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Abstract. Adaptation is an essential requirement for self–organizing
multi–agent systems functioning in unknown dynamic environments. Adap-
tation allows agents, e.g., robots, to change their actions in response to
environmental changes or actions of other agents in order to improve
overall system performance, and remain robust even while a sizeable frac-
tion of agents fails. In this paper we present and study a simple model of
adaptation for the task allocation problem in a multi–robot system. In
our model robots have to choose between two types of tasks, and the goal
is to achieve desired task division without any explicit communication
between robots. Robots estimate the state of the environment from re-
peated local observations and decide what task to choose based on these
observations. We model robots and observations as stochastic processes
and study the dynamics of individual robots and the collective behavior.
We validate our analysis with numerical simulations.

1 Introduction

Adaptation is an essential requirement for multi–agent systems functioning in
dynamic environments that cannot be fully known or characterized in advance.
Adaptation allows agents, whether they are robots, modules in an embedded
system or software components, to change their behavior in response to environ-
mental changes and actions of other agents in order to improve overall system
performance. Additionally, adaptation allows swarms, artificial systems com-
posed of large numbers of agents, to remain robust in face of failure even by a
sizeable fraction of agents. If each agent had instantaneous global knowledge of
the environment, it could dynamically adapt to any changes in the environment,
including actions of other agents. In most situations, however, such global knowl-
edge is impractical or infeasible to obtain; therefore, one needs to devise different
adaptation mechanisms based on partial, possibly noisy information about the
state of the environment and, possibly, of other agents. Also, one would prefer
a mechanism that would require little or no communication and/or negotiations
between the agents.

Analysis is an important part of designing adaptive, self–organizing systems
since it allows to understand global system properties given the behavior of in-
dividual entities and the rules of interactions between them. There are generally
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two options for the analysis of swarm behavior: experiment and simulation. Ex-
periments with real agents, e.g., robots, allow the researcher to observe swarms
under real conditions; however, experiments are very costly and time consuming.
Simulations, such as sensor based simulations for robots, attempt to realistically
model the environment, the robots’ imperfect sensing of and interactions with
it. Though simulations are much faster and less costly than experiments, they
suffer from many of the same limitations, namely, they are still time consuming
to implement, and systematically exploring the parameter space is often tedious.
Mathematical analysis is an alternative to the time consuming and often costly
experiments and simulations. Using mathematical analysis we can study dynam-
ics of multi–robot systems, predict long term behavior of even very large systems,
gain insight into system design, for instance what parameters determine group
behavior and how individual robot characteristics affect the swarm. Addition-
ally, mathematical analysis can be used to choose parameters that optimize the
swarm’s performance, prevent instabilities and so on. Note, however, that the
mathematical analysis usually requires strong simplifications and should be val-
idated by comparing its results with the results of the more realistic simulations
(such as sensor based) and/or actual experiments with robots.

In this paper we present and analyze a simple stochastic model for adaptive
task allocation in a team of robots, where robots have to forage for two distinct
types of pucks, Red and Green scattered around the arena [5]. Each robot is
able to collect pucks of a specific type, say Red: when a robot’s foraging state is
set to Red, it is searching for and collecting Red pucks. The goal of adaptive task
allocation mechanism is to achieve a distribution of robots between two states
that, over time, correctly reflects the pucks’ prevalence. The robots have no
global information about the number of pucks of either color, or the states other
robots. Instead, the robots make repeated local observations of the environment,
store them in the memory, and use them to decide between two states. We
analyze our model thoroughly using stochastic Master equation that describes
the evolution of macroscopic dynamics, and compare it to the the results of
discrete time simulations. We demonstrate that our analytical approach fully
reproduces the results of the numerical simulations, suggesting that it might be
used as an efficient tool for analyzing the global behavior adaptive multi-agent
systems.

