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1 Introduction

The recent development of stochastic calculus with respect to fractional Brownian motion
(fBm) has led to various interesting mathematical applications, and in particular, several
types of stochastic differential equations driven by fBm have been considered in finite
dimensions (see among others [8], [7] or [2]). The question of infinite dimensional equations
has emerged very recently (see [5], [6]). The purpose of this article is to provide a detailed
study of the existence and regularity properties of the stochastic evolution equations with
linear additive fractional Brownian noise. Before providing a complete summary of the
contents of this article, we comment on the fact that, as in the few published works ([5],
[6]) on infinite-dimensional fBm-driven equations, we study only equations in which noise
enters linearly. The difficulty with non-linear fBm-driven equations is notorious: the Picard
iteration technique involves Malliavin derivatives in such a way that the equations for
estimating these derivatives cannot be closed. The preprint [10] treats an equation with
fBm multiplied by a nonlinear term; however the noise term has a trace-class correlation,
and moreover they treat only the case H > 1/2, which allows one to solve the equation
using stochastic integrals understood in a pathwise way, not in the Skorohod sense. The
general non-linearity issue remains unsolved.

Let BH = (BH
t )t∈[0,1] be a fractional Brownian motion on a real and separable

Hilbert space U . That is, BH is a U -valued centered Gaussian process, starting from zero,
defined by its covariance

E(BH(t)BH(s)) = R(s, t)Q, for every s, t ∈ [0, 1]

where Q is a self-adjoint and positive operator from U to U and R is the standard covariance
structure of one-dimensional fractional Brownian motion (as in (2)). We consider the
following stochastic differential equation

X(dt) = AX(t)dt + F (X(t))ΦdBH(t) (1)

and we study the existence, uniqueness, and regularity properties of the solution in several
particular cases. The goal is to formulate necessary and sufficient conditions for these
properties as conditions on the equations’ input parameters A, Φ, and Q. It is always
possible, and usually convenient, to assume that BH is cylindrical, i.e. that Q is the
identity operator. We will also translate the conditions for regularity as necessary and
sufficient conditions on the almost-sure regularity of BH itself.

In Section 3 we let F (u) ≡ 1 and A a linear operator from another Hilbert space
V to V with Φ ∈ L(U ; V ) a deterministic linear operator not depending on t. We give a
necessary and sufficient condition for the existence of the solution. The stochastic integral
appearing in (1) is a Wiener integral over Hilbert spaces. Our context is more general than
the one studied in [6], or in [5], since we consider both cases H > 1

2 and H < 1
2 . Our

study goes further since we prove the sufficiency and the necessity of the condition for the
existence of the solution. Section 4 contains a study of the space-time regularity of the
solution using the so-called factorization method.

2 Preliminaries

2.1 The Wiener integral with respect to one-dimensional fractional Brow-
nian motion

Consider T = [0, τ ] a time interval with arbitrary fixed horizon τ , and let (BH
t )t∈T be the

one-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1). This means
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by definition that BH is a centered Gaussian process with covariance

R(t, s) = E(BH
s BH

t ) =
1
2
(t2H + s2H − |t− s|2H). (2)

Note that B1/2 is standard Brownian motion. Moreover BH has the following Wiener
integral representation:

BH
t =

∫ t

0
KH(t, s)dWs, (3)

where W = {Wt : t ∈ T} is a Wiener process, and KH(t, s) is the kernel given by

KH(t, s) = cH(t− s)H− 1
2 + sH− 1

2 F

(
t

s

)
(4)

cH being a constant and

F (z) = cH

(
1
2
−H

) ∫ z−1

0
rH− 3

2

(
1− (1 + r)H− 1

2

)
dr. (5)

From (4) we obtain

∂KH

∂t
(t, s) = cH(H − 1

2
)(t− s)H− 3

2

(s

t

) 1
2
−H

. (6)

We will denote by EH the linear space of step functions on T of the form

ϕ(t) =
n∑

i=1

ai1(ti,ti+1](t) (7)

where t1, . . . , tn ∈ T, n ∈ N, ai ∈ R and by H the closure of EH with respect to the scalar
product

〈1[0,t], 1[0,s]〉H = R(t, s).

For ϕ ∈ EH of the form (7) we define its Wiener integral with respect to the fractional
Brownian motion as ∫

T
ϕsdBH(s) =

n∑
i=1

ai

(
BH

ti+1
−BH

ti

)
. (8)

Obviously, the mapping

ϕ =
n∑

i=1

ai1(ti,ti+1] →
∫

T
ϕsdBH(s) (9)

is an isometry between EH and the the linear space span{BH
t , t ∈ R} viewed as a subspace

of L2(Ω) and it can be extended to an isometry between H and the first Wiener chaos of
the fractional Brownian motion spanL2(Ω){BH

t , t ∈ R}. The image on an element Φ ∈ H
by this isometry is called the Wiener integral of Φ with respect to BH .

For every s < τ , let us consider the operator K∗ in L2(T )

(K∗
τ ϕ)(s) = K(τ, s)ϕ(s) +

∫ τ

s
(ϕ(r)− ϕ(s))

∂K

∂r
(r, s)dr. (10)

When H > 1
2 , the operator K∗ has the simpler expression

(K∗
τ ϕ)(s) =

∫ τ

s
ϕ(r)

∂K

∂r
(r, s)dr.
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We refer to [1] for the proof of the fact that K∗ is a isometry between H and L2(T ) and,
as a consequence, we will have the following relationship between the Wiener integral with
respect to fBm and the Wiener integral with respect to the Wiener process W∫ t

0
ϕ(s)dBH(s) =

∫ t

0
(K∗

t ϕ)(s)dW (s) (11)

for every t ∈ T and ϕ1[0,t] ∈ H if and only if K∗
t ϕ ∈ L2(T ). We also recall that, if φ, χ ∈ H

are such that
∫
T

∫
T |φ(s)||χ(t)|t− s|2H−2dsdt < ∞, their scalar product in H is given by

〈φ, χ〉H = H(2H − 1)
∫ τ

0

∫ τ

0
φ(s)χ(t)|t− s|2H−2dsdt. (12)

Note that in the general theory of Skorohod integration with respect to fBm with values
in a Hilbert space V , a relation such as (11) requires careful justification of the existence
of its right-hand side (see [11], Section 5.1). But we will work only with Wiener integrals
over Hilbert spaces; in this case we note that, if u ∈ L2(T ; V ) is a deterministic function,
then relation (11) holds, the Wiener integral on the right-hand side being well defined in
L2(Ω; V ) if K∗u belongs to L2(T × V ).

2.2 Infinite dimensional fractional Brownian motion and stochastic in-
tegration

Let U be a real and separable Hilbert space and let Q be a self-adjoint and positive operator
on U (Q = Q∗ > 0). It is typical and usually convenient to assume moreover that Q is
nuclear (Q ∈ L1(U)). In this case it is well-known that Q admits a sequence (λn)n≥0 of
eigenvalues with 0 < λn ↘ 0 and

∑
n≥0 λn < ∞. Moreover, the corresponding eigenvectors

(en)n≥0 form an orthonormal basis in U . We define the infinite dimensional fBm on U with
covariance Q as

BH (t) = BH
Q (t) =

∞∑
n=0

√
λnenβH

n (t) (13)

where βH
n are real, independent fBm’s. This process is a U -valued Gaussian process, it

starts from 0, has zero mean and covariance

E(BH
Q (t)BH

Q (s)) = R(s, t)Q, for every s, t ∈ T (14)

(see [5], [16], [6]). We will encounter below cases in which the assumption that Q is nuclear
is not convenient. For example one may wish to consider the case of a genuine cylindrical
fractional Brownian motion on U by setting λn ≡ 1, i.e.

BH (t) =
∞∑

n=0

enβH
n (t).

More generally we state the following.

Remark 1 Following the standard approach as in [3] for H = 1/2, it is possible to define
a generalized fractional Brownian motion on U (e.g. in the sense of generalized functions
if U is a space of functions) by the right-hand side of formula (13) for any fixed complete
orthonormal system (en)n in U , and any fixed sequence of positive numbers (λn)n, even if∑

n≥0 λn = ∞. Although for any fixed t the series (13) is not convergent in L2(Ω×U), we
can always consider a Hilbert space U1 such that U ⊂ U1 and such that this inclusion is
a Hilbert-Schmidt operator. In this way, BH (t) given by (13) is a well-defined U1-valued
Gaussian stochastic process.
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Let now V be another real separable Hilbert space, BH the process defined above,
defined as a U1-valued process if necessary (see Remark 1), and (Φs)s∈T a deterministic
function with values in L2(U ; V ), the space of Hilbert-Schmidt operators from U to V .
The stochastic integral of Φ with respect to BH is defined by

∫ t

0
ΦsdBH(s) =

∞∑
n=0

∫ t

0
ΦsendβH

n (s) =
∞∑

n=0

∫ t

0
(K∗(Φen))sdβn (s) (15)

where βn is the standard Brownian motion used to represent βH
n as in (3), and the above

sum is finite when ∑
n

‖K∗(Φen)‖2
L2(T ;V ) =

∑
n

|‖Φen‖H|2V < ∞.

In this case the integral (15) is well defined as a V -valued Gaussian random variable.
However, as we are about to see, the linear additive equation in its evolution form can
have a solution even if

∫ t
0 ΦsdBH(s) is not properly defined as a V -valued Gaussian random

variable. A remark similar to Remark 1 applies in order to define this stochastic integral in a
larger Hilbert space than V . In particular, there is no reason to assume that Φ ∈ L2(U, V ).

3 Linear stochastic evolution equations with fractional
Brownian motion

We will work in this section with a cylindrical fBm BH on a real separable Hilbert space U ,
Φ a linear operator in L(U, V ) that is not necessarily Hilbert-Schmidt, and A : Dom(A) ⊂
V → V the infinitesimal generator of the strongly continuous semigroup (etA)t∈T . We
study the equation

dX(t) = AX(t)dt + ΦdBH(t), X(0) = x ∈ V (16)

As previously noted, the stochastic integral
∫ t
0 ΦdBH(s) is only well-defined as a V -valued

random variable if Φ ∈ L2(U, V ) since

E

∣∣∣∣
∫ t

0
ΦdBH(s)

∣∣∣∣
2

V

=
∑

n

E

∣∣∣∣
∫ t

0
ΦendβH

n (s)
∣∣∣∣
2

V

=
∑

n

E

∣∣∣∣
∫ t

0
dβH

n (s)
∣∣∣∣
2

|Φen|2V = t2H‖Φ‖2
HS

where here and in the sequel, ‖ · ‖HS denotes the Hilbert-Schmidt norm. However, the op-
erator A may be irregular enough that no strong solution to (16) exists even if

∫ t
0 ΦdBH(s)

exists. We then consider the so-called mild form (a.k.a. evolution form) of the equation,
whose unique solution, if it exists, can be written in the evolution form

X(t) = etAx +
∫ t

0
e(t−s)AΦdBH(s), t ∈ T. (17)

Our aim is to find necessary and sufficient conditions on A and Φ for this solution to exist
in L2(Ω) for each t ≥ 0. For this goal, we will see that it is no longer necessary to even
assume that

∫ t
0 ΦdBH(s) exists; in contrast, we only need to guarantee the existence of the

stochastic integral in (17). This is the reason for dropping the hypothesis that Φ is Hilbert-
Schmidt. Note that, in the case where V is a space of functions, the so-called weak form of
(16), using test functions, is another alternative formulation which is morally equivalent to
the mild form. We will use this form below in Proposition 1 to formulate a slightly stronger
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existence result than is possible with the mild form. Proposition 1 excluded, this article
deals only with the mild form. We assume throughout that A is a self-adjoint operator on
V . In this situation, it is well known that (see [13], Section 8.3 for a classical account on
this topic) there exists a uniquely defined projection-valued measure dPλ on the real line
such that, for every φ ∈ V , d〈φ, Pλφ〉 is a Borel measure on R and for every φ ∈ Dom(A),
we have

〈φ, Aφ〉 =
∫

R
λd〈φ, Pλφ〉.

Furthermore, for any real-valued Borel function g on R, we can define a self-adjoint operator
g (A) by setting

〈φ, g(A)φ〉 =
∫

R
g(λ)d〈φ, Pλφ〉 (18)

for φ ∈ Dg with

Dg = {x;
∫

R
|g(λ)|2 d〈x, Pλx〉 < ∞}.

The statement of our main existence and uniqueness theorem follows.

Theorem 1 Let BH be a cylindrical fBm in a Hilbert space U and let A : Dom(A) ⊂ V →
V be a self-adjoint operator on a Hilbert space V . Assume that A is a negative operator,
and more specifically that there exists some l > 0 such that dPλ is supported on (−∞,−l].
Then for any fixed Φ ∈ L2 (U, V ), there exists a unique mild solution (X(t))t∈T of (16)
belonging to L2(Ω; V ) if and only if Φ∗GH(−A)Φ is a trace class operator, where

GH(λ) = (max (λ, 1))−2H . (19)

This theorem is valid for both H < 1/2 and H > 1/2. However, separate proofs
are required in each case: Theorems 2 and 3. Several technical calculations, although they
be interesting in their own right as well as elementary, are given in the Appendix in order
to increase the article’s readability.

Remark 2 Theorem 1 holds for those operators A satisfying only a “spectral gap” condi-
tion, i.e. such that dPλ is supported on (−∞,−l] except for an atom at {0}, as long as one
assumes that the kernel of A is finite-dimensional. To check this one only needs to include
the terms corresponding to λ = 0 in the proofs of Theorems 2 and 3.

Remark 3 When Supp(Pλ) ⊂ (−∞,−l), with l > 0, we can replace GH (−A) in Theorem
1 by (−A)−2H . Seeing this is obvious, for example, in the proof of the case H > 1/2
(see Lemma 1 below, and its usage). When A is non-positive with a spectral gap, one can
instead replace by GH (−A) by (−A + I)−2H for example. The spectral gap situation occurs
for example in the case of the Laplace-Beltrami operator on compact Lie groups; in this
situation, with H = 1/2, the trace condition with (−A + I)−2H was proved to be optimal in
[14]. This condition is equivalent to conditions presented in work done in [12] for both the
stochastic heat and wave equations in Euclidean space Rd with d ≥ 2; therein, the authors
even treat non-linear equations under a non-degeneracy assumption on the nonlinearity
function F (F bounded above and below by positive numbers). Proposition 1 below shows
that we can have existence of a weak solution to (16) even if Pλ charges all of (−∞, a) for
some a ≥ 0. In this case, using (−A)−2H , or even (−A + I)−2H , instead of GH (−A) for
a trace condition for existence is too strong to be necessary.
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3.1 A fundamental example: the Laplacian on the circle

Before proving the theorem we discuss its consequences for the fundamental example in
which the operator A is the Laplacian ∆ on the circle. This means that with en (x) =
(2π)−1 cos nx and fn (x) = (2π)−1 sinnx for each n ∈ N , the set of functions {en, fn : n ∈ N}
is not only an orthogonal basis for U = L2

(
S1, dx

)
where dx is the normalized Lebesgue

measure on [−π, π), this set is exactly the set of eigenfunctions of ∆. An infinite-dimensional
fractional Brownian motion BH in L2(S1) can be defined by

BH (t, x) =
∞∑

n=0

√
qnen (x) βH

n (t) +
∞∑

n=1

√
qnfn (x) β̄H

n (t) .

where
{
βH

n , β̄H
n : n ∈ N

}
is a family of IID standard fractional Brownian motions with

common parameter H. If
∑

qn < ∞ then BH is a bonafide L2(S1)-valued process. Oth-
erwise we can consider that it is a generalized-function-valued process in L2(S1), as in
remark 1. Note that BH defined in this way is a Gaussian field on T × S1 that is fBm
in time for fixed x and that is homogeneous in space for fixed t. The spatial covariance
function calculates to

Q (x− y) = E
[
BH (1, x)BH (1, y)

]
=

∞∑
n=0

qn cos (n (x− y)) .

To apply Theorem 1, we only need to represent BH as ΦB̃H where B̃H is cylindrical on
L2

(
S1

)
. This is obviously achieved using Φen =

√
qnen, yielding the following immediate

Corollary.

Corollary 1 Let BH be the fBm on L2(S1) with H ∈ (0, 1) and the assumptions above.
Then there exists a square integrable solution of (17) if and only if

∞∑
n=1

qnn−4H < ∞. (20)

This corollary clearly shows that many generalized-function-valued fBm’s on L2
(
S1

)
yield a solution. More precisely, if we define a fractional “antiderivative” of order 2H of
BH by Y = (I −∆)−H

x B, we have existence if and only if Y is a bonafide L2
(
S1

)
-valued

process. The following examples may be enlightening, in view of the well-known results
for standard Brownian motion.

• Let BH be fBm in time and white-noise in space, i.e. let qn ≡ 1. Then equation (16)
has a unique mild solution in L2

(
S1

)
if and only if H > 1/4.

• More generally consider the equation (16) with space-time fractional noise as a gen-
eralization of the well-known space-time white noise. This would mean that BH is
the space derivative of a field Z that is fBm in time and in space. Call H ′ the Hurst
parameter of Z in space. To translate this on the behavior of the qn’s we can say that,
by analogy with the standard white-noise, and at least up to universal multiplicative
constants, we can take

√
qn = n1/2−H′

. Then equation (16) has a unique mild solu-
tion in L2

(
S1

)
if and only if H ′ > 1 − 2H. Thus if BH is fractional Brownian in

time with H ≥ 1/2, existence holds for any fractional noise behavior in space, while
if BH is fractional Brownian in time with H < 1/2, existence holds if and only if the
fractional noise behavior in space exceeds 1− 2H.
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• In particular, for dBH that is space-time fractional noise with the same parameter
H in time and space, existence holds if and only if H > 1/3.

Remark 4 The thresholds obtained in the three situations above for the circle should also
hold in any non-degenerate one-dimensional situation. This can be easily established for
the Laplace-Beltrami on a smooth compact one-dimensional manifold. We also believe it
should hold in non-compact situations such as for the Laplacian on R.

3.2 The case H > 1
2

Theorem 2 Assume H ∈ (1/2, 1). Then the result of Theorem 1 holds.

Proof: Let us estimate the mean square of the Wiener integral of ( 17). For every
t ∈ T , it holds (C(H) denoting a generic constant throughout this proof)

It = E

∣∣∣∣
∫ t

0
e(t−s)AΦdBH(s)

∣∣∣∣
2

V

= E

∣∣∣∣∣
∑

n

∫ t

0
e(t−s)AΦendβH

n (s)

∣∣∣∣∣
2

V

=
∑

n

C(H)
∫ t

0

∫ t

0
〈e(t−u)AΦen, e(t−v)AΦen〉V |u− v|2H−2dudv

= C(H)
∑

n

∫ t

0

∫ t

0
〈e(2t−u−v)AΦen, Φen〉V |u− v|2H−2dudv

= 2C(H)
∑

n

∫ t

0

(∫ u

0
〈e(2t−2u+v)AΦen, Φen〉V v2H−2dv

)
du. (21)

Consider now the measure dµn(λ) defined as

dµn(λ) = d〈Φen, PλΦen〉V (22)

where Pλ is the spectral measure of the operator −A. We have

〈e(2t−2u+v)AΦen, Φen〉V =
∫

R
e(2t−2u+v)λdµn(λ) =

∫ ∞

0
e−(2t−2u+v)λdµn(λ)

because, since A ≤ 0, Pλ vanishes for λ > 0. The expression (21) becomes, using Fubini
theorem

It = C(H)
∑

n

∫ t

0

∫ u

0
v2H−2

(∫ ∞

0
e−(2t−2u+v)λdµn(λ)

)
dvdu

= C(H)
∑

n

∫ ∞

0
e−2tλ

∫ t

0
e2uλ

(∫ u

0
v2H−2e−vλdv

)
dudµn(λ)

and doing the change of variables vλ = v′ in the integral with respect to dv, and integrating
by parts with respect to u, we get

It = C(H)
∑

n

∫ ∞

0
e−2tλλ1−2H

∫ t

0
e2uλ

(∫ λu

0
v2H−2e−vdv

)
dudµn(λ)

= C(H)
∑

n

∫ ∞

0
λ−2H

(∫ λt

0
v2H−2e−v

[
e2λt − e2v

e2λt

]
dv

)
dµn(λ) (23)

Denote by

A (λ, t) =
∫ λt

0
v2H−2e−v

[
e2λt − e2v

e2λt

]
dv. (24)

At this point we need the following technical lemma whose proof is given in the Appendix.
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Lemma 1 For every t ∈ T , there exist positive constants c(H, t) and C(H, t) depending
only on H and t such that

(i) If λ > 1, c (H, t) ≤ A (λ, t) ≤ C(H, t), and

(ii) if λ ≤ 1 , c (H, t) ≤ A (λ, t)λ−2H ≤ C(H, t).

Using the notation A ³ B for two quantities whose ratio is bounded above and
below by positive constants (in which case we say the quantities are commensurate), putting
the two estimations of A (λ) together we obtain

It ³
∑

n

∫ 1

0
dµn(λ) +

∫ ∞

1
λ−2Hdµn(λ)

³
∑
n

∫ ∞

0
(max (λ; 1))−2H dµn(λ),

where the constants needed in the ³ relations depend only on H and t. This yields the
theorem. ¤

3.3 The case H < 1
2

Theorem 3 Let H ∈ (0, 1
2), and let Pλ denote the spectral measure of −A. If there exists

a positive constant l such that
Supp (Pλ) ⊂ (l;∞), (25)

then Theorem 1 holds.

Proof. We let Pλ denote the spectral measure of −A, and µn the corresponding
scalar measures as before. Denoting It = E

∣∣X (t)− etAx
∣∣2
V

, it is sufficient to estimate It

optimally from above and below. We have

It = E

∣∣∣∣
∫ t

0
e(t−s)AΦdBH(s)

∣∣∣∣
2

V

= E

∣∣∣∣∣
∑

n

∫ t

0
e(t−s)AΦendβH

n (s)

∣∣∣∣∣
2

V

Step 1 (Upper bound). We prove first the sufficient condition for the existence of a square
integrable mild solution of equation (16). We start with the following technical Lemma
(its proof is given in the Appendix).

Lemma 2 Let

B(a, A) =
∫ 1

0
ds exp (−2as)

[∫ s

0
(exp ar − 1) rA−1dr

]2

where a ≥ 0 and A ∈ (−1/2, 0]. Then it holds

B(a, A) ≤ KAa−2A−1

with KA a positive constant depending only on A.
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Using (10) and the representation (11), we have

It ≤ 2
∑

n

∫ t

0

∣∣∣e(t−s)AΦen

∣∣∣2
V

K2(t, s)ds

+ 2
∑

n

∫ t

0

∣∣∣∣
∫ t

s

(
e(t−r)AΦen − e(t−s)AΦen

) ∂K

∂r
(r, s)dr

∣∣∣∣
2

V

ds

=
∑
n

(I1(n) + I2(n))

Using the following inequality (see [4], Th. 3.2),

K(t, s) ≤ c(H)(t− s)H− 1
2 sH− 1

2

the first sum above can be majorized in the following way

∑
n

I1(n) ≤ c(H)
∑

n

∫ t

0
〈e2(t−s)AΦen, Φen〉V (t− s)2H−1s2H−1ds

= c(H)
∑

n

∫ ∞

0
λ−2H

(∫ 2λt

0
e−vv2H−1(t− v

2λ
)2H−1dv

)
dµn(λ)

≤ c(H)
∑
n

∫ ∞

0
λ−2HC (t, H) dµn(λ)

= C (t, H)Tr(Φ∗(−A)−2HΦ) (26)

where C (t, H) depends only on t and H. Here we used the fact that

∫ 2λt

0
e−vv2H−1(t− v

2λ
)2H−1dv

≤ (t/2)2H−1

∫ ∞

0
e−vv2H−1dv + (λt)2H−1

∫ 2λt

λt
e−v(t− v

2λ
)2H−1dv

≤ C(t, H) + (λt)2H−1
∫ λt

0
e−(2λt−v′) (

v′/(2λ)
)2H−1

dv′

≤ C (t, H) + C (t, H) e−λt (λt)2H = C (t, H) .

For the second sum from above, we can write

∑
n

I2(n) =
∑

n

∫ t

0
ds

∫ t

s
dr1

∫ t

s
dr2

∂K

∂r1
(r1, s)

∂K

∂r2
(r2, s)

× 〈
(
e(t−r1)A − e(t−s)A

)
Φen,

(
e(t−r2)A − e(t−s)A

)
Φen〉V

=
∑

n

∫ t

0
ds

∫ t

s
dr1

∫ t

s
dr2

∂K

∂r1
(r1, s)

∂K

∂r2
(r2, s)

× 〈
(
e(t−r1)A − e(t−s)A

) (
e(t−r2)A − e(t−s)A

)
Φen, Φen〉V
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and, by the fact that ∂K
∂r (r, s) ≤ 0 for every r, s ∈ T and |∂K

∂r (r, s)| ≤ C(H)(r − s)H− 3
2 , we

get

∑
n

I2(n) =
∑

n

∫ t

0
ds

∫ t

s
dr1

∫ t

s
dr2

∂K

∂r1
(r1, s)

∂K

∂r2
(r2, s)

×
∫ +∞

0

(
e−λ(t−r1) − e−λ(t−s)

) (
e−λ(t−r2) − e−λ(t−s)

)
dµn

≤ C(H)
∑

n

∫ t

0
du

∫ u

0
dv1

∫ u

0
dv2(u− v1)H− 3

2 (u− v2)H− 3
2

×
∫ ∞

0

(
e−λ(v1+v2) − e−λ(u+v2) − e−λ(v1+u) + e−2λu

)
dµn

where we used the change of variables t− s = u, t− r1 = v1, t− r2 = v2 and the symmetry
of A. Let us note that the above quantities are positive and therefore we can apply Fubini
theorem, obtaining

∑
n

I2(n) ≤ C(H)
∑

n

∫ ∞

0
dµn

∫ t

0
du

∫ u

0
dv1

∫ u

0
dv2(u− v1)H− 3

2 (u− v2)H− 3
2

×
(
e−λ(v1+v2) − e−λ(u+v2) − e−λ(v1+u) + e−2λu

)

=
∑

n

∫ ∞

0
dµn

∫ t

0
du

(∫ u

0
(u− v)H− 3

2 (e−λu − e−λv)dv

)2

=
∑

n

∫ ∞

0
dµn

∫ t

0
e−2λs

(∫ s

0
(eλr − 1)rH− 3

2 dr

)2

ds

=
∑

n

∫ ∞

0
I2(λ, t)dµn(λ) (27)

where on the last line we came back to the initial variables. Now, applying (27) and Lemma
2 to

I2(λ, t) =
∫ t

0
e−2λs

(∫ s

0
(eλr − 1)rH− 3

2 dr

)2

ds,

with (26), we have the upper bound

It ≤ C (t, H)
∑

n

∫ ∞

0
λ−2Hdµn(λ) = C (t, H)Tr(Φ∗(−A)−2HΦ).

Step 2 (Lower bound). To prove the necessity, note that

It = E

[∣∣∣∣∣
∑

n

∫ t

0

(
e(t−s)AΦen

)
K(t, s)dβn(s)

+
∫ t

0

(∫ t

s

∂K

∂r
(r, s)

(
e(t−r)A − e(t−s)A

)
Φendr

)
dβn(s)

∣∣∣∣
2

V

]
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and this equals

It =
∑

n

∫ t

0

∣∣∣e(t−s)AΦen

∣∣∣2
V

K2(t, s)ds

+ 2
∑

n

∫ t

0
K(t, s)

∫ t

s

∂K

∂r
(r, s)〈e(t−s)AΦen,

(
e(t−r)A − e(t−s)A

)
Φen〉V drds

+
∑
n

∫ t

0

∣∣∣∣
∫ t

s

∂K

∂r
(r, s)

(
e(t−r)A − e(t−s)A

)
Φendr

∣∣∣∣
2

V

ds.

We let t = 1 for simplicity and we use the measure dµn(λ) = d〈Φen, PλΦen〉V . Taking
account that Pλ = 0 outside (−∞,−l), we get

It =
∑

n

∫ ∞

l

(∫ 1

0
exp(−2λ(1− s))K2(1, s)ds

)
dµn(λ)

+ 2
∑
n

∫ ∞

l

∫ 1

0
ds exp(−2λ(1− s))K(1, s)

×
(∫ 1

s
(exp((r − s)λ)− 1)

∂K

∂r
(r, s)dr

)
dµn(λ)

+
∑

n

∫ ∞

l

(∫ 1

0
exp(−2λ(1− s))

(∫ 1

s
(exp((r − s)λ)− 1)

∂K

∂r
(r, s)dr

)2

ds

)
dµn(λ)

=
∫ ∞

l
J(λ)dµn(λ).

The conclusion of the theorem follows from the next lemma. ¤

Lemma 3 Let

J(λ) =
∫ 1

0
exp(−2λ(1− s))K2(1, s)ds

+ 2
∫ 1

0
exp(−2λ(1− s))K(1, s)

(∫ 1

s
(exp((r − s)λ)− 1)

∂K

∂r
(r, s)dr

)
ds

+
∫ 1

0
exp(−2λ(1− s))

(∫ 1

s
(exp((r − s)λ)− 1)

∂K

∂r
(r, s)dr

)2

ds.

Then J(λ) ≥ c(H)λ−2H for every λ > l > 0 with l arbitrary small.

Proof: See the Appendix. ¤

3.4 Extended existence for the weak equation

Assume now that V is a Hilbert space of functions on finite-dimensional Euclidean space
E, and assume A is a self-adjoint operator on V . One can interpret the noise term ΦBH (t)
directly as a Gaussian field on T×E that is fBm in time and possibly a generalized function
in space. For the formulation of an existence result, we keep using representation of this
field via the operator Φ ∈ L (V, V ) operating on a cylindrical BH (t) in V . Equation (16)
now reads,

X(dt, x) = [AX(t, ·)] (x) dt +
[
ΦBH

]
(dt, x), X(0) = X0 ∈ V, t ≥ 0, x ∈ E

12



and its weak version is∫
E

φ (x) X (t, x) dx =
∫

E
φ (x)X0 (x) dx+

∫
E

∫ t

0
X (t, x)Aφ (x) dxdt+

∫
E

[
ΦBH

]
(t, x)φ (x) dx,

(28)
for all t ≥ 0, x ∈ E, φ ∈ Dom (A). If it happens that the Gaussian field ΦBH on T ×E is
generalized-function-valued in the parameter x, the last term in (28) must be interpreted
as [

ΦBH
]
(t, φ)

for all test functions φ in Dom (A) ∩ dom
[
ΦBH (1)

]
. More generally, we can formulate

a weak equation in an abstract separable Hilbert space V . We assume that A is a self-
adjoint operator on V , that BH is a cylindrical fBm in V , and that Φ ∈ L (V, V ). The
generalization of (28) is

〈X(t), φ〉 = 〈X(0), φ〉+
∫ t

0
〈X(s), Aφ〉ds +

∫ t

0
〈Φ∗φ, dBH(s)〉, (29)

for all t ≥ 0 and all test functions φ in Dom (A), where 〈 , 〉 denotes the scalar product in
V . The following proposition shows that the spectral gap condition for existence can be
eliminated when dealing only with the weak equation.

Proposition 1 Let H ∈ (0, 1). Let BH be a cylindrical fBm in V , a separable Hilbert
space, and let A : Dom(A) ⊂ V → V be a self-adjoint operator on V such that for some
λ0 > 0, A − λ0I is a negative operator. Then for any fixed Φ ∈ L (V, V ), there exists a
solution (X(t, ·))t∈T of (28) belonging to L2(Ω; V ) as long as Φ∗GH(−A)Φ is a trace class
operator.

Proof. By hypothesis we can find positive numbers µ and ε such that A−µI < −εI,
that is to say, the operator Ā = A − µI satisfies the hypotheses of both Theorem 2 and
Theorem 3. Therefore, in both the cases H < 1/2 and H > 1/2, we have existence and
uniqueness of a mild solution in L2(Ω; V ) to the following equation:

dYt = (A− µI) Ytdt + ΦdBH
t

if and only if Φ (µI −A)−2H Φ∗ is trace class. Indeed, one should require, rather, that
ΦGH (µI −A)Φ∗ be trace class, but here the strict negativity of Ā allowed us to replace
the function GH by the function FH (λ) = λ−2H . Now a simple repetition of arguments of
Da Prato and Zabczyk in [3] shows that for any Lipschitz function F on V , the equation

dZt = (A− µI) Ztdt + F (Zt) dt + ΦdBH
t

also has a unique mild solution formed by considering the semigroup of the operator A−µI.
By taking F (z) = µz we see that the following mild equation has a unique solution Z:

Z (t) = et(A−µI)x +
∫ t

0
e(t−s)(A−µI)ΦdBH(s) + µ

∫ t

0
e(t−s)(A−µI)Z (s) ds. (30)

The next step in the proof is to show that Z defined by (30) also satisfies (28). This can
be checked by a classical calculation for all test functions φ ∈ Dom (A− µI). However
this domain is defined as the set of all functions φ ∈ V such that (A− µI) φ ∈ V . Thus
it coincides with Dom (A), and the weak equation (28) is satisfied by Z. The last step

13



in the proof is to show that the trace condition on Φ (µI −A)−2H Φ∗ is equivalent to the
condition that ΦGH (−A) Φ∗ be trace class. Recall that for any function F we have

tr [ΦF (−A)Φ∗] =
∑

n

∫ ∞

−∞
F (λ) dµn (λ)

where µn, defined in (22), is a positive measure for any n. Therefore it is sufficient to
show that the function GH (λ) = (max (1, λ))−2H is commensurable with the function
ḠH (λ) = (λ + µ)−2H . For λ > 1 this is clear. For λ < 1, we use the fact that the support
of all measures dµn is in [−λ0; +∞). Since it is no restriction to require that µ > λ0 +ε, we
have that for λ ∈ [−λ0; 1], ḠH (λ) is bounded above by ε−2H and below by (1 + µ)−2H ; in
this sense it is commensurable with GH (λ) since the latter is equal to 1 in that interval.¤

4 Space-time regularity of the solution

In this section, we give some general results on the spatial regularity of the solution to our
linear additive equation. As in Theorem 1, we assume that:

(R) the operator A is self adjoint and there exist ε > 0 such that A ≤ −εI.

As in Remark 2 we could also allow A to have 0 as an eigenvalue, with a finite
dimensional eigenspace, and then a spectral gap up to −ε. We omit these details. Our
regularity result is based on a proposition taken from [3], which we enunciate here for sake
of completeness: let A be an unbounded operator satisfying condition (R). For α, γ ∈ (0, 1),
p > 1 and ψ ∈ Lp([0, T ];V ), set

Rα,γψ(t) =
sin(απ)

π

∫ t

0
(t− σ)α−1(−A)γe(t−σ)Aψ(σ)dσ,

where Aγ has to be interpreted as in (18). It is a known fact (see [3, Proposition A.1.1])
that, if α > γ + 1

p , then

Rα,γ ∈ L
(
Lp([0, T ];V ); Cα−γ− 1

p ([0, T ];D((−A)γ))
)

. (31)

Let now X be the process defined by relation (17) with x = 0, that is the usual stochastic
convolution of BH by A. The main result of this section is the following:

Theorem 4 Let H ∈ (0, 1), and suppose that for α ∈ (0, H), the operator

Φ∗(−A)−2(H−α)Φ

is trace class. Then, for any γ < α and any ε < (α− γ), almost surely,

X ∈ Cα−γ−ε ([0, T ];D ((−A)γ)) .

In particular, for any fixed t > 0, X(t) ∈ D((−A)γ).

Proof: Under our assumptions, it can be shown by the usual factorization method
(see e.g. [3, Theorem 5.2.6]) that the process (−A)γX can be written as

(−A)γX(t) = [Rα,γYα] (t),
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where the process Yα is defined by

Yα(s) =
∫ s

0
(s− σ)−αe(s−σ)AφdBH(σ).

