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Abstract—We compute the throughput capacity of random
dense wireless ad hoc networks for multi-pair unicast traffic in
which nodes are endowed with multi-packet reception (MPR)

(1-2)
capabilities. We show that © % and © (R(n)) bits

per second constitute tight bounds for the throughput capacity
under the physical and protocol model assumptions, respectively,
where n is the total number of nodes in the network, o > 2
is the path-loss parameter in the physical model, and R(n) is
the MPR communication range. In so doing, we close the gap
between the lower and upper bounds of throughput capacity
in the physical model. Compared to the capacity of point-to-
point communication reported by Gupta and Kumar [1], MPR
increases the order capacity of random wireless ad hoc networks
under both protocol and physical models by at least O(logn)

and © ((log n)%>’ respectively. We address the cost incurred

in increasing the throughput capacity of wireless ad hoc net-
works over what can be attained when sources and destinations
communicate over multi-hop paths under the physical model
assumption. We define the power efficiency n(n) as the bits of
information transferred per unit time (second) in the network for
each unit power, and compute such power efficiency for different
techniques. We show that a lower power efficiency is attained in
order to achieve higher throughput capacity.

I. INTRODUCTION

The work by Gupta and Kumar [1] demonstrated that
wireless ad hoc networks do not scale well for the case of
multi-pair unicasts when nodes are able to encode and decode
at most one packet at a time. This has motivated the study
of different approaches to “embrace interference” in order to
increase the capacity of wireless ad hoc networks. Embracing
interference consists of increasing the concurrency with which
the channel is accessed.

One approach to embracing interference consists of al-
lowing a receiver node to decode correctly multiple packets
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transmitted concurrently from different nodes, which we call
multi-packet reception (MPR) [2]. In practice, MPR can be
achieved with a variety of techniques, including multiuser
detection (MUD) [3], directional antennas [4], [S] or multiple
input multiple output (MIMO) techniques. A complementary
approach to embracing interference consists of increasing
the amount of information sent per channel usage. Network
coding (NC) [6] was introduced and shown to achieve the
optimal capacity for single-source multicast in directed graphs
corresponding to wired networks in which nodes are connected
by point-to-point links. Since then, many attempts have been
made to apply NC to wireless ad hoc networks, and Liu
et al. [7] have shown that NC cannot increase the order
capacity of wireless ad hoc networks for multi-pair unicast
traffic. However, recent work [8]-[12] has shown promising
results on the advantage of NC in wireless ad hoc networks
subject to multicast traffic. An interesting aspect of these
works is that nodes are also assumed to have multi-packet
transmission (MPT) and MPR capabilities in addition to using
NC for multicasting. Recently, Katti et al. [8] and Zhang et
al. [9] proposed analog network coding (ANC) and physical-
layer network coding (PNC) respectively, as ways to embrace
interference. Interestingly, a careful review of ANC and PNC
reveals that they consist of the integration of NC with a form of
MPR, in that receivers must be allowed to decode successfully
concurrent transmissions from multiple senders by taking
advantage of the modulation scheme used at the physical layer
(e.g., MSK modulation in ANC [8]). Furthermore, the prior
work, which we summarize in Section II, has not addressed
the contribution that MPR can make on the scaling laws of
wireless ad hoc networks.

This paper focuses on multi-pair unicast traffic in wireless
ad hoc networks when nodes are endowed with MPR. Section
IIT describes the network model we use to obtain upper and
lower bounds on the throughput capacity of wireless networks
with MPR. Section IV presents the derivation of these bounds,
which constitutes the first contribution of this paper. We show
that © (R(n)) and © &W) bits per second constitute
tight bounds for the throughput capacity per node in random
wireless ad hoc networks for protocol and physical models
respectively, where R(n) is the MPR communication range
and « is the channel path loss parameter. MPR achieves
higher throughput capacity under physical model than tech-

niques proposed in [1], [13]. When R(n) = 9( 105”)
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the throughput capacity is tight bounded by 9(
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spectively. This is a gain of © (logn) and © ((1og n)
compared to the bound in [1]. The assumptions we use to
obtain these results are similar to those made by Gupta and
Kumar [1], except that each node is equipped with MPR.

Several schemes have been proposed in the recent past [1],
[13] that achieve different capacities for multi-pair unicast
under the physical model. Intuitively, there must be a price
paid in any scheme aimed at increasing the capacity of wireless
networks, including MPR of course. This price is the energy
required to transport information across the network. Section
V presents our second contribution, which is to compare all
these existing techniques in terms of power efficiency. We
introduce a new parameter to quantify how many bits/sec of
information are transferred across the network per each unit
of power. We call this metric power efficiency, computed by
normalizing the throughput capacity by the total transmitted
power. We compute the power efficiency of many existing
techniques [1], [13] and compare them to the power efficiency
of MPR. We show that MPR provides a tradeoff between
throughput capacity, node decoding complexity, and power
efficiency in random wireless ad hoc networks. We also show
that achieving higher throughput capacity leads to a lower
power efficiency in all techniques, including MPR. Note that
we define the throughput capacity for random wireless ad hoc
networks in bits per second as defined in [1]. The focus of this
paper is only on random wireless ad hoc networks. Section VI
discusses several possible implications of this study. The paper
conclusion and future work are discussed in Section VII.

a—2
2

II. RELATED WORK

Since the landmark work by Gupta and Kumar [1] on the
scalability of wireless networks, considerable attention has
been devoted to improving or analyzing their results, and
we only mention a very small fraction of these works due
to space limitations. Grossglauser and Tse [14] demonstrated
that a non-vanishing capacity can be attained at the price
of long delivery latencies by taking advantage of long-term
storage in mobile nodes. The throughput capacity can also be
increased by using multiple channels [15] or sender-receiver
cooperation1 [16]. Recently, Ozgur et al. [17] demonstrated
that the capacity of random wireless ad hoc network scales
linearly with n by allowing nodes to cooperate intelligently
using distributed MIMO communications.

Under the physical model assumption, Gupta and Kumar [1]
showed that the throughput capacity of random wireless ad hoc
networks has lower and upper bounds of ©(y/1/nlogn) and
O(y/1/n), respectively. Franceschetti et al. [13] closed the
gap between these two bounds and obtained a tight bound of
O(4/1/n) using percolation theory. In this approach, all com-
munications are simple point-to-point without any cooperation
between senders and receivers.

INote that these two approaches [15], [16] can be considered as two
different forms of implementing MPR technique.

We note that previous work [18] has suggested the concept
of bits per joule capacity to evaluate how much information
can be transmitted with each unit energy. Our definition of
power efficiency is an extension of this prior work for wireless
ad hoc networks.

III. NETWORK MODEL

We consider a dense wireless ad hoc network with n nodes
distributed uniformly in a square of unit area. There are two
types of networks, namely, dense and extended networks. The
area of a dense network is constant independent of the number
of nodes while the area of extended network increases with
n. The network is assumed as static which means that the
nodes are not mobile. We follow this assumption throughout
the paper. Our capacity analysis is based on the extension
of protocol and physical models for dense networks which is
introduced by Gupta and Kumar [1]. Throughout this paper,
the distribution of nodes in random networks is uniform, and
non-uniform distribution is the topic of future work.

According to the Gupta-Kumar protocol model for point-to-
point communications, a common transmission range (n) for
all nodes is defined. Node 7 at location X; can successfully
transmit to node j at location X if for any node % at location
Xk, k # 14, that transmits at the same time as ¢, then |X; —
X;| <r(n) and | Xi — X;| > (1+A)r(n), where X;, X; and
X, are the cartesian position in the unit square network for
these nodes. The parameter A is a function of characteristics
of the channel model. We next define the protocol model for
MPR.

Definition 3.1: Protocol Model with Multi-packet Recep-
tion: In wireless ad hoc networks with MPR, the protocol
model assumption allows MPR capability at nodes as long as
they are within a radius of R(n) from the receiver and all other
transmitting nodes are at a distance larger than (1 + A)R(n).
The difference is that we allow the receiver node to receive
multiple packets from different nodes within its disk of radius
R(n) simultaneously in MPR scheme.

R(n) denotes the communication range for MPR model
which is a function of decoding complexity of nodes and node
density. r(n) denotes the communication range for point-to-
point communication, and it is a function of nodes density
in the network. Because the distribution of nodes is uniform,
these parameters are not a function of node distribution. How-
ever when the node distribution in the network is not uniform,
these parameters will be a function of node distribution.

We assume that nodes cannot transmit and receive at the
same time, which is equivalent to half duplex communication
[1]. The data rate for each link pair is a constant value of W
bits/second and does not depend on n. Given that W does not
change the order of throughput capacity of the network, we
normalize its value to one. The MPR protocol model is shown
in Fig. 1.

It has been proven [19] that the minimum communication
range R(n) in a random geometric graph to assure connectivity
in the network, is given in the following lemma.



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 6, NO. 1, JANUARY 2009

Receivers

©  Transmitters ]

Fig. 1. MPR protocol model

Lemma 3.2: For any € > 0 and n — oo, we have

Prob(existence of an isolated node) = 1
1
when R(n) = (1—c¢) osn
nmw
Prob(existence of an isolated node) = 0
logn
hen R = (1
when R(n) (1+¢) o

Our definition of throughput capacity is based on the
assumption that all the nodes in the network can achieve this
capacity. Therefore, in order to guarantee connectivity in the
network, the communication range should satisfy the following

criterion?.
lo;gl n > 0

Note that this result is independent of the physical layer model
we use for the network and it is a characteristic of random
geometric graphs [19]. Similar to the results in [1], we have
adopted same minimum communication range R(n) to assure
connectivity in the network for the protocol model. Note that
the successful communication in the physical model is based
on signal to interference and noise ratio and not the distance
between nodes, therefore we can no longer use the condition
of (1) for successful communication in the physical model.

Based on physical model for dense random wireless ad hoc
networks in [1], a successful communication occurs if signal
to interference and noise ratio (SINR) of the pair of transmitter
1 and receiver j satisfies

R(n) :Q<

Pg;;
BNo + 35 zi k=1 PIr;

where P is the transmit power of a node, g;; is the channel
attenuation factor between nodes ¢ and j, and BNy is the
total noise power. The channel attenuation factors g;; and gy
are only functions of the distance under the simple path loss
propagation model, i.e., g;; = | X; — X;| 7.

