
Slide - The Key to Polynomial End-to-End Communication �Yehuda Afeky & Baruch Awerbuch z & Eli Gafni x &Yishay Mansour {& Adi Ros�en k & Nir Shavit ��AbstractWe consider the basic task of of end-to-end communication in dynamic networks, that is,delivery in �nite time, of data items generated on-line by a sender, to a receiver, in order andwithout duplication or omission.A dynamic communication network is one in which links may repeatedly fail and recover.In such a network, though it is impossible to establish a communication path consisting of non-failed links, reliable communication is possible, if there is no cut of permanently failed linksbetween a sender and receiver.This paper presents the �rst polynomial complexity end-to-end communication protocolin dynamic networks. In the worst case the protocol sends O(n2m) messages per data itemdelivered, where n and m are the number of processors and number of links in the networkrespectively. The centerpiece of our solution is the novel slide protocol, a simple and e�cientmethod for delivering tokens across an unreliable network. Slide is the basis for several self-stabilizing protocols and load-balancing algorithms for dynamic networks that have subsequentlyappeared in the literature.We use our end-to-end protocol to derive a �le-transfer protocol for su�ciently large �les.The bit communication complexity of this protocol is O(nD) bits, where D is the size in bitsof the �le. This �le-transfer protocol yields an O(n) amortized message complexity end-to-endprotocol.�Preliminary versions of the various results in this paper appeared in Proc. of the 30th IEEE Annual Symp. onFoundation of Computer Science 1989, and Proc. of the Eleventh Annual ACM Symp. on Principles of DistributedComputing, 1992 [AMS89, AGR92].yDepartment of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.zComputer Science Department, Johns Hopkins Univ. and Dept. of Mathematics and Lab. for Computer Science,M.I.T., Cambridge, MA 02139; Supported by Air Force Contract TNDGAFOSR-86-0078, ARO contract DAAL03-86-K-0171, NSF contract CCR8611442, and a special grant from IBM.xComputer Science Department, U.C.L.A., CA 90024. Supported by NSF Presidential Young Investigator Awardunder grant DCR84-51396 & matching funds from XEROX Co. under grant W881111.{Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Part of the research was donewhile the author was at Laboratory for Computer science, MIT, partially supported by NSF 865727-CCR, ARODALL03-86-K-017 and ISEF fellowship, and at IBM - T. J. Watson Research Center, P. O. Box 704, YorktownHeights, NY 10598.kDepartment of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.��Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Part of this work was performedwhile this author was at the Hebrew University, Jerusalem and the TDS group at MIT. Supported by Israeli Commu-nications Ministry Award, and by NSF contract no CCR-8611442, by ONR contract no N0014-85-K-0168, by DARPAcontract no N00014-83-K-0125, and a special grant from IBM.1

1 IntroductionA basic problem in computer networks is that of end-to-end communication, that is, the deliveryin �nite time of data items, generated at a designated sender processor to a designated receiverprocessor without duplication, omission, or reordering of the data-items. The data items couldrepresent transactions of a stock exchange, �les to be transferred, interactive remote processingmessages, etc. In almost all cases, the sequence of data items is produced on-line and is notavailable at the beginning of the protocol's execution.In a reliable network, where communication links never fail, end-to-end communication is easilyperformed by establishing a �xed communication path between the sender and the receiver, andsending all data items along this path. However, communication networks like ARPANET [MRR80]and DECNET [Wec80], have a dynamic topology, i.e., links may repeatedly fail and recover, makingit impossible to rely on any single communication path.The \classical" approach to the problem in dynamic networks is to construct a new communi-cation path every time the previous path fails, purging any messages in transit on the old path.However, this approach is limited since its implementations (e.g., [Fin79, Gal76, AAG87, AS88,AAM89, AGH90]) require strong assumptions regarding the allowable patterns of link failures inthe network. In some works [AAG87, AS88, AAM89], the assumption is that the whole networkstabilizes for a period of time long enough to allow the construction of a path and the delivery ofat least one data item over it. Moreover, as networks become larger and presumably topologicalchanges occur more often, the above approach yields protocols that might grind to a halt. However,as noted in previous works [Vis83, AE86], the existence of an operational communication path isnot a necessary condition for communicating between two processors. A necessary condition forcommunication is that even though there is never a point in time during which there is a pathof operational links between sender and receiver, they are eventually connected: there is no cut ofpermanently failed links separating the sender from the receiver. Formally this means that thereexists no partition of the network into two sets, one containing the sender and the other the receiver,such that from some time and on, no message can be delivered from any processor in one set toany processor in the other set.Early papers [Vis83, AE86] solving the end-to-end communication problem under the eventualconnectivity condition employed \unbounded sequence numbers", implying that both the messagesize and the amount of memory needed grow with the number of data items transmitted. Therefore,the space and communication complexity of those protocols is unbounded in terms of the size of thenetwork. In recent years a sequence of works gave bounded and increasingly e�cient solutions to theproblem. The �rst bounded end-to-end communication protocol under the eventual connectivityfairness condition [AG88] required only O(1) space per-link, but had an exponential communicationcomplexity.This paper presents the �rst polynomial complexity end-to-end communication protocol in dy-namic networks. In the worst case the protocol sends O(n2m) messages per data item delivered,where n and m are respectively the total number of processors and links in the network. A prelim-inary version by three of the authors [AMS89] presented an algorithm with a message complexityof O(n9). Another preliminary end-to-end protocol by two of the authors, based on the resyn-chronization protocol [AG91] for unreliable networks, constructed an end-to-end communicationprotocol with an improved O(nm) message complexity. Though the presented algorithm is a factorof n slower than [AG91], it is substantially simpler and more streamlined than either of the above,and unlike them can be used to yield an e�cient �le-transfer protocol. Furthermore, its key com-2

ponent is the novel slide protocol which we have reason to beleive will become a popular buildingblock for dynamic network algorithms. In fact, a recent work [KOR95] builds upon the slide toobtain an end-to-end communication protocol with logarithmic space complexity, and at the sametime polynomial communication complexity. In the table below we compare the performace of thevarious known end-to-end communication protocols.Paper Communication Complexity Space Complexity[Vis83, AE86] unbounded: 1 unbounded: 1[AG88], Alg. 1. unbounded: 1 constant: O(D)[AG88], Alg. 2. exponential: O(D � exponential(n)) logarithmic: O(logn+D)present work polynomial: O(n2mD) linear : O(nD)[AG91] polynomial: O(nm logn+mD) linear: O(n+D)[KOR95] polynomial: O(n2mD) logarithmic: O(logn+D)Slide is a simple and e�cient method for delivering tokens across an unreliable network. Like theMerlin-Schweizer deadlock avoidance algorithm [MS80], it uses store-and-forward bu�er hierarchiesto control packet ow. However, the similarity ends here: slide allows packets the freedom to movein the network obliviously and permits deadlocks caused by individual packets that are delayedin the network for an inde�nite periods of time. It uses the bu�er hierarchy to balance the owof packets, so that if enough packets of a given type are put into the network by a sender, somepackets must reach the receiver processor.We construct our �rst end-to-end communication protocol by combining slide with the majorityselection mechanism of [AAF+90]. We then present a second protocol without majority selection,which has the advantage of being data-oblivious, i.e. the protocol does not access the data beingtransmitted. This modular separation of messages into a \control bits" part and a \data" part isstandard practice in communication protocols. A combination of key elements of the two protocols,in conjunction with the Information Dispersal Algorithm (IDA) of Rabin [Rab89], allows us todesign a �le-transfer protocol with O(nD) bit communication complexity for �les of su�cientlylarge size D.The rest of the paper is organized as follows. The slide protocol is presented in subsection 4.1.Section 2 introduces the dynamic network model. Section 3 provides an informal overview of ourprotocols. Section 4 includes their formal statement, proof of correctness and analysis, speci�callythat of the slide protocol.2 Model and Problem Statement2.1 The Network ModelConsider a communication network in the form of an undirected graph G = (V;E), jV j = njEj = m, where the nodes are the processors and the edges are the links of communication.Processors are modeled as interactive Turing machines, and run message driven programs. Wedo not require that they have distinct identi�ers, and in fact except for the sender and the receiver3

they all run the same program. Each undirected link consists of two directed links, deliveringmessages in the opposite directions. Below we describe the properties of a directed link. Weassociate with each message a send event and a receive event; each event has its time of occurrenceaccording to a global time, unknown to the nodes. We assume no two events occur exactly at thesame time. A message is said to be in transit at any time after its send event and before its receiveevent.Each link has constant capacity, in the sense that only a constant number of messages can bein transit on a given link at a given time. For clarity of presentation we present the protocols ina model in which each link has O(n) capacity (Lemma 4). However, The model of O(n) capacitylinks is easily reduced to the model of constant capacity links by maintaining a bu�er of O(n)outstanding messages for each link. This reduction does not increase the space complexity of ourprotocols since their space complexity is O(n) in either case. Each link delivers messages in FIFOorder, that is, the sequence of messages received over it is a pre�x of the sequence of messages sentover the link. Also, the communication is asynchronous: There is no a-priori bound on messagetransmission delays over the links.A directed link is non-viable if starting from some message and on it does not deliver anymessage; the transmission delay of this message and any subsequent message sent on this link isconsidered to be in�nite (1). The sequence of messages received over the link is in this case aproper pre�x of the sequence of messages sent. Otherwise, the link is viable. An undirected linkis viable if both directed links that it consists of are viable. We say that a node v is eventuallyconnected to a node u if there exists a (simple) path from v to u consisting entirely of undirectedviable links. Note that if there is a cut of the network, disconnecting the sender from the receiver,such that all the directed links crossing the cut become non-viable, then it becomes impossible todeliver messages from the sender to the receiver.Note that we model the undirected graph as a by-connected directed graph. We thus assumethat for each link either both its directed link are viable, or both are non-viable. In this case, theassumption stated above of eventual connectivity between the sender and the reciever is a necessaryminimal condition to allow communication between the sender and the receiver. In the model ofdirected graphs, it could be the case that there exists a directed viable path from the sender to thereceiver (and maybe a di�erent one from the receiver to the sender), yet all undirected links arenon-vaible. We do not consider in the present paper this (more di�cult) model, and are dealingonly with undirected graphs.2.2 Other ModelsThe model described above is called the \1-delay model" in [AG88], and the \fail-stop model"in [AM88]. As mentioned in the introduction, we deal with networks that frequently change theirtopology. In such dynamic networks, links may fail and recover many times (yet processors neverfail) [AAG87], and each failure or recovery of a network link is eventually reported at both itsendpoints by some underlying link protocol. It is not hard to see that any problem de�ned in thecontext of the dynamic-network model can be reduced to the same problem de�ned in the contextof the fail-stop networks model. Given a network under the dynamic model, and an algorithmfor networks of the fail-stop model, one can apply the given algorithm as follows: A message tobe forwarded on a link is stored in a bu�er, which is manipulated by a lower-level protocol thatleaves the message in the bu�er until all previous messages have been delivered, and until the linkrecovers, if it is down. A protocol similar to the data-link initialization protocol [BS88] is used4

to guarantee that no message is lost or duplicated. Any link in the dynamic network that failsand never recovers for a long enough period to allow the delivery of a message is represented bya non-viable link in the fail-stop model; each link that eventually recovers for such a long enoughperiod of time is represented by a viable link. Any two nodes that are eventually connected in thedynamic network model are eventually connected in the fail-stop model.2.3 The End-to-End ProblemThe purpose of the end-to-end communication protocol is to establish a (directed) \virtual link" tobe used for the delivery of data items inserted from the environment to one distinguished processor,called the sender and usually denoted by S, to a second distinguished processor, called the receiverand usually denoted by R, that in turn will extract them to its environment. It is required thatthis virtual link be viable if the sender is eventually connected to the receiver. This virtual linkshould have the same properties as a \regular" network link, namely:Safety: The sequence of data items output by the receiver is a pre�x of the sequence of data itemsinput by the sender.Liveness: If the sender is eventually connected to the receiver, then each data item input by thesender is eventually output by the receiver.An algorithm for the end-to-end communication problem generates a sequence of input eventsof data items at the sender and a sequence of receive events of data items at the receiver, that obeythe safety and liveness properties.2.4 The Complexity MeasuresWe consider the following complexity measures:Message: The total number of messages sent in the worst case in the period of time between twosuccessive data item output events at the receiver.Communication: The total number of bits sent in the worst case in the period of time betweentwo successive data item output events at the receiver.Space: The maximum amount of space per incident link, measured in bits, required by a node'sprogram throughout the protocol.De�nition 1 A protocol is bounded if its communication and space complexities are independentof the number of data items, depending only on the size of the network and the size of a data item.De�nition 2 A protocol is polynomial if its communication and space complexities are upper-bounded by polynomials of the size of the network.We would like to stress the fact that being able to send (receive) an in�nite number of messagesdoes not require either the sender or the receiver to have in�nite space. A single bu�er at the sender(receiver) su�ces in order to store the next data item to be transmitted. The precise formulationof this \interactive" statement of the problem can be found in [LMF88].5

3 Informal DescriptionIn this section, we informally describe the slide protocol, and then describe three end-to-end com-munication protocols that use it as a building block. The formal presentation of these protocols,their proof of correctness and their analysis follow in the next section.3.1 The Slide ProtocolThe purpose of the slide protocol is to deliver messages from a sender to a receiver over an unreliablenetwork. We refer to these message as tokens, since for the purpose of the slide protocol we areindi�erent to the contents of the messages. In the slide protocol one designated processor, thesender, inputs tokens (messages) into the network. The sender can be in either of two states,enabled, or disabled and it may insert new tokens into the network only if it is enabled. A seconddesignated processor, the receiver, outputs the tokens from the network. Tokens are neither lostnor duplicated in the network, and the total number of tokens in it at any given time is bounded.If the sender and the receiver are eventually connected, then eventually the sender is in the enabledstate, that is, the insertion of a new token into the network is possible. The order in which thetokens are output by the receiver is, however, not necessarily that in which they were input bythe sender. More formally, if the sender and the receiver are eventually connected, then the slideprotocol establishes between them a non-FIFO, bounded-capacity virtual communication link thatdoes not lose or duplicate messages.The slide protocol is based on the storing and forwarding of tokens between the processors ofthe network. Each undirected link is viewed as a pair of directed anti-parallel links. Each processormaintains for each incident incoming link an array of slots numbered 1 through n. We regard theelements of the array as ordered in increasing order of levels. Each slot has room for one token,and each array is used to store tokens arriving on the link associated with it; tokens from an arraycan be sent over any outgoing link. The key to the protocol is the condition that a token be sentfrom any slot i at processor v to slot j at the (v; u) array at processor u, only if j < i. To this end,the processors maintain for each outgoing link a variable holding an upper bound on the lowestnumbered slot available at the other side of the link. The tokens are sent from slots with a numberhigher than the bound, and thus are guaranteed to conform to the above condition. Every time atoken is removed from an array, a signal to this e�ect is sent over the incoming link associated withthe array. Since the only source of tokens for a speci�c array is the processor on the other end ofits associated link, the bound can be maintained by incrementing it every time a token is sent overthe link, and decrementing it every time a signal is received over the link. Thus the bound is neversmaller than the number of tokens in the array on the other side of the link plus the number oftokens in transit over the link. As the links obey the FIFO rule, the above mentioned variable is atany time t an upper bound for the lowest numbered slot that is available in the receiving processorupon the arrival of a token that is sent at time t.New tokens enter the network only at the sender and to a special slot at level n. The receiverhas always a vacant slot of level 1, and removes and outputs any token it receives 1. If the senderand the receiver are eventually connected, then eventually the special slot at the sender is vacant.The tokens travel in the network from the sender to the receiver, sliding from higher numberedslots to lower numbered slots as they advance from link to link. Therefore, each token can make at1We remark that for every node but the receiver, slots of level 1 are redundant, as a token cannot be sent fromsuch slots. 6

