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Abstract. The euro was introduced on the first of January 1999 as
a common currency in fourteen European nations. EC regulations are
fundamentally different from usual banking practices for they forbid fees
when converting national currencies to euros (fees would otherwise deter
users from adopting the euro); this creates a unique fraud context where
money can be made by taking advantage of the EC’s official rounding
rules.
This paper proposes a public-key-based protection against such attacks.
In our scheme, the parties conducting a transaction can not predict
whether the rounding will cause loss or gain while the expected sta-
tistical difference between an amount and its euro-equivalent decreases
exponentially as the number of transactions increases.

1 Introduction

Economic and Monetary Union (in short EMU) is a further step in the ongoing
process of European integration. EMU will create an area whose economic po-
tential will sustain comparison to that of the United States. Given the size of
the euro area, the euro is expected to play an important role as an international
currency. As a trade invoicing currency, the euro will also extend its role way
beyond direct trade relations.

Issues related to euro conversion were therefore precisely addressed [3] within
the general framework of the European financial market. A specific directive stat-
ing conversion rules for currencies inside the monetary union was also prepared
and issued [1]. The main objective of this directive is to provide financial institu-
tions with a comprehensive set of rules addressing all issues related to currency
conversions and currency rounding issues. Although great deal of attention was
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paid while standardizing the different formulae, the constraint imposed by the
requirement of not introducing conversion fees (a political issue) opens the door
to new fraud strategies.

In the following sections we explore fraud scenarii based on the actual round-
ing formula and present efficient counter-measures combining randomness and
public-key cryptography.

2 Currency Conversion

For centuries, currency conversions have been governed by (rounded) affine func-
tions:

f(x) = round

(

x

ρ

)

− κ

In financial terms, κ is the banker’s commission (or exchange fee) expressed
in the target currency, ρ is the conversion rate and the round function is an
approximation rule such that for all x:

∆ =

(

x

ρ
− f(x)

)

> 0

where ∆ represents the agent’s benefit or margin.
At the beginning of 1999, the exchange rates between fourteen European

currencies have been set with respect to the euro (cf. to appendix A) but, being
an obstacle to the euro’s widespread adoption, exchange fees were forbidden
(κ = 0) by law. EC regulation 1103/97 specifies that the European-wide legally-
binding conversion formula is:

f(x) =

⌊

x

ρ
+

1

2

⌋

This formula can be adjusted for currencies that can be broken up into smaller
amounts e.g. the British Pound can be broken up into 100 pence. Thus the
formula becomes:

f(x) =

⌊

100 ×
x

ρ
+

1

2

⌋

×
1

100

As a characteristic example, the conversion of 1000 frf into euros would be
done as follows:

x
FRF

ρ
FRF

=
1000

6.55957
= 152.4490172 . . . 7→ x

EUR
= 152.45EUR

The conversion between two European currencies is somewhat more intricate;
the value of the first currency is converted to scriptural euros, rounded to three
decimal places (i.e. 0.1 cent) and then converted into the target currency as
illustrated in the next example where 1000 frf are converted into nlgs:
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x
FRF

ρ
FRF

=
1000

6.55957
= 152.4490172 . . . 7→ x

EUR
= 152.449EUR

xEUR × ρNLG = 152.449× 2.20371 = 335.9533857 . . . 7→ xNLG = 335.95NLG

We refer the reader to [1] for further (mainly legal) details.

3 Rounding attacks

Attacks (characterized by a negative ∆) are possible when two different amounts
in a given currency collide into the same value in euros; this is only possible
when the smallest sub-unit of the concerned currency is worth less than one
cent; examples are rather common and easy to construct:

x
PTE

ρ
PTE

=
1100

200.482
= 5.48678 . . . 7→ x

EUR
= 5.49EUR

y
PTE

ρ
PTE

=
1101

200.482
= 5.49176 . . . 7→ y

EUR
= 5.49EUR

The smallest Portuguese unit is the centaro (which only exists for scriptural
payments); as the smallest circulating currency unit is the escudo, it appears in
our example that xEUR = yEUR although xPTE 6= yPTE .

The attacker can therefore create an escudo ex-nihilo by investing x
PTE

=
1100 and converting them to x

EUR
= 5.49 using the official conversion rule; then,

using the EC’s formula in the opposite direction, the attacker can convert the
xEUR back to escudos and cash 1101 ptes:

x
EUR

× ρ
PTE

= 5.49 × 200.482 = 1100.65 7→ x′

PTE
= 1101PTE

Note that although more decimal places can be used, higher precision nei-
ther prevents, nor significantly slows down this potential fraud which becomes
particularly relevant when automated attackers (e.g. home-based PCs) enter the
game.