However, based on the physical model definition for MPR,
each receiving node has a communication range such that all
the nodes transmitting within this range will be decoded by
the receiver. Consequently, the definition of physical model

SINR;_,; = > f, 2)

2Given two functions f(n) and g(n). We say that f = O(g(n)) if
sup,,(/ (n)/9(n)) < o0. We say that f(n) = Q(g(n)) if g(n) = O(f(n)).
I@f(b?th))f(n) = O(g(n)) and f(n) = Q(g(n)), then we say f(n) =
g(n)).

should incorporate this fact in order to better represent this new
many-to-one communication scheme. The following statement
describes the decoding procedure for MPR. Note that, with
MPR, we can either decode the received signal for multiple
transmitters jointly using maximum likelihood (ML) decoding
or decode transmitters sequentially utilizing successive inter-
ference cancelation (SIC). ML decoding is computationally
more complex than SIC but it provides optimal performance.
Our SIC decoding requires all nodes inside transmission range
to be grouped into several smaller sets with each set satisfying
the SINR condition in (2). Because the channel model is based
on path loss propagation model, the SIC decoding starts from
a set of nodes that has the closest distance to the receiver node.
Each set may consist of either a single node or multiple nodes.
If a set consists more than one node, then the decoding of these
nodes are performed jointly. Definition 3.3 below describes the
successful transmission for MPR under physical model.

Definition 3.3: Physical Model with Multi-packet Recep-
tion: In the physical model of dense random wireless ad
hoc networks [1], the active transmissions from all of the
transmitters centered around the corresponding receiver j with
a distance smaller or equal to R(n) occur successfully if the
SINR of the transmitter Z(R(n)) near to the edge of the circle
of the receiver satisfies

Pgz(rmn));
BNy + Zk,VXk¢Az(R<n)> Pgr;

SINRz(R(n))—j = >3, 3)
where gz(gr(n)); is the channel attenuation factor between
nodes Z(R(n)) and j and BNy is the total noise power.
Az(r(n)) = mR?(n) is the area of the circle centered around
the receiver j, whose radius is R(n).

Any transmission outside the communication range is con-
sidered interference while all the transmissions inside commu-
nication range will be decoded jointly or separately depending
on the location of nodes inside the transmission circle. The
decoding is carried by dividing all the transmitters inside the
communication range (circle) into many subsets. The first set
of nodes have the closest distance to the receiver. The total
number of nodes in each set is selected such that if they are
decoded jointly by the receiver, they will satisfy the SINR
condition while the remaining nodes inside the transmission
circle are considered as interference. Once this set of nodes are
decoded jointly, they are subtracted from the received signal
and then the next set of nodes are decoded. The selection of
nodes for each set depends on the relative locations of nodes
with respect to the receiver node. Note that this approach
is suboptimal as compared to joint decoding of the entire
transmitting nodes inside the communication range which is
equivalent to maximum likelihood (ML) decoding. For this
reason, we denote the interference inside area Az (p(n)) as con-
structive interference, because it consists of transmissions that
will be eventually decoded, while all the transmissions from
nodes outside of area A are called destructive interference and
are not decoded. Note that in the physical model for the MPR
scheme, the communication range R(n) defines the area where
the receiver is capable of decoding, which contrasts with point-
to-point communication [1], for which the transmission range
r(n) defines the possible area where the receiver can decode,
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given that only one transmission is successful at a receiver.

Definition 3.4: Feasible throughput capacity of unicast: A
throughput of A(n) bits per second for each node is feasible
if we can define a scheduling transmission scheme that allows
each node in the network to transmit A(n) bits per second on
average to its destination.

The per-node throughput capacity of the network is defined
as the number of bits per second in Definition 3.4 that every
node can transmit to its destination.

Definition 3.5: Order of throughput capacity: A\(n) is
said to be of order O(f(n)) bits per second if there exist
deterministic positive constants ¢ and ¢’ such that

lim,, o Prob (A(n) = c¢f(n) is feasible) = 1 4
liminf,, o Prob (A(n) = ¢ f(n) is feasible) < 1. X

The distribution of nodes in random networks is uniform.
Therefore, if there are n nodes in a unit square, then the density
of nodes equals n. Hence, if |S| denotes the area of space
region S, the expected number of the nodes, F(Ng), in this
area is given by E(Ng) = n|S|. Let N, be a random variable
defining the number of nodes in S; . Then, for the family of
variables N;, we have the following standard results known
as the Chernoff bound [20]:

Lemma 3.6: Chernoff bound 5

5 o

o Forany 6 >0, P[N; > (14+6)n|S,|] < (W
e Forany 0 <4 <1, P[N; < (1—6)n|S;|] < e~ znISi15*
Combining these two inequalities we have, for any 0 < § < 1:

P[IN; = n|Sj|| > on|S;|) < e="I%1, (5)

where § = (1+6)In(1+9) — § in the case of the first bound,
and 0 = %52 in the case of the second bound.

Therefore, for any § > 0, there exist constants such that
deviations from the mean by more than these constants occur
with probability approaching zero as n — oo. It follows that
we can get a very sharp concentration on the number of nodes
in an area, so we can find the achievable lower bound, provided
that the mean for the upper bound is given.

IV. CAPACITY WITH MPR

We compute the capacity of wireless ad hoc networks for
both protocol and physical models. To accomplish this, we
first present some definitions and preliminary results from our
earlier work [21].