most n hops in the network. Since the protocol maintains for each link 2n slots, and (as we provein the sequel) this also bounds the total number, per link, of tokens in slots plus tokens in transitat any given time, the total number of tokens in the network at any given time is at most 2nm.This is the capacity of the slide protocol, denoted C. In Lemma 4 we show that we can replace theassumption that link capacity is O(n) by an assumption that link capacity is O(1), by maintaininga 2n messages bu�er of outstanding messages for each link.3.2 The Majority AlgorithmWe construct a simple end-to-end communication algorithm by operating the slide from the senderprocessor S to the receiver processor R. To send a data item to R, processor S sends consecutively2�C + 1 duplicates of the data item to R using the slide. To output the �rst data item, R waits forC + 1 data items and outputs one of them, and for each subsequent data item R waits for the next2�C+1 data items, takes the majority of the values received, and outputs this value. This is similarto the protocol of [AAF+90]. Since S sends 2�C + 1 duplicates of each data item and the slide candelay only up to C data items, the receiver is ensured to receive enough data items to allow theoutput of the next data item.3.3 The Labels AlgorithmIn the labels algorithm, each data item is marked with a unique label, enabling the receiver todistinguish between a new data item that has yet to be output and an old item that has alreadybeen output. The protocol is thus data-oblivious in that it does not use the data itself for thecontrol of the protocol. The labels are not \sequence numbers" since they need not de�ne an orderon the items. Since the slide protocol has a bounded token capacity, one can design an algorithmrequiring only a bounded range of labels by devising a technique allowing the sender to know whichlabels it can reuse. We do so in the following way.Given a designated sender (S) and receiver (R) of an end-to-end communication problem, weoperate two slide protocols, one from S to R and another from R to S. The slide operated from Rto S is used by R to return to S tokens it received.Let C = O(nm) denote the maximum number of tokens that a single slide protocol can delay.Let L denote a set of O(nm) labels, and at any point in time, let free L be a variable holding thesubset of L from which S can take a label to mark a new data item since the label does not appearin any token in the network. Initially, free L = L.Processor R keeps for each label an indicator saying whether R may accept a new data itemwith this label or not; initially, R may accept a data item with any label. Whenever S wishesto send a data item to R, it extracts a label l from free L and starts sending tokens of the form(l; data item) to R. S stops sending these tokens either when the �rst such token is received backfrom R, or after C +1 such tokens are sent. Any token that arrives at R is returned to S using theR-to-S slide protocol. Before returning the token, R processes the token as follows: If the statusof the label appearing in the token is acceptable, it outputs the received data item and sets thestatus of that label to not acceptable; otherwise (if the status of the label is not acceptable)it ignores the token since the received data item has already been output. Processor S counts, foreach label, the number of tokens it sends and the number of tokens it receives back from R. If andwhen all the tokens containing a certain label arrive back, S can use the label again for transmitting7

future data items. Before doing so, S must inform R that it should again set the status of the labelto acceptable. This is done by `reset' messages sent to R. In order not to increase the complexityof the algorithm by adding the `reset' messages and in order to avoid deadlocks, a `reset' messageis \piggy-backed" on the tokens sent to R. To this end, upon the receipt by S of the last tokenhaving label l, l is added to a set of `pending reset' labels. To each data item sent, S adds a `reset'message for a label from the `pending reset' set (if the set is not empty). When R receives a tokencontains a `reset' message for l, it sets l to the acceptable status. If and when S receives back allthe tokens containing a 'reset' message for a certain label l, S concludes that l is in the acceptablestate at R, and that the S-to-R slide is \clean" of tokens carrying either a data item labeled by l,or a reset message for l. Therefore, l can be safely returned to free L for future use by S.Since the capacity of each slide is bounded by C, no more than C + 1 tokens have to be sent byS before at least one reaches R and the data item is output. The algorithm is technically designedso that to ensure that at any time the number of tokens stored in R (before being returned to S)is bounded. Together with the fact that each slide can delay up to C token, this implies that a setof 6�C + 3 labels allows the algorithm to run without deadlocks (see Section 4.3).3.4 The Data Dispersal AlgorithmWe now show an algorithm that achieves O(nD) bit communication complexity, for the cases inwhich the data items are large with respect to the size of the network (having size of
(nm logn)bits). The same algorithm can also be used for smaller data items if the sender is allowed to lumptogether several data items and transmit them together.Recall that the slide protocol allows only a �nite number of packets to be delayed in the network.Based on this property we are able to combine the slide protocol with Rabin's Information DispersalAlgorithm [Rab89] to achieve the O(nD) bit complexity. The general idea is that the sender splitsthe data item into packets using the Information Dispersal Algorithm (IDA) and sends them to thereceiver using slide. As the IDA allows the construction of the full data item from only a subset ofthese packets, the protocol can tolerate the loss of the �nite number of packets that can be delayedin the network during the execution of slide. In addition, the total size of the packets in any groupfrom which the data item can be constructed is not larger than the size of the data item itself;therefore we build an e�cient algorithm with O(nD) bit communication complexity.More speci�cally, the sender creates, using the IDA, 2�C + 1 packets, each of size O(DC+1) bits,where D is the size of the data item. The sender sends each of these packets to the receiver, eachone along with its serial number as required by the IDA. This allows the receiver to construct thefull data item from only C + 1 packets. The sender sends the 2�C + 1 packets and, since at most Cpackets can be delayed, the receiver will receive enough packets to reconstruct the data item. Theonly di�culty left is to make sure that the receiver does not use old delayed packets to reconstructdata items subsequently sent. To overcome this di�culty, the sender selects for each data itema label and adds it to all the packets of the data item. The receiver outputs the �rst data itemafter calculating it from the �rst C + 1 packets it receives; for each subsequent data item it waitsfor another 2�C + 1 packets, checks which label has the majority among the labels in the packets,and uses only the packets having this label; this is similar to the Majority Algorithm. For eachnew data item the sender must use a label that is not present in the network. Therefore, as in theLabels Algorithm, the receiver sends back to the sender every packet it receives through anotherslide operated in the opposite direction. Thus the sender always knows which labels are present inthe network. As the capacity of each slide is bounded by C, 2�C + 1 di�erent labels su�ce.8