2 Related Work

Mathematical analysis of the behavior of robots is a relatively new field with
approaches and methodologies borrowed from other fields, such as mathematics,
physics and biology. In recent years, a number of studies appeared that at-
tempted to mathematically model and analyze collective behavior of distributed
robot systems. These include analysis of the effect of collaboration in foraging [16,
17] and stick-pulling [9, 12] experiments, the effect of interference in robot for-
aging [7], and robot aggregation task [1, 6]. So far this type of analysis has been
limited to simple reactive or behavior-based robots in which perception and ac-
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tion are tightly coupled. Such robots take input from sensors or behaviors and
send output to actuators or other behaviors.1 They make no use of memory or
historic state information.

The role of learning in improving the performance of a multi-robot system
has been addressed by several researchers. The RoboCup robot soccer domain
provided a fruitful framework for introducing learning in the context of multi-
agent and multi-robot systems. Several authors examined the use of reinforce-
ment learning to learn basic soccer skills, coordination techniques [14] and game
strategies [15]. Matarić [13] reviews research on learning in behavior-based robot
systems, including learning behavior policies, models of the environment and be-
havior history. Goldberg and Matarić [2] present a framework for learning models
of interaction dynamics in multi-robot systems. These models are learned on-
line and used by robots to detect anomalies in system performance as well as
to recover from these anomalies. Their work shares common foundation with
ours: Markov processes as a model of interactions between robots . However,
adaptation occurs as a result of the changing representation — the model of the
interactions created and updated by robots — not as a result of changes in robot
behaviors. Li et al. [10] introduced learning into collaborative stick pulling robots
and showed in simulation that learning does improve system performance by al-
lowing robots to specialize. No analysis of the collective behavior or performance
of the system have been attempted in any of these studies.

Huberman and Hogg [3] studied collective behavior of a system of adaptive
agents using game dynamics as a mechanism for adaptation. In game dynamical
systems, winning strategies are rewarded, and agents use the best performing
strategies to decide their next move. They constructed a mathematical model of
the dynamics of such systems and studied them under variety of conditions, in-
cluding imperfect knowledge and delayed information. Although the mechanism
for adaptation is different, their approach, which they termed “computational
ecology” is similar in spirit to ours, as it is based on the foundations of stochastic
processes and models of average behavior.

3 Dynamic Task Allocation in Robots

Chris Jones and Maja Matarić presented an embodied simulation study of adap-
tive task allocation in a distributed robot system [5]. In their study, two distinct
types of pucks, Red and Green, were scattered around the arena. Each robot
could be tasked to collect pucks of a specific type, say Red. When a robot’s
foraging state is set to Red, it is searching for and collecting Red pucks. The
robot can also recognize the foraging state of robots it sees. The robots have
no a priori information about the shape of the arena, the number of pucks left
in it or the number of foraging robots. The goal of adaptive task allocation is
to design a robot controller that will allow robots to dynamically adjust their
foraging type, so that the number of robots searching for Red and Green pucks
will, over time, correctly reflect the pucks’ prevalence.

1 Robots that use timers to trigger actions can also be studied using this approach.
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The memory-based mechanism for adaptive behavior suggested by Jones and
Matarić is consistent with the biologically-inspired control paradigm that has
become popular in the field of distributed robotics. In such systems, the goal is
to design local interactions among robots or between robots and the environment
that will lead to the desired collective behavior. The mechanism works as follows:
As it wanders around the arena, robot counts the number of pucks of each
type in the environment as well as the number of robots in each foraging state
visible to it and adds these counts to memory. Since memory has a finite size
new observations replace the oldest ones. Periodically, the robot uses values in
memory to estimate the density of pucks and robots of each type, and changes
its foraging state according to a certain transition function. The general idea
is that a robot should switch its state to Red if there are fewer than necessary
robots in the Red state and vice versa for Green.

In this paper we propose and study a slightly simplified model for task allo-
cation, where the robots determine whether to make a transition to a new state
based on the number of pucks of either types they encountered. Specifically, let
mr and mg be the number of red and green pucks respectively that a robot has
encountered in some time interval, so that the estimated fraction of red pucks
is µr = mr/(mr + mg). Then, the robot will choose the red and green states
with probability µr and 1 − µr respectively. Clearly, if the robots have global
knowledge about the number of red and green pucks then this simple algorithm
will achieve the desired distribution of the robots between the states. Hence, it is
interesting to see how the incomplete knowledge about the environment affects
this distribution, and in the case of dynamic environment (e.g., changing ratio of
red and green pucks) what is its effect on the adaptive properties of the system.