A cut T' is a partition of the vertices (i.e. nodes in the
wireless networks) of a graph into two sets. The cut capacity
is defined to be the sum of the capacity of all the active edges
crossing the cut that transmit simultaneously and successfully.
In this paper, we use random geometric graph (RGG). An
edge is active (communication link) in RGG if the protocol
or physical model is satisfied for successful communications
between the two nodes which is directly a function of distance
between nodes. However, an edge in a general graph is not
necessarily an active edge for an RGG. Min-cut is a cut whose
capacity is the minimum value among the capacity of all cuts.
For the wireless networks, we use the concept of sparsity cut,
which is defined by Liu et al. [7], instead of min-cut, to take

L

I
Information!flow direction
- b D>

Fig. 2. For a receiver at location (z,y), all the nodes in the shaded region
Szy can send a message successfully and simultaneously.

into account the differences between wired and wireless links.
Ir is defined as the length of the cut. For the square region
illustrated in Fig. 2, the middle line induces a sparsity cut I.
Because nodes are uniformly deployed in a random network,
such a sparsity cut captures the traffic bottleneck of these
random networks on average [7]. The sparsity-cut capacity
is upper bounded by the maximum number of simultaneous
transmissions across the cut.

Definition 4.1 (Sparsity Cut:): A sparsity cut for a random
network is defined as a cut induced by the line segment with
the minimum length that separates the region into two equal
area subregions. Note that the definition of sparsity cut does
not depend on a specific realization of a random network,
it rather focuses on the asymptotic order of some spatial-
statistical property of the collection of random networks as
a whole. The cut capacity is defined as the transmission
bandwidth W multiplied by the maximum possible number of
simultaneous transmissions across the cut. This cut capacity
constrains the information rate that the nodes from one side
of the cut as a whole can deliver to the nodes at the other
side. The cut length Ir is defined as the length of the cut line
segment in 2-D space. Similarly, in 3-D volume, the sparsity
cut is a plane, and the cut plane has an area. In another word,
sparsity cut can be seen for random geometric graph (RGG)
similar to min-cut concept in graph theory.

Let R(n) be the radius of the receiver area A, ie., A =
7R%(n). Given that we assume omnidirectional antennas for
all nodes, the information from any node inside this area is
decode-able while the information from all transmitting nodes
outside of this region are considered as interference.

We assume that each disk with radius R(n) centered at
any receiver is disjoint from the other disks centered at the
other receivers. It will be shown later that this assumption
is necessary in order to guarantee that the physical model
condition, SINR > 3, is satisfied.
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A. Upper Bound for Protocol Model

We first derive the sparsity cut for a random wireless ad
hoc network under the protocol model.

Lemma 4.2: The asymptotic throughput capacity of a spar-
sity cut I" for a unit square region has an upper bound of
c1lrnR(n), where, ¢; = 7/2(2 + A).

Proof: The cut capacity is the maximum number of
simultaneous transmissions across the cut.

We define S, as the area in the left side of the cut I' that
contains nodes sending packets to the receiver node located at
(z,y) (see Fig. 2)

These nodes lie in the left side of the cut I' within an area
called S;,,. The assumption is that all these nodes are sending
packets to the right side of the cut I'.

From the definition of the MPR, for a node at location
(z,y), any node in the disk of radius R(n) can transmit
information to this receiver simultaneously and the node can
successfully decode those packets. In order to obtain an upper
bound, we only need to consider edges that cross the cut. Let
us first consider all possible nodes in the S, region that can
transmit to the receiver node. Because nodes are uniformly
distributed, the average number of transmitters located in Sy,
is n x Sz,. The number of nodes that are able to transmit at
the same time from left to right is upper bounded as a function
of Sgy.

The area of Sy is

1
Sy = §R2(n)(9 — sin ). (6)
This area is maximized when 6 = T,
_ 1 2
Orél%xﬂ[Sry] = §7TR (n). (7

The total number of nodes that can send packets across the
cut is upper bounded as

l 1
G AR 2R (n=almBm),  ®
where ¢ = 7/2(2 + A). [ |

Corollary 4.3: For any arbitrary shape unit area random
network, if the minimum cut length I is not a function
of n, then the sparsity cut capacity has an upper bound of
O(nR(n)).

Proof: Regardless of the shape of the unit area region,
it is clear that the length of Ip is ©(1). because the network
area is unity. If I is not a function of n, then the capacity is
always upper bounded as ©(nR(n)). [ |

Theorem 4.4: The per-node throughput of MPR scheme in
a 2-D random network is upper bounded by ©(R(n)).

Proof: For a sparsity cut I' in the middle of the unit
plain, on average, there are ©(n) pairs of source-destination
nodes that need to cross I' in one direction, i.e., nr,, =
nr,, = ©(n). Combining this result with Corollary 4.3, we
can easily prove this theorem. Note that nr, , and nr, , are
the transmissions from left to right and from right to left
respectively. |

B. Lower Bound for Protocol Model

We now prove that, when n nodes are distributed uni-
formly over a unit square area, we have simultaneously at
least m circular regions in Fig. 2, each one contains
©(nR?(n)) nodes. The objective is to find the achievable
lower bound using Chernoff bound such that the distribution
of the number of edges across the cut is sharply concentrated
around its mean, and hence in a randomly chosen network,
the actual number of edges crossing the sparsity cut is indeed
O(nR(n)).

Theorem 4.5: Each area A; with circular shape contains
©(nR?%(n)) nodes uniformly for all values of j,1 < j <
[ mw with high probability (w.h.p.). 3

This theorem can be expressed as

[0 /(2+A)R(n)]
lim P ﬂ

j=1

=1,
(©))
where § is a positive small value arbitrarily close to zero.