The bit communication complexity of the Data Dispersal Algorithm is O(nD) bits per dataitem if it is applied to large enough data items. As each packet is sent with a serial number of sizeO(logmn) = O(logn) bits, the size of a data item that yields this complexity should be
(nm logn)bits. If the algorithm is applied to smaller data items, it achieves an amortized bit communicationcomplexity of O(nD) bits, by combining several data items together.4 Formal Description and ProofsIn this section, we formally state the code of the slide, the Majority, the Labels and the DataDispersal Algorithms, prove their correctness, and analyze their complexities. The presentation ofthe code is based on the language of guarded commands of Dijkstra [DF88] where the code of eachprocess is of the formSelect G1 ! A12G2 ! A22 : : :Gl ! Al End Select:The code is executed by repeatedly selecting an arbitrary i from all guards Gi which are true andexecuting Ai. A guard Gi is a conjunction of predicates.The predicate Receive M is true when a message M is available to be received. If thestatements associated with this predicate are executed, then prior to this execution the message Mis received. The message may contain some values that are assigned, upon its receipt, to variablesstated in the Receive predicate (e.g., Receive TOKEN(data)).Throughout the proofs we assume a global time, unknown to the nodes, and we denote thevalue of variables in a node at a given time by a subscript of the node and a superscript of the time(e.g. X tv).4.1 The Slide ProtocolThe protocol, given in Figure 1, uses two types of messages: TOKEN messages which are used totransfer the tokens themselves, and TOKEN LEFT messages that are used as signals to inform theother side of a link that a token from the array associated with it was removed from the array.Each node has associated with each incoming link an array of n slots ordered in levels from 1to n. Each of these slots is used to store a single token arriving on the respective incoming link.In addition, each node maintains for each outgoing link a variable called bound, which is an upperbound on the number of tokens in the array on the other end of the link plus the number of tokenson the link plus 1. Thus, bound is an upper bound on the height of the slot available for a token ifit is sent. This bound is maintained by initializing it to 1, incrementing it by 1 every time a tokenis sent over the outgoing link, and decrementing it by 1 every time a TOKEN LEFT message isreceived over the corresponding incoming link. Whenever there is a token stored in a slot with ahigher number than the bound of some outgoing link, the token is removed from the slot and sentover the link.The di�erences between the sender and an ordinary node are due to the fact that the senderis the node that inputs new tokens to the network. Therefore it has an additional \special array"into which tokens are input from an external process. These tokens are input into slot number nof the \special array". Like all other arrays, tokens from this array can be sent over any link.The receiver outputs any token it receives and never sends tokens.9

SelectInitialization �!for every incident link ebound[e]:=1;top[e]:=0;2Receive TOKEN LEFT on e �!bound[e]:=bound[e]-1;2Receive TOKEN(data) on e �!top[e]:=top[e]+1;slots[e][top[e]]:=data;29e; e0 s.t. top[e0] > bound[e] �!/* e0 not necessarily 6= e */send TOKEN(slots[e0][top[e0]]) on e;send TOKEN LEFT on e0;top[e0]:=top[e0]-1;bound[e]:=bound[e]+1;End Selecta: ordinary node's code
Initialization �!input array[n]:=vacant;2input array[n]=vacant �!input array[n]:= next input;2input array[n]6=vacantand 9e s.t. bound[e]< n �!send TOKEN(input array[n]) on e;input array[n]:=vacant;bound[e]:=bound[e]+1;2b: additions for the sender (sender code is a & b)SelectReceive TOKEN(data) on e �!output(data);send TOKEN LEFT on e;End Selectc: receiver's codeFigure 1: The slide

10

4.1.1 Correctness Proof of the slide ProtocolIn this section we prove that:Theorem 4.1 The slide protocol satis�es the following four properties:P1. For each token, the total number of times it is sent over a link, is at most n. (we say thateach time a token is sent it is passed over a link, and that it performs a hop in the network).P2. At any time t, the number of tokens in the network is bounded by 2nm. (C = 2nm).P3. In any time interval in which new new tokens are inserted into the network, at mostO(n2m+ new � n) token-passes can occur.P4. If the sender and the receiver are eventually connected, the sender will eventually input anew token.Proof: We start with several de�nitions. The de�nition are used to count the number of di�erentmessages on a given link at a given time.De�nition 3 Let tokenstu!v be the number of TOKENs in transit from u to v at time t. Letsignalstu!v be the number of TOKEN LEFT messages in transit from u to v at time t.Lemma 1 At any time t and for any e = (u; v),bound[e]tu � 1 = top[e]tv + tokenstu!v + signalstv!u :Proof: Upon initialization, the invariant holds, since the bound[e] variables are initialized to 1, thetop[e] variables are initialized to 0, and no message is in transit in the network. By induction onthe events that change any of the values participating in the invariant we can show that it holdsfor any t. There are four events to be considered: send and receive events of TOKEN messagesfrom u to v and send and receive events of TOKEN LEFT messages from v to u. Consider the�rst case, a send event of a TOKEN message from u to v: bound[e]u is incremented by 1, but so istokensu!v . The other three cases are proved similarly. 2The next lemma gives the main intuition for the progress in the protocol.Lemma 2 If a token from slot i at node u is sent to node v and is stored there at slot j, thenj < i.Proof: Let t be the time just before the token is sent from u, and t0 the time just before it isreceived at v. Denote by e the link between v and u, by new slot the slot number in which thetoken is stored in v, and by old slot the slot number where it was stored in u.Because top is incremented only when tokens arrive on the link, and because the links are FIFO,we have: top[e]t0v � top[e]tv + tokenstu!v :11

By Lemma 1, top[e]t0v + 1 � bound[e]tu:By the code old slot > bound[e]tu and new slot = top[e]t0v + 1, hence old slot > new slot. 2Since new tokens enter the network into slot n, this proves property (P1) of the slide.Since all the tokens in the network are either stored in the arrays or in transit over links, thefollowing lemma proves property (P2).Lemma 3 At any time t and for any e = (u; v),top[e]tv + tokenstu!v � n :Proof: By Lemma 1 top[e]tv + tokenstu!v � bound[e]tu� 1. For bound[e] to be strictly greater thann, a token must be sent over e when bound[e] = n. By the code, this token must be stored in level� n + 1. By Lemma 2, and since new tokens enter the network into level n slots, such a tokencannot exist. Thus for any t bound[e]tu � n. 2We can now also prove properties (P3) and (P4). We start by proving property (P3). Byproperty (P2) the total number of tokens in the network at the beginning of the time interval isO(nm). By Property (P1) each can make up to n hops in the network, thus contributing up toO(n2m) token passes. Any token from the new new tokens can also make up to n hops.The rest of the proof is devoted for proving property (P4). By way of contradiction assumethat t is the last time at which the sender inputs a token.As a result of property (P3) and as there is only one TOKEN LEFT message per token pass,there is a time t0 � t after which no TOKEN or TOKEN LEFT messages are sent. As S and Rare eventually connected, there is a path R = v0; v1; : : : ; vk�1; vk = S, k < n, such that for each0 � i � k � 1, e = (vi; vi+1) is viable, hence there is a time t00 � t0 by which all messages betweenvi and vi+1, in both directions, are delivered.By induction on the length of the viable path from vi to R, we will show that vi cannot have atoken in a slot at level strictly greater than i after time t00 .The receiver, v0, has no tokens stored at all. Denote by e the (vi�1; vi) link (i � 1), and assumethe inductive hypothesis that vi�1 has no token stored at level strictly greater than i � 1. Sinceat t00 all messages between vi�1 and vi have arrived, by Lemma 1 and the inductive assumptionbound[e]t00vi � i. As t00 � t0, no token is sent after t00, but according to the code this can happen onlyif vi has no tokens in slots of level i+ 1 or more, proving the induction step.Thus slot n at S is vacant, and S will enable the input of a new token, contradicting theassumption. 2The following lemma shows that our protocol applies in the model where links have constantcapacity by having an O(n) space bu�er at the tail of each link and sending every message onlyafter receiving an acknowledgment for the previous one. As the space complexity of the protocolis already O(n) per link (see below), this change does not a�ect any of the complexity measures.Lemma 4 At any time t, there are at most 2n messages in transit in each direction on any link.12