4 Modelling Robots Observations

As we explained above, the transition rates between the states depend on robots’
observations, or history (memory). In our model, this history comprises of the
number of red and green pucks a robot has encountered during a time interval τ .
Let us assume that the process of encountering a puck is a Poisson process with
rate λ = αM0 where α is a constant characterizing the physical parameters of
the robot such as its speed, view angles, etc., and M0 is the number of pucks in
the arena. This simplification is based on the idea that robot’s interactions with
other robots and the environment is independent of the robot’s actual trajectory,
but are governed by probabilities determined by simple geometric considerations.
This simplification has been shown to produce remarkably good agreements with
experiments [11, 4].

Let Mr and Mg be the number of red and green pucks respectively, that
generally can be time dependent, Mr(t) + Mg(t) = M0. The probability that in
the time interval [t − τ, t] the robot has encountered exactly mr and mg pucks
is the product of two Poisson distributions:

P (mr, mg) =
λmr

r λmg

g

mr!mg !
e−λr−λg (1)
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where λi = α
∫ t

t−τ
dt′Mi(t

′) , i = r, g, are the means the of respective distribu-
tions. In the case when the puck distribution does not change in time one has
λi = αMiτ , i = r, g.

5 Individual Dynamics

During a sufficiently short time interval, each robot can be considered to be-
long to a Green or Red foraging state. This is a very high level, coarse-grained
description. In reality, each state is composed of several robot actions and be-
haviors, such as wandering the arena, detecting pucks, avoiding obstacles, etc.
However, since we want the model to capture how the fraction of robots in each
foraging state evolves in time, it is a sufficient level of abstraction to consider
only these states. If we find that additional levels of detail are required to explain
swarm behavior, we can elaborate the model by breaking each of the high level
states into its underlying components.

Let us consider a single robot that forages for Red and Green pucks in a
closed area and makes a transition to Red and Green states according to its
observations. As a designer, we would like to define transition rules so that the
fraction of time the robot spends in the Red (Green) foraging state be equal to
the fraction of red (green) pucks. Let pr(t) be the probability that the robot is
in the Red state. The equation governing its evolution reads

dpr

dt
= ε(1 − pr)fg→r − εprfr→g (2)

where ε is the rate at which the robot has to make a decision whether to switch it
state, and fg→r and fr→g are the corresponding transitions probabilities between
the states. As we explained above, these probabilities depend on the robot’s
history, e.g., the number of either types of pucks it has encountered during
the time interval τ preceding the transition. Specifically, let mr and mg be the
number of red and green pucks respectively that a robot has encountered in that
time interval. Then we define transition rates as follows:

fg→r =
mr

mr + mg

≡ γ(mr, mg), fr→g = 1 − γ(mr, mg) (3)

Eq.2 is a stochastic differential equation since the coefficients (transition rates)
depend on random variables mr and mg . Moreover, since the robot’s history
changes gradually, then the values of the coefficients at different times are cor-
related, hence making the exact treatment very difficult. Here we propose to
study the it within the annealed approximation. Namely, we neglect the time–
correlation between robot’s histories at different times, assuming instead that at
any time the real history {mr, mg} can be replaced by a random one drawn from
the Poisson distribution Eq. 1. Then, we can average Eq.2 over the histories to
obtain

dpr

dt
= εγ(1 − pr) − ε(1 − γ)pr (4)
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where γ is the history–averaged transition rate

γ =

∞
∑

mr=0

∞
∑

mg=0

P (mr, mg)
mr

mr + mg

(5)

and P (mr, mg) is the Poisson distribution Eq. 1. Note that if the pucks distribu-
tion changes in time then γ is time–dependent, γ = γ(t). The solution of Eq. 4
subject to the initial condition pr(t = 0) = p0 is readily obtained:

pr(t) = p0e
−εt + ε

∫ t

0

dt′γ̄(t − t′)e−εt′ (6)

