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Abstract

An infinite binary sequence x is defined to be

(i) strongly useful if there is a computable time bound within which every decidable sequence is Turing
reducible to x; and

(ii) weakly useful if there is a computable time bound within which all the sequences in a non-measure
0 subset of the set of decidable sequences are Turing reducible to x.

Juedes, Lathrop, and Lutz (1994) proved that every weakly useful sequence is strongly deep in the sense
of Bennett (1988) and asked whether there are sequences that are weakly useful but not strongly useful.

The present paper answers this question affirmatively. The proof is a direct construction that combines
the martingale diagonalization technique of Lutz (1994) with a new technique, namely, the construction
of a sequence that is “computably deep” with respect to an arbitrary, given uniform reducibility. The
abundance of such computably deep sequences is also proven and used to show that every weakly useful
sequence is computably deep with respect to every uniform reducibility.

1 Introduction

It is a truism that the usefulness of a data object does not vary directly with its information content. For
example, consider two infinite binary strings, χK , the characteristic sequence of the halting problem (whose
nth bit is 1 if and only if the nth Turing machine halts on input n), and z, a sequence that is algorithmically
random in the sense of Martin-Löf [10]. The following facts are well-known.

1. The first n bits of χK can be specified using only O(log n) bits of information, namely, the number of
1’s in the first n bits of χK [1].

2. The first n bits of z cannot be specified using significantly fewer than n bits of information [10].

3. Oracle access to χK would enable one to decide any decidable sequence in polynomial time (i.e., decide
the nth bit of the sequence in time polynomial in the length of the binary representation of n) [11].

4. Even with oracle access to z, most decidable sequences cannot be computed in polynomial time. (This
appears to be folklore, known at least since [2].)
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Facts (1) and (2) tell us that χK contains far less information than z. In contrast, facts (3) and (4) tell
us that χK is computationally much more useful than z. That is, the information in χK is “more usefully
organized” than that in z.

Bennett [2] introduced the notion of computational depth (also called “logical depth”) in order to quantify
the degree to which the information in an object has been organized. In particular, for infinite binary
sequences, Bennett defined two “levels” of depth, strong depth and weak depth, and argued that the above
situation arises from the fact that χK is strongly deep, while z is not even weakly deep. (The present
paper is motivated by the study of computational depth, but does not directly use strong or weak depth,
so definitions are omitted here. The interested reader is referred to [2], [7], or [5] for details, and for related
aspects of algorithmic information theory.)

Investigating this matter further, Juedes, Lathrop, and Lutz [5] considered two “levels of usefulness” for
infinite binary sequences. Specifically, let C be the Cantor space of all infinite binary sequences and let DEC
be the set of all decidable elements of C. For x ∈ C and t:N → N, let DTIMEx(t) be the set of all y ∈ C
for which there exists an oracle Turing machine M that, on input n ∈ N with oracle x, computes y[n], the
nth bit of y, in at most t(`) steps, where ` is the number of bits in the binary representation of n. Then
a sequence x ∈ C is defined to be strongly useful if there is a computable time bound t:N → N such that
DTIMEx(t) contains every decidable sequence. A sequence x ∈ C is defined to be weakly useful if there is
a computable time bound t:N → N such that the set of decidable sequences contained in DTIMEx(t) is a
non-measure 0 subset of DEC in the sense of resource-bounded measure [9]. That is, x is weakly useful if
access to x enables one to decide a nonnegligible set of decidable sequences within some fixed computable
time bound. No decidable or algorithmically random sequence can be weakly useful. It is evident that χK

is strongly useful, and that every strongly useful sequence is weakly useful.
Juedes, Lathrop, and Lutz [5] generalized Bennett’s result that χK is strongly deep by proving that

every weakly useful sequence is strongly deep. This confirmed Bennett’s intuitive arguments by establishing
a definite relationship between computational depth and computational usefulness. It also substantially
extended Bennett’s result on χK by implying (in combination with known results of recursion theory [10,
13, 3, 4]) that all high Turing degrees and some low Turing degrees contain strongly deep sequences.

Notwithstanding this progress, Juedes, Lathrop, and Lutz [5] left a critical question open: Do there exist
weakly useful sequences that are not strongly useful? The main result of the present paper answers this
question affirmatively. This establishes the existence of strongly deep sequences that are not strongly useful.
More importantly, it indicates a need for further investigation of the class of weakly useful sequences.

