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Abstract

New filters are derived for estimating the n–dimensional
state of a linear dynamic system based on uncertain m–
dimensional observations, which suffer from two types of
uncertainties simultaneously. The first uncertainty is a
stochastic process with given distribution. The second un-
certainty is only known to be bounded, the exact underly-
ing distribution is unknown. The new estimators combine
set theoretic and stochastic estimation in a rigorous man-
ner and provide a continuous transition between the two
classical estimation concepts. They converge to a set the-
oretic estimator, when the stochastic error goes to zero,
and to a Kalman filter, when the bounded error vanishes.
In the mixed noise case, solution sets are provided that
are uncertain in a stochastic sense.

1 Introduction

In many technical systems the internal state, which is for
example required for control purposes, is not directly ob-
servable and has to be reconstructed on the basis of uncer-
tain measurements of the system output. In most cases, a
stochastic uncertainty description is chosen and the state
is estimated by means of a Kalman filter or one of its
variations [1].

In many cases, however, uncertainties arise, for example
from unmodeled dynamics or unmodeled nonlinearities,
which cannot satisfactorily be described as stochastic sig-
nals with known distribution. In addition, correlated noise
terms or systematic errors may be present. For these
types of uncertainties, Kalman filter estimates tend to
be overoptimistic [11], i.e., the covariance is underesti-
mated. Several heuristics have been suggested for coping

with this problem, which of course do not provide optimal
estimators.

In some situations, bounds for these uncertainties can
be provided. In that case, set theoretic estimation can
be applied [13]. However, when additional uncorrelated
noise is present, the error bounds become unnecessarily
conservative.

In [2, 5], a basic concept for estimation in the presence
of both bounded and stochastic uncertainties has been in-
troduced. The proposed algorithm for the case of a scalar
state is exact, but computationally complex. In [3, 4], an
approximate solution for the case of a scalar state has been
derived, that is computationally attractive. In addition,
a generalization towards arbitrary dimensional states and
observations of the same dimension has been proposed in
[6]. Furthermore, the case of scalar measurements and
arbitrary dimensional states has been treated in [8, 9, 10].

This paper is concerned with updating the estimate of
an n–dimensional state based on m–dimensional observa-
tions. For this most general case, a new, approximate so-
lution is derived, that is computationally attractive. Nev-
ertheless, it combines both set theoretic and stochastic es-
timation in a rigorous manner. It bridges the gap between
both estimation schemes, because a set theoretic estima-
tor is obtained, when the stochastic error goes to zero,
and a Kalman filter is obtained, when the bounded error
vanishes. When both types of uncertainty are present, the
new estimator provides solution sets that are uncertain in
a stochastic sense. The propagation of estimates suffering
from both uncertainties through a dynamic system has
been discussed in [7].

In Section 2, a system model suffering from mixed stochas-
tic and set theoretic uncertainties is introduced. The basic
concept for solving the state estimation problem in this
context is described in Section 3. In Section 4, a useful
estimator is derived on the basis of this concept. The
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proposed estimator is then applied to a simple synthetic
example in Section 5.

2 Problem Formulation

The key point of this paper is the use of a generalized
uncertainty model unifying stochastic and set theoretic
modeling. This allows the treatment of systems corrupted
by both bounded and stochastic uncertainties simultane-
ously. Hence, the model is well–suited for, but not limited
to, the combination of deterministic/systematic errors and
random noise.

To be specific, we consider a linear measurement equation
given by

ŷ = H x+ ey + cy

with m–dimensional observation vector ŷ, n–dimensional
state vector x, and additive uncertainties ey, cy. Further-
more, there exists a prior estimate x̂p of the state vector.
x̂p also suffers from additive uncertainties ep, cp according
to

x̂p = x + ep + cp .

The corresponding additive uncertainties are of different
type:

1) ep, ey are uncertainties where the only prior knowl-
edge is their boundedness, which is expressed by

eT
p E−1

p ep ≤ 1 , eT
y E−1

y ey ≤ 1 .

2) cp, cy are Gaussian random variables

cp ∼ N(0,Cp) , cy ∼ N(0,Cy)

which are assumed to be uncorrelated.

3 The Basic Estimation Concept

For deriving an appropriate state estimator, we define

x̄p = x̂p − cp ,

ȳ = ŷ − cy .