To calculate γ(t) we define an auxiliary function

F (x) =
∞
∑

mr=0

∞
∑

mg=0

xmr+mg
λmr

r λ
mg

g

mr!mg!
e−λre−λg

mr

mr + mg

(7)

so that γ = F (x = 1). Differentiating Eq. 7 with respect to x yields

dF

dx
=

∞
∑

mr=1

∞
∑

mg=0

xmr+mg−1 λmr

r λ
mg

g

mr!mg !
e−λre−λgmr (8)

Note that the summation over mr starts from mr = 1. Clearly, the sums over mr

and mg are decoupled thanks to the cancellation of the denominator (mr +mg):

dF

dx
=

(

e−λr

∞
∑

mr=1

xmr−1 λmr

r

mr!
mr

)(

e−λg

∞
∑

mg=0

(xλg)
mg

mg!

)

(9)

The resulting sums are evaluated easily (as the Taylor expansion of correspond-
ing exponential functions), and the results is

dF

dx
= λre

−λ0(1−x) (10)

where λ0 = λr + λg . After elementary integration of Eq. 10 (subject to the
condition F (0) = 1/2), and using the expressions for λr, λ0 we obtain

γ(t) =
1

τ

∫ t

t−τ

dt′µr(t
′) + e−ατM0

(

1

2
−

1

τ

∫ t

t−τ

dt′µr(t
′)

)

(11)

where µr(t) = Mr(t)/M0 is the fraction of red pucks. Eq. 6 and 11 fully determine
the evolution of the dynamics of a single robot. To analyze its properties, let us
first consider the case when the puck distribution does not change with time,
µr(t) = µ0. Then the we have

pr(t) = γ + (p0 − γ)e−εt (12)

γ = µ0 + e−ατM0(1/2− µ0) (13)
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Hence, the probability distribution approaches its steady state value ps
r = γ

exponentially. Note that for large enough ατM0 the second term in the expression
for γ can be neglected so that the steady state attains the desired value ps

r ≈ µ0.
For small values of ατM0 (i.e., small density of pucks or short history window),
however, the desired steady state is not reached, and in the limit of very small
ατM0 it attains the value 1/2 regardless of the actual puck distribution (we
elaborate on this more in Section 7).

Now let us consider the case when there is a sudden change in the puck
distribution at a certain time t0, µr(t) = µ0 + ∆µθ(t − t0), where θ(t) is the
step function (without loss of generality we set t0 = 0). Clearly, after some
transient time, the distribution will converge to its new equilibrium value µ0+∆µ
(we assume that ατM0 is sufficiently large so we can neglect the exponential
correction to the steady state value). After some simple algebra, we obtain from
Eq. 6 and 11

pr(t) = µ0 +
∆µ

τ
t −

∆µ

ετ
(1 − e−εt), t ≤ τ

pr(t) = µ0 + ∆µ −
∆µ

ετ
(e−ε(t−τ) − e−εt), t > τ (14)

Eqs. 14 describes how robot distribution converges to the new steady state value
after the change in puck distribution. Clearly, the convergence properties of the
solutions depend on τ and ε. It is easy to see that in the limiting case ετ � 1
the new steady state is nearly attained after time τ , |pr(τ) − (µ0 + ∆µ)| ∼
∆µ/(ετ) � 1, so the convergence time is tconv ∼ τ . In the other limiting case
ετ � 1, on the other hand, the situation is different. Indeed, a simple analysis
of Eqs. 14 for t > τ yields |pr(t) − (µ0 + ∆µ)| ∼ ∆µe−εt so the convergence is
exponential with characteristic time tconv ∼ 1/ε.

6 Collective Behavior

In this section we study the collective behavior of a homogenous system con-
sisting of N robots with identical controllers described in the previous section.
Specifically, we are interested in the global system properties, namely, average
number of robots in the given states and the fluctuations around this average.
Note that the average number of robots in the Red state is directly related to
Eq. 4. Indeed, since the robots are in either state independent of each other,
then pr(t) is simply the fraction of robots in the Red state, and consequently
Npr(t) is the average number of robots in that state. Below we consider a more
general problem of finding the probability distribution of having n robots in the
red state.

