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Multicast with Cache (Mcache): An Adaptive
Zero-Delay Video-on-Demand Service

Sridhar Ramesh, Injong Rhee, and Katherine Guo

Abstract—A closed-loop (demand-driven) approach toward
video-on-demand services, called multicast cache (Mcache), is
discussed in this paper. Servers use multicast to reduce their
bandwidth usage by allowing multiple requests to be served with a
single data stream. However, this requires clients to delay receiving
the movie until the multicast starts. Using regional cache servers
deployed over many strategic locations, Mcache can remove the
initial playout delays of clients in multicast-based video streaming.
While requests are batched together for a multicast, clients can
receive the prefix of a requested movie clip from caches located
in their own regions. The multicast containing the later portion
of the movie can wait until the prefix is played out. While this
use of regional caches has been proposed previously, the novelty
of our scheme lies in that the requests coming after the multicast
starts can still be batched together to be served by multicast
patches without any playout delays. The use of patches was
proposed before, but they are used either with unicast or with
playout delays. Mcache effectively hires the idea of a multicast
patch with caches to provide a truly adaptive video-on-demand
service whose bandwidth usage is up to par with the best known
open-loop schemes under high request rates while using only
minimal bandwidth under low request rates. In addition, effi-
cient use of multicast and caches removes the need fora priori
knowledge of client disk storage requirements which some of the
existing schemes assume. This makes Mcache ideal for the current
heterogeneous Internet environments where those parameters
are hard to predict. We further propose the Segmented Mcache
(SMcache) scheme which is a generalized and improved version
of Mcache where the clip is partitioned into several segments in
order to preserve the advantages of the original Mcache scheme
with nearly the same server bandwidth requirement as the open
loop schemes under high request rates.

I. INTRODUCTION

V IDEO-ON-DEMAND (VoD) is gaining popularity in re-
cent years with the proliferation of high bandwidth net-

works. Applications using VoD include news distribution (for
example, headline news from cnn.com), distance learning and
entertainment video distribution. Deployment of new technolo-
gies in last mile access networks such as DSL and cable modem
have made VoD over the Internet possible.

A typical VoD system consists of a set of centralized
video servers and geographically distributed clients connected
through high-speed networks. A large number of video files are
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stored on the servers and played by the clients. Before accepting
a client’s request, the server has to reserve sufficient processing
capacity and network I/O bandwidth for the video stream in
order to guarantee continuous playback of the video. We use
channelto refer to the unit of server network bandwidth needed
to support one video stream. Because of the high bandwidth
requirement of video streams, server network bandwidth is
considered the most expensive resource in a VoD system [21].
Therefore a critical part of a VoD system design is to minimize
server bandwidth requirement.

Internet traffic is bursty; recent study [10], [16] indicates that
arrival rates of requests to the Web are highly variable. There are
typically long periods of idle times with relatively little request
traffic, mixed with short periods of high request burst. Although
we do not yet have evidence that VoD requests will follow the
characteristicsof theWeb,webelievethatsuchcharacteristicsare
quite likely. Some preliminary study [6] suggests that the request
patterns for news-on-demand services follow those of the Web
(e.g., Zipf’s law on web page popularity). In this paper, we ex-
aminetheperformanceofVoDrequestschedulingprotocolsunder
anenvironmentwhererequest ratesmaybehighlyvariable. Inthis
environment,VoDservicehastobehighlyadaptive,optimizingits
serverbandwidthusagetothelevelof request traffic.

Existing VoD schemes fall in two categories:closed-loop
schemes[12], [11], [7], [19], [2], [8], [9], [20] andopen-loop
schemes[3], [31], [1], [22], [4]. In most closed-loop schemes,
the server allocates channels and schedules transmission of
video streams based on client requests usingbatching, or
patchingtechniques. In batching, requests for the same video
clip are delayed for a certain amount of time to serve as many
requests as possible with one multicast channel [2], [8], [9],
[30]. In patching, when a client issues a request for a video clip,
it immediately joins an existing multicast channel A of the clip.
Since it has missed the beginning part, the server establishes
a new unicast channel B to send the missing part as a patch
[21], [19], [28]. Thus, unicast patching does not introduce
any playout delay at the client (other than network delays).
However, existing patching protocols use high bandwidth
under high request bursts.Controlled Multicast[19], the best
patching protocol known to date, requires server
channels where is the mean arrival rate of requests and
is the mean size of video clips. For very low arrival rates, the
expected number of server channels required is.

A desirable scheduling protocol should make the server band-
width usage independent of the request arrival rate when the rate
is high while making the bandwidth usage low when the rate is
low. Open-loop schemes require constant bandwidth regardless
of request rates. Recent years have seen a number of innovative
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open-loop schemes [31], [1], [22], [23], [17], [4] that differ on
multicast schedules and server bandwidth requirements. These
schemes require only server channels, the theoretical
lower bound for required server channels for VoD. However,
open-loop schemes are not adaptive because the server broad-
casts a constant amount of video streams regardless of whether
there is an outstanding request or not. Thus, while an open-loop
approach can support an unlimited number of requests for pop-
ular video clips with a constant amount of bandwidth, it wastes
bandwidth when the request frequency is low.

In this paper, we propose a novel adaptive closed-loop
scheme, calledMulticast cache (Mcache), that uses part of the
client storage space or some caches to store some parts ffof
popular video clips to offer zero-delay for playout and lower
server and cache bandwidth requirements than the best known
closed-loop schemes such as [12], [11]. Its properties are the
following.

1) Under very low arrival rates, the mean channel usage
of the server tends to . Observe that this is the lower
bound, because each request necessitates a complete
playout of the video clip by the server. Under high arrival
rates, the mean channels usage of the server is bounded
by , independent of .