4 Probabilistic rounding

The most obvious solution to this problem is to charge a minimal amount per
transaction, effectively rounding down on every occasion. This solution would be
fine for transactions that occur occasionally but not for transactions that occur
frequently, especially if the concerned amount is small. The EC have tried to
make the Euro as acceptable as possible and introducing a system that rounds
down every transaction is more likely to be viewed as a means of making some
money rather than preventing possible fraud attacks.
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The alternative approach chosen in this paper consists of rounding up with
a probability p and down with probability 1 − p, thereby making the rounding
unpredictable before completing the conversion process.

At its most simple this would involve rounding with a 1/2 probability as
illustrated in the following examples:

xEUR = 5.49 eur

ր
probability 1/2

x
PTE

ρ
PTE

=
1100

200.482
= 5.48678 . . .

probability 1/2

ց
x

EUR
= 5.48 eur

and, repeating the process in the opposite direction:

xPTE = 1101 pte

ր
probability 1/2

x
EUR

× ρ
PTE

= 5.49 × 200.482 = 1100.65
probability 1/2

ց
x

PTE
= 1100 pte

x
PTE

= 1099 pte

ր
probability 1/2

x
EUR

× ρ
PTE

= 5.48 × 200.482 = 1098.64
probability 1/2

ց
x

PTE
= 1098 pte

consequently, if numerous transactions are carried out money would be lost
as the expected return, EPTE(1100), is smaller than 1100:

E
PTE

(1100) =
1101

4
+

1100

4
+

1099

4
+

1098

4
= 1099.5 < 1100

The opposite problem appears when 1000 esp (where ρESP = 166.386) are
converted back and forth:
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x
ESP

= 1002
ր

probability 1/4

x
EUR

= 6.02
ր probability 1/4

probability 1/2 ց
x

ESP
= 1001

x
ESP

= 1000
xESP = 1000

probability 1/2 ր
ց probability 1/4

x
EUR

= 6.01
probability 1/4

ց
x

ESP
= 999

where the expected return is:

E
ESP

(1000) =
999

4
+

1000

4
+

1001

4
+

1002

4
= 1000.5 > 1000

It is thus possible to take advantage of probabilistic rounding as p = 1/2
only slows the attacker by forcing him to expect less return per transaction, but
the system’s overall behavior remains problematic.

To make x and E(x) equal p should depend on the ratio x/ρ and compensate
statistically the rounded digits.

Denoting by frac(x) = x − ⌊x⌋ the fractional part of x, let:

p(x, ρ) = frac

(

100 × frac

(

x

ρ

))

(1)

be the probability of rounding x currencies at rate ρ.

For example, for 1000 pesetas where x
ESP

/ρ
ESP

= 6.0101210 . . ., truncation
yields:

p(1000, 166.386) = 0.01210 . . .

and:
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x
ESP

= 1002
ր

probability 0.00778877

x
EUR

= 6.02
ր probability 0.00431123

probability 0.0121 ց
x

ESP
= 1001

x
ESP

= 1000
xESP = 1000

probability 0.9879 ր
ց probability 0.96794442

x
EUR

= 6.01
probability 0.01995558

ց
x

ESP
= 999

This system has an expected return of:

E
ESP

(1000) = 0.00778877× 1002 + 0.00431123× 1001

0.96794442× 1000 + 0.01995558× 999

= 999.99993319 ∼= 1000

p can be taken to a higher degree of accuracy. If the probabilities are imple-
mented to the highest possible accuracy degree (i.e. all decimal places, where
possible), then the expected result will be as close to the value used in the first
conversion as possible.

Applied to the previous example the fraud expectation is exactly equal to
1000 + 3 × 10−11

esp. Greater security can only be gained by increasing the
accuracy of the exchange rates themselves.

Let x be an amount in a currency whose rate is ρ and denote by E(x) the
fraud expectation after a currency 7→ euro probabilistic conversion of x.

We can state the following lemma:

Lemma 1. Let x be an amount in a currency which rate is ρ and denote by
E(x) the fraud expectation after a back and forth (currency 7→ euro 7→ currency)
probabilistic conversion of x were p(x, ρ) is determined by formula 1. Then :

E(x) = x

Proof :
Denoting by r(x, ρ) the truncation of x/ρ to a two-digit precision :

r(x, ρ) = ⌊
100x

ρ
⌋ ×

1

100
,

we redefine p(x, ρ) = (x/ρ − r(x)) × 100 and evaluate E(x) :
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E(x) = r(x, ρ) × (1 − p) + (r(x, ρ) +
1

100
) × p

= r(x, ρ) +
p

100

= r(x, ρ) +
(x/ρ − r(x, ρ)) × 100

100
= r(x, ρ) + x/ρ − r(x, ρ) = x/ρ

and applying the same procedure in the opposite direction we get x back.
Note that since the x/ρ is a rational number, so is the probability p(x, ρ)

(say a/b); consequently there is no need to truncate or approximate p(x, ρ), the
coin toss can simply consist of picking a random number in the interval [0, b−1]
and comparing its value to a.