The proof of our main result is a direct construction that combines the martingale diagonalization tech-
nique introduced by Lutz [8] with a new technique, namely, the construction of a sequence that is computably
F -deep, where F is an arbitrary uniform reducibility. This notion of computable uniform depth is closely
related to Bennett’s notion of weak depth.

The paper is organized as follows. Section 2 contains basic definitions. In Section 3 we introduce and
investigate the notions of computable F -depth and computable weak depth. In addition to using specific
constructions of computably F -deep sequences, we prove that for each uniform reducibility F , almost every
sequence in DEC is computably F -deep. This implies that a weakly useful sequence is computably F -deep
for any uniform reducibility F . The main theorem is proved in Section 4, where in addition we introduce
a canonical technique for constructing computably F -deep sequences that satisfy an additional property
which, loosely translated, guarantees that the depths of their initial segments increase at a rate exponential
in the length of the segment.

2 Preliminaries

We use N to denote the set of natural numbers (including 0), and Q to denote the set of rational numbers.
We write [[ϕ]] for the Boolean value of a condition ϕ, i.e.,

[[ϕ]] = if ϕ then 1 else 0.
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For any x, y ∈ {0, 1}∗ ∪{0, 1}∞, we write x v y to mean that x is a prefix of y. For every w ∈ {0, 1}∗, define
Cw = {x ∈ C : w v x}. We fix a computable, bijective pairing function 〈·, ·〉:N2 → N, monotone in both
arguments, such that i ≤ 〈i, j〉 and j ≤ 〈i, j〉 for all i, j ∈ N.

Weakly useful sequences are defined (in Section 1) in terms of computable measure, a special case of the
resource-bounded measure developed by Lutz [9]. We very briefly sketch the elements of this theory, referring
the reader to [9, 8] for motivation, details, and intuition.

Definition 2.1 A martingale is a function d: {0, 1}∗ → [0,∞) such that d(w) = d(w0)+d(w1)
2 for all w ∈

{0, 1}∗. A martingale d is computable if there is a total computable function d̂:N× {0, 1}∗ → Q such that,
for all r ∈ N and w ∈ {0, 1}∗, ∣∣∣d̂(r, w)− d(w)

∣∣∣ ≤ 2−r.

We make use of two notions of “success” for a martingale.

Definition 2.2 Suppose d is a martingale.

1. d succeeds on a sequence x ∈ C if

lim sup
n→∞

d(x[0 . . . n− 1]) = ∞,

where x[0 . . . n− 1] is the n-bit prefix of x.

2. The success set of d is
S∞[d] = {x ∈ C : d succeeds on x}.

3. The strong unitary success set of d is

SS1[d] = {x ∈ C : for all but finitely many n, d(x[0 . . . n− 1]) ≥ 1}

.

Definition 2.3 Let X ⊆ C.

1. X has computable measure 0, and we write µcomp(X) = 0, if there is a computable martingale d such
that X ⊆ S∞[d].

2. X has computable measure 1, and we write µcomp(X) = 1, if µcomp(Xc) = 0, where Xc = C−X is the
complement of X.

3. X has measure 0 in DEC, and we write µ(X | DEC) = 0, if µcomp(X ∩DEC) = 0.

4. X has measure 1 in DEC, and we write µ(X | DEC) = 1, if µ(Xc | DEC) = 0. In this case, we say
that X contains almost every element of DEC.

3 Uniform Computable Depth

Bennett [2] defines an infinite sequence A to be weakly deep if A is not tt-reducible to any algorithmically
random sequence. The definition of algorithmic randomness, due to Martin-Löf [10], can be stated in terms of
constructive null sets, which are sets with a computably enumerable sequence of open covers whose measures
grow arbitrarily small. In this section we develop a similar notion of depth based on computable measure,
a special case of the resource-bounded measure developed by Lutz [9]. This depth property is used in the
proof of our main result in Section 4. It is also of independent interest as it is closely related to Bennett’s
weak depth.
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We first make our terminology precise. As in [12], we define a truth-table condition (briefly, a tt-condition)
to be an ordered pair τ = ((n1, . . . , nk), g), where k, n1, . . . , nk ∈ N and g: {0, 1}k → {0, 1}. We write TTC
for the class of all tt-conditions. The tt-value of a sequence B ∈ C under a tt-condition τ = ((n1, . . . , nk), g)
is the bit τB = g(B[n1]B[n2] · · ·B[nk]). If τ is a tt-condition, then we say that τ queries the integer m if
m ∈ {n1, . . . , nk}, and the query height of τ is defined as max(n1, . . . , nk) + 1.