Proof: By Lemma 1, for any e, e = (u; v), and any time ttokenstu!v � bound[e]tu � 1; and signalstv!u � bound[e]tu � 1 :By the same arguments as in the proof of Lemma 3, bound[e]tu � n, for any t. Hence tokenstu!v � nand signalstv!u � n.The same arguments hold for the opposite directions, thus on any link at any time there are atmost n TOKEN messages and n TOKEN LEFT messages in each direction. 24.1.2 The Complexity of the Slide ProtocolLemma 5 The number of messages sent by the slide protocol in any time interval where new newtokens are input by the sender is bounded by O(n2m+ new � n).Proof: The only messages in the protocol are TOKEN messages and TOKEN LEFT messages,and there is exactly one TOKEN LEFT message per TOKEN message. The lemma thus followsfrom Property (P3). 2Corollary 6 (Communication Complexity) The number of bits sent by the slide protocol inany time interval where new new tokens are input by the sender is bounded by O((n2m+new �n)D),where D is the maximal number of bits in a token.The following claim follows from the code of the protocol and its correctness.Claim 7 (Space complexity) The space required at each node is nD + 2 logn bits per incidentlink, where D is the maximal number of bits in a token (if links have constant capacity then it is2nD + n + 4 logn).4.2 The Majority AlgorithmThe algorithm is informally described in Section 3.2, and its code is given in Figures 2 and 3.The Majority Algorithm uses the slide protocol, given in Section 4.1, as a lower-level buildingblock. The sender and the receiver of the Majority Algorithm communicate using this protocol:each token to be sent by the sender of the Majority Algorithm is input by the sender of the slide,and upon the arrival of a token to the receiver of the slide it is output by this receiver and receivedby the receiver of the Majority Algorithm.4.2.1 Correctness Proof of the Majority AlgorithmIn this section we prove the Safety and Liveness properties of the Majority Algorithm.Theorem 4.2 (Safety) At any time the output of the receiver is a pre�x of the input of the sender.13

Selecttrue �!data-item:=next input;for i:=1 to 2�C + 1 doSend(data-item);odEnd Selectb: sender's code
SelectInitialize �!items-set:=�;�rst item:=true;2Receive(data-item) �!items-set:=items-set [fdata-itemg;call check and output;End Selecta: receiver's code Figure 2: The Majority Algorithm

Procedure check and outputif �rst item and jitems-setj = C + 1 then/* �rst data item */output(any data item of(items-set));items set:=�;�rst item:=false;else if (not �rst item) and jitems-setj = 2�C + 1 then/* all other data items */output(majority(items-set));items set:=�;endifendifc: procedure check and outputFigure 3: The Majority Algorithm14

Proof: We denote by I = (I1; I2; : : :) and by O = (O1; O2; : : :) the input to the sender and theoutput of the receiver, respectively. Denote by ti; i > 0 the time at which Oi is output.To prove the theorem, we claim that the majority of the tokens received by the receiver in theinterval of time (ti�1; ti] carry data item Ii. First we show that no token that carries Ik, k > icould have been received before ti.The following de�nitions are used to count the number of tokens in the system.De�nition 4 Let in(t;t0] be the number of tokens input by the sender to the slide in interval of time(t; t0]. Let out(t;t0] be the number of tokens received by the receiver from the slide in the interval oftime (t; t0].Denote by t0 some time before the beginning of the execution of the algorithm.De�nition 5 delayt = in(t0;t] � out(t0;t] (the number of tokens delayed by the slide at time t).By the code, the total number of tokens that have been received by the receiver by time ti is:out(t0;ti] = C + 1 + (i� 1)(2�C+ 1):Since the network capacity is C, the total number of tokens sent by the sender at any time t is atmost C more than the total received by the receiver at the same time, t. Thus,in(t0;ti] � i(2�C + 1) (1)Therefore, no token carrying Ik ; k > i can be sent by the sender before ti. Hence, no such tokencan be received by the receiver at t, t < ti.We claim that no more than C tokens containing data item Ik, k < i may be received in theinterval of time (ti�1; ti]. This, together with the fact that no token carrying Ik; k > i can arriveat time t < ti, completes the proof of the safety property because it implies that of the 2 � C + 1tokens received in (ti�1; ti] at least C + 1 carry data item Ii.To prove the claim, we distinguish between two sets of tokens, those that carry data itemsIk; k < i, which we call old, and all other tokens. We have already proved that all the tokensreceived by ti�1 are old and that the total number of such tokens received by the receiver by ti�1 is(2 � C+1)(i�1)�C. Since the total number of old tokens ever sent by the sender is (2 � C+1)(i�1),at most C may be received by the receiver in the interval of time (ti�1; ti]. 2Theorem 4.3 (Liveness) If the sender and the receiver are eventually connected, then the receivereventually outputs any data item given to the sender.Proof: If the sender inputs the i'th data item, then it tries to send i(2�C+1) tokens (counted overthe whole run). As the sender and the receiver are eventually connected, by Property (P4) of theslide all the tokens are eventually input by the slide. Since the slide can delay at most C tokens,the receiver will eventually receive i(2�C + 1)� C tokens, and thus outputs the i'th data item. 215

4.2.2 The Complexity of the Majority AlgorithmLemma 8 The message complexity of the majority algorithm is O(n2m) messages .Proof: Clearly in (ti�1; ti] the receiver receives 2 �C + 1 tokens. Since the slide can hold at mostC tokens, at most 3 �C + 1 tokens are sent by the sender in (ti�1; ti]. As C = O(nm), the lemmafollows from Lemma 5. 2Since every bit in this algorithm is duplicated O(n2m) times, we establish the following corollary.Corollary 9 (Communication Complexity) The bit communication complexity of the majorityalgorithm is O(n2mD) bits, where D is the size in bits of a data item.Lemma 10 (Space Complexity) The space complexity of any node except the receiver is O(nD)bits and O(nmD) bits for the receiver, where D is the size in bits of a data item.Proof: Each token sent in the Majority Algorithm consists of D bits. Combining that with thespace complexity of the slide results in space complexity of O(nD) for the Majority Algorithm forany node except the receiver. The receiver requires in addition O(nmD) bits. 24.3 The Labels AlgorithmThe algorithm is informally described in Section 3.3, and the code of the algorithm is given in Figure4. In the algorithm we use two slide protocols between the sender and the receiver, operating inopposing directions. In the code we use the subscripts S ! R and R! S to denote operation withrespect to the slide from the sender to the receiver and the slide from the receiver to the sender,respectively. Similarly to the Majority Algorithm, the slide is a lower-level building block used bythe Labels Algorithm. Tokens to be sent by the Labels Algorithm are input by the sender of thecorresponding slide protocol, and upon their arrival to the corresponding receiver, they are outputby it, and received by the process of the Labels Algorithm.Each token sent from S to R consists of three �elds: a label, marking the token; a data item;and a piggy-backed reset-label. The set L is a set of 6�C+3 labels, where C is the capacity of a singleslide. Each token received by R is stored in a bu�er before being returned to R. As the two slidepprotocols may operate at di�erent paces, many tokens may be stored in the bu�er. Therefore, weuse at S a variable missing that counts the number of tokens that were sent but not returned yet.By delaying the input of a new data item until missing � 2�C, we can limit the number of tokensstored at R. The array count counts for each label l how many tokens labeled by l are currentlyin the network. The function extract(set) extracts an arbitrary element from set: If set is emptythe function returns null.4.3.1 Correctness Proof of the Labels AlgorithmIn this section we prove the Liveness and Safety properties of the Labels Algorithm.The `life-cycle' of each label, as viewed by the sender, consists of four periods of time. First thelabel is in free L, second it is removed from free L to label tokens in the network, third it is pending16