Then, using relation (31), we are reduced to showing that Yα ∈ Lp([0, T ];V ), and since
Yα is a Gaussian process, it is sufficient to prove that Yα ∈ L2([0, T ];V ). We first treat
the case of H > 1

2 : along the same lines as in the proof of Theorem 2, and taking up the
notations introduced therein, it can be seen that

E
[|Yα(t)|2V

]
= C(H)

∑
n

∫ ∞

0
λ−2(H−α)Mα(λ, t)dµn(λ),

where

Mα(λ, t) =
∫ λt

0
x−αe−x

(∫ x

0
y−α(x− y)2H−2e−ydy

)
dx.

Since Mα is obviously bounded by a constant for all t, λ > 0, whenever α < H, we get the
desired result. Let us now turn to the case H < 1

2 . Following again the proof of Theorem
3, we can decompose E[|Yα(t)|2V ] as

E
[|Yα(t)|2V

]
=

∑
n

I1(n) + I2(n),

where I2(n), that contains the main part of the contribution to the norm of Yα(t), is defined
by

I2(n) =
∫ t

0

∣∣∣∣
∫ t

s

(
(t− r)−αe(t−r)Aφen − (t− s)−αe(t−s)Aφen

) ∂K

∂r
(r, s)

∣∣∣∣
2

V

ds.

Now, the same computations as in the proof of Theorem 3 yield

I2(n) ≤ C(H)
∫ ∞

0
dµn(λ)

∫ t

0
du

∫ u

0
dv1

∫ u

0
dv2(u− v1)H−3/2(u− v2)H−3/2

×
(
(v1v2)−αe−λ(v1+v2) − (v1u)−αe−λ(v1+u) − (uv2)−αe−λ(u+v2) + u−2αe−2λu

)

= C(H)
∫ ∞

0
dµn(λ)

∫ t

0

(∫ u

0
(u− v)H−3/2

(
u−αe−λu − v−αe−λv

)
dv

)2

du

= C(H)
∫ ∞

0
λ−2(H−α)N(λt)dµn(λ),

where N(τ) is given by

N(τ) =
∫ τ

0

(∫ x

0
(x− y)H−3/2

(
y−αe−y − x−αe−x

)
dy

)2

dx.

The following lemma ends the proof. ¤

Lemma 4 If a < H, then supτ≥0 N (τ) < ∞

Proof: Left to the reader. ¤
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5 Appendix: Proofs of Lemmas 1, 2 and 3.

Proof of Lemma 1.

If λ ≥ 1, note that, by (24),

A (λ, t) ≤
(∫ ∞

0
v2H−2e−vdv

)
= C(H)

and also

A (λ, t) ≥
(
1− e−λt

)∫ λt
2

0
v2H−2dv

≥
(
1− e−λt

)∫ t
2

0
v2H−2e−vdv

and this a positive constant denoted generically by c(H, t). The assertion (i) is proved.
Suppose now that λ ≤ 1. We let t = 1 for simplicity and we use the following facts: for
0 ≤ x ≤ 1,

2x ≥ 1− e−2x ≥ 2x/3
1 ≥ e−x ≥ 1/3.

We use the notation A ³ [c, C]B to mean c < A/B < C. We obtain

A (λ, 1) ³ [1/3, 1]
∫ λ

0
v2H−2e−v2 (λ− v) dv

³ [2/9, 2] ·
∫ λ

0
v2H−2 (λ− v) dv

= λ2H · [c (H) ; C (H)].

¤

Proof of Lemma 2.

Doing the changes of variables ar = y and as = x we get

B(a, A) = a−2a−1

∫ a

0

(∫ x

0
(ey − 1)yA−1dy

)2

dx

and it suffices to observe that the quantity KA =
∫∞
0

(∫ x
0 (ey − 1)yA−1dy

)2
dx is finite. ¤

Proof of Lemma 3.

First, let us replace the kernel K by its singular part cH(t − s)H− 1
2 . In this case,
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with the notation e(λ, s) = exp (−2λ(1− s)), it holds that

J(λ) = c2
H

∫ 1

0
e(λ, s)

(
(1− s)H− 1

2 +
(

H − 1
2

) ∫ 1

s

(
e(r−s)λ − 1

)
(r − s)H− 3

2 dr

)2

ds

= c2
H

∫ 1

0
e(λ, s)

(
(1− s)H− 1

2 +
(

H − 1
2

)
λ

1
2
−H

∫ λ(1−s)

0
(ev − 1)vH− 3

2 dv

)2

ds

= c2
H

∫ 1

0
e−2λx

(
xH− 1

2 +
(

H − 1
2

)
λ

1
2
−H

∫ λx

0
(ev − 1)vH− 3

2 dv

)2

dx

= c2
Hλ−2H

∫ λ

0
e−2y

(
yH− 1

2 +
(

H − 1
2

) ∫ y

0
(ev − 1)vH− 3

2 dv

)2

dy

≥ c2
Hλ−2H

∫ l

0
e−2y

(
yH− 1

2 +
(

H − 1
2

)∫ y

0
(ev − 1)vH− 3

2 dv

)2

dy = λ−2Hc(l, H)

where for every H ∈ (0, 1/2) and every l > 0 the constant c(H, l) is also positive. Note
that c(H, l) → 0 when l → 0, which indicates that our bound is of decaying quality for
decreasing spectral gap... To finish, we recall that by (4), the kernel K(t, s) can be written
as cH(t−s)H− 1

2 plus a function without singularities. Adding the second part does change
the final estimation. But the proof is much longer and we prefer to omit it. ¤
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