A truth-table reduction (briefly, a tt-reduction) is a total computable function F :N → TTC. A truth-table
reduction F naturally induces a function F̂ :C → C defined by

F̂ (B) = F (0)BF (1)B · · · .

In general, we identify a truth-table reduction F with the induced function F̂ , writing F for either function
and relying on context to avoid confusion.

The following terminology is convenient for our purposes.

Definition 3.1 A uniform reducibility is a total computable function F :N×N → TTC.

If F is a uniform reducibility, then we use the notation Fk(n) = F (k, n) for all k, n ∈ N. We thus regard a
uniform reducibility as a computable sequence F0, F1, F2, . . . of tt-reductions.

Definition 3.2 If F and G are uniform reducibilities, then we define the composition of F with G to be the
uniform reducibility

F ◦G:N×N → TTC

defined by
(F ◦G) (〈k, j〉, n) = (Fk ◦Gj) (n)

for all k, j, n ∈ N, where “Fk◦Gj” denotes the (easily defined) truth-table reduction satisfying (Fk◦Gj)(B) =
Fk(Gj(B)) for all B ∈ C.

Definition 3.3 Suppose F is a uniform reducibility, and A and B are infinite binary sequences.

1. A is F -reducible to B, and we write A ≤F B, if there is some k such that A = Fk(B).

2. The upper F -span of A is the set F−1(A) = {X ∈ C : A ≤F X}.

3. A is computably F -deep if µcomp(F−1(A)) = 0.

4. A is computably weakly deep if, for every uniform reducibility F , A is computably F -deep.

We pursue for a moment the analogy between Definition 3.3(3) and Bennett’s weak depth. In [15],
Terwijn and Torenvliet extended the resource-bounded measure of Lutz [9] using computably enumerable
supermartingales, functions like martingales except the averaging condition they must satisfy is weaker than
that required of ordinary martingales. Using this notion of measure, termed c.e. measure, Terwijn and
Torenvliet proved that the class of non-algorithmically random languages is the maximum c.e. measure 0
class. Bennett’s notion of weak depth can thus be characterized in terms of c.e. measure in the sense that a
language A is weakly deep if and only if the c.e. measure of its upper tt-span is 0. Definition 3.3(3) reflects
the spirit of this characterization, but replaces ‘tt-reducible’ with ‘F -reducible’ and replaces ‘c.e. measure 0’
with ‘comp-measure 0’. Regarding Definition 3.3(4), observe that every computably weakly deep sequence
is weakly deep. Lathrop and Lutz [6] have shown the converse is not true.

Although the definition of a weakly useful sequence was stated in terms of Turing reductions, we work
almost exclusively in this section and the next with truth table reductions. The connection between these
two notions is expressed by the following well-known fact.

Lemma 3.4 For every computable time bound t(n), there is a uniform reducibility F such that for all x ∈ C,
DTIMEx(t) = {F0(x), F1(x), . . .}.
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We now prove the main result of this section.

Theorem 3.5 For every uniform reducibility F , comp-almost every sequence in DEC is computably F -deep.

Proof. Let F denote a uniform reducibility, and write F = F0, F1, . . . . For each j ∈ N, define Dj(w) =
{B ∈ C : Fj(B)[0 . . . |w| − 1] = w}, i.e., those oracles which allow Fj to correctly compute w. For every
j ∈ N and w ∈ {0, 1}∗, we may, using a program that computes F , calculate Lj(w) = max({h ∈ N :
h is the query height of Fj(i) for some 0 ≤ i < |w|}), and then poll {0, 1}Lj(w) using the tt-conditions Fj(i)
for 0 ≤ i < |w| to obtain the set

Ej(w) = {α ∈ {0, 1}Lj(w) : Fj(B)[0 . . . |w| − 1] = w for all B w α}.

Let Pr(Dj(w)) denote the probability that an oracle chosen at random belongs to Dj(w). Then the function
d̃(w) = 2|w| · Pr(Dj(w)) is a martingale, and {d̃j}∞j=0 is uniformly computable since Pr(Dj(w)) = |Ej(w)| ·
2−Lj(w). Set

d̃(w) =
∞∑

j=0

2−j · d̃j(w).

It is routine to verify that d̃ is computable.
To show that µcomp(F−1(A)) = 0 for comp-almost every A ∈ DEC, we construct a computable martingale

d which succeeds on F−1(A). Suppose A ∈ DEC− S∞[d̃]. Then for every j ∈ N, we have

lim
m→∞

Pr(Dj(A[0 . . .m])) = 0.

Because of this we may, for each j, n ∈ N, compute a number mj,n such that Pr(Dj(A[0 . . .mj,n])) ≤
2−j−n−1. This can be accomplished by using programs that compute both F and A to calculate, for any
j, n ∈ N, Pr(Dj(A[0 . . .m])) for increasing values of m. We then define mj,n to be the least m such that
Pr(Dj(A[0 . . .m])) ≤ 2−j−n−1. We remark that {mj,n}∞j,n=0 is uniformly computable, and define a uniformly
computable sequence {dj,n}∞j,n=0 of martingales as follows. For all j, n ∈ N, let dj,n be the unique martingale
with initial value dj,n(λ) = Pr(Dj(A[0 . . .mj,n])), and satisfying Dj(A[0 . . .mj,n]) = SS1[dj,n].

This implies that dj,n(λ) ≤ 2−j−n−1 for all j, n ∈ N, and we define a function d: {0, 1}∗ → [0,∞) by

d(w) =
∞∑

n=0

∞∑
j=0

dj,n(w).

Then

d(λ) =
∞∑

n=0

∞∑
j=0

dj,n(λ) ≤
∞∑

n=0

∞∑
j=0

2−j−n−1 = 2,

and thus d is a martingale. To see that it is computable, define d̂(r, w) =
∑r+1+|w|

n=0

∑r+1+|w|
j=0 dj,n(w). The

fact that {dj,n}∞j,n=0 is uniformly computable implies that d̂(r, w) is computable, and∣∣∣d(w)− d̂(r, w)
∣∣∣ ≤

∞∑
n=0

∞∑
j=r+2+|w|

2|w| · 2−j−n−1 +
∞∑

n=r+2+|w|

∞∑
j=0

2|w| · 2−j−n−1

=
∞∑

n=0

2−r−2−n +
∞∑

n=r+2+|w|

2|w|−n

= 2−r−1 + 2−r−1 = 2−r.

For every B ∈ F−1(A), there exists j ∈ N such that for all n ∈ N, B ∈ SS1[dj,n], whence F−1(A) ⊆
S∞[d]. This shows that µcomp(F−1(A)) = 0. The sequence A ∈ DEC − S∞[d̃] was arbitrary, so it follows
that comp-almost every decidable sequence is computably F -deep. ut
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Theorem 3.6 Every weakly useful sequence is computably weakly deep.

Proof. Assume that A is weakly useful and fix a uniform reducibility F . Fix a computable time bound
t:N → N such that µ(DTIMEA(t) | DEC) 6= 0. Then by Lemma 3.4 there is a uniform reducibility F̃ such
that DTIMEA(t) = {F̃0(A), F̃1(A), . . .}. Let X denote the collection of computably (F̃ ◦F )-deep sequences.
By Theorem 3.5, µ(X | DEC) = 1, so there is a sequence B ∈ X ∩DTIMEA(t)∩DEC. Let C ∈ F−1(A) and
choose j, k ∈ N such that A = Fj(C) and B = F̃k(A). Then B = F̃k(Fj(C)), so C ∈ (F̃ ◦ F )−1(B). This
shows that F−1(A) ⊆ (F̃ ◦F )−1(B). Since B ∈ X, it follows that µcomp(F−1(A)) = µcomp((F̃ ◦F )−1(B)) = 0,
whence A is computably weakly deep. ut

4 Main Result

In this section, we prove the existence of weakly useful sequences that are not strongly useful. Although
we consider infinite, nonuniform collections of uniform reducibilities F , our construction uses computably
F -deep sets that are constructed in a canonical way.