Since there is no prior information about the remaining
uncertainties ep, ey besides their boundedness, we make
the worst case assumption that ep, ey are fully correlated.
Hence, a set theoretic estimator is appropriate for fusing
ȳ and x̄p. The fusion result is then given by the set

Xs = {ξ
s
: (ξ

s
− x̄s)

TE−1
s (ξ

s
− x̄s) ≤ 1}

with

x̄s = x̄p + λEpHT
(
Ey + λHEpHT

)−1
η ,

η = ȳ − Hx̄p

(1)

and

Es = dPs , (2)

where d is given by

d = 1 + λ − λ ηT
(
Ey + λHEpHT

)−1
η

and Ps is given by

Ps = Ep − λEpHT
(
Ey + λHEpHT

)−1
HEp .

The appropriate selection of the parameter λ ∈ [0, ∞)
will be discussed later. (1) can be rewritten as

x̄s = Wxx̄p +Wy ȳ

with

Wx = I − λEpHT
(
Ey + λHEpHT

)−1
H ,

Wy = λEpHT
(
Ey + λHEpHT

)−1

and

Wx +WyH = I .

However, x̄p and ȳ cannot be measured directly. Only
their noisy counterparts given by x̂p = x̄p+cp and ŷ = ȳ+
cy are available. Hence, the midpoint of the ellipsoidal set
Xs is a random variable denoted by Xs. It is defined only
when the difference y−Hxp is bounded by the Minkowski
sum B̃ of Ey and HEpHT , which is not an ellipsoidal set.

To simplify the following derivations, we note that the set
theoretic uncertainty Es given by (2) depends on ȳ and
x̄p. Setting η = 0 leads to d = 1 + λ and is equivalent to
bounding Es from above. The resulting Es is then given
by

Es = (1 + λ)Ep (3)

− λ(1 + λ)EpHT
(
Ey + λHEpHT

)−1
HEp .

Since the simplified Es in (3) does not depend on the
actual values, it is not a random variable.

4 Derivation of the New Estimator

Since the set B̃ is not an ellipsoid, a simplification is
obtained by using a bounding ellipsoid according to

B = {z : zT B−1z ≤ 1}
with

y − Hxp ∈ B̃ ⊂ B .

A parametrized family of bounding ellipsoid is obtained
by

B =
1

0.5− κ
Ey +

1
0.5 + κ

HEpHT
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for κ ∈ (−0.5, 0.5). κ is selected in such a way, that
the volume of the resulting bounding ellipsoid for the
Minkowski sum is minimized. Thus, Xs is a random
variable approximately given by

Xs =

{
WxXp +WyY for y − Hxp ∈ B
undefined elsewhere

.

Hence, the desired density is given by [12]

fxs
(xs) =

1
|Wx|

∞∫
−∞

· · ·
∞∫

−∞
fpy

(
W−1

x (xs − Wyy), y
)

dy ,

(4)

where the weighting matrix Wx is assumed to be regular,
and fpy(xp, y) is defined by

fpy(xp, y) =

{
cpy fp(xp) fy(y) for y − Hxp ∈ B
0 elsewhere

(5)

with normalizing constant cpy. By means of an indicator
function

I(xp, y) =

{
1 for y − Hxp ∈ B
0 elsewhere

,

(5) can be compactly written as

fpy(xp, y) = cpy fp(xp) fy(y) I(xp, y) .

The key idea to finding an approximate solution for the
probability density function is to approximate the indi-
cator function by a weighted sum of Gaussians according
to

I(xp, y) ≈
L∑

i=1

exp
{
− 1

2
(
y − Hxp − mi

g

)T

C−1
g

(
y − Hxp − mi

g

)}
,

with mi
g and symmetric, positive definite matrix Cg ap-

propriately chosen.

Based on this approximation of the bound, the exact den-
sity fxs

in (4) can be approximated by a sum of simple
densities. For that purpose, we first consider one term of
the sum which gives

f i
xs
(xs) = c1

∞∫
−∞

· · ·
∞∫

−∞
exp

{
− 1

2

[
(xp − x̂p)

TC−1
p (xp − x̂p)

+ (y − ŷ)T C−1
y (y − ŷ)

+ (y − Hxp − mi
g)