2) Clients do not experienceany playout delayother than
network delays in receiving requested video clips. The
bandwidth consumption at a client is also constant, inde-
pendent of the length of video clips (each client requires
at most two channels at any time).

3) The amount of disk space at clients and at caches has
much less impact on its performance than on that of other
existing cache-based closed-loop approaches. Its trade-
offs between the resource usage (disk space and band-
width) of the server and that of caches are much better
than those of other existing cache-based closed-loop ap-
proaches.

4) It does not require anya priori knowledge of client disk
space.

The central idea of Mcache is to use batching, patching, and
prefix caching [29] techniques with multicast to complement
one another. In Mcache, a client sends its request to both the
server and its local cache. The request is immediately served
by the cache for the prefix of the requested clip. In the mean-
time, the server can batch the request with other requests ar-
riving within the duration of the prefix. Those requests batched
together are served with one multicast channel after that dura-
tion. Furthermore, clients requesting a clip after the multicast
session for the clip has begun can still join that multicast ses-
sion. They get the missing part from a separate stream as a patch.
Since the clients receive the prefix from their caches, this patch
can also be delayed for the length of that prefix. This enables the
server to batch other requests for the same patch. The batched
patch requests are served in another multicast session after that
delay. Note that this scheme does not introduce any delay (other
than network delays) from the client’s point of view. Batching
the requests for patch is a unique feature of our scheme.

Our goal is to reduce bandwidth usage by sharing multicast
channels for the video clip and its patches among as many

clients as possible. A major constraint is to offer clients
instantaneous playback. Using prefix caches essentially allows
the server to delay the starting time of both types of multicast
without actually delaying the client’s playout time, thus pro-
viding more opportunities to serve later requests with existing
channels.

In this paper, we analytically estimate the server bandwidth
usage of VoD services, and validate our results by simulation.
Our analysis shows that the performance of Mcache in terms
of the time average of the number of server channels used is
usually the best among all the schemes we tested over a variety
of client request rates.

This paper is organized as follows. Section II contains an
overview of existing work on protocols for VoD systems.
Section III provides an outline of the VoD system environment.
Section IV presents the basic Mcache multicast algorithm
which uses prefix caching. Section V discusses a variation of
this scheme involving partitioning of video clips into segments.
We provide an upper bound analysis of the segmented scheme
called the Segmented Mcache (SMcache), and discuss a further
generalization called partitioned SMcache. In Section VII, we
compare the performance of SMcache with some well-known
open-loop and closed-loop schemes using numerical examples.
Section VIII concludes the paper.

II. RELATED WORK

Patching was first proposed by [21] and extended by [19],
[28], [5] by optimizing the server bandwidth requirement. In
[19], a threshold policy is proposed, and the resulting scheme
is referred to as Controlled Multicast. Controlled Multicast is
a closed-loop approach that has been shown to provide good
performance under low request rates. However, forhot videos,
the performance deteriorates, especially when the length of the
clip becomes large. It is shown that the server bandwidth grows
as .

There are several open-loop schemes, such as the harmonic
broadcasting schemes [23], [25], [24], the permutation-based
pyramid scheme [1], and the Greedy Disk-Conserving Broad-
cast Scheme [17], which provide a log performance in
terms of server bandwidth utilization. The open-loop schemes
listed above also involve a nonzero delay between a client’s re-
quest and playout of the video clip. Pariset al.[26] propose a set
of schemes involvingpartial preloadingof certain objects to the
set-top box of clients to eliminate this delay. The resulting pro-
tocols have zero delay but still involve substantial server band-
width utilization when the request rates for the clips are rela-
tively low.

Thecatchingscheme discussed in [18] is a parameter-based
scheme whose server channel utilization islog , provided

is accurately estimated. Thus, the parameters of the system
can be chosen to provide better performance than the open-loop
schemes when the request rate is not very high. However, a
major disadvantage of this approach is that the performance of
the system depends critically ona priori knowledge of the re-
quest, and the system parameters need to be altered as and when
the request rate changes. This involves both monitoring the re-
quest rate and recalibration of parameters. The estimation of the
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arrival rate itself could be very complicated in many cases when
arrivals are bursty.

Controlled multicast can be combined with catching to
provide a “pseudo” adaptive protocol, calledselective catching
[18]. In selective catching, the bandwidth usage can be lim-
ited to log under high request rates, and to the same
bandwidth usage as controlled multicast under low request
rates. However, this scheme involvesa priori knowledge of the
arrival rate of requests to determine whether to use controlled
multicast or catching. Consequently, it does not work well in
environments where the future arrival rate of requests cannot
be predicted.

Hierarchical multicast stream merging (HMSM [15], [14],
[13]) is a family of closed loop schemes where the server band-
width usage grows as log .

Eageret al. [12], [11] proposed the first closed-loop scheme,
called dynamic skyscraper, that can potentially provide

log performance even under high request rates. The algo-
rithm uses segments whose lengths follow a fixed progression.
Upon receiving a request from a client, the server schedules
a fresh transmission of only some segments of the clip. The
client obtains the remaining segments from transmissions
which have already been scheduled but have not begun at the
time of the request. However, there are potential conflicts in
scheduling segments for transmission, and the authors do not
provide a clear scheduling algorithm for the server regarding
which segments it must retransmit when it receives a request
from a client.

