D((os; r; o)) � fod; dg
Delete(o) �fog j j

Table 4. Trust Management

our model for access control. We assume the existence of
the partial maps

Owner: O ! O; andG(Group) : O ! P(O);
and the setE(� O) (for “everyone else”). The intention is
that Owner(f) be the object corresponding to the owner of
file f , andG(f) be the set of objects in the group associated
with the filef . The filef belongs in the set of objects, and
the above maps are partial because they make sense only for
files (actually other Unix entities as well, but certainly not
all of them).

Note that the mechanism for Unix file access, like all ac-
cess control list implementations, separates the access con-
trol question into� mapping the subjects to the subjects of ACL en-

tries (in the case of Unix, determining whethers =Owner(f), or s 2 G(f)), and� determining the precedence of the ACL entries. In
Unix, there is an if-then-else ordering of tests on the
access bits. Thus, ifs = o andbor = 0, then access
should be denied even ifs 2 g andbgr = 1.

The first of these two is modeled with access control list
maps for each of the three bits,Ao; Ag andAe. Clearly,Ao(f; r) = fOwner(f)g ^ borAg(f; r) = G(f) ^ bgrAe(f; r) = E ^ ber
where conjunction is interpreted as the entire set or nothing
depending on the access control bit. Combining this with
the if-then-else construct, we get the formal expression for
when a Unix subjects can read a filef :(s = o ^ s 2 Ao(f; r))_(s 6= o ^ ((s 2 g ^ s 2 Ag(f; r))_(s 62 g ^ s 2 Ae(f; r)))):
While our model for acls is powerful enough to formally
model the access control mechanism, as demonstrated
above, any real system will need to be compiled into this
description. For an example of a file system which uses
fine grained access control lists, see AFS [15]. �
EXAMPLE C.2 (Capabilities as unforgeable bit strings)
Sparse capabilities in Amoeba

The distributed operating system Amoeba [20] uses one-
way functions to compute capabilities for objects. Each
object can be assumed to be managed by a server, which
makes the port for accessing that object public. Clients

(subjects) communicate with the object by sending it mes-
sages containing the necessary capability, i.e., a bit se-
quence containing the port numberbp, the object namebo,
the set of rightsbr that the capability corresponds to, and
a random numberb generated by the server managing the
object. For example, to create a filefoo, userjoe uses his
account-login capability to login, directory-write capability
to create a file, and possesses the capabilities to modify this
file at the end of this sequence of operations.

This situation can be modeled in a straightforward man-
ner by usingG as the server’s one-way function and =bpbobrb as the capability. The ticket mapT and set of ca-
pabilitiesC is stored disjointly at each of the servers, and
the walletW resides in each client’s own space. �
D. Sample Proofs

Proof. (Lemma 6.1.1) We prove this by induction on the
evolution path ofwA. Ifp = wiA; a1; w1A; a2; w2A; : : : ; wn�1A ; a; wA
is a path, andwn�1A �a f(wn�1A), then we show thatwA �a f(wA) for all possible actionsa. The different
cases to consider (based on the last actiona) are:

1. (Base) The congruence assumptionWSiA �= WSiCrow
implies the lemma for this case.

2. (Create) The only new access that is valid inwA overwn�1A is s ! (o; ral). Hence we only need to check
iff(wA) = Create(s; o; f(wn�1A)) `Crow s ! (o; re)
or, equivalently, ifCreate(s; o; f(wn�1A)) `Crow (o; re) 2 C(s):
But this is true by the definition ofCreate(Table 2).
Also, since this action does not revoke any previous
allowed accesses in theCrow model, we are done.

3. (Delete) The accesses allowed inwA are the accesses
allowed inwn�1A which do not refer too. Hence we
need to check that exactly the same accesses are denied
in f(wA). This follows directly from the definition of
Deletein Table 2, as all capabilities too are removed
from the system, and everything else is untouched.

4. (Allow) Again, the only new access valid inwA overwn�1A is s ! (o; r). Correspondingly, in theCrow
model,f(wA) = Get(s; o; r; f(wn�1A)) `Crow s! (o; r)
since(o; r) 2 C(s). As no accesses are revoked, we
are done.

5. (Revoke) The accesses allowed inwA are the accesses
of wn�1A except s ! (o; r). Hence we need to
show that the accesses off(wA) are the accesses off(wn�1A) excepts ! (o; r). But this follows directly
from the definition ofRevoke(Table 2). �

Proof. (Lemma 6.2) The following functorf�1Crow!A :WSCrow ! WSA acts as an access containment relation
between the world states ofMCrow andMal.f�1(WSiCrow) = WSiAf�1(Create(s; o;wC)) = Create(s; o; f�1(wC))f�1(Grant(s; o; r;wC)) = Allow(s; o; r; f�1(wC))f�1(Revoke(s; o; r;wC)) = Revoke(s; o; r; f�1(wC))f�1(Delete(o;wC)) = Delete(o; f�1(wC))
It can be shown by induction that8wC :wC �a f�1(wC)
in a manner similar to the proof of Lemma 6.1.1. �

