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Abstract

This paper investigates how the performance of evolutionary search is influenced by the
locality and distance distortion of the used representation. The locality of a representation
describes how well neighboring phenotypes correspond to neighboring genotypes. The distance
distortion measures whether the distances between individuals are preserved when mapping the
phenotypes onto the genotypes. When using mutation as the main search operator, perfect
locality ensures that the difficulty of the problem is not changed by the representation. In
analogy, representations that preserve the distances between individuals guarantee that the
difficulty of the problem remains unchanged for crossover-based search.

Applying these concepts to binary representations of integers reveals that in contrast to
the binary encoding the Gray encoding has perfect locality, and therefore guarantees that for
mutation-based search, easy problems remain easy. However, because both Gray and binary
encoding change the distances between individuals, using these encodings also changes the dif-
ficulty of problems for crossover-based search and some easy problems become more difficult to
solve by genetic algorithms.

1 Introduction

Using evolutionary algorithms – for example for integer optimization problems – raises the question
as to which representation should be used. In the literature only a few theory-based recommenda-
tions can be found (for example Whitley (1999)) but a greater and better theoretical understanding
on how representations influence the performance of evolutionary search is necessary.

This paper has two goals. Firstly, we want to describe how the performance of evolutionary
search is influenced by the locality and distance distortion of the used representation. For our
investigation we distinguish between mutation-based and crossover-based search. We illustrate
that encodings with perfect locality, that means neighboring phenotypes correspond to neighboring
genotypes, do not modify the difficulty of the optimization problem for mutation-based search. In
analogy, the difficulty of problems remains unchanged for crossover-based search if representations
are used that preserve the distances between corresponding phenotypes and genotypes. Secondly,
we focus on binary representations of integers, namely binary and Gray encoding. Gray encoding
has perfect locality and preserves problem difficulty for mutation-based search. Therefore, when
using mutation as the main search operator easy problems remain easy. In contrast, when using
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binary encoding which has low locality, some easy problems become more difficult to solve for
mutation-based search.

The remainder of the paper is organized as follows. We start with a short introduction into
representations. In subsection 2.2 we describe the locality and distance distortion of an encoding.
After a short description of the used optimization problem and the binary and Gray encoding, in
section 4 we present empirical results. The paper ends with concluding remarks.

2 Representations for Evolutionary Algorithms

In the following section we discuss the decomposition of a genotype-fitness mapping and describe
the locality and distance distortion of a representation.

2.1 Genotype-Phenotype Mappings and Phenotype-Fitness Mappings

When using some kind of representation, every optimization problem can be decomposed into a
genotype-phenotype mapping fg, and a phenotype-fitness mapping fp (Liepins & Vose, 1990).

We define Φg as the genotypic search space where the genetic operators such as recombination
or mutation are applied to. An optimization problem on Φg could be formulated as follows: The
function f(x) : Φg → R assigns an element in R to every element in the genotype space Φg. The
optimization problem is defined by finding the optimal solution

x̂ = max
x∈Φg

f(x),

where x is a vector of decision variables (or alleles), and f(x) is the fitness function. The vector x̂

is the global maximum.
When using a representation we have to introduce phenotypes and genotypes. Thus, the fitness

function f can be decomposed into two parts. The first maps the genotypic space Φg to the
phenotypic space Φp, and the second maps Φp to the fitness space R:

fg(xg) : Φg → Φp,

fp(xp) : Φp → R,

where f = fp ◦fg = fp(fg(xg)). The genotype-phenotype mapping fg is the used representation. fp

represents the fitness function and assigns a fitness value fp(xp) to every individual xp ∈ Φp. The
difficulty of an optimization problem fp with regard to a specific optimization method is determined
by the specific structure and complexity of fp. Using a representation fg results in the problem
f = fp(fg(xg)) which can have a different difficulty.

We want to focus in the following on binary representations of integers. Therefore, Φg = {0, 1}l

and Φp = {0, 1, . . . , 2l − 1}, where l is the length of a genotype.

2.2 Properties of Representations

When using representations the distances between individuals can be changed when mapping the
phenotypes on the genotypes. In the following we introduce the locality and distance distortion of
an encoding. These properties of encodings describe how well representations preserve the distances
between corresponding phenotypes and genotypes.

To define distances between individuals it is necessary to introduce distance metrics on Φg and
Φp. Although there are other metrics possible, we use for Φg = {0, 1}l the Hamming metric. Then,
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the Hamming distance between two genotypes xg and yg is defined as d
g
xg ,yg

=
∑l−1

i=0 |xg,i − yg,i|,
where xg,i denotes the ith bit of the genotype xg. On the phenotypic space Φp the distance between
two phenotypes xp and yp should be defined as d

p
xp,yp = |xp − yp|.

2.2.1 Locality

The locality of a representation fg describes how well neighboring phenotypes correspond to neigh-
boring genotypes. Two individuals x,y ∈ Φ are neighbors if dx,y = dmin, where dmin is the minimal
distance between two individuals in Φ. Using binary or integer search spaces Φg and Φp results in
dmin = 1. In general, the locality dm of a representation can be defined as

dm =
∑

d
p
xi,xj

=d
p

min

|dg
xi,xj

− d
g
min|,

where d
p
xi,xj

is the phenotypic distance between the phenotypes xi and xj, d
g
xi,xj

is the genotypic
distance between the corresponding genotypes, and d

p
min, respective d

g
min is the minimum distance

between two (neighboring) phenotypes, respectively genotypes. We see that dm only considers
neighboring phenotypes (dp

xi,xj
= d

p
min).

For dm = 0 an encoding has perfect locality and all phenotypic neighbors correspond to geno-
typic neighbors. Then, in general, a small change of a genotype results in a small change of the
corresponding phenotype. The situation is different if dm 6= 0. Then, small changes in a genotype
can result in large changes in the phenotype. This means applying a mutation operator to an
individual can result in a phenotype that has nothing in common with its parent. Therefore, when
using low locality encodings systematic local search is no longer possible, but local search based on
small mutation steps becomes random search.

As a result, the locality of an encoding affects the difficulty of problems. If we assume that
an encoding fg(xg) has perfect locality (dm = 0), then all neighboring phenotypes correspond
to neighboring genotypes. Therefore, mutation-based search approaches using a representation
fg show the same performance on the optimization problem f = fp(fg(xg)) as on the original
optimization problem fp(xp). A mutation step has the same effect on genotypes and phenotypes.
This means for mutation-based search that encodings with perfect locality ensure that the difficulty
of the optimization problem fp(xp) is the same as the difficulty of f = fp(fg(xg)). Using a
representation fg where dm = 0 ensures that problems fp which are easy remain easy and problems
fp which are difficult remain difficult for mutation-based search.

2.2.2 Distance Distortion

When using crossover-based search, the locality concerning small changes dm must be extended
towards locality concerning small and large changes. The distance distortion dc describes how well
the phenotypic distance structure is preserved by an encoding fg when mapping Φp on Φg:

dc =
2

np(np − 1)

np
∑

i=1

np
∑

j=i+1

|dp
xi,xj

− dg
xi,xj

|,

where np = |Φg| = |Φp|, and dg,min = dp,min.
For dc = 0 the distances between the phenotypes are the same as the distances between the cor-

responding genotypes. Then, genotypes and phenotype have the same distance structure. Perfect
locality (dm = 0) is a necessary condition for an encoding fg to preserve the distances between the
individuals (dc = 0).
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To allow standard crossover operators (for example one-point or uniform crossover) to work well,
the representation fg must preserve the distances between the individuals (dc = 0). In general,
crossover operators should create offspring that inherit the properties of their parents. This means
in terms of distances that when using crossover the distances between an offspring xo and its parents
xp1 and xp2 should be smaller than the distances between both parents (dxo,xp1

, dxo,xp2
≤ dxp1,xp2

).
Otherwise, the crossover operator would create offspring which have nothing in common with their
parents and a genetic algorithm (GA) using crossover would become random search.

When using representations that do not change the distances between the individuals (dc =
0), standard crossover operators always create offspring that are similar to their parents and the
distance between offspring and parent is smaller than the distance between both parents. However,
when using representations where dc 6= 0 the phenotypic distance between offspring and parent can
be larger than the phenotypic distance between both parents even if the crossover operator works
fine (dg

xo,xp1
, d

g
xo,xp2

≤ d
g
xp1,xp2

). As a result, using a representation fg, where dc 6= 0 changes the
difficulty of the optimization problem fp. The preservation of distances (dc = 0) is necessary to
ensure that the used encoding fg does not change the difficulty of a problem for crossover-based
search approaches.

Our concept of distance distortion dc is similar to the concept of causality which was introduced
by Sendhoff et al. (1997) as a measurement of problem complexity. In contrast to their work, we
do not investigate what makes a problem difficult, but we focus on how representations modify
the difficulty of a given problem. We do not want to measure problem difficulty, but just decide
whether a representation changes distances or not (dc = 0 or dc 6= 0).

3 Binary Representations of Integers

In the following we define a class of integer optimization problems we use for our investigations.
In subsection 3.2 and 3.3 we briefly characterize the binary and the Gray encoding with respect to
their locality and distance distortion.

3.1 Integer Optimization Problems

All our integer test problems fp should be easy and they should be defined on the phenotypes
xp ∈ {0, 1, . . . 2l − 1} independently of the used representation.

fp(xp) = xmax − |xp − a|, (1)

where l ∈ N and a ∈ {0, 1, . . . , xmax}. For a = xmax the problem becomes the standard Bin-Int
problem (compare Figure 1(a)).

The difficulty of this class of optimization problems is independent of the parameter a. a only
changes the location of the optimal solution in the search space and evolutionary search algorithms
should show the same performance for different values of a. Two examples for the integer one-max
problem are given in Figure 1.

3.2 Binary Encoding

When using the binary encoding, each integer value xp ∈ Φp = {1, 2, . . . , xmax} is represented by
a binary string xg of length l = dlog2(xmax)e. The genotype-phenotype mapping fg is defined as

xp = fg(xg) =
∑l−1

i=0 2ixg,i , with xg,i denoting the ith bit of xg.
This encoding has problems associated with the Hamming cliff (Schaffer, Caruana, Eshelman,

& Das, 1989). The Hamming cliff describes the effect that some neighboring phenotypes are
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(b) a = 4

Figure 1: Two examples for the easy integer problem

represented by genotypes with much larger distances. Examples are xp = 7 and yp = 8 (dp
xp,yp = 1).

The corresponding genotypes are xg = 0111 and yg = 1000, where d
g
xg ,yg

= 4.
As a result of the Hamming cliff the binary encoding has partially low locality and dm 6= 0.

Therefore, the encoding also does not preserve the distances between the individuals (dc 6= 0). An
example for the use of the binary encoding is given in Table 1.

3.3 Gray Encoding

To overcome problems with the Hamming cliff when using the binary encoding, the Gray encod-

ing was developed (Gray, 1953). For the Gray encoding all phenotypic neighbors correspond to
genotypic neighbors.

The Gray encoded bitstring itself can be constructed in two steps. At first, the phenotype is
encoded using the binary encoding, and subsequently the binary encoded string can be converted
into the corresponding Gray encoded string. The binary string x ∈ {0, 1}l = {x1, x2, . . . , xl} is
converted to the corresponding Gray code y ∈ {0, 1}l = {y1, y2, . . . , yl} by the mapping γ : B

l → B
l:

yi =

{

xi if i = 1,

xi−1 ⊕ xi otherwise,

where ⊕ denotes addition modulo 2.
The Gray encoding overcomes

xp 0 1 2 3 4 5 6 7

binary 000 001 010 011 100 101 110 111

Gray 000 001 011 010 110 111 101 100

Table 1: An example for using binary and Gray encodings

the problems with the Hamming
cliff. Every two neighboring pheno-
types (dxp,yp

= 1) are encoded by
neighboring genotypes (dxg ,yg

= 1).
Therefore, the locality of the Gray
encoding is perfect (dm = 0). The high locality gives Gray encoding an advantage in compari-
son to binary encoding for mutation-based search. This effect has already been noticed by other
work (Whitley, Rana, & Heckendorn, 1997; Whitley, 1999) which found that Gray encoding in-
troduces less local optima in comparison to binary encoding. However, the encoding changes the
distances between the individuals (dc 6= 0). For example, the distance between the phenotypes
xp = 0 and yp = 3 is dxp,yp

= 3, whereas the genotypes xg = 000 and yg = 010 have only distance
d

g
xg ,yg

= 1. Table 1 gives an example for the use of the Gray encoding.
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4 Experiments

This section addresses two issues. Firstly, the section should illustrate how Gray and binary
encoding influence the performance of mutation-based and crossover-based genetic search. The
presented results confirm previous theoretical results (Whitley, Rana, & Heckendorn, 1997; Whitley,
1999) which theoretically showed that mutation-based search performs best using Gray encoding.
However, when using crossover as the main search operator their results can not be used any more.
Dependent on the considered problem sometimes Gray and sometimes binary encoding show better
performance.

Secondly, we want to explain the different results for binary and Gray encoding by using the
concepts of locality and distance distortion. We have illustrated in section 3 that perfect locality
(dm = 0) ensures that the difficulty of a problem remains unchanged for mutation-based search.
Therefore, mutation-based search approaches using the Gray encoding show the same performance
on problems of the same difficulty. In contrast, if the locality is low (dm 6= 0) or the distances
between individuals are changed (dc 6= 0) the difficulty of the problem is changed by fg. Then,
some easy problems become more difficult and evolutionary algorithms can have more problems in
solving them.

The section starts with mutation-based search and continues in subsection 4.2 with crossover-
based search.

4.1 Mutation-Based Search Using Simulated Annealing

We investigate how the locality of an encoding influences the performance of mutation-based search
approaches. We assume in our investigations that the integer problem defined in equation 1 is easy
for mutation-based search independent of the position of the optimal solution a. As a result,
representations with perfect locality (dm = 0) should show the same performance independently of
a. In contrast, representations with low locality (dm 6= 0) will change the difficulty of some easy
problems and make these problems more difficult to solve for mutation-based search approaches.

We want to use simulated annealing (SA) as a representative for mutation-based search because
it only uses mutation, and can in contrast to, for example a (1+1) evolution strategy, solve difficult
multi-modal problems more easily. Simulated annealing can be modeled as a GA with population
size 1 and Boltzmann selection (Mahfoud & Goldberg, 1995). In each generation a genotypic
offspring xo is created by applying mutation to the parent xp. Therefore, if we use bit-flipping-
mutation, xo always has genotypic distance 1 to its parent xp. If xo has higher fitness than xp

it replaces xp. If it has lower fitness it replaces xp with probability P (T ) = exp
(

−
f(xo)−f(xp)

T

)

.

With lowering the temperature T , the probability of accepting worse solutions decreases. For
further information the reader is referred to other work (van Laarhoven & Aarts, 1988).

For our first investigation we concatenate 10 integer problems, where xp ∈ {0, . . . 31}. When
using Gray or binary encoding, each of the 10 phenotypic integers xp ∈ {0, . . . , 31} corresponds to
5 bits in the genotype (l = 5). Therefore, the overall length of a genotype is lxg

= 50. The fitness
of an individual is calculated as the sum over the fitness of the 10 sub-problems. The fitness of one
sub-problem is calculated according to equation 1.

Figure 2 presents results using simulated annealing for two instances (a = 15 and a = 31) of
the integer problem defined in equation 1. We show the number of correctly solved sub-problems
over the number of fitness evaluations. The start temperature Tstart = 50 is reduced in every step
by the factor 0.995. Therefore, Tt+1 = 0.995 ∗ Tt. Mutation is defined to randomly change one
bit in the genotype. We performed 100 runs and each run was stopped after 2000 mutation steps.
The results show that mutation-based search approaches using Gray encoding always solve all 10
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sub-problems. In contrast, for a = 15 mutation-based search using binary encoding gets stuck in
local optima because the optimal solution lies in areas with low locality.

To generalize our investigation and determine exactly how the performance of mutation-based
search depends on the structure of the integer optimization problem in Figure 3 we illustrate how
SA performance depends on the value of the optimal solution a. We show results for l = 3 (left)
and l = 5 (right). We only change a and use the same parameter settings as before. The plots
show that using Gray encoding allows SA to reliably find the optimal solution independently of the
location of the best solution. Using binary encoding often results in lower SA performance and the
SA gets stuck in local optima.

We can explain the performance differences by using the concept of locality. We assume that
our integer problems are easy for mutation-based search independently of the value of the optimal
solution a. High locality encodings like Gray encoding do not change the difficulty of the problems
and all problems remain easy independently of a. Low locality encodings like binary encoding,
however, change the difficulty of some easy problems and make them more difficult. As a result,
SA has larger problems finding optimal solutions and the performance of mutation-based search
decreases.

4.2 Crossover-Based Search Using Genetic Algorithms

In this subsection we investigate how the performance of crossover-based search depends on the
used Gray or binary encoding.

We have seen in section 3 that both, Gray and binary encoding, do not preserve the distances
between the individuals. Therefore, offspring produced by standard crossover mechanism could
have nothing in common with their parents. For example, if we use binary encoding and uniform
crossover we can get from the parents xp = 4 (xg = 100) and yp = 3 (yg = 011) the offspring zp = 7
(zg = 111). The offspring phenotypically has nothing in common with its parents and the distances
between the offspring and its parents are much larger than the distances between both parents.
Therefore, both encodings change the difficulty of the easy integer problem. How exactly, we will
illustrate in the following.

As before we concatenate 10 integer problems, where xp ∈ {0, . . . 31} and the genotypic length of
a sub-problem is l = 5. For our investigation we use a selectorecombinative standard GA (Goldberg,
1989) using only uniform crossover and no mutation. The population size is set to n = 20 and we
use tournament selection without replacement of size 2. We performed 100 runs, and each run was
stopped after the population was fully converged.

In Figure 4 we show the number of correctly solved sub-problems over the number of generations
for a = 31 (left) and a = 15 (right). GAs using binary encoding outperform Gray encoding for
a = 31. For a = 15, GAs using Gray encoding perform significantly better than Gray encoding.

As before, we want to generalize our investigation and show in Figure 5 how the average number
of correctly solved sub-problems at the end of the run depends on the value of the optimal solution
a. We show results for l = 3 (left) and l = 5 (right). It can be seen that GAs using binary encoding
perform better than Gray encoding if a is either small (the optimal solution consists mostly of only
0s) or large (the optimal solution consists mostly of only 1s). Otherwise, GAs using Gray encoding
perform better.

When using crossover-based search the difficulty of the original optimization problem fp only
remains unchanged if the genotype-phenotype mapping fg does not change the distances between
the individuals (dc = 0). However, both encodings, Gray and binary, change the distances between
corresponding genotypes and phenotypes and therefore, change the difficulty of the optimization
problem. As a result, for both encodings GA performance strongly varies for different a, although
the difficulty of fp remains constant and is independent of a.
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Figure 2: We use SA and show the number of correctly solved sub-problems over the number of
fitness calls for a = 31 (left) and a = 15 (right).
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Figure 3: We use SA and show the number of correctly solved sub-problems at the end of a run
over the location of the optimal solution a for l = 3 (left) and l = 5 (right).
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Figure 4: We use GA and show the number of correctly solved sub-problems over the number of
generations for a = 31 (left) and a = 15 (right).
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Figure 5: We use GA and show the number of correctly solved sub-problems at the end of a run
over the location of the optimal solution a for l = 3 (left) and l = 5 (right).
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5 Conclusions

This paper discusses the locality and distance distortion of representations and examines the per-
formance of different types of binary representations of integers.

We illustrate that the performance of mutation-based, as well as crossover-based search methods,
strongly depends on the used representations fg. The representation fg can change the difficulty
of the optimization problem and can make problems easier, but also harder to solve. We identify
two important properties of representations. The locality dm of a representation fg describes
how well neighboring phenotypes correspond to neighboring genotypes. The distance distortion dc

determines if the distances between the individuals are preserved. We illustrate that the difficulty
of a problem remains unchanged for mutation-based search if the locality of the used representation
is perfect (dm = 0). In analogy, the difficulty of a problem regarding crossover-based search stays
the same if the distances between the individuals are preserved by the representation.

When using these concepts for binary representations of integers we see that Gray encoding has
perfect locality and therefore preserves the difficulty of optimization problems. As a result, easy
problems remain easy. In contrast, the binary encoding has low locality and some easy problems
become more difficult. When using crossover-based search both encodings change the distances
between the individuals. Therefore, not all easy problems remain easy but some of them become
more difficult to solve.

We have seen that representations that preserve the distance structure between individuals do
not change the difficulty of a problem. If we would be able to describe in a more detailed way how
representations that do not preserve the distance structure modify problem difficulty, we could use
representations to make problems easier and use our search methods more efficiently.
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