We will deal extensively with partial characteristic functions, i.e., functions with domain a subset of N
and range {0, 1}. If σ and τ are partial characteristic functions, we let dom(σ) denote the domain of σ, and
say that σ and τ are compatible if they agree on all elements in dom(σ)∩dom(τ). We say that σ is extended
by τ (σ v τ) if σ and τ are compatible and dom(σ) ⊆ dom(τ). If D ⊆ N, then σ restricted to D is the
unique partial characteristic function

τ [x] =
{

σ[x] if x ∈ D
undefined otherwise.

We often identify N with N2 via the pairing function. The ith section of natural numbers {〈i, j〉 : j ∈ N}
is denoted by Ni, the union of the first i sections N0 ∪ . . . ∪Ni−1 by N<i, and the complement of N<i by
N≥i. If σ is a partial characteristic function and n ∈ N, then

• σ=i denotes σ restricted to the domain Ni,

• σ=i[< n] denotes σ restricted to the domain {〈i, y〉 : 0 ≤ y < n},

• σ<i denotes σ restricted to the domain N<i, and

• σ<i[< n] is σ restricted to {〈x, y〉 : 0 ≤ x < i and 0 ≤ y < n}.

Definition 4.1 For each uniform reducibility F , the decidable sequence A produced by the construction
below is called the canonical computably F -deep sequence.

Construction. Suppose F is a uniform reducibility. Fix j, n ∈ N, and let L be the maximum of the query
heights of Fj(〈j, n′〉) for all n′ ≤ n. Partition {0, 1}L into two sets R0 and R1 so that

α ∈ Rb ⇐⇒ (Fj(〈j, n〉)B = b for every oracle B w α).

Informally, we identify R0 with the set of oracles which answer “No” when queried by Fj(〈j, n〉), and R1

with the set of oracles which answer “Yes.” Our strategy will be to diagonalize against the majority in the
construction of A, ensuring that only the minority answer among those consistent with previous answers
can correctly compute any given bit of A. We thus define A[〈j, n〉] by induction as follows. Assume that
A[〈j, n′〉] has already been defined for all n′ < n, and let

R = {α ∈ {0, 1}L : (∀B w α)(A=j [< n] v Fj(B))}

consist of the strings from which Fj computes the previous values of A on the jth section correctly. Then
we define

A[〈j, n〉] =
{

1 if |R1 ∩R| ≤ |R0 ∩R|
0 if |R0 ∩R| < |R1 ∩R|.
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Clearly A is decidable. Furthermore, our definition ensures that the partial functions A=j [< n] of A have
the following property.

Fact 4.2 The probability an oracle chosen at random allows Fj to correctly determine A=j [< n + 1] is at
most half the probability that it allows Fj to correctly determine A=j [< n].

It only remains to show that A is computably F -deep. To this end, define

Dj,n = {B ∈ C : A=j [< n] v Fj(B)}.

The computation of A=j [< n] is accomplished without making queries to any k ≥ L, hence there is some
S ⊆ {0, 1}L such that

Dj,n =
⋃

w∈S

Cw.

As in the proof of Theorem 3.5, we define dj,n to be the unique martingale with initial value dj,n(λ) =
Pr(Dj,n) and such that Dj,n = SS1[dj,n]. By Fact 4.2 we have dj,n+1(λ) ≤ 1

2dj,n(λ), and thus dj,n(λ) ≤ 2−n

for any n ∈ N.
Define d: {0, 1}∗ → [0,∞) by

d(w) =
∞∑

j=0

∞∑
n=0

2−jdj,n(w).

Then

d(λ) ≤
∞∑

j=0

∞∑
n=0

2−j−n = 4,

so d is a martingale. If we define d̂:N× {0, 1}∗ → [0,∞) by

d̂(r, w) =
r+|w|+2∑

j=0

r+|w|+2∑
k=0

2−jdj,n(w),

then d̂ is computable. Also, each dj,n(w) ≤ 2|w|dj,n(λ) ≤ 2|w|−n, so for all r ∈ N and w ∈ {0, 1}∗,∣∣∣d̂(r, w)− d(w)
∣∣∣ ≤