Besides this, this scheme still has a few disadvantages in that
its design and performance are dependent on the minimum disk
space available at a client. Under heterogenous environments
where each client might have a different amount of disk space,
it is difficult to know a priori the amount of disk space available
in all clients. Furthermore, when this minimum disk space of
clients is fairly small, its performance becomes much worse than
that of open-loop schemes under almost all the request rates.
Because of this, as the amount of video object that needs to be
stored in regional caches increase, the tradeoffs between server
bandwidth and cache bandwidth usages are not best exploited.
Another disadvantage of the dynamic skyscraper scheme is the
quantization into segments of fixed length. As a result, a client
which requests a segment soon after the server has begun mul-
ticasting it requires a retransmission of the entire segment. The
SMcache scheme proposed in this paper addresses this problem
through the use of variable-length patches.

III. SYSTEM ENVIRONMENT

VoD systems normally consist of a set of servers which store
video clips. The servers are connected to clients via a high-speed
network. Each client is provided with some storage capability
through its local disk. In addition, some clients are connected to
a proxy server through the network.

It is shown in [8] and [9] that the popularities of videos follow
the Zipf distribution with the skew factor of 0.271, which means
most of the demand (80%) is for a few (10–20) very popular
video clips. Given the limited number of popular clips, it is pos-
sible for the proxy server to store the first few minutes or even

seconds of each video clip, called theprefix. For each client that
is not connected to a proxy server, we assume it has a local prefix
cache with enough space to store the prefix of all the popular
video clips. For simplicity, we refer to both proxy server and
local prefix cache ascache.

The server stores video clips in their entirety. However only
part of the clip after the prefix called thebodyneed to be trans-
mitted to the client upon request. Typically the server is pro-
vided with high bandwidth on its connection and clients have
limited bandwidth devoted to streaming video clips. We assume
the system has the following features.

1) Each server may use an unlimited number of channels for
transmitting a particular video object. This is a reasonable
assumption to make, particularly when the server stores a
very large number of video objects, and the total number
of channels used by the server at any given instant is ap-
proximately equal to the mean because of statistical mul-
tiplexing.

2) Each client has some local disk space.
3) In response to a request, the client first receives the prefix

from the prefix cache.
4) We assume that each client knows the location of its

nearby cache and that the cache always contains the
prefix of the video clip requested by the client.

5) Because client bandwidth for streaming video clips is
limited, the client may receive or record incoming trans-
missions from at most two channels at any given time.
This include transmissions from the video servers and the
cache.

6) All channels have equal bandwidth. The transmission rate
on all channels is constant and equal to the playout rate.

7) Clients always request the entire clip, from the beginning.

IV. M CACHE

This section describes the basic Mcache scheme. The video
server multicasts the body of video clips usingobject channels
andpatch channels. Object channels are used to multicast the
entire body of the video clip, whereas patch channels are used
to multicast portions of the clip right after the prefix to facili-
tate late-arriving requests to catch up with a transmission on the
object channel. In this algorithm, an object channel multicasts
the entire body of the movie. It will be shown that because of
this property, the algorithm requires the server to use
bandwidth on average. In Section V, we extend this algorithm
to allow the server to segment the body into multiple segments,
and apply the basic Mcache algorithm on each segment inde-
pendently to achieve server bandwidth usage when
the request rate is high.

A. Mcache Algorithm

The client’s action is straightforward: it requests the clip body
from the video server and requests the prefix from cache. The
prefix is received immediately from cache and played out at the
client. The server calculates a schedule and sends back to the
client the information regarding the channels to join and the time
to join each channel.
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Fig. 1. Mcache algorithm at the server.

The server’s multicast schedule is determined by the arrival
time of a request and the status of existing multicast channels.
If there is an ongoing multicast of the clip body on an object
channel, depending on how long the multicast has been running,
the server can choose to either: 1) start multicasting a patch and
instruct the client to join both the existing object channel and the
patch channel or 2) start a new multicast of the body on a new
object channel (with no need for a patch channel if it receives
from the beginning of an object channel). There is a tradeoff in
this choice. If the multicast has not been running for a long time,
then the patch would be short because the client has not missed
much. Otherwise, the patch would be long. Thus, it might be
more cost effective to receive the body from the beginning by
starting a new object channel, rather than receiving a long patch.
We apply a threshold of time units, calledcutoff thresholdto
decide on the two cases. If the existing channel has been running
more than time units, then a new object channel is created.
Otherwise, a patch is used.

To simplify the description, transmission and propagation de-
lays are ignored. The algorithm can be easily modified taking
these delays into account. We use constantsand to denote
the prefix length and the body length respectively, both in time
units. The algorithm describes the actions taken by a client and
the server when a client request comes in at time. We denote
the server algorithm by Mcache . It takes as input the
request time , the prefix length , the cutoff threshold ,
and the length of movie body . It schedules object channels
or patch channels to handle the requests and returns the times
that the client joins an object channel and a patch channel. Note
that this algorithm is used as a subroutine for our main algorithm
presented in Section V. Below, we describe the server algorithm
for Mcache. The pseudocode is shown in Fig. 1.

Batching: When a client issues a request for the clip at time
, if there is no object channel that has started in , or

is scheduled to start in , then the server schedules a
new object channel at the latest possible time, which is ,

and instructs the client to join at to get the entire body.
Since the client receives the prefix from its cache during the first

time units, it can wait until . Here, the thresholdis used
to determine whether a new object channel or a patch has to be
used. If there is an object channel scheduled to start in ,
then the client simply joins this multicast when it starts.

Patching: When there is an object channel that started at
, the client joins this multicast at . Since the

multicast has already started, the client needs a patch for the
first units of the clip body. This patch can also be
multicast. The fact that the client joins the object channel at
time instead of at allows it to receive the patch on the
second channel at any time in (recall that the client
receives the prefix on one channel during ), which
in turn facilitates batching together requests for the same patch.
If there is already a patch channel scheduled to service earlier
requests, then the client can join that channel when it starts. The
patch length transmitted to that channel has to be extended up
to to accommodate this client. This is how requests
for a patch are batched together.

If no patch channel is scheduled to start before the client fin-
ishes receiving the prefix at the cache (it receives the prefix until
time ), the server has to schedule one to start before .
However, this patch should start no later than because the
existing object channel was started at, and any request coming
after time later is serviced by a new object channel. So the
starting time of the patch is set to . The
patch consists of the first units of the clip body and
may be extended later to accommodate future requests.

The threshold value controls the frequency of recruiting a
new object channel, and therefore affects average server band-
width usage. Selecting too small a value forresults in a com-
plete transmission of the clip body being scheduled too often.
Selecting too large a value results in large patches which again
require higher server bandwidth. This is similar in concept to the
selection of an optimal patching threshold in Controlled Multi-
cast [19].

B. Performance Analysis of Mcache

In this section, we provide a discrete-time analysis to show
how the mean server bandwidth is minimized by selecting the
optimal . The arrival of requests at the server is modeled by
Poisson process with raterequests per time slot unit.

A client that requests for the video clip during time slotini-
tiates a new transmission if there is no new transmission that
began after time slot . The new transmission is sched-
uled to start at the end of slot . If there is an ongoing
transmission which began at the end of slot , the
client joins the multicast at the end of slot . It also receives
the first slots of the body as a patch. This patch is sched-
uled for transmission at the end of slot min .

Let be the time slot at the end of which theth com-
plete transmission of the body of the video clip starts. Let
be the number of patches transmitted by the server in the in-
terval . Let be the total length of these patches.
We define to be the th patching window. The
server begins a new full transmission of the body of the video
clip at the start of every patching window. By applying renewal
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Fig. 2. Sample sequence of requests to the server.

theory, it can be shown that and are i.i.d. random vari-
ables with means and , respectively, and that the mean
bandwidth requirement of the server is

(1)

is the mean length of a patching window. Any request
arriving in the next slots after a new transmission results
in a patch. After the first slots, any new request arriving in
slot , say, results in a new patching window that begins at
the end of slot . Thus, the length of the patching
window under consideration is slots. Since request
arrivals are Poisson,is a geometric random variable with mean

, where . Therefore, is equal to
.

To estimate , we first define the concept of apatch seg-
mentwith the help of a sample sequence of requests in a typical
patching window, and the corresponding patches generated, as
shown in Fig. 2.

Suppose there are no request arrivals in the firstslots. The
first request arrives in slot . If , the server
waits until time slot before transmitting the patch for this
client. When it does, the patch is multicast and must be sent to
any client whose request arrived during or before slot .

We define the first slots shown in Fig. 2 to constitute
patch segment1, denoted by . It consists of slots without
any request, followed by a request in slot , which is in
turn followed by up to slots which may feature further
requests from other clients. The significance of , is that all
clients which request the video clip during receive the same
patch; call it . Suppose that the last such request arrived at

. This request receives the prefix on one channel
and the patch on the second channel until slot , and
receives the original multicast only after time slot .
The length of the first patch is therefore given by

.
Suppose there are no requests to the server from to

. The next request arrives during slot .
If , we call the segment constituting slots

to as patch segment 2, or . If
, all clients whose requests arrive during receive

the same patch, . The corresponding patch is multicast by the
server at and is of length , where
the last request in arrives at . Similarly,
we can say that theth patch segment, consists of slots

to . The
length of the th patch is given by ,
assuming .

The th patching segment consists of slots
to . Assume

that but
, i.e., there are exactly patch segments in slots 1

to . But observe that only requests that arrive during or prior
to slot are served by theth patch. Any requests arriving in
the interval receive a new and
complete transmission of the clip, since the cut-off parameter is
. Let .
We first estimate , the mean length of the first

patches, assuming that there are exactlypatch segments which
begin at or before slot

(2)

Theorem 1: are identically distributed.
Their mean, conditioned on having exactlypatch segments,
is given by .

Proof: See Appendix A.
The intervals are also i.i.d. random vari-

ables independent of. Let their mean be . ,
are simply geometric random variables conditioned on .
Therefore, . Thus, (2)
reduces to

On simplification, we get

(3)

We can uncondition on to get

where is the mean number of patches in interval.
Theorem 2:

Proof: See Appendix B.
Let the mean length of the last patch in this interval is given

by .
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Theorem 3:

Proof: See Appendix C.
Therefore, the mean bandwidth required by the server is

given by , which is approximately
equal to (4), as shown at the bottom of the page. The optimal
value of is once again obtained by solving a quadratic
equation. When , the optimal value of is given by

. Therefore, the optimal value of
grows as . This indicates that the bandwidth usage

is bounded by , independent of . The reason for this
is that up to a certain value of, the server has to transmit
more patches as increases. However, beyond this point, the
server merely batches more requests on to a single patch, thus
increasing multicast efficiency. This is made possible because
of prefix caching.

V. SMCACHE

The Mcache algorithm described in the previous section out-
performs Controlled Multicast (see [27]). This is easily seen as
the outcome of batching all requests that arrive when a client
is accessing the prefix of the clip. The hotter a given video
clip gets, a larger number of requests are batched. However, the
length of the cut-off is in the order of . This means the mean
bandwidth required by the server is also , which is in-
ferior to several known open loop schemes. For instance, the
pre-loading schemes by Pariset al. [26] can be used to provide
instantaneous VoD while using only log server bandwidth.
In this section, we extend the basic Mcache algorithm to pre-
serve the advantages of the original algorithm with nearly the
same server bandwidth requirement as the open loop schemes
under high request rates. This algorithm, presented below, is
calledSMcache.

A. The SMcache Algorithm

The body of the video clip is broken down into several seg-
ments. Let be the length of the body and be
the lengths of segments , respectively. The first seg-
ment is transmitted according to the basic Mcache scheme dis-
cussed in the earlier section. Let be the length of the prefix,
and be the cut-off parameter for segment 1. Assume that the
server begins a full transmission of the first segment (i.e., the
object channel for the first segment) at time 0. Consider a client
which requests for the first segment at time . The
client accordingly receives the first time units of the

first segment as a patch, starting at time. Note that must be
no later than which is the time that the client finishes
receiving the prefix of length . Further, cannot be later than

because any request coming afterwill be given a new ob-
ject channel for the first segment. Thus, .
The patch must last until time .

Observe that, although the client may receive transmission
from two channels at any given time, the client only listens to
the patching channel until time . Note that the latest
time this client can afford to delay receiving the second segment
is , because by this time, the first segment must have
been fully played out. In other words, since the client leaves the
patch channel at time , and it does not have to receive
the next segment until , the client listens to only
one channel (the object channel for the first segment) during the
interval . Since , this interval
includes the interval , the duration
of which is .

This is analogous to having avirtual prefixof length
for the second segment so that the server can delay serving the
request for the second segment for up to a duration of length

. To visualize this, suppose that the client whose original
request arrived at makes avirtual requestto the server for
segment 2 at time . The latest time until which the
server may delay transmitting segment 2 to this client is actually

. Thus, the server has time units after this
virtual request to transmit this segment to the client or, if there
is an ongoing transmission, to begin transmitting a patch to the
client.

The above situation is the same as in Mcache when a prefix of
length of a movie clip of length is stored
in the cache, and a client’s request for that movie arrives to the
Mcache server at time . Now, consider the body of
length with a prefix of length being transmitted using
the basic Mcache scheme. Assume that the cutoff threshold for
the clip is . Also, consider a request for this clip arriving at
time . The client making this request receives
the prefix on one channel during the interval .
Meanwhile, if there is a transmission of the clip body scheduled
to begin in , this client may join that multicast
channel. If an existing object channel of the clip body began at
time , the client joins this multicast at time

, and receives a patch of length
from the server. This is as if we run Mcache
with , and . This will give us
the schedule for the client to get the second segment and its as-
sociated patch (if required). We can inductively apply the same

(4)
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Fig. 3. Algorithm at the server.

argument for later segments; the schedule for segmentcan
also be obtained by running Mcache 1

with , and is the cutoff
threshold for a movie length of . (We discuss for in
Section VI-A.)

The SMcache server algorithm is shown in Fig. 3.

B. SMcache with Client Disk Limitations

So far, we assumed that the client can store up to half an en-
tire video clip. Since the client may receive only on two chan-
nels at any given time, and the playout speed is assumed to be
equal to the transmission speed, the client’s disk space is never
a limiting factor for the SMcache algorithm. Here, we take into
account , the disk space available at the client making a
request, and modify the algorithm accordingly. The following
constraints are introduced.

1) The client may begin receiving a segment at most the
equivalent of units of time before the scheduled
playout time of the segment. Since is the
scheduled playout time for segment , and is the
instant of the virtual request for segment , must
be larger than or equal to .

2) The maximum patch size for segmentmay not exceed
. Thus, . With these constraints, we

rewrite the server algorithm in Fig. 4.

C. Partitioned SMcache

In this section, we consider a generalized version of SM-
cache, in which the proxy servers store a few of the initial seg-
ments of the video object in addition to the prefix. This is along
similar lines as the partitioned dynamic skyscraper model pro-
posed in [11]. We assume there is one main server andre-
gional caches in the network. Each regional cache stores the first

segments of the body of the clip, in addition to the prefix of
length . The main server stores the remaining segments.
The SMcache server algorithm is suitably modified to facilitate
a regional cache to multicast the firstsegments to clients in
its network neighborhood and the main server to transmit the

1We are extending and generalizing the notion of
Mcache(u ; x ; y ; L ) because in Section IV, we presented
Mcache(u; x; y; L) in the present and past tenses. Here we have to run
Mcache based on the future schedule. For instance, we say “If there is no
object channel that has started in[u � y; u), then the server schedules a
new object channel atu + x.” This has to be interpreted as “If there is no
object channel that is scheduled to start in time[u � y; u), then the server
schedules a new object channel atu + x.” The precise implementation of
Mcache appears in the Appendixes.

Fig. 4. SMcache with limited client disk space.

Fig. 5. The partitioned SMcache algorithms.

latter segments. As before, the regional cache transmits
the prefix to a client immediately upon receiving a request. In
addition, the basic Mcache algorithm is executed at the proxy
server only for those segments stored in cache. The main server
and proxy server algorithms are shown in Fig. 5.

VI. PERFORMANCEANALYSIS

In this section, we show that the mean number of server
channels used by the nonpartitioned SMcache algorithm can
be upper-bounded by a function which is log , provided
it is not limited by disk capacity at the clients. Then, we prove
that the server bandwidth usage goes to zero when the request
rate goes to zero. Finally, we analyze the performance of the
partitioned SMcache scheme and develop an optimization
model for partitioning a video clip between the main server and
regional caches.