Proof: Since Ir is not a function of n, using Chernoff
bound (Lemma 3.6) and Eq. (5), for any given 0 < § < 1, we
can find 6 > 0 such that

P[|N; — E(N;)| > 6E(N;)] < e PPWN) = ¢=0nl4il - (10)

|Nj — E(Nj)| < 0E(N;)

Thus, we can conclude that the probability that the value
of the random variable N; deviates by an arbitrarily small
constant value from the mean tends to zero as n — oo.
This is a key step in showing that when all the events
ﬂj”:Fl/(QJFA)R("ﬂ |N; — E(N;)| < 0E(N;) occur simultane-
ously, then all N;’s converge uniformly to their expected
values. Utilizing the union bound, we arrive at

[lr/(2+A)R(n)]
Pl N
j=1
[ir/(2+A)R(n)]

= 1-P U

j=1
[ir/(2+A)R(n)]

|Nj — E(N;)| < 6E(N;)

|N; — E(N;)| > 6E(N;)

> 1- 3. P[N;—E(;)| > 6E(N;)]
— L e OE(N;)
> 1 [(2+A)R(n)1 OE(N
o4 lfre,m
= ((2+A)R(n)] (11)

The last term is derived from the fact that E(N;) =
ZnR?(n). In order to guarantee connectivity, we need R(n) =

Q 107%” [1]. Thus we have the following equations.

_ mnR>%(n)
2

O (12)

3 An event happens with high probability if the probability of this event is
greater than 1 — % when n goes to infinity.
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Fig. 3. Upper bound design of the network

provided that 6 > 3/m. Then

[lr/(2+A)R(n)]

1
lim P N |N; — E(N;)| < E(N;)| >1— =,
n— o0 n
j=1
13)
which proves this theorem.
|

The next theorem demonstrates that this capacity is an
achievable lower bound.
Corollary 4.6: The per-node throughput of MPR scheme
for a 2-D random network has a lower bound of O(R(n)).
Proof: 1t is proved in Theorem 4.5, there are (M%]
different circles of radius R(n) each of them having
©(nR?(n)) nodes. Therefore, per-node is the multiplications
of these two values which is divided by the total number of

nodes.
lp o nR?(n)
{(2 + A)R(n)w n

= R(n) (14)

C. Upper Bound for Physical Model

We define division range D(n) as the minimum distance
required between receiving nodes such that each node can
decode all transmitters within the communication range R(n)
successfully. Equivalently, D(n) is the minimum distance that
separates simultaneous active receivers far from each other
such that receiver nodes can have successful communications.
Based on the above, D(n) is a function that depends on n
which we want to minimize between two concurrent receivers
as shown in Fig. 3 such that the physical model constraint is
satisfied. We will prove that D(n) is a function of R(n).

Lemma 4.7: The asymptotic throughput capacity of a spar-
sity cut I for a unit square region has an upper bound of
wlrn %2((:) , where, R(n) and D(n) are communication range
and division range of MPR respectively as illustrated in Fig.
3.

Proof: The cut capacity is upper bounded by the max-
imum number of simultaneous transmissions across the cut.
Based on the results from section IV-A and the total number of
nodes in each area S, we can compute the total information
capacity (i.e. the total capacity) C; for one receiver j at the
right side of the cut as

1
C; = iﬂnRQ(n).

The constraint to guarantee that Eq. (15) is true for all of
the nodes inside the circle of radius R(n), is to satisfy
SINRieszy > (3. For this reason, the circles in which nodes
are transmitting concurrently must be away from each other
far enough to satisfy SINR criterion.

Therefore, the total throughput capacity C'(n) across the
sparsity cut is

< (| ] +1) < T EDOD

Since Ir > D(n), then Ipr + D(n) < 2Ir and the proof
follows. u
Lemma 4.8: The per-node throughput of MPR scheme in a

2-D random network is upper bounded by O (}g((:)) .

Proof: From lemma 4.7, there are [lr/D(n)] different
circles of radius R(n) each of them having ©(nR?(n))
nodes on average. Therefore, the average per node throughput
capacity can be derived as

=0 ()

15)

a7)

|

To derive an upper bound for the throughput capacity, we
need to obtain a minimum D(n), such that it guarantees
SINRz(gr(n)) = B. The decoding is conducted from the nearest
nodes to the farthest nodes by decoding the strongest signals
first and then subtract them from the received signal. So if
the SINR of the outmost node can be decoded, then all of the
nodes inside that circle can be decoded successfully because
the nodes closer to the receiver provide higher SINR if they are
decoded either jointly or separately depending on the location
of nodes in the network. Based on this assumption, we only
need to compute the SINR of the farthest nodes Z(R(n))
(i.e., at the conjunction edge of the communication circle) to
make sure that SINRz(g(,)) > 3. Hence, to obtain the upper
bound of the capacity is equivalent to maximize the following

function.
R*(n)
n) = SINR;I(l,i},f»ZﬁO < D(n) ) (19

Note that the throughput capacity is maximized by minimiz-
ing D(n) since R(n) is a network parameter that is determined
in advance. If the value of D(n) is too small, then Eq. (3)
will not be satisfied. Our aim is to find the optimum value for
D(n) such that both conditions are satisfied. The following
theorem and its applications establish the optimum value that
will satisfy Eq. (3).