Let Pn(t) be the probability density that there are exactly n Red robots at
time t. For a sufficiently short time interval ∆t we can write [8]

Pn(t + ∆t) =
∑

n′

Wn′n(t; ∆t)Pn′(t) −
∑

n′

Wnn′(t; ∆t)Pn(t) (15)
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where Wij(t; ∆t) is the transition probability between the states i and j during
the time interval (t, t + ∆t). In our multi robot systems, this transitions cor-
respond to robots changing their state from red to green or vice versa. Since
probability of having more than one robot to have a transition during a time in-
terval ∆t is o(∆t), then, in the limit ∆t → 0 only transition between neighboring
states are allowed in Eq. 15, n → n ± 1. Hence, we obtain

dPn

dt
= rn+1Pn+1(t) + gn−1Pn−1(t) − (rn + gn)Pn(t). (16)

Here rk is the probability density for having one of the k Red robots to changes
its state to Green, and gk is the probability density for having one of the N − k
Green robots to change their state to Red:

rk = k(1 − γ) , gk = (N − k)γ (17)

with r0 = g−1 = 0, rN+1 = gN = 0. Again, we have averaged the transition
probabilities over the histories.

The steady state solution of Eq. 16 is given by [18]

P s
n =

gn−1gn−2...g1g0

rnrn−1...r2r1
P s

0 (18)

where P s
0 is determined by the normalization:

P s
0 =

[

1 +

N
∑

n=1

gn−1gn−2...g1g0

rnrn−1...r2r1

]−1

(19)

Using the expression for γ, we obtain after some algebra

P s
n =

N !

(N − n)!n!
γn(1 − γ)N−n (20)

e.g., the steady state is a binomial distribution with parameter γ. Note again that
this is the direct consequence of the independence of robots’ dynamics. Indeed,
since the robots act independently, then in the steady state each of them has
the same probability of being in either state. Moreover, using this argument it
becomes clear that the time–dependent probability distribution Pn(t) is given
by Eq. 20 with γ replaced by pr(t), Eq. 6.

7 Simulations

To validate our analytic mathematical model, we compared its predictions to the
results of discrete time numeric simulations with 100 robots. We model the arena
by a 100×100 rectangular grid, Mr (Mg) cells are occupied by red (green) pucks.
Robots move randomly from cell to cell2, and once they are on a cell with either
type of puck, they record it in their register, or memory. At each time step, each
robot, with probability ε decides whether it should consider a transition or not,



Analysis of a Stochastic Model of Adaptive Task Allocation in Robots 9

0 200 400 600
Time

0.0

0.25

0.5

0.75

1.0

F
ra

ct
io

n
of

re
d

ro
bo

ts

= 0.01

= 0.1

Fig. 1. Fraction of red robots vs time, τ = 50

0 10 20 30 40 50 60 70 80 90 100
n

0.0

0.05

0.1

0.15

P
ns

analytical
simulations

0=0.25

0=0.5

0=0.9

Fig. 2. Steady state distribution P s

n
for different fractions of red pucks



10 Aram Galstyan and Kristina Lerman

500 1000 1500 2000

Time
0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
re

d
ro

bo
ts

= 50

500 1000 1500 2000

Time
0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
re

d
ro

bo
ts

= 200

Fig. 3. Adaptation to changing puck distribution for different τ (ε = 0.1)

and then uses the transition rules described above to determine its new state,
using the last τ entries in its registry. In Fig. 1 we plot the average fraction of red
robots as a function of time for puck distribution Mr = 500, Mg = 1500, and for
total number of robots N = 100, for different values of ε. We have averaged the
plot over 100 trials. For comparison, we also plot pr(t) as given by Eq.12. One
can see that the analytical curve fits perfectly with the results of the simulations.
The fraction of robots in both cases converges to the same steady state value
p0 = 0.25, and the convergence time depends on ε as indicated by Eq.12.