A. An Upper-Bound Analysis of SMcache

Suppose we choose and , such that .
Let us assume that , where . Therefore, the mean
bandwidth required by the server in transmitting segment
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1 may be estimated from (4). Rearranging the terms, it can be
shown that

(5)

Now, let us choose and . Then, we can
show that

Since , we have
. Thus, we choose each segment to be larger

than the previous by a factor of. The final segment is the
only exception, and it is given by

Since , it can be shown that
. Thus, the total bandwidth required

by the server in transmitting all segments is .
But . Therefore

Or , which gives us

log

Therefore, we have

log (6)

From (6), it can be seen that the required bandwidth is no greater
than log .

B. The Closed-Loop Advantage of SMcache

Rearranging terms in (4), we can show that

We also have

In general, we have

From this, we can show that

(7)
But . From (7), we see that when ,

. In other words, the
bandwidth usage of the new scheme is not only bounded by an

log function, but is also very small when the request rate
is small (i.e., proportional to ). Open-loop schemes such
as periodic broadcast, on the other hand, requires a fixed server
bandwidth irrespective of request rates. This is the deciding ad-
vantage in using a closed loop scheme over even the most effi-
cient open-loop schemes.

C. Performance of Partitioned SMcache

In this section, we consider the performance of partitioned
SMcache where, in addition to the prefix, some segments of the
movie body are moved into the proxy server. We discuss an opti-
mization model based on network costs for transmitting a video
object, as well as storage costs for replicating these segments
at the regional caches. The solution to this optimization model
provides the optimal regional caching strategy, similar to the one
discussed in [11].

Let , be the mean request rate gener-
ated by clients in the network neighborhood of regional cache

. Then, the mean bandwidth required at regional cacheis
given by

where is the mean bandwidth required by the regional
cache in transmitting segmentto its neighboring clients, cal-
culated as given by (4). The mean bandwidth requirement at the
main server is given by

where is the mean bandwidth required by the main
server in transmitting theth segment to all the clients. Obvi-
ously, moving more segments out to the regional caches results
in a reduction in the network load at the main server and an in-
crease at the regional caches.

We note that it may be preferable to increase the network load
at the regional caches if it results in decreasing the load at the
main server, for purposes of even distribution of network traffic.
However, there is another cost involved in increasing the frac-
tion of the video object that is cached,viz.the cost of replicating
more data and storing it in several locations. If there is no cost
involved in replication and storage, the simple solution would
be to store the entire video object at each regional cache. This
not only helps in distributing the load evenly over the network,
but also reduces the overall network load if the choice of cache
location is made carefully. However, when there is a cost in-
curred in replication and storage of the leading segment set, we
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Fig. 6. Server channel usage versus�.

can devise an optimization model to arrive at the best caching
strategy.

Let , be the time average cost incurred
by regional cache for transmitting on one channel. Therefore,
the network cost for regional cache is given by .
Let be the corresponding cost for the main server. Without
loss of generalization, we can assume . The network cost
for the main server is . Let the cost per unit time of storing
a unit of data at regional cachebe . The storage (or replica-
tion) cost at regional cache is then given by . Let
the cost per unit time of storing a unit of data at the main server
be . The storage cost at the main server is . The
total cost per unit time for the SMcache system is given by

(8)

We expect to be less than because the main server mul-
ticasts to a larger number of clients spread out through the net-
work whereas a regional cache multicasts to a relatively small
number of clients in its own neighborhood. For instance, con-
sider a binary tree kind of network topology. The main server is
at the root of the tree and there are clients are at the leaves.
Assume all regional servers are at the intermediate nodes, and
at the same level. Thus, a multicast by the main server can be
received by up to clients, and traverses up to
branches. Each regional cache, on the other hand, only needs

to multicast to at most clients, while using only up
to branches. This indicates that there may be
an advantage in moving more segments to the regional caches.
However, this results in an increase in the storage costs (or repli-
cation costs) of more segments at each regional cache. Thus
there is a trade-off between network and storage costs.

VII. PERFORMANCECOMPARISON

In this section, we compare the performance of the SMcache
scheme with that of dynamic skyscraper, GDB, and selective
catching, which represent the state of the art in closed-loop,
open-loop, and hybrid VoD algorithms, respectively. We
modified each of these schemes to include a prefix cache with
prefix size equal to that used by the SMcache scheme, so as to
allow zero delay with increased batching. The prefix is stored
at proxies and transmitted by unicast to a client immediately
upon receiving a request from that client. First, we study the
performance of nonpartitioned SMcache for various arrival
rates of requests, when the request arrival process is bursty,
when the disk space at clients is variable, and for various
prefix lengths. Then, we study the performance of partitioned
SMcache. Specifically, we study how the performance of the
main server and that of the regional caches as functions of
the number of segments stored in the regional caches. We
compare these results to the performance of the main server
and regional caches in the partitioned dynamic skyscraper
algorithm, assuming that the same fraction of the video object
is stored in the regional caches. Finally, we consider a sample
cost function specified in (8), and plot the total network and
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Fig. 7. SMcache versus selective catching.

Fig. 8. The Pareto Arrival process.

storage costs of each algorithm. We also plot the total cost at the
main server and at the regional caches to highlight the trade-off
involved in transferring more data to the regional cache.