SelectInitialization �!send bu�er:=�;8 l 2 L status[l]:=acceptable;2ReceiveS!R (l,data-item,l-reset) �!if (status[l]=acceptable) thenoutput(data-item);status[l]:=not acceptable ;endifstatus[l-reset]:=acceptable ;send bu�er:=send bu�er[f(l ,?,l-reset)g;2send bu�er 6= � �!(l,?,l-reset):=extract(send bu�er);sendR!S (l,?,l-reset);End Selectb: receiver's code

SelectInitialization �!labels to reset:=�;free L:=L;sending:=false;missing:=0;2sending=false and missing � 2�C �!data-item:=next input;current label:=extract(free L);current reset label:=extract(labels to reset);count[current label]:=0;sending:=true;2sending=true �!SendS!R (current label,data-item,current reset label);count[current label]:=count[current label]+1;missing:=missing+1;if (count[current label]= C + 1) thensending:=false;endif2ReceiveR!S (l,?,reset label) �!if (l=current label) then sending:=false; endifmissing:=missing-1;count[l]:=count[l]-1;if (count[l]=0) thenlabels to reset:=labels to reset [flg;free L := free L [freset labelg;endifEnd Selecta: sender's code Figure 4: The Labels Algorithm
17

reset, and then it is piggy-backed to tokens in order to be reset at the receiver. After all tokensresetting a label return to S, the label is returned to free L to start a new `life-cycle'. We de�nesubsets of the labels, corresponding to the sets of labels that are in each of the above mentionedperiods in the `life-cycle' of a label.De�nition 6 Let sendingt be the set of labels that at time t are used to label tokens that are eitherdelayed by any of the two slide protocols or are in the receiver's send bu�er. Let pending resett bethe set of labels that at time t are in the set labels to reset of the sender. Let resettingt be the setof labels that at time t are piggy-backed on tokens that are either by any of the two slide protocolsor in the receiver's send bu�er.Claim 11 At the sender, at any time t, missingt � 3�C.Proof: The variable missing is incremented when a token is sent by the sender. By the code, atmost C + 1 tokens are sent between any two input events at the sender. The input event at thesender can occur only when missing � 2�C. Therefore, for any time t missing � 3�C + 1. 2Note that this implies that, at any time send bu�er at the receiver stores at most 3�C+1 tokens.Lemma 12 At any time t,1. jsendingtj � 3�C + 1 and jresettingtj � 3�C + 1.2. jsendingtj+ jpending resettj � 3�C + 1.Proof: Part 1 follows immediately from Claim 11. To prove part 2, note that each time a labelis added to sending, either pending reset is empty, or a label is extracted from it. Therefore part2 follows from part 1. To formally prove it, assume by way of contradiction that t0 is the earliesttime when jsendingj+ jpending resetj > 3�C + 1. This means that, at t0, a label was added eitherto sending or to pending reset.By the code, a label is added to pending reset if and only if at t0 the last token containing the la-bel at the `sending' �eld arrived at S, which means that the label is extracted at the same time fromsending, contradicting the assumption that t0 is the earliest time jsendingj+ jpending resetj > 3�C + 1.If the label is added to sending, then by the code, if at this time pending reset is not empty, alabel to be reset is sent with the tokens and this label is extracted from pending reset, contradictingthe assumption that at t0 the sum of the cardinalities increases.Thus, pending resetmust be empty at t0, therefore jsendingj+ jpending resetj > 3�C + 1 yieldsjsendingj > 3�C + 1, contradicting part 1. 2Lemma 13 If jLj � 6�C + 3, then free L is never empty.(i.e., the sender will always have a labelto send with a new data item).Proof: The lemma follows Lemma 12. 2Theorem 4.4 (Liveness) If the sender and the receiver are eventually connected, then any dataitem input by the sender is eventually output by the receiver.18

Proof: Let us �rst prove the following two lemmas:Lemma 14 If the sender and the receiver are eventually connected, then there is no deadlock atthe sender (i.e. eventually, missing � 2�C).Proof: Assume by way of contradiction that there is a time t such that for any t0 > t, missing �2�C+1. By the code, the sender can send after t at most C +1 tokens; therefore there is a time t00,after which the sender does not send any more tokens. Assume the sender has sent until t00 k tokens(counted over the whole run). As the slide can delay only up to C tokens, the receiver has receivedby t00 at least k � C tokens. All these tokens are added to send bu�er. Since the sender and thereceiver are eventually connected by property (P4) of the slideall these tokens are eventually inputby the R-to-S slide. As this slide can delay at most C tokens as well, the sender will eventuallyreceive at least k � 2�C tokens. Therefore missing will eventually be � 2�C. 2This implies that any data item available for input will eventually be input by the sender.Clearly, at least one token with a copy of each data item is received by the receiver. Thus itremains to prove that one copy of each data item will be output. For this, we need the following.Lemma 15 Let acceptablet be the set of labels whose state is acceptable at time t in R. Then atany time t, free L � acceptablet.Proof: Clearly the invariant holds when the algorithm starts.A label l is extracted from acceptable only when R receives a token with l at the `labeling' �eld.Since at this time there is no token in the network labeled with l, l cannot be in free L.A label l is added to free L only when all tokens with the label at the `reset' �eld return to S.Assume this happens at time t. Since these tokens return to S, they were received by R, settingl to the acceptable status. Assume the last one was received by R at t0, t0 � t. But in the timeinterval (t0; t] there is no token with l at the `labeling' �eld in the slideto R. Therefore at t l is inthe acceptable status in R. 2Thus, the label l used by the sender with a new data item at time t is in the acceptable statusat time t at the receiver. Furthermore, at t there is no other token in the network with label l in it.Thus, when the �rst copy of a token with label l, after time t, arrives at the receiver, the receiveroutputs the new data item. 2Theorem 4.5 (Safety) At any time the output of the receiver is a pre�x of the input of the sender.Proof: The liveness property implies that every data item that is input at the sender is eventuallyoutput at the receiver. Next we claim that there is no duplication in the sequence of data itemsoutput by the receiver. This claim is proved by way of contradiction. Assume that data item Ii isoutput twice by the receiver at times t1 and t2. Thus at both times the receiver received a tokenof the form (l; Ii; l0) and status[l] was acceptable. Since at t1 status[l] is set to not acceptablethis implies that at some time t0, t1 < t0 < t2, a token of the form (�; �; l) is received by R. At timet no such tokens exist in the network (since l is extracted from free L) and any new such tokenscan be created by the sender only after all tokens of the form (l; Ii; �) have arrived to S. Thereforesuch token are created only after t2, contradicting the fact that such token arrives at R at t0.It remains to show that there is no reordering in the output sequence. This follows from thefact that the sender sends the (i+1)'st data item only after the i'th data item has been output bythe receiver. 219