∞∑
j=r+|w|+3

∞∑
n=0

2|w|−j−n +
∞∑

j=0

∞∑
n=r+|w|+3

2|w|−j−n

= 2 ·
∞∑

j=r+|w|+3

∞∑
n=0

2|w|−j−n

= 4 ·
∞∑

j=r+|w|+3

2|w|−j

= 2−r,

i.e., d̂ testifies that d is computable.
We finish the proof by showing that F−1(A) ⊆ S∞[d]. To see this, let B ∈ F−1(A), and fix j ∈ N such

that A = Fj(B). Then B ∈
⋂∞

n=0 Dj,n =
⋂∞

n=0 SS1[dj,n], so for every m ∈ N there is a w v B such that

d(w) ≥ 2−j
m2j−1∑

n=0

dj,n(w)

≥ 2−j
m2j−1∑

n=0

1

= m.
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This shows that B ∈ S∞[d]. We now have a computable martingale d with F−1(A) ⊆ S∞[d].
Thus we have proved the following.

Proposition 4.3 If F is a uniform reducibility and A is the canonical computably F -deep sequence, then
µcomp(F−1(A)) = 0.

We are now ready to prove the main theorem. Our proof is an adaptation of the martingale diagonalization
method introduced by Lutz in [8]. We define a sequence H one section at a time to satisfy the following
conditions, where H0,H1,H2, . . . are the sections of H, i.e., Hk[n] = H[〈k, n〉].

1. Each section Hk is decidable (although H itself cannot be decidable).

2. If d is any computable martingale, then there is some k such that d fails on Hk.

3. For every computable time bound t, there is a decidable set which is not in DTIMEH(t).

These three conditions suffice for our purposes. By Condition 1, the set J = {H0,H1,H2, . . .} ⊆ DEC, and
by Condition 2, no computable martingale can succeed on all its elements. Thus µcomp(J) 6= 0, which makes
H weakly useful, since J ⊆ DTIMEH(linear). Condition 3 ensures that H is not strongly useful.

Theorem 4.4 There exists a sequence H that is weakly useful but not strongly useful.

Proof. We divide the proof into two sections, the construction of H and the proof that H is indeed weakly
useful but not strongly useful.

Construction of H
Fix an arbitrary enumeration t0, t1, . . . of all computable time bounds and an enumeration d̃0, d̃1, . . . of

all computable martingales. These enumerations need not be uniform in any sense, since we are not trying
to control the complexity of H. We will define (in order) a number of different objects for each k:

• a uniform reducibility F k corresponding to tk,

• a decidable Ak such that Ak 6∈ DTIMEH(tk),

• a partial characteristic function αk of finite domain, compatible with all the previous sections of H,

• martingales di,j
k,q which are uniformly computable over i, j, q ∈ N, which, taken together for all k ≥ i,

witness that each Ai is computably F i-deep, and

• the section Hk itself, which is designed to make the martingale

dk = d̃k +
k∑

i=0

∞∑
j=0

∞∑
q=0

di,j
k,q · 2

−q−j

fail on Hk, thus satisfying Condition 2 above. The section Hk will also participate in a fixed finite number
of diagonalizations against tt-reductions from Ai to H for all i ≤ k.

Fix k ∈ N and assume the above objects have been defined for all k′ < k (define α−1 = λ). Also assume
that for each k′ < k we have at our disposal programs to compute the objects Ak′

and F k′

j uniformly over
j. Let

Mk
0 ,Mk

1 , . . .

be a computable enumeration of all oracle Turing machines running in time tk, and let

M̂k
0 , M̂k

1 , . . .

be a computable enumeration of oracle Turing machines which behave exactly like the corresponding Mk
j ’s,

except that when Mk
j makes a query of the form 〈x, y〉 for x < k, M̂k

j instead simulates the answer by
computing Hx[y] directly. Let

F k
0 , F k

1 , . . .
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be an enumeration of tt-reductions, each of which simulates the corresponding M̂k
m. This enumeration is

computable and thus is a uniform reducibility. Note that on any input, F k
j only makes queries to N≥k.

We define Ak to be the canonical computably F k-deep set. Let r, s ∈ N be the unique pair such that
k = 〈r, s〉. If there is a total characteristic function B extending both H<k and αk−1 for which Ar 6= F r

s (B),
then let αk w αk−1 be a finite sequence (the lexicographic minimum, say) that is compatible with H<k∪αk−1

and whose domain is big enough to preserve this fact, i.e., Ar 6= F r
s (B′) for any B′ ∈ C such that B′ w αk.