Theorem 4.9: The per-node throughput of MPR scheme in
(R(n))“’z/"‘)>

max
SINRz(Rr(n)) =8

ni/a

a 2-D random network is upper bounded by O (



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 6, NO. 1, JANUARY 2009

The proof can be found in the Appendix.

The above upper bound is derived based on the assumption
that the SINR for the nodes that are located on the circum-
ference of communication circle A of radius R(n) satisfy the
physical model, i.e., SINR 7 (r(n)) > (. We will show that this
upper bound in Theorem 4.9 is also an achievable capacity.

D. Lower Bound for Physical Model

Given the upper bound derived in the previous section,
the Chernoff Bound is used to prove the achievable lower
bound. We prove that, when n nodes are distributed uniformly
over a square area, we have simultaneously f ) 1 circular
regions (see fig. 2), each one containing © nRé ) nodes.
The objective is to find the achievable lower bound usmg the
Chernoff bound, such that the distribution of the number of
edges across the cut is sharply concentrated around its mean,

and hence in a randomly chosen network, the actual number
(R(n))“”/‘*))

P/
Theorem 4.10: Each area A; with circular shape of radius
R(n) contains ©(nR?(n)) nodes uniformly and w.h.p. for all

of edges crossing the sparsity cut is indeed © (

values of j, Dl(rn)] under the condition that R(n) =
Q (1 / k’i”) Equivalently, this can be expressed as
[ir/D(n)]
lim P| () |N;—E(N;)|<8E(N;)| =1, (19
j=1

where J is a positive arbitrarily small value close to zero.

The proof can be found in the Appendix.

Eq. (42) is equivalent to the connectivity condition in
the protocol model [1], [21]. It is interesting to note that
we did not really use connectivity criterion in the physical
model, however, it turns out that the minimum distance for
the communication range in MPR model is equivalent to
the connectivity constraint in protocol model for random
networks.

The above theorem demonstrates that there are indeed
©(nR?%(n)) nodes in each communication region with the
constraint in (42). The achievable capacity is only feasible
when the communication range of each node in MPR scheme
is at least equal to the connectivity criterion of transmission
range in point-to-point communication [1]. Combining the
result of Eq. (38) in Theorem 4.9 and (42) in Theorem 4.10,
we can state the following theorem for the lower bound of
throughput capacity. It implies that the lower bound order
capacity achieves the upper bound in physical model.

Theorem 4.11: The per-node throughput capacity of MPR
scheme in a 2-D wireless ad hoc network is bounded by

Q0 ((1%(7?1)1(7/1;2/“) provided that R(n) = 2 ( log" . The
1_1
achievable lower bound is © ( 8™ = ) for o > 2.

vn
The proof can be found in the Appendix.
The above theorem demonstrates that a gain of at least
] ((1og n)az;f) can be achieved compared with the results
by Gupta and Kumar [1] and Franceschetti et al. [13]. Com-

bining Theorems 4.9 and 4.11, we arrive at our next major
contribution of this paper.

Theorem 4.12: The per-node throughput capacity of MPR
scheme in a 2-D wireless ad hoc network is tight bounded

n))(1=2/) o .
as © (%) The communication range is lower
bounded as R(n) = Q ( 105 ”), which implies a bound of
1_1
(logm)2 ~ o
© NG

Note that this result shows that we can close the gap in the
physical model similar to the results derived by Franceschetti
et al. [13] but achieving higher throughput capacity with MPR.

V. POWER EFFICIENCY

Many wireless sensor and ad hoc networks are energy and
power limited systems and it is natural to ask what the price
of achieving higher capacities in wireless ad hoc networks is.

The capacity was originally defined in [1] based on bits
per second for random networks. The definition of bits-per
Joule was defined in [18]. To incorporate the effect of energy
consumption for communication in wireless networks, we
define bits per second per Watts for random networks as
“power efficiency” in the followings. This new metric is a
measure for evaluating the power efficiency of the capacity in
wireless sensor and ad hoc networks. The formal definition is
as follows.

Definition 5.1 ( power efficiency: ): In wireless ad hoc net-
works with limited energy, the power efficiency is defined as

n(n) = ]ﬁ((’;))

where A\(n) is the capacity of the network and P(n) is the
total minimum average power required to achieve A(n) for
each source-destination pair in the network. The metric is “bits
per Joule” or “bits per second per Watts” in random wireless
ad hoc networks.”

With this definition of efficiency, we compute the relation-
ship between the capacity and the power efficiency for the
various approaches defined to increase the throughput capacity
of wireless ad hoc networks, including our own.

(20)

A. Power efficiency in approach by Gupta and Kumar [1]

It is easy to show [22] that the minimum transmit power P
for each hop to guarantee SINR > [ is

min(P) = O(s%) = O ((loi”) g) ,

logn
n

2L

Where, s, = © . The total average power to

transmit this information is
1

1 573
P(n) = min(P) xtotal number of hops = O (( Ogn)
n

(22
The power efficiency for this scheme can be computed by
dividing the throughput capacity by the total average power
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required to achieve this capacity. This renders

B. Power efficiency in approach by Franceschetti et al. [13]

n(n) (23)

The communication in the approach by Franceschetti et
al. [13] is based on dividing the transfer of packets into
four phases. In the first phase, the source transmits a packet
to a relay inside a path that is called “highway path.” The
distance between the source and highway path is considered
a long range communication and is proportional to @(loin").
Inside the highway path in phases two and three, multiple hop
communication occurs horizontally and vertically respectively.
The communication range is of short range and proportional
to O( ﬁ) Communication in phase four is similar to phase
one and it is between relay and destination.