4.3.2 The Complexity of the Labels AlgorithmLemma 16 The message complexity of the labels algorithm is O(n2m).This lemma follows from the properties of the slide and from the bounded number of tokensinput into each of the two slide protocols used, as proved in the following two lemmas.Lemma 17 In any time interval between two consecutive output events of the receiver at mostO(nm) tokens are input to the S-to-R slide.Proof: The lemma follows from the following two facts: (1) the maximum number of tokens thatcan be input to the slide between any two consecutive inputs events is bounded by C + 1, and(2) any interval between two consecutive output events may overlap in time at most two intervalsbetween consecutive input events. 2Lemma 18 In any time interval between two consecutive output events of the receiver, at mostO(nm) tokens are input to the R-to-S slide.Proof: Denote by OUTi and OUTi+1 the two output events that form the time interval. Thetokens that can be input to the R-to-S slide in this time interval are the tokens in send bu�er atOUTi, the tokens that are delayed by the S-to-R slide at OUTi, and the tokens sent by the senderin the time interval (OUTi; OUTi+1].By Claim 11 the number of tokens in send bu�er is at most O(nm). Slide can delay also atmost O(nm) tokens at any time. By the previous lemma the sender sends in this time interval atmost O(nm) tokens. 2Each token sent in the Labels algorithm consists of a data item plus a label of size O(logn)bits. We thus get the following corollaries.Corollary 19 (Communication Complexity) The bit communication complexity of the labelsalgorithm is O(n2m(D + log n)), where D is the number of bits in a data item.Lemma 20 (Space Complexity) The space complexity of any node except the receiver and thesender is O(nD + n logn), where D is the size in bits of a data item.Proof: Each token sent in the Labels Algorithm consists of O(D + logn) bits. Combining thatwith the space complexity of the slide, results in space complexity of O(nD+n logn) for the LabelsAlgorithm. 2Note that the space complexity of the sender and the receiver is O(nm logn+D).4.4 The Data Dispersal AlgorithmThe algorithm is informally described in Section 3.4, and the code of the algorithm is given inFigure 5. As in the Labels Algorithm, we use two separate slide protocols, one from the senderto the receiver and another in the opposite direction. We use the subscripts S ! R and R! S20

SelectInitialization �!free L := L;sending:=false;missing:=0;2sending=false and missing � 2�C �!data-item:=next input;l:=extract(free L);using the IDA with parametersC + 1 and 2�C + 1,create packets 1 to 2�C + 1;send bu�er:=S2C+1i=1 f(l,i,packeti)g;count[l]:=0;sending:=true;2sending=true �!(l,i,packet):=extract(send bu�er);SendS!R (l,i,packet);count[l]:=count[l]+1;missing:=missing+1;if jsend bu�erj=0 then sending:=false ; endif2ReceiveR!S (l,i,packet) �!missing:=missing-1;count[l]:=count[l]-1;if (count[l]=0) then free L= free L [flg; endifEnd Selecta: sender's code

SelectInitialization �!packets-set:=�;�rst item:=true;packets-to-return:=�;2ReceiveS!R(l,i,packet) �!packets-set:=packets-set [f(l,i,packet)g ;call check and output;2packets-to-return 6= � �!(l,i,packet):=extract(packets-to-return);SendR!S (l,i,packet);End Selectb: receiver's codeProcedure check and outputif �rst item=true andjpackets-setj=C + 1 then/* �rst data item */using the IDA calculate the data item from theC + 1 packets in packets-set;output(data-item);packets-to-return:=packets-to-return [packets-set;packets-set:=�;�rst item:=false;else if �rst item=false andjpackets-setj=2�C + 1 then/* all other data items */majority-label:=majority-of-labels(packets-set);using the IDA calculate the data itemfrom the packets in packets-sethaving the label `majority-label';output(data-item);packets-to-return:=packets-to-return [packets-set;packets-set:=�;endifendifc: procedure check and outputFigure 5: The Data Dispersal Algorithm21

the same way as for the Labels Algorithm. The interaction between the slide protocols and theprocesses of the present algorithm is the same as the interaction stated for the Labels Algorithm.Let L denotes a set of 2 �C + 1 labels . The sender maintains for each label l 2L a counter,count[l], that holds at any time the number of tokens labeled l that are present in the network. Thesender can, therefore, conclude at any time which labels are present in the network. The functionextract(set) extracts an arbitrary element from set:Rabin's Information Dispersal Algorithm requires that the data be represented as a sequenceof numbers over the �eld Zp, where p is a prime bigger than the number of packets to be createdby the IDA. We use the IDA to create 2 �C + 1 packets; therefore we need a prime p, such thatp > 4nm+1. Since m � n2, any p such that p > 4n3+ 1 would do. In order to keep the size of thesmallest data item to which the Data Dispersal Algorithm can be applied as small as possible, weshould use the smallest p for which the above inequality holds. Since for any x there is a prime qsuch that x � q � 2x, there is always a prime that can be represented in dlog(8n3+ 2)e bits. Sinceeach packet must contain at least one full number over Zp, the size of the smallest data item towhich the Data Dispersal Algorithm can be applied is
(nm logn).4.4.1 Correctness Proof of the Data Dispersal AlgorithmIn this section we prove the Safety and Liveness properties of the Data Dispersal Algorithm.Theorem 4.6 (Safety) At any time the output of the receiver is a pre�x of the input of the sender.Proof: We denote by I = (I1; I2; : : :) and by O = (O1; O2; : : :) the input to the sender and theoutput of the receiver, respectively. Let ti be the time when the receiver outputs Oi, and denote byli the label added to the 2�C +1 packets calculated by the IDA from Ii at the sender. By the code,the tokens used at ti to calculate Oi at the receiver are the 2�C+1 tokens received by it in the timeinterval (ti�1; ti]. By the same arguments as in the proof of Theorem 4.2, at least C + 1 of thesetokens contain the label li; thus the majority of labels will be li, and the receiver will calculateOi from the tokens containing li. Since at the time the sender extracts li from free L, there is notoken containing it in the network, the receiver will use at ti only packets calculated from Ii atthe sender. As noted before, the receiver has at least C + 1 such packets at ti, and the IDA willcorrectly calculate Ii at ti. Thus Oi = Ii for any i. 2The proof of the Liveness property requires the following technical lemma.Lemma 21 For any time t, missing � 4�C + 1.The proof is similar to the proof of Claim 11.Note that this also implies that the receiver never stores more than 4 �C + 1 tokens in all itsbu�ers.Theorem 4.7 (Liveness) If the sender and the receiver are eventually connected, then the receiverwill eventually output any data item input by the sender.The proof is similar to the proof of Theorem 4.3.22