5 An asymmetric solution

Probabilistic rounding requires an impartial random source S, independent of
the interacting parties (A and B) and (as is usual in cryptography) the best way
of generating trust consists of giving neither party the opportunity to deviate
from the protocol. The solution is somewhat analogous to [2].

This is hard to achieve with probabilistic rounding, as it is impossible to
prove whether x/ρ was rounded correctly or not. Therefore, when A or B gains
money after a few transactions, it can not be proved if this happened by chance
or not. Public-key cryptography can nevertheless serve here, both as S and as a
fair rounding proof.

When a transaction is carried out, transaction data are concatenated and
signed by A and B, using a deterministic signature scheme (typically an RSA
[4]). The signatures are then used as randomness source to generate a number
0 ≤ τ ≤ 1 to the same amount of decimal places as the probability p(x, ρ). If τ ≤
p(x, ρ) then the value at the end of the transaction is rounded up, otherwise it is
rounded down. Denoting by h a one-way function, the protocol is the following:

– A and B negotiate the transaction details t (including the amount to be
converted).

– A sends to B a sufficiently long (160-bit) random challenge rA.
– B sends to A a sufficiently long (160-bit) random challenge rB .
– A and B sign h(t, rA, rB) with their deterministic signature schemes, ex-

change their signatures (hereafter sA and sB) and check their mutual cor-
rectness.

– τ = sA ⊕ sB is used as explained in the previous section for the rounding
operation.
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The signatures will convince both parties that once converted, the amount
was rounded fairly and prevent A and B from perturbing the distribution of τ .
Furthermore, the usage of digital signatures permits the resolution of disputes.

Lighter (symmetric) versions of the protocol can be adapted to settings
where non-repudiation is not a requirement (e.g. the everyday exchange of small
amounts) :

– A and B generate two sufficiently long random strings rA and rB and ex-
change the hash values cA = h(rA) and cB = h(rB).

– A and B reveal rA and rB and check the correctness of cA and cB.
– τ = rA ⊕ rB is used for the rounding operation.

Finally, note that (as most two-party symmetric e-cash protocols) our sym-
metric variant is vulnerable to protocol interrupt attacks. Such attacks consist
in abandoning a transaction (e.g. walk out of the shop) if the rounding does not
happen to be in favor of the abandoning party.

6 Conclusion

This paper presented a counter-measure that prevents a fraud scenario inherent
to EC regulation 1103/97. Although current regulations do not present serious
problems when applied occasionally in coin and bank-note conversions, the pro-
cedures proposed in this paper is definitely preferable in large-scale electronic
fund transfers where automated attacks could cause significant losses.
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A Euro Exchange Rates

country symbol currency ρ =currency/euro
Austria ats schilling 13.7603
Belgium bec franc 40.3399
Denmark dkk krona 7.43266
Finland fim mark 5.94575
France frf franc 6.55956
Germany dem mark 1.95587
Greece grd drachma 326.300
Ireland iep punt 0.78786
Italy itl lira 1936.27
Luxemburg luf franc 40.3399
Netherlands nlg guild 2.20374
Portugal pte escudo 200.481
Spain esp peseta 166.388
Sweden sek krona 8.71925

B EC Regulation 1103/97

Article 4.

1. The conversion rates shall be adopted as one euro expressed in terms of each

of the national currencies of the participating Member States. They shall be

adopted with six significant figures.

2. The conversion rates shall not be rounded or truncated when making con-

versions.

3. The conversion rates shall be used for conversions either way between the

euro unit and the national currency units. Inverse rates derived from the

conversion rates shall not be used.

4. Monetary amounts to be converted from one national currency unit into

another shall first be converted into a monetary amount expressed in the

euro unit, which amount may be rounded to not less than three decimals

and shall then be converted into other national currency unit. No alternative

method of calculation may be used unless it produces the same results.

Article 5.

Monetary amounts to be paid or accounted for when a rounding takes place

after a conversion into the euro unit pursuant to Article 4 shall be rounded up or

down to the nearest cent. Monetary amounts to be paid or accounted for which

are converted into a national currency unit shall be rounded up or down to the

nearest sub-unit or in the absence of a sub-unit to the nearest unit, or according

to national law or practice to a multiple or fraction of the sub-unit or unit of the

national currency unit. If the application of the conversion rate gives a result

which is exactly half-way, the sum shall be rounded up.