In this case we say αk diagonalizes against F r
s . Otherwise, we let αk = αk−1. This finite sequence will

eventually be included as a subseqence of H, but is added just one section at a time.
Now fix any i, j ∈ N with i ≤ k. For each n ∈ N and w ∈ {0, 1}∗, we define

1. Di
j,n = {B ∈ C : A=j [< n] v F i

j (B)},

2. Rj,n = {B ∈ C : H<j [< n] v B}, and

3. Sj,w = {B ∈ C : (∀0 ≤ m < |w|)(B[〈j, m〉] = w[m])}.

Fact 4.2 implies that Pr(Di
j,n) ≤ 2−n, and it is easy to see that Pr(Rj,n) = 2−jn. Put yi,j(n) = min({y ∈

N : for all 0 ≤ m < n, all queries of F i
j (〈j, m〉) are of the form 〈x, y′〉 with y′ < y}). For all q, ` ∈ N, define

di,j
k,q,`(w) =

{
2|w|−` · Pr(Sk,w | Rk,yi,j(q`) ∩Di

j,q`) if Pr(Rk,yi,j(q`) ∩Di
j,q`) > 0

2−` otherwise,
(1)

where the probabilities refer to the uniform probability measure on C, and, for measurable sets X, Y ⊆ C
with Pr(Y ) > 0, we define Pr(X | Y ) to be Pr(X∩Y )

Pr(Y ) as usual. Note that the definition of di,j
k,q,` above remains

unchanged if we replace yi,j(q`) with any y ≥ yi,j(q`), because Di
j,q` depends on B ∈ C only for those queries

made by F i
j on inputs 〈j, 0〉, . . . , 〈j, q`− 1〉, and none of these queries is of the form 〈x, y〉 for y ≥ yi,j(q`).

Summing over ` ≥ 1, define

di,j
k,q(w) =

∞∑
`=1

di,j
k,q,`(w).

Finally, set

dk(w) = d̃k(w) +
k∑

i=0

∞∑
j=0

∞∑
q=0

di,j
k,q(w) · 2−q−j .

We define H=k:Nk → {0, 1} so that it is compatible with αk on their common domain but diagonalizes
out of the success set of dk otherwise. Specifically,

Hk[n] = H=k[〈k, n〉] =
{

αk[〈k, n〉] if it is defined
[[ dk(Hk[< n]1) ≤ dk(Hk[< n]0) ]] otherwise.

As stated, it may not be the case that the comparison in the definition can actually be accomplished since a
computable martingale such as dk cannot in general be computed exactly, but is only approximated. What
we are really comparing then are not dk(Hk[< n]1) and dk(Hk[< n]0), but rather their nth approximations,
which are computable. Since these approximations are guaranteed to be within 2−n of the actual values,
and our sole aim is to make dk fail on Hk, it suffices for our purposes to consider only the approximations
when doing the comparisons above. The same trick is used in [8].

Hk is decidable, and for cofinitely many n, Hk[n] is chosen so that dk(Hk[< (n+1)]) ≤ dk(Hk[< n])+2−n,
the 2−n owing to the error in the approximation of dk. Thus dk fails on Hk, from which we obtain

Fact 4.5 The martingales d̃k and di,j
k,q, where j, q are arbitrary and i ≤ k, all fail on Hk.

Thus Conditions 1 and 2 above are satisfied. Define H to be the function whose value at 〈u, v〉 is Hu[v].
Each Hk preserves the diagonalization commitments made by the αk′ for k′ ≤ k, and one can easily see that
α0 v α1 v · · ·H. This completes the construction of H.
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H is weakly useful but not strongly useful
Notice that J = {H0,H1, . . .} ⊆ DTIMEH(linear), but µcomp(J) 6= 0. Therefore, H is weakly useful. It

only remains to show that H is not strongly useful. For every i, DTIMEH(ti) = {B ∈ C : B ≤F i H}.
Hence it suffices to show that for all i and j, the canonical computably F i-deep set Ai 6= F i

j (H).
We assume there are natural numbers r and s such that Ar = F r

s (H) and work towards a contradiction.
Define k0 = 〈r, s〉 and let σ = H<k0 ∪ αk0−1. By the definition of αk0 , it must be the case that Ar = F r