A. Non-Partitioned SMcache

Server Bandwidth versus Request Rate:In Fig. 6, we plot the
average number of server channels required as a function of the
request arrival rate, assuming Poisson request arrivals. We show
the results for SMcache obtained by analysis as well as simula-
tion. We assumed that each client has enough disk space to ac-
commodate at least 64 min of the clip. Dynamic skyscraper was
evaluated for two values of which represents the maximum
segment length allowed by the algorithm, i.e., for and

min. First, we conclude that the approximate analytical
algorithm provided by us to evaluate this algorithm for Poisson
requests is very accurate. Next, we conclude that SMcache has
considerable improvement over GDB when the request rate is
low. We also conclude from Fig. 6 that SMcache provides a
significant improvement over dynamic skyscraper, while using
the same resources. Observe that the choice ofis crucial to
the performance of the dynamic skyscraper. In order to provide
zero-delay VoD, must be chosen to accommodate the client
with the least disk space, so even if a small fraction of clients
have the equivalent of 16 min of disk space instead of 64,
needs to be chosen accordingly. More importantly, the server
needs to know the disk space available at each client in advance
so as to design the segment lengths in correspondence. Finally,
we conclude that optimal selective catching performs no better

than SMcache. However, selective catching can be optimized
only for a particular request arrival rate. SMcache, on the other
hand, does not rely ona priori knowledge of the request arrival
rate and easily adapts to changing request rates.

Server Bandwidth for Bursty Arrivals:To illustrate the adap-
tiveness of SMcache, we compare the performance with Pareto
arrivals. Fig. 7 contains the short-term channel usages of SM-
cache and selective catching (with prefix cache) as a function
of time. These results were obtained by simulation. The Pareto
arrival process is a bursty arrival process with long-range depen-
dence, as shown in Fig. 8. When the selective catching scheme is
optimized for the mean arrival rate, there is a significant residual
bandwidth when there are no arrivals. Besides, it requires the
server to know the mean request rate in advance. With SMcache,
there is no residual bandwidth, and there is no significant drop
in performance due to erroneous estimation of the request rate.

Server Bandwidth with Limited Client Disk:Next, we illus-
trate the versatility of the SMcache algorithm in adapting to
clients with variable disk space. In Fig. 9, we compare the per-
formance of SMcache with that of dynamic skyscraper (with
prefix cache) when clients have varying disk space. Some clients
have 16 min of disk space while the rest have 64 min. Thus, the
dynamic skyscraper algorithm needs to fix at 16 min. We
consider two versions of dynamic skyscraper. In the nonparti-
tioned version, only the prefix is stored in cache. In the parti-
tioned version, in addition to the prefix, a few initial segments
(called leading segments) are stored in cache. We obtained the
number of server channels used by SMcache and nonpartitioned
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Fig. 9. SMcache with heterogeneous clients.

dynamic skyscraper through simulation. We add this to the mean
number of proxy channels used given by .

For partitioned dynamic skyscraper, we obtained the sum of
the channels used by both the main server and the proxy server,
assuming that there is a single proxy server. We plot the results as
a function of the fraction of clients whose disk can store 64 min
of video. Observe from Fig. 9 that SMcache easily outperforms
nonpartitioned dynamic skyscraper which is not adaptive to
clients with varying storage capacity. SMcache is also better than
thepartitionedversion. It is tobenotedthat thepartitionedversion
requires replicationof resourcesat local (or regional) servers,and
thus involves additional storage cost than SMcache, with no ben-
efit.For instance, thepartitioneddynamicskyscraper in theabove
example requires storing 63 min of the video in the proxy server.
On theotherhand,SMcacheneeds tostoreonly1minat theproxy
serverandstill showsbetterperformance.Furthermore,SMcache
doesnot requireproxyservers tohavemulticast capability,unlike
partitioneddynamicskyscraper.

SMcache Performance versus Prefix Length:Finally, we
study the impact of prefix length on the performance of SM-
cache. In Fig. 10, we compare the performance of the various
schemes for different prefix sizes. When the prefix is large,
the main server requires fewer channels for transmitting the
video clip, but the network load at the cache increases. Since
we assume that caches transmit the prefix by unicast, the mean
number of channels required by a proxy server is given by the
length of the prefix times the arrival rate of requests to that
particular proxy. Therefore the sum of the mean number of
channels required by all proxies is given by the total request

rate at the main server, i.e.,times the prefix length. In Fig. 10,
we plot the mean number of channels required by the main
server as a function of the prefix size. The values for SMcache
were obtained both by simulation and analysis, and we observe
that the results obtained by both methods are in agreement
with each other. From the figure, we infer that SMcache
provides better performance than every other scheme for the
parameters considered. Furthermore, for relatively small prefix
lengths (less than 1 min in Fig. 10), SMcache shows a major
improvement over prefixed dynamic skyscraper and prefixed
GDB. This illustrates the major gains that could be had in
SMcache even when the available cache space is very small,
which are notably absent in dynamic skyscraper.

Obviously, there is a tradeoff involved in choosing the length
of the prefix. A small prefix results in greater network load at the
server whereas a longer prefix reduces server load but increases
the channel requirement at the proxies. If the ratiois fixed,
then it can be shown that the optimal length of the prefix is given
by , where is the ratio of the network cost of one
client channel to a server channel.

B. Partitioned SMcache

Network Load at Server and Cache:In Fig. 11, we plot the
number of channels required at the main server in partitioned
SMcache and dynamic skyscraper, as a function of the fraction
of the video object stored in the cache. Using dashed lines, we
also plot the sum of the mean number of channels required by
each regional cache, whose values correspond to the scale on
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Fig. 10. Server load versus prefix size.

Fig. 11. Partitioned SMcache: network load at main server and regional cache.

the right of the graph. We also analyzed the nonpartitioned SM-
cache algorithm assuming that the same fraction of the video

clip was cached at regional servers as the prefix. For the param-
eters chosen, partitioned SMcache had a much lower regional
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Fig. 12. Transmission and replication costs.