4.4.2 The Complexity of the Data Dispersal AlgorithmLemma 22 The message complexity of the data dispersal algorithm is O(n2m) messages.Proof: Denote by ti the time the i'th data item is output at the receiver. We use for the S-to-Rslide the same notation as in Section 4.2.1. out(ti;ti+1] = 2�C+1 and for any t, 0 � delayt � C, thusC+1 � in(ti;ti+1] � 3�C+1. By Property (P2) of the slide C = O(nm) and applying this to Lemma5 yields a message complexity of O(n2m) for the S-to-R slide.The tokens that are input toR-to-S slide in the time interval (ti; ti+1] must be in tokens to returnjust after ti, since new tokens are added to this set only at output events at the receiver. By Lemma21, the receiver stores at any time at most 4 �C + 1 tokens. In the worst case all of them are intokens to return at ti. Thus at most 4 �C + 1 tokens are input to the R-to-S slide in the timeinterval (ti; ti+1]. Applying this to Property (P2) of the slide and the results of Lemma 5, weobtain a message complexity of O(n2m) for this slide.Combining the two slide protocols results in a message complexity of O(n2m) for the DataDispersal Algorithm. 2Lemma 23 (Communication Complexity) The bit communication complexity of the data dis-persal algorithm is O(nD) bits, where D is the size in bits of a data item, if D =
(nm logn).Proof: Each token sent in the Data Dispersal Algorithm consists of a packet of size O(DC+1) bits,a label of size O(logn) bits, and a serial number of size O(logn) bits. The message complexity ofthe algorithm is O(n2m), and half of the messages are of size O(DC+1 + log n) bits, while the otherhalf have constant size. The total number of bits sent between any two consecutive output eventsat the receiver is, therefore, O((n2m)(DC+1 + log n)) = O(nD + n2m logn). For data items of size
(nm logn) the bit complexity is thus O(nD). 2Lemma 24 (Space Complexity) The space complexity of any node except the receiver and thesender is O(Dm + n logn), where D is the size in bits of a data item.Proof: Each token sent in the algorithm is of size O(DC+1 + logn). Combining that with the spacecomplexity of the slide, results in space complexity of O(n(DC+1 +logn)). Since C = 2nm, the spacecomplexity is O(Dm + n logn). 2Note that using the analysis of the IDA [Rab89] the space complexity of the sender and thereceiver is O(n2m2 log n). 25 ConclusionThis paper introduces the slide protocol and uses it to provide the �rst polynomial complexityend-to-end communication protocol in dynamic networks. Since its initial publication [AGR92],slide has been used as the basis for several new algorithms, including the elegant self-stabilizingprotocols [AV91, APSV91, Var92], a load-balancing scheme [AAMR93], and a multi-commodityow algorithms [AL94, AL93]. We believe it will �nd further applications in network protocoldesign as issues of availability and fault-tolerance become more critical in distributed applications.2It was pointed out to us by Michael Saks [Sak91] that based on the slide and the majority mechanisms, for �lesof size at least
(n2m2 log n) bits, one can build an O(nD) communication complexity �le-transfer protocol withoutresorting to coding techniques such as the IDA. 23

6 AcknowledgmentsWe thank Michael Merritt and Mike Saks for their many helpful comments.References[AAF+90] Y. Afek, H. Attiya, A. Fekete, M. J. Fischer, N. Lynch, Y. Mansour, D. Wang, andL. D. Zuck. Reliable communication over unreliable channels. Journal of the ACM,41(6):1267{1297, 1994.[AAG87] Y. Afek, B. Awerbuch, and E. Gafni. Applying static network protocols to dynamicnetworks. In Proc. of the 28th IEEE Ann. Symp. on Foundation of Computer Science,pages 358{370, October 1987.[AAM89] Y. Afek, B. Awerbuch, and H. Moriel. A complexity preserving reset procedure. Tech-nical Report MIT/LCS/TM-389, MIT, May 1989.[AAMR93] W. Aiello, B. Awerbuch, B. Maggs, and S. Rao. Approximate load balancing on dy-namic and asynchronous networks. In Proc. 25th ACM Symp. on Theory of Computing,pages 632{641. ACM, May 1993.[AE86] B. Awerbuch and S. Even. Reliable broadcast protocols in unreliable networks. NET-WORKS, 16:381{396, 1986.[AG88] Y. Afek and E. Gafni. End-to-end communication in unreliabel networks. In Proc. ofthe 7th ACM Symp. on Principles of Distributed Computing, pages 131{148, August1988.[AG91] Y. Afek, , and E. Gafni. Bootstrap network resynchronization: An e�cient techniquefor end-to-end communication. In Proc. of the Tenth Ann. ACM Symp. on Principlesof Distributed Computing (PODC), August 1991.[AGH90] B. Awerbuch, O. Goldreich, and A. Herzberg. A quantitative approach to dynamicnetworks. In Proc. 9th ACM Symp. on Principles of Distributed Computing, pages189{204, August 1990.[AGR92] Y. Afek, E. Gafni, and A. Rosen. The slide mechanism with applications in dynamicnetworks. In Proc. 11th ACM Symp. on Principles of Distributed Computing, pages35{46, August 1992.[AL93] B. Awerbuch and T. Leighton. A simple local-control approximation algorithm formulticommodity ow. In Proc. 34th IEEE Symposium on Foundations of ComputerScience (FOCS), pages 459{469, 1993.[AL94] B. Awerbuch and T. Leighton. Improved approximation algorithms for multi-commodity ow problem and local competative routing in dynamic networks. In Proc.26th ACM Symposium on Theory of Computing (STOC), pages 487{496, 1994.[AM88] B. Awerbuch and Y. Mansour. An e�cient topology update protocol for dynamicnetworks. Unpublished manuscript, January 1988.24

[AMS89] B. Awerbuch, Y. Mansour, and N. Shavit. Polynomial end to end communication.In Proc. of the 30th IEEE Ann. Symp. on Foundation of Computer Science, pages358{363, October 1989.[APSV91] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checkingand correction. In Proc. of the 32nd IEEE Ann. Symp. on Foundation of ComputerScience, pages 268{277, October 1991.[AS88] B. Awerbuch and M. Sipser. Dynamic networks are as fast as static networks. In Proc.of the 29th IEEE Ann. Symp. on Foundation of Computer Science, pages 206{220,October 1988.[AV91] B. Awerbuch, , and G. Varghese. Distributed program checking: a paradigm for build-ing self-stabilizing distributed protocols. In Proc. of the 32nd IEEE Ann. Symp. onFoundation of Computer Science, pages 258{267, October 1991.[BS88] A. E. Baratz and A. Segall. Reliable link initialization procedures. IEEE Transaction onCommunication, February 1988. Also in: IFIP 3rd Workshop on Protocol Speci�cation,Testing and Veri�cation, III.[DF88] E. W. Dijkstra and W. H. J. Feijin. A Method of Programming. Addison-Wesley, 1988.[Fin79] S. G. Finn. Resynch procedures and fail-safe network protocol. IEEE Trans. on Comm.,COM-27:840{845, June 1979.[Gal76] R. G. Gallager. A shortest path routing algorithm with automatic resynch. Unpublishednote, March 1976.[KOR95] E. Kushilevitz, R. Ostrovsky, A. Ros�en, Log-Space Polynomial End-to-End Commu-nication. In Proc. of the 27th Ann. ACM Symposium on the Theory of Computing(STOC), pages 559{568, May 199.[LMF88] N. Lynch, Y. Mansour, and A. Fekete. The data link layer: Two impossibility results.In Proc. of the ACM Symp. on Principles of Distributed Computing, August 1988.[MRR80] J. M. McQuillan, I. Richer, and E. C. Rosen. The new routing algorithm for thearpanet. IEEE Trans. on Communication, COM-28(5), May 1980.[MS80] P. M. Merlin and P. J. Schweitzer. Deadlock avoidance in store-and-forward networks1: Store-and-forward deadlock. IEEE Transaction on Communications, 28(3):345{354,March 1980.[Rab89] M. O. Rabin. E�cient dispersal of information for security, load balancing, and faulttolerance. Journal of the ACM, 36(2):335{348, 1989.[Sak91] M. Saks. personal communication. 1991.[Var92] G. Varghese. Dealing with Failure in Distributed Systems. PhD thesis, MIT, Depart-ment of Electrical Engineering and Computer Science, 1992.[Vis83] U. Vishkin. A distributed orientation algorithm. IEEE Trans. Info. Theory, June 1983.[Wec80] S. Wecker. DNA: the digital network architecture. IEEE Trans. on Comm., COM-28:510{526, April 1980. 25