The quality of performance in the task allocation scenario depends not only
on the average number of robots collecting, say, red pucks, but also the fluc-
tuations around this average. Hence, we studied the steady state probability
distribution. Clearly, the strength of the fluctuations are characterized by the
width of this distribution. To obtain the steady state probability distribution in
the simulations, we used the time series generated by a single run. To avoid the
effects of transient dynamics, we carried out simulations until the steady state
was reached, and then constructed the histogram of Nr(t)–the number of red
robots. The results are shown in Fig. 2 for different values of the fraction of red
pucks. In each case, the distribution is peaked around its average value as one
should expect. Again, one can see that there is an excellent agreement between
the analytical curve (Eq. 20) and simulation results.

In Fig. 3 we plot the fraction of Red robots when the puck distribution under-
goes step–like changes, both for simulations (averaged over 100 trials) and ana-
lytical results (Eqs. 14). One can see that the system adapts to the changes, and
after some transient time the distribution of robots between the states reflects
the puck distribution. Note that in this case also the analytical and simulation
curves are virtually undistinguishable.

Finally, let us consider the case when ατM0 is sufficiently small so that the
correction to the value of γ can not be neglected. As we mentioned above, in this

2 Note that in our simulations we do not aim to reproduce realistic robot trajectories.
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Fig. 4. a)Fraction of red robots vs time for different values of τ b)Fraction of red robots
for modified transition rules. Both plots are the averages over 100 trials.

case steady state of Eq. 12 does not correspond to the puck distribution, p0
r 6= µ0,

and in the limit ατM0 → 0 the steady state converges to 1/2 not depending on
µ0. Note that this happens because for small enough ατM0 the robot’s registry
might not contain any readings at all. Hence, according to our rules,3 each robot
will choose either state with probability close to 1/2. This is illustrated in Fig. 4
(a) where we plot the number of red robots vs time for small overall density of
pucks M0/L2 and different τ . Remarkably, the deviation from the desired steady
state value is again well described by the analytical curve. Note also, that this
undesired behavior can be avoided by modifying the transition rules as follows:
if a robot’s registry does not contain any reading for the last τ time steps, then
the robot stays in its current state instead of choosing states with probability
1/2. This slight modification allows robots to achieve desired task allocation as
shown in Fig. 4 (b).

8 Conclusion

In conclusion, we have presented a simple stochastic model of task allocation
for multi–robot system, and studied it both analytically and in simulations.
Dynamic task allocation model presented here is an adaptive form of foraging
in a multi-robot system, where robots can switch dynamically between Red and
Green foraging states. When a robot is in a Red foraging state, it is searching
for and collecting Red pucks. The goal of dynamic task allocation is for the
distribution of robots in Red and Green foraging states to dynamically adapt to
the distribution of pucks, even when this distribution is not known in advance
or changing in time. In order to accomplish this, robots make local observations
of the pucks, estimate the density of each color based on past observations, and
switch foraging state according to some transition function.

3 Note that limmr→0 limmg→0
mr

mr+mg
= 1/2
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We have studied this model analytically using annealed approximation of
stochastic Master equation, where the robot’s actual histories are replaced by
random one drawn from Poisson distribution. Although it is not clear a priori

that such an approximation is valid, we obtained excellent agreement with the
results of numerical simulations. Note also that the model presented here can
be generalized to the situations when there are more than two states for more
general multi–agent settings.

The work presented in this paper does not address the role noise in observa-
tions caused by faulty robot sensors plays in the behavior of the system. Real
robots making observations have crude video systems and may not be able to dis-
tinguish two objects that are overlapping in their visual field, or even their types
(colors). Nor can robots uniquely identify objects or be able to tell whether the
object they are seeing has been observed before. Such limitations will often lead
robots to overestimate or underestimate environmental states, and will require
further elaboration of the analytical techniques described here. Capturing noisy
observations and studying their effect on the collective behavior of an adaptive
system is the focus of our ongoing research.
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