Fig. 13. Main server and regional cache costs.
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cache load than partitioned dynamic skyscraper, without any
significant deterioration in the load at the main server. We also
infer that partitioned SMcache is better when we need to cache
a larger fraction of the object regionally.

Optimal Partitioning: Fig. 12 illustrates this tradeoff, as we
plot the replication and transmission costs as a function of the
fraction of the video object that is stored in the cache. As the
fraction stored in cache increases, the total network cost can
be expected to decrease if the location of the regional cache is
chosen carefully. However, the replication cost increases. We
have shown the cost for both partitioned dynamic skyscraper and
partitioned SMcache. The cost parameters were chosen as fol-
lows: , , , , and .
Correspondingly, the optimal cached fraction for SMcache is
about 0.07, whereas it is about 0.15 for dynamic skyscraper.
The minimum cost for SMcache is about 10.72, i.e., about 35%
better than dynamic skyscraper. Fig. 13 represents the tradeoff
between the total cost (i.e., network and storage costs) incurred
by the main server versus that of the regional cache as we vary
the fraction of the video object that is cached.

From the above curves, we can find the optimal partition.
However, we further simplify this for some special cases as fol-
lows. Assuming that each segment is played out at the maximum
rate whether is located at a regional cache or at the main server,
and that and , the optimum number of seg-
ments which need to be stored in cache can be shown to be:

.

VIII. C ONCLUSION

In this paper, we have presented a closed-loop scheme called
Mcache, for providing zero-delay VoD services. The use of
prefix cache is critical to the efficient utilization of server
bandwidth in these schemes. This is due to the fact that prefix
caching allows batching of requests from different clients for a
given video clip, while still providing zero-delay service.

The SMcache protocol is a generalized and improved version
of Mcache where the clip is partitioned into several segments in
order to exploit the availability of two receiving channels at each
client to a greater extent than Mcache does. SMcache shows
a marked improvement over Mcache in terms of server band-
width usage when the prefix ratio is large, i.e., when the clips
are large or the prefix is relatively small. Furthermore, SMcache
limits the server bandwidth requirement to log ), where

is the length of the body of the clip. This is the same as in
open-loop schemes such as periodic broadcast schemes. How-
ever, SMcache being closed-loop, the server bandwidth usage is
lower than periodic broadcast when the request rates are low.

Both Mcache and SMcache are adaptive in that the mean
transmission rate of the server is altered according to the tran-
sient request rate for any given clip. This is a notable improve-
ment of the catching scheme which is “pseudo-adaptive” in the
sense that it involves recalibration of parameters whenever re-
quest rates change.

SMcache is also adaptive to varying disk space among clients.
This is a distinct advantage over the dynamic skyscraper pro-
tocol whose design is dependent on the minimum disk space
available at a client. In addition to this, our experiments show

that SMcache has significantly better performance than dynamic
skyscraper when the prefix is very small in relation to the length
of a clip.

APPENDIX A
PROOF OFTHEOREM 1

The arrival of requests for a particular clip is Poisson
with rate . Therefore, the joint probability distribution of

is given by:

The probability that there are exactlypatch segments is given
by

where

and

The conditional probability distribution function
may be rewritten as

Consider , . This is given by
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Observe that and are sym-
metric with respect to index. Hence, we conclude that

, , are identically distributed.
The mean is given by .

But is a random variable taking values between
and . We approximate this by a uniformly

distributed random variable. Hence, we have

Now, consider , . This is
given by

Observe that and are symmetric
with respect to index , for . Hence,
we conclude that , ,
are identically distributed. Their mean is given by

.

Now, consider

or

Compare this with the equations shown at the bottom of the
page. Observe that the two marginal distributions are similar in
form. Further

and

which means the set is symmetric with respect to
. Hence, it is seen that has the same

distribution as . This gives

Thus, we have

This may be simplified to .

APPENDIX B
PROOF OFTHEOREM 2

From Fig. 2, it can be seen that each patch segment consists of
a geometrically distributed time interval with no requests, fol-
lowed by a fixed-size interval of length. Therefore, the size of
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each patching segment is an i.i.d. random variable whose distri-
bution is given by

.

Taking the -transform, we get

is the mean number of patch segments in a patching
window. Recall that the last patch segment in a patch window
begins at or before theth time slot. Therefore, there are or
more patch segments in the patching window if the sum of the
lengths of the first patch segments, i.e.,
is . Let the probability of this event be . Therefore

(9)

It is clear that is a monotonically increasing function of
, and may be rewritten as . Taking the -transform on both

sides of (9), we get

(10)

Let be the probability that the sum of the lengths of the
first patch segments, i.e., is equal to .
Then, we have

Also

Therefore, (10) reduces to

(11)

As can be seen, turns out to be a nonpolynomial function
of . In order to find the optimal patching cutoff parameter,
we need to deal with a simpler function. As noted earlier,
increases with . So, we approximate with a linear function,

, such that the area under is equal to zero.

Taking the -transform, the value of is zero at
.

Assuming , we have

Therefore, we have

APPENDIX C
PROOF OFTHEOREM 3

Consider the last patch segment of a patching window
that contains exactly patch segments. As seen in Appendix A,
the set of events resulting in a patching window consisting of
exactly n patch segments is a union of two disjoint sub-sets
and . When an event in occurs, it can be seen that there
is no request arriving between the end of the st patch
segment and theth slot. Therefore, no patch is transmitted. The
length of the th patch is trivially zero.

Now, consider an event in . The length of the patch to be
transmitted is . We approximate this by. Therefore, the
mean length of the last patch conditioned on having exactly
patch segments is given by

Unconditioning on , we get

Approximating the patch segments with a Stationary Renewal
Process, we can show that

. Thus, we have
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