T C−1
g (y − Hxp − mi

g)
]}

dy

for i = 1, . . . , L, xp = W−1
x [xs − Wyy], and normaliz-

ing constant c1. A tedious calculation reveals that this
approximation can be simplified to

f i
xs
(xs) = gi c2 exp

{
−1
2
(
xs − x̂i

s

)T (
Ci

s

)−1 (
xs − x̂i

s

)}

with weighting factors

gi = exp
{
− 1

2
(
ŷ − Hx̂p − mi

g

)T
(
HCpHT +Cy +Cg

)−1 (
ŷ − Hx̂p − mi

g

)}
,

normalizing constant c2, and individual means

x̂i
s = Wxx̂p +Wy ŷ +

(
WxCpHT − WyCy

)
(
HCpHT +Cy +Cg

)−1 (
ŷ − Hx̂p − mi

g

)
for i = 1, . . . , L. The covariance matrices are
the same for each term in the sum and given by

Ci
s = WxCpWT

x +WyCyWT
y − (WxCpHT − WyCy

)
(
HCpHT +Cy +Cg

)−1 (
WxCpHT − WyCy

)T
.

The approximate solution for the density fxs
is then

fxs
(xs) ≈

L∑
i=1

f i
xs
(xs) ,

which is a weighted sum of Gaussian densities, where the
weighting factors gi are themselves values of a Gaussian
function.

An approximate expression for the expected value x̂s =
E[Xs] of the random variable Xs is then given by

x̂s ≈
(

L∑
i=1

gi x̂i
s

)/(
L∑

i=1

gi

)
, (6)

an approximate expression for the covariance by

Cs ≈

L∑
i=1

gi

{
Ci

s + x̂i
s(x̂

i
s)

T
}

L∑
i=1

gi

− x̂s x̂T
s . (7)

To summarize the results: The uncertainty of the fusion
result is given by a bounded uncertainty and a weighted
sum of Gaussian densities. To end up with a second or-
der estimator, the weighted sum of Gaussian densities is
approximated by mean and covariance.

The new estimator unifies Kalman filtering and set the-
oretic estimation: A Kalman filter is approached, when
the bounded error vanishes. On the other hand, a set
theoretic estimator is attained, when the stochastic error
goes to zero. When both types of uncertainty are present
simultaneously, the new estimator provides solution sets
that are uncertain in a stochastic sense.

5 Simulation Example

Consider two measurement equations according to

yk
1
= H1x + ek

1 + ck
1 ,

yk
2
= H2x + ek

2 + ck
2
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with

H1 =
[
2 1
0 1

]
, H2 =

[
1 0
3 1

]
.

ek
1 , ek

2 are unknown errors with bounds given by

E1 =
[
36900 24300
24300 16200

]
, E2 =

[
1200 0
0 1200

]
.

In this simulation, ek
1 , ek

2 are constant values given by
ek
1 =

[
20 10

]T , ek
2 =

[
5 25

]T . ck
1 , ck

2 are samples from
independent, zero mean white Gaussian random processes
with covariance matrices

C1 =
[
1002 0
0 1002

]
, C2 =

[
1002 0
0 1002

]
.

No prior knowledge is given.

In order to apply the standard approach for estimating
the state x =

[
x1 x2

]T , the Kalman filter, the bounded
uncertainties are interpreted as additional white Gaussian
noise resulting in total covariances E1 + C1 and E2 +
C2. The evolution of the resulting confidence set over
time is depicted in Figure 1. The confidence set has been
calculated based on 9 times the covariance matrix centered
at x̂k

s . The true state x =
[
100 100

]T is marked by a dot.
Note: The confidence set for k → ∞ does not contain the
true state.

For estimating the state x by using the proposed esti-
mator, the formulae for x̂k

s in (6), Ek
s in (3), and Ck

s in
(7) are used for both measurement equations at time k.
The parameter λk is chosen such that det(Ek

s + Ck
s) is

minimized. Figure 2 depicts how the resulting estimate
evolves over time. Here, the confidence set is given by
the Minkowski sum of Ek

s and 9Ck
s centered at x̂k

s . The
optimal estimate for an infinite number of measurements
would be given by the set resulting from intersecting the
two ellipses representing the sets of states that would be
obtained by inverting the measurement equations when
no stochastic uncertainty is present. Note: The confi-
dence set for k → ∞ bounds the exact set from above and
contains the true state.

6 Conclusions

Many applications require estimating the state of a linear
system from uncertain observations, where the uncertain-
ties are additively composed of both 1) noise with known
distribution and 2) noise with known bounds. The new
estimator then provides a rigorous framework for solving
these problems efficiently.

This paper focused on the measurement update, i.e., on
updating the estimate of an n–dimensional state based on
given m–dimensional observations. The time update, i.e.,
propagating the state estimate through a dynamic system,
is discussed in [7].
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Figure 1: Results of applying the Kalman filter.
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Figure 2: Results of applying the new estimator.
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