s (B)
for every B w σ, otherwise F r

s would have been diagonalized against by αk0 and would thus fail to reduce
Ar to H. Choose q0 > r such that N≥q0 ∩ dom(σ) = ∅. We will show that dr,s

n,q0
succeeds on Hn for some

n < q0, contradicting Fact 4.5.
For every y ∈ N, let {δi : 0 ≤ i < 2ry} be an enumeration of all partial characteristic functions with

domain T = {〈u, v〉 : 0 ≤ u < r and 0 ≤ v < y}, and such that δ0 = H<r[< y]. Partition C into cells
Ei = {B ∈ C : δi v B}. Fix any integer ` ≥ 1. Since F r

s makes no queries in T , the probabilities
Pr(Dr

s,q0` | Ei) are all equal for i < 2ry. Therefore

Pr(Dr
s,q0`) =

2ry−1∑
n=0

Pr(En) · Pr(Dr
s,q0` | En) = 2−ry

2ry−1∑
n=0

Pr(Dr
s,q0` | E0) = Pr(Dr

s,q0` | Rr,y),

and it follows that Rr,y and Dr
s,q0` are independent for all y and `. If r ≤ n < q0, then for y ≥ yr,s(q0`),

Pr(Rn,y ∩Dr
s,q0`) ≥ Pr(Rq0,y ∩Dr

s,q0`) = Pr(Rq0,y) = 2−q0y > 0, (2)

since Rq0,y ⊆ Dr
s,q0` by our assumption. For these n, only the top equation in (1) is relevant. Thus for

sufficiently large y,

q0−1∏
n=r

dr,s
n,q0,`(Hn[< y]) =

q0−1∏
n=r

2y−` · Pr(Sn,Hn[<y] | Rn,y ∩Dr
s,q0`)

= 2(y−`)(q0−r) ·
q0−1∏
n=r

Pr(Rn,y ∩ Sn,Hn[<y] | Rn,y ∩Dr
s,q0`)

= 2(y−`)(q0−r) ·
q0−1∏
n=r

Pr(Rn+1,y | Rn,y ∩Dr
s,q0`)

= 2(y−`)(q0−r) · Pr(Rq0,y | Rr,y ∩Dr
s,q0`)

= 2(y−`)(q0−r) ·
Pr(Rq0,y ∩Dr

s,q0`)
Pr(Rr,y) Pr(Dr

s,q0`)
.

By Fact 4.2, Pr(Dr
s,q0`) ≤ 2−q0`, and this together with (2) implies that the last expression above is bounded

from below by
2q0y−q0`−ry+r` · 2−q0y

2−ry · 2−q0`
= 2r` ≥ 1.

Hence for any ` and all y ≥ yr,s(q0`), there must exist some n satisfying r ≤ n < q0 and dr,s
n,q0,`(Hn[< y]) ≥ 1.

Then by the Pigeon Hole Principle there is some r ≤ n0 < q0 with the property that, for infinitely many `,
dr,s

n0,q0,`(Hn0 [< y]) ≥ 1 for all y ≥ yr,s(q0`). Hence dr,s
n0,q0

=
∑∞

`=1 dr,s
n0,q0,` succeeds on Hn0 , but then so does

dn0—a contradiction. Therefore, H is not strongly useful. ut

Corollary 4.6 There is a sequence that is strongly deep but not strongly useful.

Proof. This follows immediately from Theorem 4.4 and the fact [5] that every weakly useful sequence is
strongly deep. ut
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It is easy to verify that weak and strong usefulness are both invariant under tt-equivalence. Thus,
Theorem 4.4 shows that there are weakly useful tt-degrees that are not strongly useful. Our results do not
say anything regarding the Turing degrees of weakly useful sets, however. In particular, we leave open the
question of whether there is a weakly useful Turing degree that is not strongly useful (i.e., whether there is a
weakly useful set not Turing equivalent to any strongly useful set). Some facts are known about these degrees.
Jockusch [3] neatly characterized the strongly useful Turing degrees (under a different name), for example, as
being either high or containing complete extensions of first-order Peano arithmetic. This includes some low
degrees, but no non-high c.e. degrees. Stephan [14] has partially strengthened these results, showing that
no non-high c.e. Turing degree can be weakly useful, either. Therefore, among the c.e. degrees, the strongly
useful, weakly useful, and high degrees all coincide.
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