Assume that Pj(n) is the transmit power at the highway
path in phases two and three. Following the definition in [13],
the interference from the other cells can be expressed as

I(d,n) < Py(n) (sn(d+1))"%cq. (24)

where cg is a constant value. The signal power at the receiver
is lower bounded as

S(d,n) > Py(n) (sn\/i(d—&— 1))7
Using the above results, the SINR is derived as

S(d,n) Pu(n) (vV2)

BNy + I(d,n) = BNy(sn(d+1))> + Ph(n)c(62'6)

In the limit, the minimum required power to guarantee
that the SINR satisfies the physical model when n — oo is
min(Py,(n)) = O((s,(d +1))*) = © ((n)~*/?).

For the long-range communications in the first and fourth
phase, there is no interference. Therefore, the SINR can be
expressed as

(25)

SINR =

P (n (logn)
u vn
SINR= ——F+»—7F"—.
BNy

The minimum required power for this case to guarantee the
physical model condition is given by
) . (28)

(log )2
n

Using the definition of power efficiency, we can compute
its value for this case as

A(n)/P(n)

27)

wlR

min(P,(n)) = © ((

n(n) =
A(n)
2mig(Pu(n)) + /nmin(Py,(n))

O(n>71).

(29)

C. Power efficiency with MPR

In this paper, we demonstrated that MPR closes the gap
between the upper and lower bounds of the capacity of wire-
less ad hoc networks by achieving higher throughput capacity.

However, it is important to find out the power efficiency of
this approach. From the derivation of throughput capacity for
MPR in Eq. (43), the SINR is given by

P(R(n)) "

SINR 2 [T /2D()]
BNy + ZnR?(n) >,/ 77" 2P(iD(n) — R(n))~—
(30)
The physical model constraint is guaranteed for SINR asymp-
totically when the minimum transmit power Pypr(n) is

min(Pyps (n)) = © (R% (n)) = (105”) oo

Eq. (31) is derived using Eqgs. (42) and (44) when n — oo.
The relationship between A(n) and Pypgr(n) can be com-

puted from Theorem 4.12 as
a—2
A(n) =n~Y* (Pypr(n)) =2 . (32)

Because the communication range in MPR is equal to R(n),
the total minimum transmit power from source to destination

is equal to P“I”{E‘vgl)
The power efficiency of MPR scheme is given by
A(n)R(n
sy~ AmE)
Pypr(n)

A(n)(R(n))'=*

n*f;ié)\(n)i_(a_l)z_l

a—2

(33)

VI. DISCUSSION

The reason for the significant increase in capacity with
MPR is that, unlike point-to-point communication in which
nodes compete to access the channel, MPR embraces (strong)
interference by utilizing higher decoding complexity for all
nodes. As we have pointed out, recent work on network coding
[8], [9] implicitly assumes some form of MPR. These results
clearly demonstrate that embracing interference is crucial to
improve the performance of wireless ad hoc networks, and that
MPR constitutes an important component of that.

Another interesting observation is the fact that increasing the
communication range R(n) increases the throughput capacity.
This is in sharp contrast with point-to-point communication in
which increasing the communication range actually decreases
the throughput capacity and it is again due to the fact that
MPR embraces the interference.

Figure 4 shows the tradeoff between the total minimum
transmit power and the throughput capacity. From this figure,
it is clear that the total transmit power for the network must
be increased in order to increase the per-node throughput
capacity in random wireless ad hoc networks.

Fig. 5 shows that, by increasing the throughput capacity
in wireless ad hoc networks, the power efficiency of all
the schemes we analyzed decreases. Many wireless ad hoc
networks are limited in total available energy or power for
each node. Therefore, increasing the throughput capacity may
not be feasible if the required power to do so is not available.
This result also shows that the throughput capacity should not
be the only metric used in evaluating and comparing the merits
of different schemes. The power efficiency of these schemes
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Al MPR
o(1) /
@((log KRN )
Percolation
o(1/n) — -
outing
©(1/nlogn)
% @(}’l(lim 2) G)((lcgn/n)%]} G)(l) P(n)

Fig. 4. Power and capacity relationship

is also very important. Based on different values for R(n),
different throughput capacities can be attained. In general,
MPR allows to have tradeoff between receiver complexity and
throughput capacity.

n(n)
Percolation

e

Routing

o)

@ (na/zfl /(]()g n)culflfl a )

O(n*"* i(logm)*")

o(1)

i@(1/\/7); o) Am

@(1/ nlogn) ©((logn) "> //n )

Fig. 5. Capacity and power efficiency tradeoff

There are certain issues that we did not discuss in this
paper. Our analysis does not include the energy required for
increased decoding complexity, which is necessary for MPR.
Our analysis also does not include the additional required
overhead related to cooperation among nodes. Such topics are
the subject of future studies.

VII. CONCLUSION AND FUTURE WORK

This paper shows that the use of MPR can close the gap for
the throughput capacity in random wireless ad hoc networks
under the physical model, while achieving much higher ca-
pacity gain than that of [13]. The tight bounds are ©(R(n))

—2/a
and © (%) where R(n) is the communication range
in MPR model for protocol and physical models respectively.

We introduced a new definition related to power efficiency.

Our results show that increasing the throughput capacity by

means of MPR or any of the other techniques proposed to
date [1], [13] results in a reduction of power efficiency in
the network. Accordingly, there is a tradeoff to be made
between increasing capacity and decreasing power efficiency.
Determining what is the optimum tradeoff between capacity
and power efficiency is an open problem.

This paper discusses homogeneous networks where the
distribution of nodes is uniform and all nodes have the same
communication range. However in many practical applications,
the distribution of nodes is not uniform and nodes may have
different communication range. The impact of non-uniform
node distribution and asymmetric transmission ranges on the
throughput capacity and power efficiency is the subject of
future study. Our channel is modeled based on path loss
parameter and the effect of fading was not considered in
this paper. It is important to investigate the impact of more
complicated channel models in the future work.
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IX. APPENDIX
A. Proof of Theorem 4.9

Proof: In order to compute the upper bound, we derive
the SINR for the node that is in a circle close to the edge of
the network. For this receiver node, the Euclidean distances
of interfering nodes are at (¢D(n) + R(n)) if we assume all
interfering nodes are at the farthest distance from the receiver
node. Then the SINR of the transmitter node that is located
at the circumference of the communication circle is given by

SINRz(r(n) < fif%@ P
gnR?(n) 32,1 GO TR
(D(n) > “ 1 34)
R(n) TnR2(n) Zi“:F{D(n)] @
The second inequality above stems from the fact that g%z; <

%. Note that [Ir/D(n)] approaches infinity when n — oo;

therefore, the summation Zl[l:rl/ b a +1;)a converges to a
2

bounded value when o > 2. This means that there are constant

values c3 and c4 such that

[ir/D(n)] 1 [ir/D(n)] 1
cs3 < — < — < 4. 35
5 < ; R ; e S (35)

Combining (34) and (35), the SINR constraint can be revised
as

D(n))a 2 6

R(n)) mesnR2(n)
Then the relationship between R(n) and D(n) can be ex-
pressed as

B < SINRz(gn)) < (

1

D2 (957) n ()02,

37
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From Egs. (17) and (37), the upper bound of the throughput
capacity is computed as

B. Proof of Theorem 4.10

Proof: From Equation (5), for any given 0 < § < 1, there
exists a # > 0 such that

P[|N; — E(N;)| > 0E(Nj)] <e

(38)

—0E(N;) — o—0nlA;|

(39)

Thus, we can conclude that the probability that the value
of the random variable N; deviates by an arbitrarily small
constant value from the mean tends to zero as n — oo.
This is a key step in showing that when all the events
ﬂ“F/D(”ﬂ |IN; — E(N;)| < 6E(N;) occur simultaneously,
then all N;s converge uniformly to their expected values.
Utilizing the same technique as in IV-B, we obtain

[lr/D(n)]
P| () IN;—E(N))|<3E(N,)
j=1
[lr/D(n)]
> 1— Y P[N;—E(N;)| > 6E(N;)]
j=1
L —0E(N;)
1— 0} 40
> 1-[5esle 0)
Because E(N;) = ZnR?(n), the final result is
[lr/D(n)]
lim P () IN; = E(N;)| > SE(N;)
j=1
lF 67rnR2(n)
> 1 -
> 1= ple
It 9xnR2(n)
> 1- T2 41
- _ 91rnR2(n)
If R(n) > @ and as n — oo, then % — 0,

when 0 > 1/mc5. Here, the key constraint of R(n) is given as

R(n) = Q W

C. Proof of Theorem 4.11

Proof: We first prove that Eq. (38) is an achievable bound
and then by applying the minimum communication range
constraint in Eq. (42), we derive the lower bound for this
theorem.

To derive the achievable lower bound, we design a scheme
for separating decode-able transmitter nodes inside the com-
munication circle and interference, such that SINRz(r(,)) >
(1. Similar to the derivations in Eq. (34) and using Fig. 3,
it is clear that the SINR is minimized when the largest value
for interference is considered. This value is achieved when

(42)

we compute the interference for a receiver node in the middle
of the network and use the closest possible distance to the
receiver node*. This lower bound can be written as

P
R (n)
SINRZ(R(n)) = Ir/2D(n :
BNy + TnR%(n )Zfr/ HWPRM))&
43)

Assume that D(n) satisfies the condition in Eq. (37). If we
use the constraint for R(n) in (42), we arrive at

D) <0367r

: )inim(n))”aze((logmi), (44)

which illustrates that R(n) can be ignored compared with
D(n) for large values of n, i.e., n — co. We now evaluate
the asymptotic behavior of (43) when n — oco. Combining
Egs. (44) and (43), SINRz(Rr(n)) can be lower bounded by

, D(n)\" 1
lim SINRz(R(n)) > ( > lr/D(n
o (bm)"__ 1
— \R(n)/) mcanR?(n)
C3 _
2645 = f1.

This inequality is derived using Eqgs. (37) and (35), together
with the fact that the second term in the denominator of SINR
goes to infinity when n — oo and, therefore, we can drop
the first term related to the noise. Using the same arguments
introduced for the computation of the upper bound, we can
show that a non-zero value for SINRz(g(n)) can be achieved
which implies that the throughput capacity can be achieved
asymptotically. |
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